GNU Linux-libre 5.10.215-gnu1
[releases.git] / kernel / bpf / ringbuf.c
1 #include <linux/bpf.h>
2 #include <linux/btf.h>
3 #include <linux/err.h>
4 #include <linux/irq_work.h>
5 #include <linux/slab.h>
6 #include <linux/filter.h>
7 #include <linux/mm.h>
8 #include <linux/vmalloc.h>
9 #include <linux/wait.h>
10 #include <linux/poll.h>
11 #include <linux/kmemleak.h>
12 #include <uapi/linux/btf.h>
13
14 #define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
15
16 /* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
17 #define RINGBUF_PGOFF \
18         (offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
19 /* consumer page and producer page */
20 #define RINGBUF_POS_PAGES 2
21
22 #define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
23
24 /* Maximum size of ring buffer area is limited by 32-bit page offset within
25  * record header, counted in pages. Reserve 8 bits for extensibility, and take
26  * into account few extra pages for consumer/producer pages and
27  * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single
28  * ring buffer.
29  */
30 #define RINGBUF_MAX_DATA_SZ \
31         (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
32
33 struct bpf_ringbuf {
34         wait_queue_head_t waitq;
35         struct irq_work work;
36         u64 mask;
37         struct page **pages;
38         int nr_pages;
39         spinlock_t spinlock ____cacheline_aligned_in_smp;
40         /* Consumer and producer counters are put into separate pages to allow
41          * mapping consumer page as r/w, but restrict producer page to r/o.
42          * This protects producer position from being modified by user-space
43          * application and ruining in-kernel position tracking.
44          */
45         unsigned long consumer_pos __aligned(PAGE_SIZE);
46         unsigned long producer_pos __aligned(PAGE_SIZE);
47         char data[] __aligned(PAGE_SIZE);
48 };
49
50 struct bpf_ringbuf_map {
51         struct bpf_map map;
52         struct bpf_map_memory memory;
53         struct bpf_ringbuf *rb;
54 };
55
56 /* 8-byte ring buffer record header structure */
57 struct bpf_ringbuf_hdr {
58         u32 len;
59         u32 pg_off;
60 };
61
62 static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
63 {
64         const gfp_t flags = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
65                             __GFP_ZERO;
66         int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES;
67         int nr_data_pages = data_sz >> PAGE_SHIFT;
68         int nr_pages = nr_meta_pages + nr_data_pages;
69         struct page **pages, *page;
70         struct bpf_ringbuf *rb;
71         size_t array_size;
72         int i;
73
74         /* Each data page is mapped twice to allow "virtual"
75          * continuous read of samples wrapping around the end of ring
76          * buffer area:
77          * ------------------------------------------------------
78          * | meta pages |  real data pages  |  same data pages  |
79          * ------------------------------------------------------
80          * |            | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
81          * ------------------------------------------------------
82          * |            | TA             DA | TA             DA |
83          * ------------------------------------------------------
84          *                               ^^^^^^^
85          *                                  |
86          * Here, no need to worry about special handling of wrapped-around
87          * data due to double-mapped data pages. This works both in kernel and
88          * when mmap()'ed in user-space, simplifying both kernel and
89          * user-space implementations significantly.
