GNU Linux-libre 5.4.200-gnu1
[releases.git] / kernel / debug / debug_core.c
1 /*
2  * Kernel Debug Core
3  *
4  * Maintainer: Jason Wessel <jason.wessel@windriver.com>
5  *
6  * Copyright (C) 2000-2001 VERITAS Software Corporation.
7  * Copyright (C) 2002-2004 Timesys Corporation
8  * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9  * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
10  * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11  * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12  * Copyright (C) 2005-2009 Wind River Systems, Inc.
13  * Copyright (C) 2007 MontaVista Software, Inc.
14  * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
15  *
16  * Contributors at various stages not listed above:
17  *  Jason Wessel ( jason.wessel@windriver.com )
18  *  George Anzinger <george@mvista.com>
19  *  Anurekh Saxena (anurekh.saxena@timesys.com)
20  *  Lake Stevens Instrument Division (Glenn Engel)
21  *  Jim Kingdon, Cygnus Support.
22  *
23  * Original KGDB stub: David Grothe <dave@gcom.com>,
24  * Tigran Aivazian <tigran@sco.com>
25  *
26  * This file is licensed under the terms of the GNU General Public License
27  * version 2. This program is licensed "as is" without any warranty of any
28  * kind, whether express or implied.
29  */
30
31 #define pr_fmt(fmt) "KGDB: " fmt
32
33 #include <linux/pid_namespace.h>
34 #include <linux/clocksource.h>
35 #include <linux/serial_core.h>
36 #include <linux/interrupt.h>
37 #include <linux/spinlock.h>
38 #include <linux/console.h>
39 #include <linux/threads.h>
40 #include <linux/uaccess.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/sched.h>
47 #include <linux/sysrq.h>
48 #include <linux/reboot.h>
49 #include <linux/init.h>
50 #include <linux/kgdb.h>
51 #include <linux/kdb.h>
52 #include <linux/nmi.h>
53 #include <linux/pid.h>
54 #include <linux/smp.h>
55 #include <linux/mm.h>
56 #include <linux/vmacache.h>
57 #include <linux/rcupdate.h>
58 #include <linux/irq.h>
59 #include <linux/security.h>
60
61 #include <asm/cacheflush.h>
62 #include <asm/byteorder.h>
63 #include <linux/atomic.h>
64
65 #include "debug_core.h"
66
67 static int kgdb_break_asap;
68
69 struct debuggerinfo_struct kgdb_info[NR_CPUS];
70
71 /**
72  * kgdb_connected - Is a host GDB connected to us?
73  */
74 int                             kgdb_connected;
75 EXPORT_SYMBOL_GPL(kgdb_connected);
76
77 /* All the KGDB handlers are installed */
78 int                     kgdb_io_module_registered;
79
80 /* Guard for recursive entry */
81 static int                      exception_level;
82
83 struct kgdb_io          *dbg_io_ops;
84 static DEFINE_SPINLOCK(kgdb_registration_lock);
85
86 /* Action for the reboot notifiter, a global allow kdb to change it */
87 static int kgdbreboot;
88 /* kgdb console driver is loaded */
89 static int kgdb_con_registered;
90 /* determine if kgdb console output should be used */
91 static int kgdb_use_con;
92 /* Flag for alternate operations for early debugging */
93 bool dbg_is_early = true;
94 /* Next cpu to become the master debug core */
95 int dbg_switch_cpu;
96
97 /* Use kdb or gdbserver mode */
98 int dbg_kdb_mode = 1;
99
100 module_param(kgdb_use_con, int, 0644);
101 module_param(kgdbreboot, int, 0644);
102
103 /*
104  * Holds information about breakpoints in a kernel. These breakpoints are
105  * added and removed by gdb.
