GNU Linux-libre 5.10.217-gnu1
[releases.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26                 phys_addr_t phys)
27 {
28         if (force_dma_unencrypted(dev))
29                 return phys_to_dma_unencrypted(dev, phys);
30         return phys_to_dma(dev, phys);
31 }
32
33 static inline struct page *dma_direct_to_page(struct device *dev,
34                 dma_addr_t dma_addr)
35 {
36         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42         u64 max_dma = phys_to_dma_direct(dev, phys);
43
44         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48                                   u64 *phys_limit)
49 {
50         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51
52         /*
53          * Optimistically try the zone that the physical address mask falls
54          * into first.  If that returns memory that isn't actually addressable
55          * we will fallback to the next lower zone and try again.
56          *
57          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58          * zones.
59          */
60         *phys_limit = dma_to_phys(dev, dma_limit);
61         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62                 return GFP_DMA;
63         if (*phys_limit <= DMA_BIT_MASK(32))
64                 return GFP_DMA32;
65         return 0;
66 }
67
68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69 {
70         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71
72         if (dma_addr == DMA_MAPPING_ERROR)
73                 return false;
74         return dma_addr + size - 1 <=
75                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77
78 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
79                 gfp_t gfp)
80 {
81         int node = dev_to_node(dev);
82         struct page *page = NULL;
83         u64 phys_limit;
84
85         WARN_ON_ONCE(!PAGE_ALIGNED(size));
86
87         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
88                                            &phys_limit);
89         page = dma_alloc_contiguous(dev, size, gfp);
90         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
91                 dma_free_contiguous(dev, page, size);
92                 page = NULL;
93         }
94 again:
95         if (!page)
96                 page = alloc_pages_node(node, gfp, get_order(size));
97         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
98                 dma_free_contiguous(dev, page, size);
99                 page = NULL;
100
101                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
102                     phys_limit < DMA_BIT_MASK(64) &&
103                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
104                         gfp |= GFP_DMA32;
105                         goto again;
106                 }
107
108                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
109                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
110                         goto again;
111                 }
112         }
113
114         return page;
115 }
116
117 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
118                 dma_addr_t *dma_handle, gfp_t gfp)
119 {
120         struct page *page;
121         u64 phys_mask;
122         void *ret;
123
124         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
125                                            &phys_mask);
126         page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
127         if (!page)
128                 return NULL;
129         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
130         return ret;
131 }
132
133 void *dma_direct_alloc(struct device *dev, size_t size,
134                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
135 {
136         struct page *page;
137         void *ret;
138         int err;
139
140         size = PAGE_ALIGN(size);
141         if (attrs & DMA_ATTR_NO_WARN)
142                 gfp |= __GFP_NOWARN;
143
144         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
145             !force_dma_unencrypted(dev)) {
146                 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
147                 if (!page)
148                         return NULL;
149                 /* remove any dirty cache lines on the kernel alias */
150                 if (!PageHighMem(page))
151                         arch_dma_prep_coherent(page, size);
152                 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
153                 /* return the page pointer as the opaque cookie */
154                 return page;
155         }
156
157         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
158             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
159             !dev_is_dma_coherent(dev))
160                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
161
162         /*
163          * Remapping or decrypting memory may block. If either is required and
164          * we can't block, allocate the memory from the atomic pools.
165          */
166         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
167             !gfpflags_allow_blocking(gfp) &&
168             (force_dma_unencrypted(dev) ||
169              (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev))))
170                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
171
172         /* we always manually zero the memory once we are done */
173         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
174         if (!page)
175                 return NULL;
176
177         if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
178              !dev_is_dma_coherent(dev)) ||
179             (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
180                 /* remove any dirty cache lines on the kernel alias */
181                 arch_dma_prep_coherent(page, size);
182
183                 /* create a coherent mapping */
184                 ret = dma_common_contiguous_remap(page, size,
185                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
186                                 __builtin_return_address(0));
187                 if (!ret)
188                         goto out_free_pages;
189                 if (force_dma_unencrypted(dev)) {
190                         err = set_memory_decrypted((unsigned long)ret,
191                                                    PFN_UP(size));
192                         if (err)
193                                 goto out_free_pages;
194                 }
195                 memset(ret, 0, size);
196                 goto done;
197         }
198
199         if (PageHighMem(page)) {
200                 /*
201                  * Depending on the cma= arguments and per-arch setup
202                  * dma_alloc_contiguous could return highmem pages.
203                  * Without remapping there is no way to return them here,
204                  * so log an error and fail.
