GNU Linux-libre 5.19-rc6-gnu
[releases.git] / kernel / bpf / helpers.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #include <linux/bpf.h>
5 #include <linux/btf.h>
6 #include <linux/bpf-cgroup.h>
7 #include <linux/rcupdate.h>
8 #include <linux/random.h>
9 #include <linux/smp.h>
10 #include <linux/topology.h>
11 #include <linux/ktime.h>
12 #include <linux/sched.h>
13 #include <linux/uidgid.h>
14 #include <linux/filter.h>
15 #include <linux/ctype.h>
16 #include <linux/jiffies.h>
17 #include <linux/pid_namespace.h>
18 #include <linux/proc_ns.h>
19 #include <linux/security.h>
20 #include <linux/btf_ids.h>
21
22 #include "../../lib/kstrtox.h"
23
24 /* If kernel subsystem is allowing eBPF programs to call this function,
25  * inside its own verifier_ops->get_func_proto() callback it should return
26  * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
27  *
28  * Different map implementations will rely on rcu in map methods
29  * lookup/update/delete, therefore eBPF programs must run under rcu lock
30  * if program is allowed to access maps, so check rcu_read_lock_held in
31  * all three functions.
32  */
33 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
34 {
35         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
36         return (unsigned long) map->ops->map_lookup_elem(map, key);
37 }
38
39 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
40         .func           = bpf_map_lookup_elem,
41         .gpl_only       = false,
42         .pkt_access     = true,
43         .ret_type       = RET_PTR_TO_MAP_VALUE_OR_NULL,
44         .arg1_type      = ARG_CONST_MAP_PTR,
45         .arg2_type      = ARG_PTR_TO_MAP_KEY,
46 };
47
48 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
49            void *, value, u64, flags)
50 {
51         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
52         return map->ops->map_update_elem(map, key, value, flags);
53 }
54
55 const struct bpf_func_proto bpf_map_update_elem_proto = {
56         .func           = bpf_map_update_elem,
57         .gpl_only       = false,
58         .pkt_access     = true,
59         .ret_type       = RET_INTEGER,
60         .arg1_type      = ARG_CONST_MAP_PTR,
61         .arg2_type      = ARG_PTR_TO_MAP_KEY,
62         .arg3_type      = ARG_PTR_TO_MAP_VALUE,
63         .arg4_type      = ARG_ANYTHING,
64 };
65
66 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
67 {
68         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
69         return map->ops->map_delete_elem(map, key);
70 }
71
72 const struct bpf_func_proto bpf_map_delete_elem_proto = {
73         .func           = bpf_map_delete_elem,
74         .gpl_only       = false,
75         .pkt_access     = true,
76         .ret_type       = RET_INTEGER,
77         .arg1_type      = ARG_CONST_MAP_PTR,
78         .arg2_type      = ARG_PTR_TO_MAP_KEY,
79 };
80
81 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
82 {
83         return map->ops->map_push_elem(map, value, flags);
84 }
85
86 const struct bpf_func_proto bpf_map_push_elem_proto = {
87         .func           = bpf_map_push_elem,
88         .gpl_only       = false,
89         .pkt_access     = true,
90         .ret_type       = RET_INTEGER,
91         .arg1_type      = ARG_CONST_MAP_PTR,
92         .arg2_type      = ARG_PTR_TO_MAP_VALUE,
93         .arg3_type      = ARG_ANYTHING,
94 };
95
96 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
97 {
98         return map->ops->map_pop_elem(map, value);
99 }
100
101 const struct bpf_func_proto bpf_map_pop_elem_proto = {
102         .func           = bpf_map_pop_elem,
103         .gpl_only       = false,
104         .ret_type       = RET_INTEGER,
105         .arg1_type      = ARG_CONST_MAP_PTR,
106         .arg2_type      = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
107 };
108
109 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
110 {
111         return map->ops->map_peek_elem(map, value);
112 }
113
114 const struct bpf_func_proto bpf_map_peek_elem_proto = {
115         .func           = bpf_map_peek_elem,
116         .gpl_only       = false,
117         .ret_type       = RET_INTEGER,
118         .arg1_type      = ARG_CONST_MAP_PTR,
119         .arg2_type      = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
120 };
121
122 BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
123 {
124         WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
125         return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
126 }
127
128 const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
129         .func           = bpf_map_lookup_percpu_elem,
130         .gpl_only       = false,
131         .pkt_access     = true,
132         .ret_type       = RET_PTR_TO_MAP_VALUE_OR_NULL,
133         .arg1_type      = ARG_CONST_MAP_PTR,
134         .arg2_type      = ARG_PTR_TO_MAP_KEY,
135         .arg3_type      = ARG_ANYTHING,
136 };
137
138 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
139         .func           = bpf_user_rnd_u32,
140         .gpl_only       = false,
141         .ret_type       = RET_INTEGER,
142 };
143
144 BPF_CALL_0(bpf_get_smp_processor_id)
145 {
146         return smp_processor_id();
147 }
148
149 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
150         .func           = bpf_get_smp_processor_id,
151         .gpl_only       = false,
152         .ret_type       = RET_INTEGER,
153 };
154
155 BPF_CALL_0(bpf_get_numa_node_id)
156 {
157         return numa_node_id();
158 }
159
160 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
161         .func           = bpf_get_numa_node_id,
162         .gpl_only       = false,
163         .ret_type       = RET_INTEGER,
164 };
165
166 BPF_CALL_0(bpf_ktime_get_ns)
167 {
168         /* NMI safe access to clock monotonic */
169         return ktime_get_mono_fast_ns();
170 }
171
172 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
173         .func           = bpf_ktime_get_ns,
174         .gpl_only       = false,
175         .ret_type       = RET_INTEGER,
176 };
177
178 BPF_CALL_0(bpf_ktime_get_boot_ns)
179 {
180         /* NMI safe access to clock boottime */
181         return ktime_get_boot_fast_ns();
182 }
183
184 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
185         .func           = bpf_ktime_get_boot_ns,
186         .gpl_only       = false,
187         .ret_type       = RET_INTEGER,
188 };
189
190 BPF_CALL_0(bpf_ktime_get_coarse_ns)
191 {
192         return ktime_get_coarse_ns();
193 }
194
195 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
196         .func           = bpf_ktime_get_coarse_ns,
197         .gpl_only       = false,