106  */
107 static struct kgdb_bkpt         kgdb_break[KGDB_MAX_BREAKPOINTS] = {
108         [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
109 };
110
111 /*
112  * The CPU# of the active CPU, or -1 if none:
113  */
114 atomic_t                        kgdb_active = ATOMIC_INIT(-1);
115 EXPORT_SYMBOL_GPL(kgdb_active);
116 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
117 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
118
119 /*
120  * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
121  * bootup code (which might not have percpu set up yet):
122  */
123 static atomic_t                 masters_in_kgdb;
124 static atomic_t                 slaves_in_kgdb;
125 static atomic_t                 kgdb_break_tasklet_var;
126 atomic_t                        kgdb_setting_breakpoint;
127
128 struct task_struct              *kgdb_usethread;
129 struct task_struct              *kgdb_contthread;
130
131 int                             kgdb_single_step;
132 static pid_t                    kgdb_sstep_pid;
133
134 /* to keep track of the CPU which is doing the single stepping*/
135 atomic_t                        kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
136
137 /*
138  * If you are debugging a problem where roundup (the collection of
139  * all other CPUs) is a problem [this should be extremely rare],
140  * then use the nokgdbroundup option to avoid roundup. In that case
141  * the other CPUs might interfere with your debugging context, so
142  * use this with care:
143  */
144 static int kgdb_do_roundup = 1;
145
146 static int __init opt_nokgdbroundup(char *str)
147 {
148         kgdb_do_roundup = 0;
149
150         return 0;
151 }
152
153 early_param("nokgdbroundup", opt_nokgdbroundup);
154
155 /*
156  * Finally, some KGDB code :-)
157  */
158
159 /*
160  * Weak aliases for breakpoint management,
161  * can be overriden by architectures when needed:
162  */
163 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
164 {
165         int err;
166
167         err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
168                                 BREAK_INSTR_SIZE);
169         if (err)
170                 return err;
171         err = probe_kernel_write((char *)bpt->bpt_addr,
172                                  arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
173         return err;
174 }
175
176 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
177 {
178         return probe_kernel_write((char *)bpt->bpt_addr,
179                                   (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
180 }
181
182 int __weak kgdb_validate_break_address(unsigned long addr)
183 {
184         struct kgdb_bkpt tmp;
185         int err;
186         /* Validate setting the breakpoint and then removing it.  If the
187          * remove fails, the kernel needs to emit a bad message because we
188          * are deep trouble not being able to put things back the way we
189          * found them.
190          */
191         tmp.bpt_addr = addr;
192         err = kgdb_arch_set_breakpoint(&tmp);
193         if (err)
194                 return err;
195         err = kgdb_arch_remove_breakpoint(&tmp);
196         if (err)
197                 pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
198                        addr);
199         return err;
200 }
201
202 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
203 {
204         return instruction_pointer(regs);
205 }
206
207 int __weak kgdb_arch_init(void)
208 {
209         return 0;
210 }
211
212 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
213 {
214         return 0;
215 }
216
217 #ifdef CONFIG_SMP
218
219 /*
220  * Default (weak) implementation for kgdb_roundup_cpus
221  */
222
223 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd);
224
225 void __weak kgdb_call_nmi_hook(void *ignored)
226 {
227         /*
228          * NOTE: get_irq_regs() is supposed to get the registers from
229          * before the IPI interrupt happened and so is supposed to
230          * show where the processor was.  In some situations it's
231          * possible we might be called without an IPI, so it might be
232          * safer to figure out how to make kgdb_breakpoint() work
233          * properly here.
234          */
235         kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
236 }
237
238 void __weak kgdb_roundup_cpus(void)
239 {
240         call_single_data_t *csd;
241         int this_cpu = raw_smp_processor_id();
242         int cpu;
243         int ret;
244
245         for_each_online_cpu(cpu) {
246                 /* No need to roundup ourselves */
247                 if (cpu == this_cpu)
248                         continue;
249
250                 csd = &per_cpu(kgdb_roundup_csd, cpu);
251
252                 /*
253                  * If it didn't round up last time, don't try again
254                  * since smp_call_function_single_async() will block.
255                  *
256                  * If rounding_up is false then we know that the
257                  * previous call must have at least started and that
258                  * means smp_call_function_single_async() won't block.