205                  */
206                 dev_info(dev, "Rejecting highmem page from CMA.\n");
207                 goto out_free_pages;
208         }
209
210         ret = page_address(page);
211         if (force_dma_unencrypted(dev)) {
212                 err = set_memory_decrypted((unsigned long)ret,
213                                            PFN_UP(size));
214                 if (err)
215                         goto out_free_pages;
216         }
217
218         memset(ret, 0, size);
219
220         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
221             !dev_is_dma_coherent(dev)) {
222                 arch_dma_prep_coherent(page, size);
223                 ret = arch_dma_set_uncached(ret, size);
224                 if (IS_ERR(ret))
225                         goto out_encrypt_pages;
226         }
227 done:
228         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
229         return ret;
230
231 out_encrypt_pages:
232         if (force_dma_unencrypted(dev)) {
233                 err = set_memory_encrypted((unsigned long)page_address(page),
234                                            PFN_UP(size));
235                 /* If memory cannot be re-encrypted, it must be leaked */
236                 if (err)
237                         return NULL;
238         }
239 out_free_pages:
240         dma_free_contiguous(dev, page, size);
241         return NULL;
242 }
243
244 void dma_direct_free(struct device *dev, size_t size,
245                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
246 {
247         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
248             !force_dma_unencrypted(dev)) {
249                 /* cpu_addr is a struct page cookie, not a kernel address */
250                 dma_free_contiguous(dev, cpu_addr, size);
251                 return;
252         }
253
254         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
255             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
256             !dev_is_dma_coherent(dev)) {
257                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
258                 return;
259         }
260
261         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
262         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
263             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
264                 return;
265
266         if (force_dma_unencrypted(dev))
267                 set_memory_encrypted((unsigned long)cpu_addr, PFN_UP(size));
268
269         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
270                 vunmap(cpu_addr);
271         else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
272                 arch_dma_clear_uncached(cpu_addr, size);
273
274         dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
275 }
276
277 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
278                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
279 {
280         struct page *page;
281         void *ret;
282
283         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
284             force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp))
285                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
286
287         page = __dma_direct_alloc_pages(dev, size, gfp);
288         if (!page)
289                 return NULL;
290         if (PageHighMem(page)) {
291                 /*
292                  * Depending on the cma= arguments and per-arch setup
293                  * dma_alloc_contiguous could return highmem pages.
294                  * Without remapping there is no way to return them here,
295                  * so log an error and fail.
296                  */
297                 dev_info(dev, "Rejecting highmem page from CMA.\n");
298                 goto out_free_pages;
299         }
300
301         ret = page_address(page);
302         if (force_dma_unencrypted(dev)) {
303                 if (set_memory_decrypted((unsigned long)ret, PFN_UP(size)))
304                         goto out_free_pages;
305         }
306         memset(ret, 0, size);
307         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
308         return page;
309 out_free_pages:
310         dma_free_contiguous(dev, page, size);
311         return NULL;
312 }
313
314 void dma_direct_free_pages(struct device *dev, size_t size,
315                 struct page *page, dma_addr_t dma_addr,
316                 enum dma_data_direction dir)
317 {
318         void *vaddr = page_address(page);
319
320         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
321         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
322             dma_free_from_pool(dev, vaddr, size))
323                 return;
324
325         if (force_dma_unencrypted(dev))
326                 set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
327
328         dma_free_contiguous(dev, page, size);
329 }
330
331 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
332     defined(CONFIG_SWIOTLB)
333 void dma_direct_sync_sg_for_device(struct device *dev,
334                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
335 {
336         struct scatterlist *sg;
337         int i;
338
339         for_each_sg(sgl, sg, nents, i) {
340                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
341
342                 if (unlikely(is_swiotlb_buffer(paddr)))
343                         swiotlb_tbl_sync_single(dev, paddr, sg->length,
344                                         dir, SYNC_FOR_DEVICE);
345
346                 if (!dev_is_dma_coherent(dev))
347                         arch_sync_dma_for_device(paddr, sg->length,
348                                         dir);
349         }
350 }
351 #endif
352
353 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
354     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
355     defined(CONFIG_SWIOTLB)
356 void dma_direct_sync_sg_for_cpu(struct device *dev,
357                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
358 {
359         struct scatterlist *sg;
360         int i;
361
362         for_each_sg(sgl, sg, nents, i) {
363                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
364
365                 if (!dev_is_dma_coherent(dev))
366                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
367
368                 if (unlikely(is_swiotlb_buffer(paddr)))
369                         swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