198         .ret_type       = RET_INTEGER,
199 };
200
201 BPF_CALL_0(bpf_get_current_pid_tgid)
202 {
203         struct task_struct *task = current;
204
205         if (unlikely(!task))
206                 return -EINVAL;
207
208         return (u64) task->tgid << 32 | task->pid;
209 }
210
211 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
212         .func           = bpf_get_current_pid_tgid,
213         .gpl_only       = false,
214         .ret_type       = RET_INTEGER,
215 };
216
217 BPF_CALL_0(bpf_get_current_uid_gid)
218 {
219         struct task_struct *task = current;
220         kuid_t uid;
221         kgid_t gid;
222
223         if (unlikely(!task))
224                 return -EINVAL;
225
226         current_uid_gid(&uid, &gid);
227         return (u64) from_kgid(&init_user_ns, gid) << 32 |
228                      from_kuid(&init_user_ns, uid);
229 }
230
231 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
232         .func           = bpf_get_current_uid_gid,
233         .gpl_only       = false,
234         .ret_type       = RET_INTEGER,
235 };
236
237 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
238 {
239         struct task_struct *task = current;
240
241         if (unlikely(!task))
242                 goto err_clear;
243
244         /* Verifier guarantees that size > 0 */
245         strscpy(buf, task->comm, size);
246         return 0;
247 err_clear:
248         memset(buf, 0, size);
249         return -EINVAL;
250 }
251
252 const struct bpf_func_proto bpf_get_current_comm_proto = {
253         .func           = bpf_get_current_comm,
254         .gpl_only       = false,
255         .ret_type       = RET_INTEGER,
256         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
257         .arg2_type      = ARG_CONST_SIZE,
258 };
259
260 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
261
262 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
263 {
264         arch_spinlock_t *l = (void *)lock;
265         union {
266                 __u32 val;
267                 arch_spinlock_t lock;
268         } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
269
270         compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
271         BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
272         BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
273         arch_spin_lock(l);
274 }
275
276 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
277 {
278         arch_spinlock_t *l = (void *)lock;
279
280         arch_spin_unlock(l);
281 }
282
283 #else
284
285 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
286 {
287         atomic_t *l = (void *)lock;
288
289         BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
290         do {
291                 atomic_cond_read_relaxed(l, !VAL);
292         } while (atomic_xchg(l, 1));
293 }
294
295 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
296 {
297         atomic_t *l = (void *)lock;
298
299         atomic_set_release(l, 0);
300 }
301
302 #endif
303
304 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
305
306 static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
307 {
308         unsigned long flags;
309
310         local_irq_save(flags);
311         __bpf_spin_lock(lock);
312         __this_cpu_write(irqsave_flags, flags);
313 }
314
315 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
316 {
317         __bpf_spin_lock_irqsave(lock);
318         return 0;
319 }
320
321 const struct bpf_func_proto bpf_spin_lock_proto = {
322         .func           = bpf_spin_lock,
323         .gpl_only       = false,
324         .ret_type       = RET_VOID,
325         .arg1_type      = ARG_PTR_TO_SPIN_LOCK,
326 };
327
328 static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
329 {
330         unsigned long flags;
331
332         flags = __this_cpu_read(irqsave_flags);
333         __bpf_spin_unlock(lock);
334         local_irq_restore(flags);
335 }
336
337 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
338 {
339         __bpf_spin_unlock_irqrestore(lock);
340         return 0;
341 }
342
343 const struct bpf_func_proto bpf_spin_unlock_proto = {
344         .func           = bpf_spin_unlock,
345         .gpl_only       = false,
346         .ret_type       = RET_VOID,
347         .arg1_type      = ARG_PTR_TO_SPIN_LOCK,
348 };
349
350 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
351                            bool lock_src)
352 {
353         struct bpf_spin_lock *lock;
354
355         if (lock_src)
356                 lock = src + map->spin_lock_off;
357         else
358                 lock = dst + map->spin_lock_off;
359         preempt_disable();
360         __bpf_spin_lock_irqsave(lock);
361         copy_map_value(map, dst, src);
362         __bpf_spin_unlock_irqrestore(lock);
363         preempt_enable();
364 }
365
366 BPF_CALL_0(bpf_jiffies64)
367 {
368         return get_jiffies_64();
369 }
370
371 const struct bpf_func_proto bpf_jiffies64_proto = {
372         .func           = bpf_jiffies64,
373         .gpl_only       = false,
374         .ret_type       = RET_INTEGER,
375 };
376
377 #ifdef CONFIG_CGROUPS
378 BPF_CALL_0(bpf_get_current_cgroup_id)
379 {
380         struct cgroup *cgrp;
381         u64 cgrp_id;
382
383         rcu_read_lock();
384         cgrp = task_dfl_cgroup(current);
385         cgrp_id = cgroup_id(cgrp);
386         rcu_read_unlock();
387
388         return cgrp_id;
389 }
390
391 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
392         .func           = bpf_get_current_cgroup_id,
393         .gpl_only       = false,
394         .ret_type       = RET_INTEGER,
395 };
396
397 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
398 {
399         struct cgroup *cgrp;
400         struct cgroup *ancestor;
401         u64 cgrp_id;
402
403         rcu_read_lock();
404         cgrp = task_dfl_cgroup(current);
405         ancestor = cgroup_ancestor(cgrp, ancestor_level);
406         cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
407         rcu_read_unlock();
408
409         return cgrp_id;
410 }
411
412 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
413         .func           = bpf_get_current_ancestor_cgroup_id,
414         .gpl_only       = false,
415         .ret_type       = RET_INTEGER,
416         .arg1_type      = ARG_ANYTHING,
417 };
418
419 #ifdef CONFIG_CGROUP_BPF
420
421 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
422 {
423         /* flags argument is not used now,
424          * but provides an ability to extend the API.
425          * verifier checks that its value is correct.