259                  */
260                 if (kgdb_info[cpu].rounding_up)
261                         continue;
262                 kgdb_info[cpu].rounding_up = true;
263
264                 csd->func = kgdb_call_nmi_hook;
265                 ret = smp_call_function_single_async(cpu, csd);
266                 if (ret)
267                         kgdb_info[cpu].rounding_up = false;
268         }
269 }
270
271 #endif
272
273 /*
274  * Some architectures need cache flushes when we set/clear a
275  * breakpoint:
276  */
277 static void kgdb_flush_swbreak_addr(unsigned long addr)
278 {
279         if (!CACHE_FLUSH_IS_SAFE)
280                 return;
281
282         if (current->mm) {
283                 int i;
284
285                 for (i = 0; i < VMACACHE_SIZE; i++) {
286                         if (!current->vmacache.vmas[i])
287                                 continue;
288                         flush_cache_range(current->vmacache.vmas[i],
289                                           addr, addr + BREAK_INSTR_SIZE);
290                 }
291         }
292
293         /* Force flush instruction cache if it was outside the mm */
294         flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
295 }
296
297 /*
298  * SW breakpoint management:
299  */
300 int dbg_activate_sw_breakpoints(void)
301 {
302         int error;
303         int ret = 0;
304         int i;
305
306         for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
307                 if (kgdb_break[i].state != BP_SET)
308                         continue;
309
310                 error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
311                 if (error) {
312                         ret = error;
313                         pr_info("BP install failed: %lx\n",
314                                 kgdb_break[i].bpt_addr);
315                         continue;
316                 }
317
318                 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
319                 kgdb_break[i].state = BP_ACTIVE;
320         }
321         return ret;
322 }
323
324 int dbg_set_sw_break(unsigned long addr)
325 {
326         int err = kgdb_validate_break_address(addr);
327         int breakno = -1;
328         int i;
329
330         if (err)
331                 return err;
332
333         for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
334                 if ((kgdb_break[i].state == BP_SET) &&
335                                         (kgdb_break[i].bpt_addr == addr))
336                         return -EEXIST;
337         }
338         for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
339                 if (kgdb_break[i].state == BP_REMOVED &&
340                                         kgdb_break[i].bpt_addr == addr) {
341                         breakno = i;
342                         break;
343                 }
344         }
345
346         if (breakno == -1) {
347                 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
348                         if (kgdb_break[i].state == BP_UNDEFINED) {
349                                 breakno = i;
350                                 break;
351                         }
352                 }
353         }
354
355         if (breakno == -1)
356                 return -E2BIG;
357
358         kgdb_break[breakno].state = BP_SET;
359         kgdb_break[breakno].type = BP_BREAKPOINT;
360         kgdb_break[breakno].bpt_addr = addr;
361
362         return 0;
363 }
364
365 int dbg_deactivate_sw_breakpoints(void)
366 {
367         int error;
368         int ret = 0;
369         int i;
370
371         for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
372                 if (kgdb_break[i].state != BP_ACTIVE)
373                         continue;
374                 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
375                 if (error) {
376                         pr_info("BP remove failed: %lx\n",
377                                 kgdb_break[i].bpt_addr);
378                         ret = error;
379                 }
380
381                 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
382                 kgdb_break[i].state = BP_SET;
383         }
384         return ret;
385 }
386
387 int dbg_remove_sw_break(unsigned long addr)
388 {
389         int i;
390
391         for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
392                 if ((kgdb_break[i].state == BP_SET) &&
393                                 (kgdb_break[i].bpt_addr == addr)) {
394                         kgdb_break[i].state = BP_REMOVED;
395                         return 0;
396                 }
397         }
398         return -ENOENT;
399 }
400
401 int kgdb_isremovedbreak(unsigned long addr)
402 {
403         int i;
404
405         for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
406                 if ((kgdb_break[i].state == BP_REMOVED) &&
407                                         (kgdb_break[i].bpt_addr == addr))
408                         return 1;
409         }
410         return 0;
411 }
412
413 int dbg_remove_all_break(void)
414 {
415         int error;
416         int i;
417
418         /* Clear memory breakpoints. */
419         for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
420                 if (kgdb_break[i].state != BP_ACTIVE)
421                         goto setundefined;
422                 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
423                 if (error)
424                         pr_err("breakpoint remove failed: %lx\n",
425                                kgdb_break[i].bpt_addr);
426 setundefined:
427                 kgdb_break[i].state = BP_UNDEFINED;
428         }
429
430         /* Clear hardware breakpoints. */
431         if (arch_kgdb_ops.remove_all_hw_break)
432                 arch_kgdb_ops.remove_all_hw_break();
433
434         return 0;
435 }
436
437 /*
438  * Return true if there is a valid kgdb I/O module.  Also if no
439  * debugger is attached a message can be printed to the console about
440  * waiting for the debugger to attach.
441  *
442  * The print_wait argument is only to be true when called from inside
443  * the core kgdb_handle_exception, because it will wait for the
444  * debugger to attach.
445  */
446 static int kgdb_io_ready(int print_wait)
447 {
448         if (!dbg_io_ops)
449                 return 0;
450         if (kgdb_connected)
451                 return 1;
452         if (atomic_read(&kgdb_setting_breakpoint))
453                 return 1;
454         if (print_wait) {
455 #ifdef CONFIG_KGDB_KDB
456                 if (!dbg_kdb_mode)
457                         pr_crit("waiting... or $3#33 for KDB\n");
458 #else
459                 pr_crit("Waiting for remote debugger\n");
460 #endif
461         }
462         return 1;
463 }
464
465 static int kgdb_reenter_check(struct kgdb_state *ks)
466 {
467         unsigned long addr;
468
469         if (atomic_read(&kgdb_active) != raw_smp_processor_id())
470                 return 0;
471
472         /* Panic on recursive debugger calls: */
473         exception_level++;
474         addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
475         dbg_deactivate_sw_breakpoints();
476
477         /*
478          * If the break point removed ok at the place exception
479          * occurred, try to recover and print a warning to the end
480          * user because the user planted a breakpoint in a place that
481          * KGDB needs in order to function.
