GNU Linux-libre 5.19-rc6-gnu
[releases.git] / kernel / bpf / cpumap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8  * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9  *
10  * Unlike devmap which redirects XDP frames out another NIC device,
11  * this map type redirects raw XDP frames to another CPU.  The remote
12  * CPU will do SKB-allocation and call the normal network stack.
13  *
14  * This is a scalability and isolation mechanism, that allow
15  * separating the early driver network XDP layer, from the rest of the
16  * netstack, and assigning dedicated CPUs for this stage.  This
17  * basically allows for 10G wirespeed pre-filtering via bpf.
18  */
19 #include <linux/bitops.h>
20 #include <linux/bpf.h>
21 #include <linux/filter.h>
22 #include <linux/ptr_ring.h>
23 #include <net/xdp.h>
24
25 #include <linux/sched.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/capability.h>
29 #include <trace/events/xdp.h>
30 #include <linux/btf_ids.h>
31
32 #include <linux/netdevice.h>   /* netif_receive_skb_list */
33 #include <linux/etherdevice.h> /* eth_type_trans */
34
35 /* General idea: XDP packets getting XDP redirected to another CPU,
36  * will maximum be stored/queued for one driver ->poll() call.  It is
37  * guaranteed that queueing the frame and the flush operation happen on
38  * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
39  * which queue in bpf_cpu_map_entry contains packets.
40  */
41
42 #define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
43 struct bpf_cpu_map_entry;
44 struct bpf_cpu_map;
45
46 struct xdp_bulk_queue {
47         void *q[CPU_MAP_BULK_SIZE];
48         struct list_head flush_node;
49         struct bpf_cpu_map_entry *obj;
50         unsigned int count;
51 };
52
53 /* Struct for every remote "destination" CPU in map */
54 struct bpf_cpu_map_entry {
55         u32 cpu;    /* kthread CPU and map index */
56         int map_id; /* Back reference to map */
57
58         /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
59         struct xdp_bulk_queue __percpu *bulkq;
60
61         struct bpf_cpu_map *cmap;
62
63         /* Queue with potential multi-producers, and single-consumer kthread */
64         struct ptr_ring *queue;
65         struct task_struct *kthread;
66
67         struct bpf_cpumap_val value;
68         struct bpf_prog *prog;
69
70         atomic_t refcnt; /* Control when this struct can be free'ed */
71         struct rcu_head rcu;
72
73         struct work_struct kthread_stop_wq;
74 };
75
76 struct bpf_cpu_map {
77         struct bpf_map map;
78         /* Below members specific for map type */
79         struct bpf_cpu_map_entry __rcu **cpu_map;
80 };
81
82 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
83
84 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
85 {
86         u32 value_size = attr->value_size;
87         struct bpf_cpu_map *cmap;
88         int err = -ENOMEM;
89
90         if (!bpf_capable())
91                 return ERR_PTR(-EPERM);
92
93         /* check sanity of attributes */
94         if (attr->max_entries == 0 || attr->key_size != 4 ||
95             (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
96              value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
97             attr->map_flags & ~BPF_F_NUMA_NODE)
98                 return ERR_PTR(-EINVAL);
99
100         cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT);
101         if (!cmap)
102                 return ERR_PTR(-ENOMEM);
103
104         bpf_map_init_from_attr(&cmap->map, attr);
105
106         /* Pre-limit array size based on NR_CPUS, not final CPU check */
107         if (cmap->map.max_entries > NR_CPUS) {
108                 err = -E2BIG;
109                 goto free_cmap;
110         }
111
112         /* Alloc array for possible remote "destination" CPUs */
113         cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
114                                            sizeof(struct bpf_cpu_map_entry *),
115                                            cmap->map.numa_node);
116         if (!cmap->cpu_map)
117                 goto free_cmap;
118
119         return &cmap->map;
120 free_cmap:
121         kfree(cmap);
122         return ERR_PTR(err);
123 }
124
125 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
126 {
127         atomic_inc(&rcpu->refcnt);
128 }
129
130 /* called from workqueue, to workaround syscall using preempt_disable */
131 static void cpu_map_kthread_stop(struct work_struct *work)
132 {
133         struct bpf_cpu_map_entry *rcpu;
134
135         rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
136
137         /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
138          * as it waits until all in-flight call_rcu() callbacks complete.
139          */
140         rcu_barrier();
141
142         /* kthread_stop will wake_up_process and wait for it to complete */
143         kthread_stop(rcpu->kthread);
144 }
145
146 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
147 {
148         /* The tear-down procedure should have made sure that queue is
149          * empty.  See __cpu_map_entry_replace() and work-queue
150          * invoked cpu_map_kthread_stop(). Catch any broken behaviour
151          * gracefully and warn once.