426          */
427         enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
428         struct bpf_cgroup_storage *storage;
429         struct bpf_cg_run_ctx *ctx;
430         void *ptr;
431
432         /* get current cgroup storage from BPF run context */
433         ctx = container_of(current->bpf_ctx, struct bpf_cg_run_ctx, run_ctx);
434         storage = ctx->prog_item->cgroup_storage[stype];
435
436         if (stype == BPF_CGROUP_STORAGE_SHARED)
437                 ptr = &READ_ONCE(storage->buf)->data[0];
438         else
439                 ptr = this_cpu_ptr(storage->percpu_buf);
440
441         return (unsigned long)ptr;
442 }
443
444 const struct bpf_func_proto bpf_get_local_storage_proto = {
445         .func           = bpf_get_local_storage,
446         .gpl_only       = false,
447         .ret_type       = RET_PTR_TO_MAP_VALUE,
448         .arg1_type      = ARG_CONST_MAP_PTR,
449         .arg2_type      = ARG_ANYTHING,
450 };
451 #endif
452
453 #define BPF_STRTOX_BASE_MASK 0x1F
454
455 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
456                           unsigned long long *res, bool *is_negative)
457 {
458         unsigned int base = flags & BPF_STRTOX_BASE_MASK;
459         const char *cur_buf = buf;
460         size_t cur_len = buf_len;
461         unsigned int consumed;
462         size_t val_len;
463         char str[64];
464
465         if (!buf || !buf_len || !res || !is_negative)
466                 return -EINVAL;
467
468         if (base != 0 && base != 8 && base != 10 && base != 16)
469                 return -EINVAL;
470
471         if (flags & ~BPF_STRTOX_BASE_MASK)
472                 return -EINVAL;
473
474         while (cur_buf < buf + buf_len && isspace(*cur_buf))
475                 ++cur_buf;
476
477         *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
478         if (*is_negative)
479                 ++cur_buf;
480
481         consumed = cur_buf - buf;
482         cur_len -= consumed;
483         if (!cur_len)
484                 return -EINVAL;
485
486         cur_len = min(cur_len, sizeof(str) - 1);
487         memcpy(str, cur_buf, cur_len);
488         str[cur_len] = '\0';
489         cur_buf = str;
490
491         cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
492         val_len = _parse_integer(cur_buf, base, res);
493
494         if (val_len & KSTRTOX_OVERFLOW)
495                 return -ERANGE;
496
497         if (val_len == 0)
498                 return -EINVAL;
499
500         cur_buf += val_len;
501         consumed += cur_buf - str;
502
503         return consumed;
504 }
505
506 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
507                          long long *res)
508 {
509         unsigned long long _res;
510         bool is_negative;
511         int err;
512
513         err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
514         if (err < 0)
515                 return err;
516         if (is_negative) {
517                 if ((long long)-_res > 0)
518                         return -ERANGE;
519                 *res = -_res;
520         } else {
521                 if ((long long)_res < 0)
522                         return -ERANGE;
523                 *res = _res;
524         }
525         return err;
526 }
527
528 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
529            long *, res)
530 {
531         long long _res;
532         int err;
533
534         err = __bpf_strtoll(buf, buf_len, flags, &_res);
535         if (err < 0)
536                 return err;
537         if (_res != (long)_res)
538                 return -ERANGE;
539         *res = _res;
540         return err;
541 }
542
543 const struct bpf_func_proto bpf_strtol_proto = {
544         .func           = bpf_strtol,
545         .gpl_only       = false,
546         .ret_type       = RET_INTEGER,
547         .arg1_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
548         .arg2_type      = ARG_CONST_SIZE,
549         .arg3_type      = ARG_ANYTHING,
550         .arg4_type      = ARG_PTR_TO_LONG,
551 };
552
553 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
554            unsigned long *, res)
555 {
556         unsigned long long _res;
557         bool is_negative;
558         int err;
559
560         err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
561         if (err < 0)
562                 return err;
563         if (is_negative)
564                 return -EINVAL;
565         if (_res != (unsigned long)_res)
566                 return -ERANGE;
567         *res = _res;
568         return err;
569 }
570
571 const struct bpf_func_proto bpf_strtoul_proto = {
572         .func           = bpf_strtoul,
573         .gpl_only       = false,
574         .ret_type       = RET_INTEGER,
575         .arg1_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
576         .arg2_type      = ARG_CONST_SIZE,
577         .arg3_type      = ARG_ANYTHING,
578         .arg4_type      = ARG_PTR_TO_LONG,
579 };
580 #endif
581
582 BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
583 {
584         return strncmp(s1, s2, s1_sz);
585 }
586
587 const struct bpf_func_proto bpf_strncmp_proto = {
588         .func           = bpf_strncmp,
589         .gpl_only       = false,
590         .ret_type       = RET_INTEGER,
591         .arg1_type      = ARG_PTR_TO_MEM,
592         .arg2_type      = ARG_CONST_SIZE,
593         .arg3_type      = ARG_PTR_TO_CONST_STR,
594 };
595
596 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
597            struct bpf_pidns_info *, nsdata, u32, size)
598 {
599         struct task_struct *task = current;
600         struct pid_namespace *pidns;
601         int err = -EINVAL;
602
603         if (unlikely(size != sizeof(struct bpf_pidns_info)))
604                 goto clear;
605
606         if (unlikely((u64)(dev_t)dev != dev))
607                 goto clear;
608
609         if (unlikely(!task))
610                 goto clear;
611
612         pidns = task_active_pid_ns(task);
613         if (unlikely(!pidns)) {
614                 err = -ENOENT;
615                 goto clear;
616         }
617
618         if (!ns_match(&pidns->ns, (dev_t)dev, ino))
619                 goto clear;
620
621         nsdata->pid = task_pid_nr_ns(task, pidns);
622         nsdata->tgid = task_tgid_nr_ns(task, pidns);
623         return 0;
624 clear:
625         memset((void *)nsdata, 0, (size_t) size);
626         return err;
627 }
628
629 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
630         .func           = bpf_get_ns_current_pid_tgid,
631         .gpl_only       = false,
632         .ret_type       = RET_INTEGER,
633         .arg1_type      = ARG_ANYTHING,
634         .arg2_type      = ARG_ANYTHING,
635         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
636         .arg4_type      = ARG_CONST_SIZE,
637 };
638
639 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
640         .func           = bpf_get_raw_cpu_id,
641         .gpl_only       = false,
642         .ret_type       = RET_INTEGER,
643 };
644
645 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
646            u64, flags, void *, data, u64, size)
647 {
648         if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
649                 return -EINVAL;
650
651         return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
652 }
653
654 const struct bpf_func_proto bpf_event_output_data_proto =  {
655         .func           = bpf_event_output_data,
656         .gpl_only       = true,
657         .ret_type       = RET_INTEGER,
658         .arg1_type      = ARG_PTR_TO_CTX,
659         .arg2_type      = ARG_CONST_MAP_PTR,
660         .arg3_type      = ARG_ANYTHING,
661         .arg4_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
662         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
663 };
664
665 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
666            const void __user *, user_ptr)
667 {
668         int ret = copy_from_user(dst, user_ptr, size);
669
670         if (unlikely(ret)) {
671                 memset(dst, 0, size);
672                 ret = -EFAULT;
673         }
674
675         return ret;
676 }
677
678 const struct bpf_func_proto bpf_copy_from_user_proto = {
679         .func           = bpf_copy_from_user,
680         .gpl_only       = false,
681         .ret_type       = RET_INTEGER,
682         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
683         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
684         .arg3_type      = ARG_ANYTHING,
685 };
686
687 BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
688            const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
689 {
690         int ret;
691
692         /* flags is not used yet */
693         if (unlikely(flags))
694                 return -EINVAL;
695
696         if (unlikely(!size))
697                 return 0;
698
699         ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
700         if (ret == size)
701                 return 0;
702
703         memset(dst, 0, size);
704         /* Return -EFAULT for partial read */
705         return ret < 0 ? ret : -EFAULT;
706 }
707
708 const struct bpf_func_proto bpf_copy_from_user_task_proto = {
709         .func           = bpf_copy_from_user_task,
710         .gpl_only       = true,
711         .ret_type       = RET_INTEGER,
712         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
713         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
714         .arg3_type      = ARG_ANYTHING,
715         .arg4_type      = ARG_PTR_TO_BTF_ID,
716         .arg4_btf_id    = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
717         .arg5_type      = ARG_ANYTHING
718 };
719
720 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
721 {
722         if (cpu >= nr_cpu_ids)
723                 return (unsigned long)NULL;
724
725         return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
726 }
727
728 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
729         .func           = bpf_per_cpu_ptr,
730         .gpl_only       = false,
731         .ret_type       = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
732         .arg1_type      = ARG_PTR_TO_PERCPU_BTF_ID,
733         .arg2_type      = ARG_ANYTHING,
734 };
735
736 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
737 {
738         return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
739 }
740
741 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
742         .func           = bpf_this_cpu_ptr,
743         .gpl_only       = false,
744         .ret_type       = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
745         .arg1_type      = ARG_PTR_TO_PERCPU_BTF_ID,
746 };
747
748 static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
749                 size_t bufsz)
750 {
751         void __user *user_ptr = (__force void __user *)unsafe_ptr;
752
753         buf[0] = 0;
754
755         switch (fmt_ptype) {
756         case 's':
757 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
758                 if ((unsigned long)unsafe_ptr < TASK_SIZE)
759                         return strncpy_from_user_nofault(buf, user_ptr, bufsz);
760                 fallthrough;
761 #endif
762         case 'k':
763                 return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
764         case 'u':
765                 return strncpy_from_user_nofault(buf, user_ptr, bufsz);
766         }
767
768         return -EINVAL;
769 }
770
771 /* Per-cpu temp buffers used by printf-like helpers to store the bprintf binary
772  * arguments representation.