482          */
483         if (dbg_remove_sw_break(addr) == 0) {
484                 exception_level = 0;
485                 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
486                 dbg_activate_sw_breakpoints();
487                 pr_crit("re-enter error: breakpoint removed %lx\n", addr);
488                 WARN_ON_ONCE(1);
489
490                 return 1;
491         }
492         dbg_remove_all_break();
493         kgdb_skipexception(ks->ex_vector, ks->linux_regs);
494
495         if (exception_level > 1) {
496                 dump_stack();
497                 kgdb_io_module_registered = false;
498                 panic("Recursive entry to debugger");
499         }
500
501         pr_crit("re-enter exception: ALL breakpoints killed\n");
502 #ifdef CONFIG_KGDB_KDB
503         /* Allow kdb to debug itself one level */
504         return 0;
505 #endif
506         dump_stack();
507         panic("Recursive entry to debugger");
508
509         return 1;
510 }
511
512 static void dbg_touch_watchdogs(void)
513 {
514         touch_softlockup_watchdog_sync();
515         clocksource_touch_watchdog();
516         rcu_cpu_stall_reset();
517 }
518
519 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
520                 int exception_state)
521 {
522         unsigned long flags;
523         int sstep_tries = 100;
524         int error;
525         int cpu;
526         int trace_on = 0;
527         int online_cpus = num_online_cpus();
528         u64 time_left;
529
530         kgdb_info[ks->cpu].enter_kgdb++;
531         kgdb_info[ks->cpu].exception_state |= exception_state;
532
533         if (exception_state == DCPU_WANT_MASTER)
534                 atomic_inc(&masters_in_kgdb);
535         else
536                 atomic_inc(&slaves_in_kgdb);
537
538         if (arch_kgdb_ops.disable_hw_break)
539                 arch_kgdb_ops.disable_hw_break(regs);
540
541 acquirelock:
542         rcu_read_lock();
543         /*
544          * Interrupts will be restored by the 'trap return' code, except when
545          * single stepping.
546          */
547         local_irq_save(flags);
548
549         cpu = ks->cpu;
550         kgdb_info[cpu].debuggerinfo = regs;
551         kgdb_info[cpu].task = current;
552         kgdb_info[cpu].ret_state = 0;
553         kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
554
555         /* Make sure the above info reaches the primary CPU */
556         smp_mb();
557
558         if (exception_level == 1) {
559                 if (raw_spin_trylock(&dbg_master_lock))
560                         atomic_xchg(&kgdb_active, cpu);
561                 goto cpu_master_loop;
562         }
563
564         /*
565          * CPU will loop if it is a slave or request to become a kgdb
566          * master cpu and acquire the kgdb_active lock:
567          */
568         while (1) {
569 cpu_loop:
570                 if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
571                         kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
572                         goto cpu_master_loop;
573                 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
574                         if (raw_spin_trylock(&dbg_master_lock)) {
575                                 atomic_xchg(&kgdb_active, cpu);
576                                 break;
577                         }
578                 } else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
579                         if (!raw_spin_is_locked(&dbg_slave_lock))
580                                 goto return_normal;
581                 } else {
582 return_normal:
583                         /* Return to normal operation by executing any
584                          * hw breakpoint fixup.
585                          */
586                         if (arch_kgdb_ops.correct_hw_break)
587                                 arch_kgdb_ops.correct_hw_break();
588                         if (trace_on)
589                                 tracing_on();
590                         kgdb_info[cpu].debuggerinfo = NULL;
591                         kgdb_info[cpu].task = NULL;
592                         kgdb_info[cpu].exception_state &=
593                                 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
594                         kgdb_info[cpu].enter_kgdb--;
595                         smp_mb__before_atomic();
596                         atomic_dec(&slaves_in_kgdb);
597                         dbg_touch_watchdogs();
598                         local_irq_restore(flags);
599                         rcu_read_unlock();
600                         return 0;
601                 }
602                 cpu_relax();
603         }
604
605         /*
606          * For single stepping, try to only enter on the processor
607          * that was single stepping.  To guard against a deadlock, the
608          * kernel will only try for the value of sstep_tries before
609          * giving up and continuing on.