90          */
91         array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
92         if (array_size > PAGE_SIZE)
93                 pages = vmalloc_node(array_size, numa_node);
94         else
95                 pages = kmalloc_node(array_size, flags, numa_node);
96         if (!pages)
97                 return NULL;
98
99         for (i = 0; i < nr_pages; i++) {
100                 page = alloc_pages_node(numa_node, flags, 0);
101                 if (!page) {
102                         nr_pages = i;
103                         goto err_free_pages;
104                 }
105                 pages[i] = page;
106                 if (i >= nr_meta_pages)
107                         pages[nr_data_pages + i] = page;
108         }
109
110         rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
111                   VM_MAP | VM_USERMAP, PAGE_KERNEL);
112         if (rb) {
113                 kmemleak_not_leak(pages);
114                 rb->pages = pages;
115                 rb->nr_pages = nr_pages;
116                 return rb;
117         }
118
119 err_free_pages:
120         for (i = 0; i < nr_pages; i++)
121                 __free_page(pages[i]);
122         kvfree(pages);
123         return NULL;
124 }
125
126 static void bpf_ringbuf_notify(struct irq_work *work)
127 {
128         struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
129
130         wake_up_all(&rb->waitq);
131 }
132
133 static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
134 {
135         struct bpf_ringbuf *rb;
136
137         rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
138         if (!rb)
139                 return ERR_PTR(-ENOMEM);
140
141         spin_lock_init(&rb->spinlock);
142         init_waitqueue_head(&rb->waitq);
143         init_irq_work(&rb->work, bpf_ringbuf_notify);
144
145         rb->mask = data_sz - 1;
146         rb->consumer_pos = 0;
147         rb->producer_pos = 0;
148
149         return rb;
150 }
151
152 static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
153 {
154         struct bpf_ringbuf_map *rb_map;
155         u64 cost;
156         int err;
157
158         if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
159                 return ERR_PTR(-EINVAL);
160
161         if (attr->key_size || attr->value_size ||
162             !is_power_of_2(attr->max_entries) ||
163             !PAGE_ALIGNED(attr->max_entries))
164                 return ERR_PTR(-EINVAL);
165
166 #ifdef CONFIG_64BIT
167         /* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */
168         if (attr->max_entries > RINGBUF_MAX_DATA_SZ)
169                 return ERR_PTR(-E2BIG);
170 #endif
171
172         rb_map = kzalloc(sizeof(*rb_map), GFP_USER);
173         if (!rb_map)
174                 return ERR_PTR(-ENOMEM);
175
176         bpf_map_init_from_attr(&rb_map->map, attr);
177
178         cost = sizeof(struct bpf_ringbuf_map) +
179                sizeof(struct bpf_ringbuf) +
180                attr->max_entries;
181         err = bpf_map_charge_init(&rb_map->map.memory, cost);
182         if (err)
183                 goto err_free_map;
184
185         rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
186         if (IS_ERR(rb_map->rb)) {
187                 err = PTR_ERR(rb_map->rb);
188                 goto err_uncharge;
189         }
190
191         return &rb_map->map;
192
193 err_uncharge:
194         bpf_map_charge_finish(&rb_map->map.memory);
195 err_free_map:
196         kfree(rb_map);
197         return ERR_PTR(err);
198 }
199
200 static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
201 {
202         /* copy pages pointer and nr_pages to local variable, as we are going
203          * to unmap rb itself with vunmap() below
204          */
205         struct page **pages = rb->pages;
206         int i, nr_pages = rb->nr_pages;
207
208         vunmap(rb);
209         for (i = 0; i < nr_pages; i++)
210                 __free_page(pages[i]);
211         kvfree(pages);
212 }
213
214 static void ringbuf_map_free(struct bpf_map *map)
215 {
216         struct bpf_ringbuf_map *rb_map;
217
218         rb_map = container_of(map, struct bpf_ringbuf_map, map);
219         bpf_ringbuf_free(rb_map->rb);
220         kfree(rb_map);
221 }
222
223 static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
224 {
225         return ERR_PTR(-ENOTSUPP);
226 }
227
228 static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
229                                    u64 flags)
230 {
231         return -ENOTSUPP;
232 }
233
234 static int ringbuf_map_delete_elem(struct bpf_map *map, void *key)
235 {
236         return -ENOTSUPP;
237 }
238
239 static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