773  */
774 #define MAX_BPRINTF_BUF_LEN     512
775
776 /* Support executing three nested bprintf helper calls on a given CPU */
777 #define MAX_BPRINTF_NEST_LEVEL  3
778 struct bpf_bprintf_buffers {
779         char tmp_bufs[MAX_BPRINTF_NEST_LEVEL][MAX_BPRINTF_BUF_LEN];
780 };
781 static DEFINE_PER_CPU(struct bpf_bprintf_buffers, bpf_bprintf_bufs);
782 static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
783
784 static int try_get_fmt_tmp_buf(char **tmp_buf)
785 {
786         struct bpf_bprintf_buffers *bufs;
787         int nest_level;
788
789         preempt_disable();
790         nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
791         if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
792                 this_cpu_dec(bpf_bprintf_nest_level);
793                 preempt_enable();
794                 return -EBUSY;
795         }
796         bufs = this_cpu_ptr(&bpf_bprintf_bufs);
797         *tmp_buf = bufs->tmp_bufs[nest_level - 1];
798
799         return 0;
800 }
801
802 void bpf_bprintf_cleanup(void)
803 {
804         if (this_cpu_read(bpf_bprintf_nest_level)) {
805                 this_cpu_dec(bpf_bprintf_nest_level);
806                 preempt_enable();
807         }
808 }
809
810 /*
811  * bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
812  *
813  * Returns a negative value if fmt is an invalid format string or 0 otherwise.
814  *
815  * This can be used in two ways:
816  * - Format string verification only: when bin_args is NULL
817  * - Arguments preparation: in addition to the above verification, it writes in
818  *   bin_args a binary representation of arguments usable by bstr_printf where
819  *   pointers from BPF have been sanitized.
820  *
821  * In argument preparation mode, if 0 is returned, safe temporary buffers are
822  * allocated and bpf_bprintf_cleanup should be called to free them after use.
823  */
824 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
825                         u32 **bin_args, u32 num_args)
826 {
827         char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
828         size_t sizeof_cur_arg, sizeof_cur_ip;
829         int err, i, num_spec = 0;
830         u64 cur_arg;
831         char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
832
833         fmt_end = strnchr(fmt, fmt_size, 0);
834         if (!fmt_end)
835                 return -EINVAL;
836         fmt_size = fmt_end - fmt;
837
838         if (bin_args) {
839                 if (num_args && try_get_fmt_tmp_buf(&tmp_buf))
840                         return -EBUSY;
841
842                 tmp_buf_end = tmp_buf + MAX_BPRINTF_BUF_LEN;
843                 *bin_args = (u32 *)tmp_buf;
844         }
845
846         for (i = 0; i < fmt_size; i++) {
847                 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
848                         err = -EINVAL;
849                         goto out;
850                 }
851
852                 if (fmt[i] != '%')
853                         continue;
854
855                 if (fmt[i + 1] == '%') {
856                         i++;
857                         continue;
858                 }
859
860                 if (num_spec >= num_args) {
861                         err = -EINVAL;
862                         goto out;
863                 }
864
865                 /* The string is zero-terminated so if fmt[i] != 0, we can
866                  * always access fmt[i + 1], in the worst case it will be a 0
867                  */
868                 i++;
869
870                 /* skip optional "[0 +-][num]" width formatting field */
871                 while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
872                        fmt[i] == ' ')
873                         i++;
874                 if (fmt[i] >= '1' && fmt[i] <= '9') {
875                         i++;
876                         while (fmt[i] >= '0' && fmt[i] <= '9')
877                                 i++;
878                 }
879
880                 if (fmt[i] == 'p') {
881                         sizeof_cur_arg = sizeof(long);
882
883                         if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
884                             fmt[i + 2] == 's') {
885                                 fmt_ptype = fmt[i + 1];
886                                 i += 2;
887                                 goto fmt_str;
888                         }
889
890                         if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
891                             ispunct(fmt[i + 1]) || fmt[i + 1] == 'K' ||
892                             fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
893                             fmt[i + 1] == 'S') {
894                                 /* just kernel pointers */
895                                 if (tmp_buf)
896                                         cur_arg = raw_args[num_spec];
897                                 i++;
898                                 goto nocopy_fmt;
899                         }
900
901                         if (fmt[i + 1] == 'B') {
902                                 if (tmp_buf)  {
903                                         err = snprintf(tmp_buf,
904                                                        (tmp_buf_end - tmp_buf),
905                                                        "%pB",
906                                                        (void *)(long)raw_args[num_spec]);
907                                         tmp_buf += (err + 1);
908                                 }
909
910                                 i++;
911                                 num_spec++;
912                                 continue;
913                         }
914
915                         /* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
916                         if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
917                             (fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
918                                 err = -EINVAL;
919                                 goto out;
920                         }
921
922                         i += 2;
923                         if (!tmp_buf)
924                                 goto nocopy_fmt;
925
926                         sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
927                         if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
928                                 err = -ENOSPC;
929                                 goto out;
930                         }
931
932                         unsafe_ptr = (char *)(long)raw_args[num_spec];
933                         err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
934                                                        sizeof_cur_ip);
935                         if (err < 0)
936                                 memset(cur_ip, 0, sizeof_cur_ip);
937
938                         /* hack: bstr_printf expects IP addresses to be
939                          * pre-formatted as strings, ironically, the easiest way
940                          * to do that is to call snprintf.