610          */
611         if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
612             (kgdb_info[cpu].task &&
613              kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
614                 atomic_set(&kgdb_active, -1);
615                 raw_spin_unlock(&dbg_master_lock);
616                 dbg_touch_watchdogs();
617                 local_irq_restore(flags);
618                 rcu_read_unlock();
619
620                 goto acquirelock;
621         }
622
623         if (!kgdb_io_ready(1)) {
624                 kgdb_info[cpu].ret_state = 1;
625                 goto kgdb_restore; /* No I/O connection, resume the system */
626         }
627
628         /*
629          * Don't enter if we have hit a removed breakpoint.
630          */
631         if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
632                 goto kgdb_restore;
633
634         atomic_inc(&ignore_console_lock_warning);
635
636         /* Call the I/O driver's pre_exception routine */
637         if (dbg_io_ops->pre_exception)
638                 dbg_io_ops->pre_exception();
639
640         /*
641          * Get the passive CPU lock which will hold all the non-primary
642          * CPU in a spin state while the debugger is active
643          */
644         if (!kgdb_single_step)
645                 raw_spin_lock(&dbg_slave_lock);
646
647 #ifdef CONFIG_SMP
648         /* If send_ready set, slaves are already waiting */
649         if (ks->send_ready)
650                 atomic_set(ks->send_ready, 1);
651
652         /* Signal the other CPUs to enter kgdb_wait() */
653         else if ((!kgdb_single_step) && kgdb_do_roundup)
654                 kgdb_roundup_cpus();
655 #endif
656
657         /*
658          * Wait for the other CPUs to be notified and be waiting for us:
659          */
660         time_left = MSEC_PER_SEC;
661         while (kgdb_do_roundup && --time_left &&
662                (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
663                    online_cpus)
664                 udelay(1000);
665         if (!time_left)
666                 pr_crit("Timed out waiting for secondary CPUs.\n");
667
668         /*
669          * At this point the primary processor is completely
670          * in the debugger and all secondary CPUs are quiescent
671          */
672         dbg_deactivate_sw_breakpoints();
673         kgdb_single_step = 0;
674         kgdb_contthread = current;
675         exception_level = 0;
676         trace_on = tracing_is_on();
677         if (trace_on)
678                 tracing_off();
679
680         while (1) {
681 cpu_master_loop:
682                 if (dbg_kdb_mode) {
683                         kgdb_connected = 1;
684                         error = kdb_stub(ks);
685                         if (error == -1)
686                                 continue;
687                         kgdb_connected = 0;
688                 } else {
689                         /*
690                          * This is a brutal way to interfere with the debugger
691                          * and prevent gdb being used to poke at kernel memory.
692                          * This could cause trouble if lockdown is applied when
693                          * there is already an active gdb session. For now the
694                          * answer is simply "don't do that". Typically lockdown
695                          * *will* be applied before the debug core gets started
696                          * so only developers using kgdb for fairly advanced
697                          * early kernel debug can be biten by this. Hopefully
698                          * they are sophisticated enough to take care of
699                          * themselves, especially with help from the lockdown
700                          * message printed on the console!
701                          */
702                         if (security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL)) {
703                                 if (IS_ENABLED(CONFIG_KGDB_KDB)) {
704                                         /* Switch back to kdb if possible... */
705                                         dbg_kdb_mode = 1;
706                                         continue;
707                                 } else {
708                                         /* ... otherwise just bail */
709                                         break;
710                                 }
711                         }
712                         error = gdb_serial_stub(ks);
713                 }
714
715                 if (error == DBG_PASS_EVENT) {
716                         dbg_kdb_mode = !dbg_kdb_mode;
717                 } else if (error == DBG_SWITCH_CPU_EVENT) {
718                         kgdb_info[dbg_switch_cpu].exception_state |=
719                                 DCPU_NEXT_MASTER;
720                         goto cpu_loop;
721                 } else {
722                         kgdb_info[cpu].ret_state = error;
723                         break;
724                 }
725         }
726
727         /* Call the I/O driver's post_exception routine */
728         if (dbg_io_ops->post_exception)