240                                     void *next_key)
241 {
242         return -ENOTSUPP;
243 }
244
245 static int ringbuf_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
246 {
247         struct bpf_ringbuf_map *rb_map;
248
249         rb_map = container_of(map, struct bpf_ringbuf_map, map);
250
251         if (vma->vm_flags & VM_WRITE) {
252                 /* allow writable mapping for the consumer_pos only */
253                 if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
254                         return -EPERM;
255         } else {
256                 vma->vm_flags &= ~VM_MAYWRITE;
257         }
258         /* remap_vmalloc_range() checks size and offset constraints */
259         return remap_vmalloc_range(vma, rb_map->rb,
260                                    vma->vm_pgoff + RINGBUF_PGOFF);
261 }
262
263 static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
264 {
265         unsigned long cons_pos, prod_pos;
266
267         cons_pos = smp_load_acquire(&rb->consumer_pos);
268         prod_pos = smp_load_acquire(&rb->producer_pos);
269         return prod_pos - cons_pos;
270 }
271
272 static __poll_t ringbuf_map_poll(struct bpf_map *map, struct file *filp,
273                                  struct poll_table_struct *pts)
274 {
275         struct bpf_ringbuf_map *rb_map;
276
277         rb_map = container_of(map, struct bpf_ringbuf_map, map);
278         poll_wait(filp, &rb_map->rb->waitq, pts);
279
280         if (ringbuf_avail_data_sz(rb_map->rb))
281                 return EPOLLIN | EPOLLRDNORM;
282         return 0;
283 }
284
285 static int ringbuf_map_btf_id;
286 const struct bpf_map_ops ringbuf_map_ops = {
287         .map_meta_equal = bpf_map_meta_equal,
288         .map_alloc = ringbuf_map_alloc,
289         .map_free = ringbuf_map_free,
290         .map_mmap = ringbuf_map_mmap,
291         .map_poll = ringbuf_map_poll,
292         .map_lookup_elem = ringbuf_map_lookup_elem,
293         .map_update_elem = ringbuf_map_update_elem,
294         .map_delete_elem = ringbuf_map_delete_elem,
295         .map_get_next_key = ringbuf_map_get_next_key,
296         .map_btf_name = "bpf_ringbuf_map",
297         .map_btf_id = &ringbuf_map_btf_id,
298 };
299
300 /* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
301  * calculate offset from record metadata to ring buffer in pages, rounded
302  * down. This page offset is stored as part of record metadata and allows to
303  * restore struct bpf_ringbuf * from record pointer. This page offset is
304  * stored at offset 4 of record metadata header.
305  */
306 static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
307                                      struct bpf_ringbuf_hdr *hdr)
308 {
309         return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
310 }
311
312 /* Given pointer to ring buffer record header, restore pointer to struct
313  * bpf_ringbuf itself by using page offset stored at offset 4
314  */
315 static struct bpf_ringbuf *
316 bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
317 {
318         unsigned long addr = (unsigned long)(void *)hdr;
319         unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
320
321         return (void*)((addr & PAGE_MASK) - off);
322 }
323
324 static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
325 {
326         unsigned long cons_pos, prod_pos, new_prod_pos, flags;
327         u32 len, pg_off;
328         struct bpf_ringbuf_hdr *hdr;
329
330         if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
331                 return NULL;
332
333         len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
334         if (len > rb->mask + 1)
335                 return NULL;
336
337         cons_pos = smp_load_acquire(&rb->consumer_pos);
338
339         if (in_nmi()) {
340                 if (!spin_trylock_irqsave(&rb->spinlock, flags))
341                         return NULL;
342         } else {
343                 spin_lock_irqsave(&rb->spinlock, flags);
344         }
345
346         prod_pos = rb->producer_pos;
347         new_prod_pos = prod_pos + len;
348
349         /* check for out of ringbuf space by ensuring producer position
350          * doesn't advance more than (ringbuf_size - 1) ahead
351          */
352         if (new_prod_pos - cons_pos > rb->mask) {
353                 spin_unlock_irqrestore(&rb->spinlock, flags);
354                 return NULL;
355         }
356
357         hdr = (void *)rb->data + (prod_pos & rb->mask);
358         pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
359         hdr->len = size | BPF_RINGBUF_BUSY_BIT;
360         hdr->pg_off = pg_off;
361