941                          */
942                         ip_spec[2] = fmt[i - 1];
943                         ip_spec[3] = fmt[i];
944                         err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
945                                        ip_spec, &cur_ip);
946
947                         tmp_buf += err + 1;
948                         num_spec++;
949
950                         continue;
951                 } else if (fmt[i] == 's') {
952                         fmt_ptype = fmt[i];
953 fmt_str:
954                         if (fmt[i + 1] != 0 &&
955                             !isspace(fmt[i + 1]) &&
956                             !ispunct(fmt[i + 1])) {
957                                 err = -EINVAL;
958                                 goto out;
959                         }
960
961                         if (!tmp_buf)
962                                 goto nocopy_fmt;
963
964                         if (tmp_buf_end == tmp_buf) {
965                                 err = -ENOSPC;
966                                 goto out;
967                         }
968
969                         unsafe_ptr = (char *)(long)raw_args[num_spec];
970                         err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
971                                                     fmt_ptype,
972                                                     tmp_buf_end - tmp_buf);
973                         if (err < 0) {
974                                 tmp_buf[0] = '\0';
975                                 err = 1;
976                         }
977
978                         tmp_buf += err;
979                         num_spec++;
980
981                         continue;
982                 } else if (fmt[i] == 'c') {
983                         if (!tmp_buf)
984                                 goto nocopy_fmt;
985
986                         if (tmp_buf_end == tmp_buf) {
987                                 err = -ENOSPC;
988                                 goto out;
989                         }
990
991                         *tmp_buf = raw_args[num_spec];
992                         tmp_buf++;
993                         num_spec++;
994
995                         continue;
996                 }
997
998                 sizeof_cur_arg = sizeof(int);
999
1000                 if (fmt[i] == 'l') {
1001                         sizeof_cur_arg = sizeof(long);
1002                         i++;
1003                 }
1004                 if (fmt[i] == 'l') {
1005                         sizeof_cur_arg = sizeof(long long);
1006                         i++;
1007                 }
1008
1009                 if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1010                     fmt[i] != 'x' && fmt[i] != 'X') {
1011                         err = -EINVAL;
1012                         goto out;
1013                 }
1014
1015                 if (tmp_buf)
1016                         cur_arg = raw_args[num_spec];
1017 nocopy_fmt:
1018                 if (tmp_buf) {
1019                         tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1020                         if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1021                                 err = -ENOSPC;
1022                                 goto out;
1023                         }
1024
1025                         if (sizeof_cur_arg == 8) {
1026                                 *(u32 *)tmp_buf = *(u32 *)&cur_arg;
1027                                 *(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1028                         } else {
1029                                 *(u32 *)tmp_buf = (u32)(long)cur_arg;
1030                         }
1031                         tmp_buf += sizeof_cur_arg;
1032                 }
1033                 num_spec++;
1034         }
1035
1036         err = 0;
1037 out:
1038         if (err)
1039                 bpf_bprintf_cleanup();
1040         return err;
1041 }
1042
1043 BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1044            const void *, data, u32, data_len)
1045 {
1046         int err, num_args;
1047         u32 *bin_args;
1048
1049         if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1050             (data_len && !data))
1051                 return -EINVAL;
1052         num_args = data_len / 8;
1053
1054         /* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1055          * can safely give an unbounded size.
1056          */
1057         err = bpf_bprintf_prepare(fmt, UINT_MAX, data, &bin_args, num_args);
1058         if (err < 0)
1059                 return err;
1060
1061         err = bstr_printf(str, str_size, fmt, bin_args);
1062
1063         bpf_bprintf_cleanup();
1064
1065         return err + 1;
1066 }
1067
1068 const struct bpf_func_proto bpf_snprintf_proto = {
1069         .func           = bpf_snprintf,
1070         .gpl_only       = true,
1071         .ret_type       = RET_INTEGER,
1072         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
1073         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1074         .arg3_type      = ARG_PTR_TO_CONST_STR,
1075         .arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1076         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
1077 };
1078
1079 /* BPF map elements can contain 'struct bpf_timer'.
1080  * Such map owns all of its BPF timers.
1081  * 'struct bpf_timer' is allocated as part of map element allocation
1082  * and it's zero initialized.
1083  * That space is used to keep 'struct bpf_timer_kern'.
1084  * bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1085  * remembers 'struct bpf_map *' pointer it's part of.
1086  * bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1087  * bpf_timer_start() arms the timer.
1088  * If user space reference to a map goes to zero at this point
1089  * ops->map_release_uref callback is responsible for cancelling the timers,
1090  * freeing their memory, and decrementing prog's refcnts.
1091  * bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1092  * Inner maps can contain bpf timers as well. ops->map_release_uref is
1093  * freeing the timers when inner map is replaced or deleted by user space.
1094  */
1095 struct bpf_hrtimer {
1096         struct hrtimer timer;
1097         struct bpf_map *map;
1098         struct bpf_prog *prog;
1099         void __rcu *callback_fn;
1100         void *value;
1101 };
1102
1103 /* the actual struct hidden inside uapi struct bpf_timer */
1104 struct bpf_timer_kern {
1105         struct bpf_hrtimer *timer;
1106         /* bpf_spin_lock is used here instead of spinlock_t to make
1107          * sure that it always fits into space reserved by struct bpf_timer
1108          * regardless of LOCKDEP and spinlock debug flags.
1109          */
1110         struct bpf_spin_lock lock;
1111 } __attribute__((aligned(8)));
1112
1113 static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1114
1115 static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1116 {
1117         struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1118         struct bpf_map *map = t->map;
1119         void *value = t->value;
1120         bpf_callback_t callback_fn;
1121         void *key;
1122         u32 idx;
1123
1124         BTF_TYPE_EMIT(struct bpf_timer);
1125         callback_fn = rcu_dereference_check(t->callback_fn, rcu_read_lock_bh_held());
1126         if (!callback_fn)
1127                 goto out;
1128
1129         /* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1130          * cannot be preempted by another bpf_timer_cb() on the same cpu.
1131          * Remember the timer this callback is servicing to prevent
1132          * deadlock if callback_fn() calls bpf_timer_cancel() or
1133          * bpf_map_delete_elem() on the same timer.
1134          */
1135         this_cpu_write(hrtimer_running, t);
1136         if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1137                 struct bpf_array *array = container_of(map, struct bpf_array, map);
1138
1139                 /* compute the key */
1140                 idx = ((char *)value - array->value) / array->elem_size;
1141                 key = &idx;
1142         } else { /* hash or lru */
1143                 key = value - round_up(map->key_size, 8);
1144         }
1145
1146         callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1147         /* The verifier checked that return value is zero. */
1148
1149         this_cpu_write(hrtimer_running, NULL);
1150 out:
1151         return HRTIMER_NORESTART;
1152 }
1153
1154 BPF_CALL_3(bpf_timer_init, struct bpf_timer_kern *, timer, struct bpf_map *, map,
1155            u64, flags)
1156 {
1157         clockid_t clockid = flags & (MAX_CLOCKS - 1);
1158         struct bpf_hrtimer *t;
1159         int ret = 0;
1160
1161         BUILD_BUG_ON(MAX_CLOCKS != 16);
1162         BUILD_BUG_ON(sizeof(struct bpf_timer_kern) > sizeof(struct bpf_timer));
1163         BUILD_BUG_ON(__alignof__(struct bpf_timer_kern) != __alignof__(struct bpf_timer));
1164
1165         if (in_nmi())
1166                 return -EOPNOTSUPP;
1167
1168         if (flags >= MAX_CLOCKS ||
1169             /* similar to timerfd except _ALARM variants are not supported */
1170             (clockid != CLOCK_MONOTONIC &&
1171              clockid != CLOCK_REALTIME &&
1172              clockid != CLOCK_BOOTTIME))
1173                 return -EINVAL;
1174         __bpf_spin_lock_irqsave(&timer->lock);
1175         t = timer->timer;
1176         if (t) {
1177                 ret = -EBUSY;
1178                 goto out;
1179         }
1180         if (!atomic64_read(&map->usercnt)) {
1181                 /* maps with timers must be either held by user space
1182                  * or pinned in bpffs.