729                 dbg_io_ops->post_exception();
730
731         atomic_dec(&ignore_console_lock_warning);
732
733         if (!kgdb_single_step) {
734                 raw_spin_unlock(&dbg_slave_lock);
735                 /* Wait till all the CPUs have quit from the debugger. */
736                 while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
737                         cpu_relax();
738         }
739
740 kgdb_restore:
741         if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
742                 int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
743                 if (kgdb_info[sstep_cpu].task)
744                         kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
745                 else
746                         kgdb_sstep_pid = 0;
747         }
748         if (arch_kgdb_ops.correct_hw_break)
749                 arch_kgdb_ops.correct_hw_break();
750         if (trace_on)
751                 tracing_on();
752
753         kgdb_info[cpu].debuggerinfo = NULL;
754         kgdb_info[cpu].task = NULL;
755         kgdb_info[cpu].exception_state &=
756                 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
757         kgdb_info[cpu].enter_kgdb--;
758         smp_mb__before_atomic();
759         atomic_dec(&masters_in_kgdb);
760         /* Free kgdb_active */
761         atomic_set(&kgdb_active, -1);
762         raw_spin_unlock(&dbg_master_lock);
763         dbg_touch_watchdogs();
764         local_irq_restore(flags);
765         rcu_read_unlock();
766
767         return kgdb_info[cpu].ret_state;
768 }
769
770 /*
771  * kgdb_handle_exception() - main entry point from a kernel exception
772  *
773  * Locking hierarchy:
774  *      interface locks, if any (begin_session)
775  *      kgdb lock (kgdb_active)
776  */
777 int
778 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
779 {
780         struct kgdb_state kgdb_var;
781         struct kgdb_state *ks = &kgdb_var;
782         int ret = 0;
783
784         if (arch_kgdb_ops.enable_nmi)
785                 arch_kgdb_ops.enable_nmi(0);
786         /*
787          * Avoid entering the debugger if we were triggered due to an oops
788          * but panic_timeout indicates the system should automatically
789          * reboot on panic. We don't want to get stuck waiting for input
790          * on such systems, especially if its "just" an oops.
791          */
792         if (signo != SIGTRAP && panic_timeout)
793                 return 1;
794
795         memset(ks, 0, sizeof(struct kgdb_state));
796         ks->cpu                 = raw_smp_processor_id();
797         ks->ex_vector           = evector;
798         ks->signo               = signo;
799         ks->err_code            = ecode;
800         ks->linux_regs          = regs;
801
802         if (kgdb_reenter_check(ks))
803                 goto out; /* Ouch, double exception ! */
804         if (kgdb_info[ks->cpu].enter_kgdb != 0)
805                 goto out;
806
807         ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
808 out:
809         if (arch_kgdb_ops.enable_nmi)
810                 arch_kgdb_ops.enable_nmi(1);
811         return ret;
812 }
813
814 /*
815  * GDB places a breakpoint at this function to know dynamically loaded objects.
816  */
817 static int module_event(struct notifier_block *self, unsigned long val,
818         void *data)
819 {
820         return 0;
821 }
822
823 static struct notifier_block dbg_module_load_nb = {
824         .notifier_call  = module_event,
825 };
826
827 int kgdb_nmicallback(int cpu, void *regs)
828 {
829 #ifdef CONFIG_SMP
830         struct kgdb_state kgdb_var;
831         struct kgdb_state *ks = &kgdb_var;
832
833         kgdb_info[cpu].rounding_up = false;
834
835         memset(ks, 0, sizeof(struct kgdb_state));
836         ks->cpu                 = cpu;
837         ks->linux_regs          = regs;
838
839         if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
840                         raw_spin_is_locked(&dbg_master_lock)) {
841                 kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
842                 return 0;
843         }
844 #endif
845         return 1;
846 }
847
848 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
849                                                         atomic_t *send_ready)
850 {
851 #ifdef CONFIG_SMP
852         if (!kgdb_io_ready(0) || !send_ready)
853                 return 1;
854
855         if (kgdb_info[cpu].enter_kgdb == 0) {
856                 struct kgdb_state kgdb_var;
857                 struct kgdb_state *ks = &kgdb_var;
858
859                 memset(ks, 0, sizeof(struct kgdb_state));
860                 ks->cpu                 = cpu;
861                 ks->ex_vector           = trapnr;
862                 ks->signo               = SIGTRAP;
863                 ks->err_code            = err_code;
864                 ks->linux_regs          = regs;
865                 ks->send_ready          = send_ready;
866                 kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
867                 return 0;
868         }
869 #endif
870         return 1;
871 }
872
873 static void kgdb_console_write(struct console *co, const char *s,