370                                         SYNC_FOR_CPU);
371
372                 if (dir == DMA_FROM_DEVICE)
373                         arch_dma_mark_clean(paddr, sg->length);
374         }
375
376         if (!dev_is_dma_coherent(dev))
377                 arch_sync_dma_for_cpu_all();
378 }
379
380 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
381                 int nents, enum dma_data_direction dir, unsigned long attrs)
382 {
383         struct scatterlist *sg;
384         int i;
385
386         for_each_sg(sgl, sg, nents, i)
387                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
388                              attrs);
389 }
390 #endif
391
392 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
393                 enum dma_data_direction dir, unsigned long attrs)
394 {
395         int i;
396         struct scatterlist *sg;
397
398         for_each_sg(sgl, sg, nents, i) {
399                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
400                                 sg->offset, sg->length, dir, attrs);
401                 if (sg->dma_address == DMA_MAPPING_ERROR)
402                         goto out_unmap;
403                 sg_dma_len(sg) = sg->length;
404         }
405
406         return nents;
407
408 out_unmap:
409         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
410         return 0;
411 }
412
413 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
414                 size_t size, enum dma_data_direction dir, unsigned long attrs)
415 {
416         dma_addr_t dma_addr = paddr;
417
418         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
419                 dev_err_once(dev,
420                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
421                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
422                 WARN_ON_ONCE(1);
423                 return DMA_MAPPING_ERROR;
424         }
425
426         return dma_addr;
427 }
428
429 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
430                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
431                 unsigned long attrs)
432 {
433         struct page *page = dma_direct_to_page(dev, dma_addr);
434         int ret;
435
436         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
437         if (!ret)
438                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
439         return ret;
440 }
441
442 bool dma_direct_can_mmap(struct device *dev)
443 {
444         return dev_is_dma_coherent(dev) ||
445                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
446 }
447
448 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
449                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
450                 unsigned long attrs)
451 {
452         unsigned long user_count = vma_pages(vma);
453         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
454         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
455         int ret = -ENXIO;
456
457         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
458
459         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
460                 return ret;
461
462         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
463                 return -ENXIO;
464         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
465                         user_count << PAGE_SHIFT, vma->vm_page_prot);
466 }
467
468 int dma_direct_supported(struct device *dev, u64 mask)
469 {
470         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
471
472         /*
473          * Because 32-bit DMA masks are so common we expect every architecture
474          * to be able to satisfy them - either by not supporting more physical
475          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
476          * architecture needs to use an IOMMU instead of the direct mapping.
477          */
478         if (mask >= DMA_BIT_MASK(32))
479                 return 1;
480
481         /*
482          * This check needs to be against the actual bit mask value, so use
483          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
484          * part of the check.
485          */
486         if (IS_ENABLED(CONFIG_ZONE_DMA))
487                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
488         return mask >= phys_to_dma_unencrypted(dev, min_mask);
489 }
490
491 size_t dma_direct_max_mapping_size(struct device *dev)
492 {
493         /* If SWIOTLB is active, use its maximum mapping size */
494         if (is_swiotlb_active() &&
495             (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
496                 return swiotlb_max_mapping_size(dev);
497         return SIZE_MAX;
498 }
499
500 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
501 {
502         return !dev_is_dma_coherent(dev) ||
503                 is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
504 }
505
506 /**
507  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
508  * @dev:        device pointer; needed to "own" the alloced memory.
509  * @cpu_start:  beginning of memory region covered by this offset.
510  * @dma_start:  beginning of DMA/PCI region covered by this offset.
511  * @size:       size of the region.
512  *
513  * This is for the simple case of a uniform offset which cannot
514  * be discovered by "dma-ranges".
515  *
516  * It returns -ENOMEM if out of memory, -EINVAL if a map
517  * already exists, 0 otherwise.
518  *
519  * Note: any call to this from a driver is a bug.  The mapping needs
520  * to be described by the device tree or other firmware interfaces.
521  */
522 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
523                          dma_addr_t dma_start, u64 size)
524 {
525         struct bus_dma_region *map;
526         u64 offset = (u64)cpu_start - (u64)dma_start;
527
528         if (dev->dma_range_map) {
529                 dev_err(dev, "attempt to add DMA range to existing map\n");
530                 return -EINVAL;
531         }
532
533         if (!offset)
534                 return 0;
535
536         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
537         if (!map)
538                 return -ENOMEM;
539         map[0].cpu_start = cpu_start;
540         map[0].dma_start = dma_start;
541         map[0].offset = offset;
542         map[0].size = size;
543         dev->dma_range_map = map;
544         return 0;
545 }
546 EXPORT_SYMBOL_GPL(dma_direct_set_offset);