1183                  */
1184                 ret = -EPERM;
1185                 goto out;
1186         }
1187         /* allocate hrtimer via map_kmalloc to use memcg accounting */
1188         t = bpf_map_kmalloc_node(map, sizeof(*t), GFP_ATOMIC, map->numa_node);
1189         if (!t) {
1190                 ret = -ENOMEM;
1191                 goto out;
1192         }
1193         t->value = (void *)timer - map->timer_off;
1194         t->map = map;
1195         t->prog = NULL;
1196         rcu_assign_pointer(t->callback_fn, NULL);
1197         hrtimer_init(&t->timer, clockid, HRTIMER_MODE_REL_SOFT);
1198         t->timer.function = bpf_timer_cb;
1199         timer->timer = t;
1200 out:
1201         __bpf_spin_unlock_irqrestore(&timer->lock);
1202         return ret;
1203 }
1204
1205 static const struct bpf_func_proto bpf_timer_init_proto = {
1206         .func           = bpf_timer_init,
1207         .gpl_only       = true,
1208         .ret_type       = RET_INTEGER,
1209         .arg1_type      = ARG_PTR_TO_TIMER,
1210         .arg2_type      = ARG_CONST_MAP_PTR,
1211         .arg3_type      = ARG_ANYTHING,
1212 };
1213
1214 BPF_CALL_3(bpf_timer_set_callback, struct bpf_timer_kern *, timer, void *, callback_fn,
1215            struct bpf_prog_aux *, aux)
1216 {
1217         struct bpf_prog *prev, *prog = aux->prog;
1218         struct bpf_hrtimer *t;
1219         int ret = 0;
1220
1221         if (in_nmi())
1222                 return -EOPNOTSUPP;
1223         __bpf_spin_lock_irqsave(&timer->lock);
1224         t = timer->timer;
1225         if (!t) {
1226                 ret = -EINVAL;
1227                 goto out;
1228         }
1229         if (!atomic64_read(&t->map->usercnt)) {
1230                 /* maps with timers must be either held by user space
1231                  * or pinned in bpffs. Otherwise timer might still be
1232                  * running even when bpf prog is detached and user space
1233                  * is gone, since map_release_uref won't ever be called.
1234                  */
1235                 ret = -EPERM;
1236                 goto out;
1237         }
1238         prev = t->prog;
1239         if (prev != prog) {
1240                 /* Bump prog refcnt once. Every bpf_timer_set_callback()
1241                  * can pick different callback_fn-s within the same prog.
1242                  */
1243                 prog = bpf_prog_inc_not_zero(prog);
1244                 if (IS_ERR(prog)) {
1245                         ret = PTR_ERR(prog);
1246                         goto out;
1247                 }
1248                 if (prev)
1249                         /* Drop prev prog refcnt when swapping with new prog */
1250                         bpf_prog_put(prev);
1251                 t->prog = prog;
1252         }
1253         rcu_assign_pointer(t->callback_fn, callback_fn);
1254 out:
1255         __bpf_spin_unlock_irqrestore(&timer->lock);
1256         return ret;
1257 }
1258
1259 static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1260         .func           = bpf_timer_set_callback,
1261         .gpl_only       = true,
1262         .ret_type       = RET_INTEGER,
1263         .arg1_type      = ARG_PTR_TO_TIMER,
1264         .arg2_type      = ARG_PTR_TO_FUNC,
1265 };
1266
1267 BPF_CALL_3(bpf_timer_start, struct bpf_timer_kern *, timer, u64, nsecs, u64, flags)
1268 {
1269         struct bpf_hrtimer *t;
1270         int ret = 0;
1271
1272         if (in_nmi())
1273                 return -EOPNOTSUPP;
1274         if (flags)
1275                 return -EINVAL;
1276         __bpf_spin_lock_irqsave(&timer->lock);
1277         t = timer->timer;
1278         if (!t || !t->prog) {
1279                 ret = -EINVAL;
1280                 goto out;
1281         }
1282         hrtimer_start(&t->timer, ns_to_ktime(nsecs), HRTIMER_MODE_REL_SOFT);
1283 out:
1284         __bpf_spin_unlock_irqrestore(&timer->lock);
1285         return ret;
1286 }
1287
1288 static const struct bpf_func_proto bpf_timer_start_proto = {
1289         .func           = bpf_timer_start,
1290         .gpl_only       = true,
1291         .ret_type       = RET_INTEGER,
1292         .arg1_type      = ARG_PTR_TO_TIMER,
1293         .arg2_type      = ARG_ANYTHING,
1294         .arg3_type      = ARG_ANYTHING,
1295 };
1296
1297 static void drop_prog_refcnt(struct bpf_hrtimer *t)
1298 {
1299         struct bpf_prog *prog = t->prog;
1300
1301         if (prog) {
1302                 bpf_prog_put(prog);
1303                 t->prog = NULL;
1304                 rcu_assign_pointer(t->callback_fn, NULL);
1305         }
1306 }
1307
1308 BPF_CALL_1(bpf_timer_cancel, struct bpf_timer_kern *, timer)
1309 {
1310         struct bpf_hrtimer *t;
1311         int ret = 0;
1312
1313         if (in_nmi())
1314                 return -EOPNOTSUPP;
1315         __bpf_spin_lock_irqsave(&timer->lock);
1316         t = timer->timer;
1317         if (!t) {
1318                 ret = -EINVAL;
1319                 goto out;
1320         }
1321         if (this_cpu_read(hrtimer_running) == t) {
1322                 /* If bpf callback_fn is trying to bpf_timer_cancel()
1323                  * its own timer the hrtimer_cancel() will deadlock
1324                  * since it waits for callback_fn to finish
1325                  */
1326                 ret = -EDEADLK;
1327                 goto out;
1328         }
1329         drop_prog_refcnt(t);
1330 out:
1331         __bpf_spin_unlock_irqrestore(&timer->lock);
1332         /* Cancel the timer and wait for associated callback to finish
1333          * if it was running.
1334          */
1335         ret = ret ?: hrtimer_cancel(&t->timer);
1336         return ret;
1337 }
1338
1339 static const struct bpf_func_proto bpf_timer_cancel_proto = {
1340         .func           = bpf_timer_cancel,
1341         .gpl_only       = true,
1342         .ret_type       = RET_INTEGER,
1343         .arg1_type      = ARG_PTR_TO_TIMER,
1344 };
1345
1346 /* This function is called by map_delete/update_elem for individual element and
1347  * by ops->map_release_uref when the user space reference to a map reaches zero.