874    unsigned count)
875 {
876         unsigned long flags;
877
878         /* If we're debugging, or KGDB has not connected, don't try
879          * and print. */
880         if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
881                 return;
882
883         local_irq_save(flags);
884         gdbstub_msg_write(s, count);
885         local_irq_restore(flags);
886 }
887
888 static struct console kgdbcons = {
889         .name           = "kgdb",
890         .write          = kgdb_console_write,
891         .flags          = CON_PRINTBUFFER | CON_ENABLED,
892         .index          = -1,
893 };
894
895 static int __init opt_kgdb_con(char *str)
896 {
897         kgdb_use_con = 1;
898
899         if (kgdb_io_module_registered && !kgdb_con_registered) {
900                 register_console(&kgdbcons);
901                 kgdb_con_registered = 1;
902         }
903
904         return 0;
905 }
906
907 early_param("kgdbcon", opt_kgdb_con);
908
909 #ifdef CONFIG_MAGIC_SYSRQ
910 static void sysrq_handle_dbg(int key)
911 {
912         if (!dbg_io_ops) {
913                 pr_crit("ERROR: No KGDB I/O module available\n");
914                 return;
915         }
916         if (!kgdb_connected) {
917 #ifdef CONFIG_KGDB_KDB
918                 if (!dbg_kdb_mode)
919                         pr_crit("KGDB or $3#33 for KDB\n");
920 #else
921                 pr_crit("Entering KGDB\n");
922 #endif
923         }
924
925         kgdb_breakpoint();
926 }
927
928 static struct sysrq_key_op sysrq_dbg_op = {
929         .handler        = sysrq_handle_dbg,
930         .help_msg       = "debug(g)",
931         .action_msg     = "DEBUG",
932 };
933 #endif
934
935 void kgdb_panic(const char *msg)
936 {
937         if (!kgdb_io_module_registered)
938                 return;
939
940         /*
941          * We don't want to get stuck waiting for input from user if
942          * "panic_timeout" indicates the system should automatically
943          * reboot on panic.
944          */
945         if (panic_timeout)
946                 return;
947
948         if (dbg_kdb_mode)
949                 kdb_printf("PANIC: %s\n", msg);
950
951         kgdb_breakpoint();
952 }
953
954 void __weak kgdb_arch_late(void)
955 {
956 }
957
958 void __init dbg_late_init(void)
959 {
960         dbg_is_early = false;
961         if (kgdb_io_module_registered)
962                 kgdb_arch_late();
963         kdb_init(KDB_INIT_FULL);
964 }
965
966 static int
967 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
968 {
969         /*
970          * Take the following action on reboot notify depending on value:
971          *    1 == Enter debugger
972          *    0 == [the default] detatch debug client
973          *   -1 == Do nothing... and use this until the board resets
974          */
975         switch (kgdbreboot) {
976         case 1:
977                 kgdb_breakpoint();
978         case -1:
979                 goto done;
980         }
981         if (!dbg_kdb_mode)
982                 gdbstub_exit(code);
983 done:
984         return NOTIFY_DONE;
985 }
986
987 static struct notifier_block dbg_reboot_notifier = {
988         .notifier_call          = dbg_notify_reboot,
989         .next                   = NULL,
990         .priority               = INT_MAX,
991 };
992
993 static void kgdb_register_callbacks(void)
994 {
995         if (!kgdb_io_module_registered) {
996                 kgdb_io_module_registered = 1;
997                 kgdb_arch_init();
998                 if (!dbg_is_early)
999                         kgdb_arch_late();
1000                 register_module_notifier(&dbg_module_load_nb);
1001                 register_reboot_notifier(&dbg_reboot_notifier);
1002 #ifdef CONFIG_MAGIC_SYSRQ
1003                 register_sysrq_key('g', &sysrq_dbg_op);
1004 #endif
1005                 if (kgdb_use_con && !kgdb_con_registered) {
1006                         register_console(&kgdbcons);
1007                         kgdb_con_registered = 1;
1008                 }
1009         }
1010 }
1011
1012 static void kgdb_unregister_callbacks(void)
1013 {
1014         /*
1015          * When this routine is called KGDB should unregister from
1016          * handlers and clean up, making sure it is not handling any
1017          * break exceptions at the time.
1018          */
1019         if (kgdb_io_module_registered) {
1020                 kgdb_io_module_registered = 0;
1021                 unregister_reboot_notifier(&dbg_reboot_notifier);
1022                 unregister_module_notifier(&dbg_module_load_nb);
1023                 kgdb_arch_exit();
1024 #ifdef CONFIG_MAGIC_SYSRQ
1025                 unregister_sysrq_key('g', &sysrq_dbg_op);
1026 #endif
1027                 if (kgdb_con_registered) {
1028                         unregister_console(&kgdbcons);
1029                         kgdb_con_registered = 0;
1030                 }
1031         }
1032 }
1033
1034 /*
1035  * There are times a tasklet needs to be used vs a compiled in
1036  * break point so as to cause an exception outside a kgdb I/O module,
1037  * such as is the case with kgdboe, where calling a breakpoint in the
1038  * I/O driver itself would be fatal.