362         /* pairs with consumer's smp_load_acquire() */
363         smp_store_release(&rb->producer_pos, new_prod_pos);
364
365         spin_unlock_irqrestore(&rb->spinlock, flags);
366
367         return (void *)hdr + BPF_RINGBUF_HDR_SZ;
368 }
369
370 BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
371 {
372         struct bpf_ringbuf_map *rb_map;
373
374         if (unlikely(flags))
375                 return 0;
376
377         rb_map = container_of(map, struct bpf_ringbuf_map, map);
378         return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
379 }
380
381 const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
382         .func           = bpf_ringbuf_reserve,
383         .ret_type       = RET_PTR_TO_ALLOC_MEM_OR_NULL,
384         .arg1_type      = ARG_CONST_MAP_PTR,
385         .arg2_type      = ARG_CONST_ALLOC_SIZE_OR_ZERO,
386         .arg3_type      = ARG_ANYTHING,
387 };
388
389 static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
390 {
391         unsigned long rec_pos, cons_pos;
392         struct bpf_ringbuf_hdr *hdr;
393         struct bpf_ringbuf *rb;
394         u32 new_len;
395
396         hdr = sample - BPF_RINGBUF_HDR_SZ;
397         rb = bpf_ringbuf_restore_from_rec(hdr);
398         new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
399         if (discard)
400                 new_len |= BPF_RINGBUF_DISCARD_BIT;
401
402         /* update record header with correct final size prefix */
403         xchg(&hdr->len, new_len);
404
405         /* if consumer caught up and is waiting for our record, notify about
406          * new data availability
407          */
408         rec_pos = (void *)hdr - (void *)rb->data;
409         cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
410
411         if (flags & BPF_RB_FORCE_WAKEUP)
412                 irq_work_queue(&rb->work);
413         else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
414                 irq_work_queue(&rb->work);
415 }
416
417 BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
418 {
419         bpf_ringbuf_commit(sample, flags, false /* discard */);
420         return 0;
421 }
422
423 const struct bpf_func_proto bpf_ringbuf_submit_proto = {
424         .func           = bpf_ringbuf_submit,
425         .ret_type       = RET_VOID,
426         .arg1_type      = ARG_PTR_TO_ALLOC_MEM,
427         .arg2_type      = ARG_ANYTHING,
428 };
429
430 BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
431 {
432         bpf_ringbuf_commit(sample, flags, true /* discard */);
433         return 0;
434 }
435
436 const struct bpf_func_proto bpf_ringbuf_discard_proto = {
437         .func           = bpf_ringbuf_discard,
438         .ret_type       = RET_VOID,
439         .arg1_type      = ARG_PTR_TO_ALLOC_MEM,
440         .arg2_type      = ARG_ANYTHING,
441 };
442
443 BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
444            u64, flags)
445 {
446         struct bpf_ringbuf_map *rb_map;
447         void *rec;
448
449         if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
450                 return -EINVAL;
451
452         rb_map = container_of(map, struct bpf_ringbuf_map, map);
453         rec = __bpf_ringbuf_reserve(rb_map->rb, size);
454         if (!rec)
455                 return -EAGAIN;
456
457         memcpy(rec, data, size);
458         bpf_ringbuf_commit(rec, flags, false /* discard */);
459         return 0;
460 }
461
462 const struct bpf_func_proto bpf_ringbuf_output_proto = {
463         .func           = bpf_ringbuf_output,
464         .ret_type       = RET_INTEGER,
465         .arg1_type      = ARG_CONST_MAP_PTR,
466         .arg2_type      = ARG_PTR_TO_MEM,
467         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
468         .arg4_type      = ARG_ANYTHING,
469 };
470
471 BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
472 {
473         struct bpf_ringbuf *rb;
474
475         rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
476
477         switch (flags) {
478         case BPF_RB_AVAIL_DATA:
479                 return ringbuf_avail_data_sz(rb);
480         case BPF_RB_RING_SIZE:
481                 return rb->mask + 1;
482         case BPF_RB_CONS_POS:
483                 return smp_load_acquire(&rb->consumer_pos);
484         case BPF_RB_PROD_POS:
485                 return smp_load_acquire(&rb->producer_pos);
486         default:
487                 return 0;
488         }
489 }
490
491 const struct bpf_func_proto bpf_ringbuf_query_proto = {
492         .func           = bpf_ringbuf_query,
493         .ret_type       = RET_INTEGER,
494         .arg1_type      = ARG_CONST_MAP_PTR,
495         .arg2_type      = ARG_ANYTHING,
496 };