1348  */
1349 void bpf_timer_cancel_and_free(void *val)
1350 {
1351         struct bpf_timer_kern *timer = val;
1352         struct bpf_hrtimer *t;
1353
1354         /* Performance optimization: read timer->timer without lock first. */
1355         if (!READ_ONCE(timer->timer))
1356                 return;
1357
1358         __bpf_spin_lock_irqsave(&timer->lock);
1359         /* re-read it under lock */
1360         t = timer->timer;
1361         if (!t)
1362                 goto out;
1363         drop_prog_refcnt(t);
1364         /* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1365          * this timer, since it won't be initialized.
1366          */
1367         timer->timer = NULL;
1368 out:
1369         __bpf_spin_unlock_irqrestore(&timer->lock);
1370         if (!t)
1371                 return;
1372         /* Cancel the timer and wait for callback to complete if it was running.
1373          * If hrtimer_cancel() can be safely called it's safe to call kfree(t)
1374          * right after for both preallocated and non-preallocated maps.
1375          * The timer->timer = NULL was already done and no code path can
1376          * see address 't' anymore.
1377          *
1378          * Check that bpf_map_delete/update_elem() wasn't called from timer
1379          * callback_fn. In such case don't call hrtimer_cancel() (since it will
1380          * deadlock) and don't call hrtimer_try_to_cancel() (since it will just
1381          * return -1). Though callback_fn is still running on this cpu it's
1382          * safe to do kfree(t) because bpf_timer_cb() read everything it needed
1383          * from 't'. The bpf subprog callback_fn won't be able to access 't',
1384          * since timer->timer = NULL was already done. The timer will be
1385          * effectively cancelled because bpf_timer_cb() will return
1386          * HRTIMER_NORESTART.
1387          */
1388         if (this_cpu_read(hrtimer_running) != t)
1389                 hrtimer_cancel(&t->timer);
1390         kfree(t);
1391 }
1392
1393 BPF_CALL_2(bpf_kptr_xchg, void *, map_value, void *, ptr)
1394 {
1395         unsigned long *kptr = map_value;
1396
1397         return xchg(kptr, (unsigned long)ptr);
1398 }
1399
1400 /* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1401  * helper is determined dynamically by the verifier.
1402  */
1403 #define BPF_PTR_POISON ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1404
1405 const struct bpf_func_proto bpf_kptr_xchg_proto = {
1406         .func         = bpf_kptr_xchg,
1407         .gpl_only     = false,
1408         .ret_type     = RET_PTR_TO_BTF_ID_OR_NULL,
1409         .ret_btf_id   = BPF_PTR_POISON,
1410         .arg1_type    = ARG_PTR_TO_KPTR,
1411         .arg2_type    = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1412         .arg2_btf_id  = BPF_PTR_POISON,
1413 };
1414
1415 /* Since the upper 8 bits of dynptr->size is reserved, the
1416  * maximum supported size is 2^24 - 1.
1417  */
1418 #define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
1419 #define DYNPTR_TYPE_SHIFT       28
1420 #define DYNPTR_SIZE_MASK        0xFFFFFF
1421 #define DYNPTR_RDONLY_BIT       BIT(31)
1422
1423 static bool bpf_dynptr_is_rdonly(struct bpf_dynptr_kern *ptr)
1424 {
1425         return ptr->size & DYNPTR_RDONLY_BIT;
1426 }
1427
1428 static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1429 {
1430         ptr->size |= type << DYNPTR_TYPE_SHIFT;
1431 }
1432
1433 static u32 bpf_dynptr_get_size(struct bpf_dynptr_kern *ptr)
1434 {
1435         return ptr->size & DYNPTR_SIZE_MASK;
1436 }
1437
1438 int bpf_dynptr_check_size(u32 size)
1439 {
1440         return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1441 }
1442
1443 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1444                      enum bpf_dynptr_type type, u32 offset, u32 size)
1445 {
1446         ptr->data = data;
1447         ptr->offset = offset;
1448         ptr->size = size;
1449         bpf_dynptr_set_type(ptr, type);
1450 }
1451
1452 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1453 {
1454         memset(ptr, 0, sizeof(*ptr));
1455 }
1456
1457 static int bpf_dynptr_check_off_len(struct bpf_dynptr_kern *ptr, u32 offset, u32 len)
1458 {
1459         u32 size = bpf_dynptr_get_size(ptr);
1460
1461         if (len > size || offset > size - len)
1462                 return -E2BIG;
1463
1464         return 0;
1465 }
1466
1467 BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u32, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1468 {
1469         int err;
1470
1471         err = bpf_dynptr_check_size(size);
1472         if (err)
1473                 goto error;
1474
1475         /* flags is currently unsupported */
1476         if (flags) {
1477                 err = -EINVAL;
1478                 goto error;
1479         }
1480
1481         bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1482
1483         return 0;
1484
1485 error:
1486         bpf_dynptr_set_null(ptr);
1487         return err;
1488 }
1489
1490 const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1491         .func           = bpf_dynptr_from_mem,
1492         .gpl_only       = false,
1493         .ret_type       = RET_INTEGER,
1494         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
1495         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1496         .arg3_type      = ARG_ANYTHING,
1497         .arg4_type      = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
1498 };
1499
1500 BPF_CALL_4(bpf_dynptr_read, void *, dst, u32, len, struct bpf_dynptr_kern *, src, u32, offset)
1501 {
1502         int err;
1503
1504         if (!src->data)
1505                 return -EINVAL;
1506
1507         err = bpf_dynptr_check_off_len(src, offset, len);
1508         if (err)
1509                 return err;
1510
1511         memcpy(dst, src->data + src->offset + offset, len);
1512
1513         return 0;
1514 }
1515
1516 const struct bpf_func_proto bpf_dynptr_read_proto = {
1517         .func           = bpf_dynptr_read,
1518         .gpl_only       = false,
1519         .ret_type       = RET_INTEGER,
1520         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
1521         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1522         .arg3_type      = ARG_PTR_TO_DYNPTR,
1523         .arg4_type      = ARG_ANYTHING,
1524 };
1525
1526 BPF_CALL_4(bpf_dynptr_write, struct bpf_dynptr_kern *, dst, u32, offset, void *, src, u32, len)
1527 {
1528         int err;
1529
1530         if (!dst->data || bpf_dynptr_is_rdonly(dst))
1531                 return -EINVAL;
1532
1533         err = bpf_dynptr_check_off_len(dst, offset, len);
1534         if (err)
1535                 return err;
1536
1537         memcpy(dst->data + dst->offset + offset, src, len);
1538
1539         return 0;
1540 }
1541
1542 const struct bpf_func_proto bpf_dynptr_write_proto = {
1543         .func           = bpf_dynptr_write,
1544         .gpl_only       = false,
1545         .ret_type       = RET_INTEGER,
1546         .arg1_type      = ARG_PTR_TO_DYNPTR,