1039  */
1040 static void kgdb_tasklet_bpt(unsigned long ing)
1041 {
1042         kgdb_breakpoint();
1043         atomic_set(&kgdb_break_tasklet_var, 0);
1044 }
1045
1046 static DECLARE_TASKLET(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt, 0);
1047
1048 void kgdb_schedule_breakpoint(void)
1049 {
1050         if (atomic_read(&kgdb_break_tasklet_var) ||
1051                 atomic_read(&kgdb_active) != -1 ||
1052                 atomic_read(&kgdb_setting_breakpoint))
1053                 return;
1054         atomic_inc(&kgdb_break_tasklet_var);
1055         tasklet_schedule(&kgdb_tasklet_breakpoint);
1056 }
1057 EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint);
1058
1059 static void kgdb_initial_breakpoint(void)
1060 {
1061         kgdb_break_asap = 0;
1062
1063         pr_crit("Waiting for connection from remote gdb...\n");
1064         kgdb_breakpoint();
1065 }
1066
1067 /**
1068  *      kgdb_register_io_module - register KGDB IO module
1069  *      @new_dbg_io_ops: the io ops vector
1070  *
1071  *      Register it with the KGDB core.
1072  */
1073 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1074 {
1075         int err;
1076
1077         spin_lock(&kgdb_registration_lock);
1078
1079         if (dbg_io_ops) {
1080                 spin_unlock(&kgdb_registration_lock);
1081
1082                 pr_err("Another I/O driver is already registered with KGDB\n");
1083                 return -EBUSY;
1084         }
1085
1086         if (new_dbg_io_ops->init) {
1087                 err = new_dbg_io_ops->init();
1088                 if (err) {
1089                         spin_unlock(&kgdb_registration_lock);
1090                         return err;
1091                 }
1092         }
1093
1094         dbg_io_ops = new_dbg_io_ops;
1095
1096         spin_unlock(&kgdb_registration_lock);
1097
1098         pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1099
1100         /* Arm KGDB now. */
1101         kgdb_register_callbacks();
1102
1103         if (kgdb_break_asap)
1104                 kgdb_initial_breakpoint();
1105
1106         return 0;
1107 }
1108 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1109
1110 /**
1111  *      kkgdb_unregister_io_module - unregister KGDB IO module
1112  *      @old_dbg_io_ops: the io ops vector
1113  *
1114  *      Unregister it with the KGDB core.
1115  */
1116 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1117 {
1118         BUG_ON(kgdb_connected);
1119
1120         /*
1121          * KGDB is no longer able to communicate out, so
1122          * unregister our callbacks and reset state.
1123          */
1124         kgdb_unregister_callbacks();
1125
1126         spin_lock(&kgdb_registration_lock);
1127
1128         WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1129         dbg_io_ops = NULL;
1130
1131         spin_unlock(&kgdb_registration_lock);
1132
1133         pr_info("Unregistered I/O driver %s, debugger disabled\n",
1134                 old_dbg_io_ops->name);
1135 }
1136 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1137
1138 int dbg_io_get_char(void)
1139 {
1140         int ret = dbg_io_ops->read_char();
1141         if (ret == NO_POLL_CHAR)
1142                 return -1;
1143         if (!dbg_kdb_mode)
1144                 return ret;
1145         if (ret == 127)
1146                 return 8;
1147         return ret;
1148 }
1149
1150 /**
1151  * kgdb_breakpoint - generate breakpoint exception
1152  *
1153  * This function will generate a breakpoint exception.  It is used at the
1154  * beginning of a program to sync up with a debugger and can be used
1155  * otherwise as a quick means to stop program execution and "break" into
1156  * the debugger.
1157  */
1158 noinline void kgdb_breakpoint(void)
1159 {
1160         atomic_inc(&kgdb_setting_breakpoint);
1161         wmb(); /* Sync point before breakpoint */
1162         arch_kgdb_breakpoint();
1163         wmb(); /* Sync point after breakpoint */
1164         atomic_dec(&kgdb_setting_breakpoint);
1165 }
1166 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1167
1168 static int __init opt_kgdb_wait(char *str)
1169 {
1170         kgdb_break_asap = 1;
1171
1172         kdb_init(KDB_INIT_EARLY);
1173         if (kgdb_io_module_registered)
1174                 kgdb_initial_breakpoint();
1175
1176         return 0;
1177 }
1178
1179 early_param("kgdbwait", opt_kgdb_wait);