1547         .arg2_type      = ARG_ANYTHING,
1548         .arg3_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
1549         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
1550 };
1551
1552 BPF_CALL_3(bpf_dynptr_data, struct bpf_dynptr_kern *, ptr, u32, offset, u32, len)
1553 {
1554         int err;
1555
1556         if (!ptr->data)
1557                 return 0;
1558
1559         err = bpf_dynptr_check_off_len(ptr, offset, len);
1560         if (err)
1561                 return 0;
1562
1563         if (bpf_dynptr_is_rdonly(ptr))
1564                 return 0;
1565
1566         return (unsigned long)(ptr->data + ptr->offset + offset);
1567 }
1568
1569 const struct bpf_func_proto bpf_dynptr_data_proto = {
1570         .func           = bpf_dynptr_data,
1571         .gpl_only       = false,
1572         .ret_type       = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1573         .arg1_type      = ARG_PTR_TO_DYNPTR,
1574         .arg2_type      = ARG_ANYTHING,
1575         .arg3_type      = ARG_CONST_ALLOC_SIZE_OR_ZERO,
1576 };
1577
1578 const struct bpf_func_proto bpf_get_current_task_proto __weak;
1579 const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1580 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1581 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1582 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1583 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1584 const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1585
1586 const struct bpf_func_proto *
1587 bpf_base_func_proto(enum bpf_func_id func_id)
1588 {
1589         switch (func_id) {
1590         case BPF_FUNC_map_lookup_elem:
1591                 return &bpf_map_lookup_elem_proto;
1592         case BPF_FUNC_map_update_elem:
1593                 return &bpf_map_update_elem_proto;
1594         case BPF_FUNC_map_delete_elem:
1595                 return &bpf_map_delete_elem_proto;
1596         case BPF_FUNC_map_push_elem:
1597                 return &bpf_map_push_elem_proto;
1598         case BPF_FUNC_map_pop_elem:
1599                 return &bpf_map_pop_elem_proto;
1600         case BPF_FUNC_map_peek_elem:
1601                 return &bpf_map_peek_elem_proto;
1602         case BPF_FUNC_map_lookup_percpu_elem:
1603                 return &bpf_map_lookup_percpu_elem_proto;
1604         case BPF_FUNC_get_prandom_u32:
1605                 return &bpf_get_prandom_u32_proto;
1606         case BPF_FUNC_get_smp_processor_id:
1607                 return &bpf_get_raw_smp_processor_id_proto;
1608         case BPF_FUNC_get_numa_node_id:
1609                 return &bpf_get_numa_node_id_proto;
1610         case BPF_FUNC_tail_call:
1611                 return &bpf_tail_call_proto;
1612         case BPF_FUNC_ktime_get_ns:
1613                 return &bpf_ktime_get_ns_proto;
1614         case BPF_FUNC_ktime_get_boot_ns:
1615                 return &bpf_ktime_get_boot_ns_proto;
1616         case BPF_FUNC_ringbuf_output:
1617                 return &bpf_ringbuf_output_proto;
1618         case BPF_FUNC_ringbuf_reserve:
1619                 return &bpf_ringbuf_reserve_proto;
1620         case BPF_FUNC_ringbuf_submit:
1621                 return &bpf_ringbuf_submit_proto;
1622         case BPF_FUNC_ringbuf_discard:
1623                 return &bpf_ringbuf_discard_proto;
1624         case BPF_FUNC_ringbuf_query:
1625                 return &bpf_ringbuf_query_proto;
1626         case BPF_FUNC_ringbuf_reserve_dynptr:
1627                 return &bpf_ringbuf_reserve_dynptr_proto;
1628         case BPF_FUNC_ringbuf_submit_dynptr:
1629                 return &bpf_ringbuf_submit_dynptr_proto;
1630         case BPF_FUNC_ringbuf_discard_dynptr:
1631                 return &bpf_ringbuf_discard_dynptr_proto;
1632         case BPF_FUNC_for_each_map_elem:
1633                 return &bpf_for_each_map_elem_proto;
1634         case BPF_FUNC_loop:
1635                 return &bpf_loop_proto;
1636         case BPF_FUNC_strncmp:
1637                 return &bpf_strncmp_proto;
1638         case BPF_FUNC_dynptr_from_mem:
1639                 return &bpf_dynptr_from_mem_proto;
1640         case BPF_FUNC_dynptr_read:
1641                 return &bpf_dynptr_read_proto;
1642         case BPF_FUNC_dynptr_write:
1643                 return &bpf_dynptr_write_proto;
1644         case BPF_FUNC_dynptr_data:
1645                 return &bpf_dynptr_data_proto;
1646         default:
1647                 break;
1648         }
1649
1650         if (!bpf_capable())
1651                 return NULL;
1652
1653         switch (func_id) {
1654         case BPF_FUNC_spin_lock:
1655                 return &bpf_spin_lock_proto;
1656         case BPF_FUNC_spin_unlock:
1657                 return &bpf_spin_unlock_proto;
1658         case BPF_FUNC_jiffies64:
1659                 return &bpf_jiffies64_proto;
1660         case BPF_FUNC_per_cpu_ptr:
1661                 return &bpf_per_cpu_ptr_proto;
1662         case BPF_FUNC_this_cpu_ptr:
1663                 return &bpf_this_cpu_ptr_proto;
1664         case BPF_FUNC_timer_init:
1665                 return &bpf_timer_init_proto;
1666         case BPF_FUNC_timer_set_callback:
1667                 return &bpf_timer_set_callback_proto;
1668         case BPF_FUNC_timer_start:
1669                 return &bpf_timer_start_proto;
1670         case BPF_FUNC_timer_cancel:
1671                 return &bpf_timer_cancel_proto;
1672         case BPF_FUNC_kptr_xchg:
1673                 return &bpf_kptr_xchg_proto;
1674         default:
1675                 break;
1676         }
1677
1678         if (!perfmon_capable())
1679                 return NULL;
1680
1681         switch (func_id) {
1682         case BPF_FUNC_trace_printk:
1683                 return bpf_get_trace_printk_proto();
1684         case BPF_FUNC_get_current_task:
1685                 return &bpf_get_current_task_proto;
1686         case BPF_FUNC_get_current_task_btf:
1687                 return &bpf_get_current_task_btf_proto;
1688         case BPF_FUNC_probe_read_user:
1689                 return &bpf_probe_read_user_proto;
1690         case BPF_FUNC_probe_read_kernel:
1691                 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1692                        NULL : &bpf_probe_read_kernel_proto;
1693         case BPF_FUNC_probe_read_user_str:
1694                 return &bpf_probe_read_user_str_proto;
1695         case BPF_FUNC_probe_read_kernel_str:
1696                 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1697                        NULL : &bpf_probe_read_kernel_str_proto;
1698         case BPF_FUNC_snprintf_btf:
1699                 return &bpf_snprintf_btf_proto;
1700         case BPF_FUNC_snprintf:
1701                 return &bpf_snprintf_proto;
1702         case BPF_FUNC_task_pt_regs:
1703                 return &bpf_task_pt_regs_proto;
1704         case BPF_FUNC_trace_vprintk:
1705                 return bpf_get_trace_vprintk_proto();
1706         default:
1707                 return NULL;
1708         }
1709 }