152          */
153         struct xdp_frame *xdpf;
154
155         while ((xdpf = ptr_ring_consume(ring)))
156                 if (WARN_ON_ONCE(xdpf))
157                         xdp_return_frame(xdpf);
158 }
159
160 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
161 {
162         if (atomic_dec_and_test(&rcpu->refcnt)) {
163                 if (rcpu->prog)
164                         bpf_prog_put(rcpu->prog);
165                 /* The queue should be empty at this point */
166                 __cpu_map_ring_cleanup(rcpu->queue);
167                 ptr_ring_cleanup(rcpu->queue, NULL);
168                 kfree(rcpu->queue);
169                 kfree(rcpu);
170         }
171 }
172
173 static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
174                                      struct list_head *listp,
175                                      struct xdp_cpumap_stats *stats)
176 {
177         struct sk_buff *skb, *tmp;
178         struct xdp_buff xdp;
179         u32 act;
180         int err;
181
182         list_for_each_entry_safe(skb, tmp, listp, list) {
183                 act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
184                 switch (act) {
185                 case XDP_PASS:
186                         break;
187                 case XDP_REDIRECT:
188                         skb_list_del_init(skb);
189                         err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
190                                                       rcpu->prog);
191                         if (unlikely(err)) {
192                                 kfree_skb(skb);
193                                 stats->drop++;
194                         } else {
195                                 stats->redirect++;
196                         }
197                         return;
198                 default:
199                         bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
200                         fallthrough;
201                 case XDP_ABORTED:
202                         trace_xdp_exception(skb->dev, rcpu->prog, act);
203                         fallthrough;
204                 case XDP_DROP:
205                         skb_list_del_init(skb);
206                         kfree_skb(skb);
207                         stats->drop++;
208                         return;
209                 }
210         }
211 }
212
213 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
214                                     void **frames, int n,
215                                     struct xdp_cpumap_stats *stats)
216 {
217         struct xdp_rxq_info rxq;
218         struct xdp_buff xdp;
219         int i, nframes = 0;
220
221         xdp_set_return_frame_no_direct();
222         xdp.rxq = &rxq;
223
224         for (i = 0; i < n; i++) {
225                 struct xdp_frame *xdpf = frames[i];
226                 u32 act;
227                 int err;
228
229                 rxq.dev = xdpf->dev_rx;
230                 rxq.mem = xdpf->mem;
231                 /* TODO: report queue_index to xdp_rxq_info */
232
233                 xdp_convert_frame_to_buff(xdpf, &xdp);
234
235                 act = bpf_prog_run_xdp(rcpu->prog, &xdp);
236                 switch (act) {
237                 case XDP_PASS:
238                         err = xdp_update_frame_from_buff(&xdp, xdpf);
239                         if (err < 0) {
240                                 xdp_return_frame(xdpf);
241                                 stats->drop++;
242                         } else {
243                                 frames[nframes++] = xdpf;
244                                 stats->pass++;
245                         }
246                         break;
247                 case XDP_REDIRECT:
248                         err = xdp_do_redirect(xdpf->dev_rx, &xdp,
249                                               rcpu->prog);
250                         if (unlikely(err)) {
251                                 xdp_return_frame(xdpf);
252                                 stats->drop++;
253                         } else {
254                                 stats->redirect++;
255                         }
256                         break;
257                 default:
258                         bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
259                         fallthrough;
260                 case XDP_DROP:
261                         xdp_return_frame(xdpf);
262                         stats->drop++;
263                         break;
264                 }
265         }
266
267         xdp_clear_return_frame_no_direct();
268
269         return nframes;
270 }
271
272 #define CPUMAP_BATCH 8
273
274 static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
275                                 int xdp_n, struct xdp_cpumap_stats *stats,
276                                 struct list_head *list)
277 {
278         int nframes;
279
280         if (!rcpu->prog)
281                 return xdp_n;
282
283         rcu_read_lock_bh();
284
285         nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
286
287         if (stats->redirect)
288                 xdp_do_flush();
289
290         if (unlikely(!list_empty(list)))
291                 cpu_map_bpf_prog_run_skb(rcpu, list, stats);
292
293         rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
294
295         return nframes;
296 }
297
298
299 static int cpu_map_kthread_run(void *data)
300 {
301         struct bpf_cpu_map_entry *rcpu = data;
302
303         set_current_state(TASK_INTERRUPTIBLE);
304
305         /* When kthread gives stop order, then rcpu have been disconnected
306          * from map, thus no new packets can enter. Remaining in-flight
307          * per CPU stored packets are flushed to this queue.  Wait honoring
308          * kthread_stop signal until queue is empty.
309          */
310         while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
311                 struct xdp_cpumap_stats stats = {}; /* zero stats */
312                 unsigned int kmem_alloc_drops = 0, sched = 0;
313                 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
314                 int i, n, m, nframes, xdp_n;
315                 void *frames[CPUMAP_BATCH];
316                 void *skbs[CPUMAP_BATCH];
317                 LIST_HEAD(list);
318
319                 /* Release CPU reschedule checks */
320                 if (__ptr_ring_empty(rcpu->queue)) {
321                         set_current_state(TASK_INTERRUPTIBLE);
322                         /* Recheck to avoid lost wake-up */
323                         if (__ptr_ring_empty(rcpu->queue)) {
324                                 schedule();
325                                 sched = 1;
326                         } else {
327                                 __set_current_state(TASK_RUNNING);
328                         }
329                 } else {
330                         sched = cond_resched();
331                 }
332
333                 /*
334                  * The bpf_cpu_map_entry is single consumer, with this
335                  * kthread CPU pinned. Lockless access to ptr_ring
336                  * consume side valid as no-resize allowed of queue.
337                  */
338                 n = __ptr_ring_consume_batched(rcpu->queue, frames,
339                                                CPUMAP_BATCH);
340                 for (i = 0, xdp_n = 0; i < n; i++) {
341                         void *f = frames[i];
342                         struct page *page;
343
344                         if (unlikely(__ptr_test_bit(0, &f))) {
345                                 struct sk_buff *skb = f;
346
347                                 __ptr_clear_bit(0, &skb);
348                                 list_add_tail(&skb->list, &list);
349                                 continue;
350                         }
351
352                         frames[xdp_n++] = f;
353                         page = virt_to_page(f);
354
355                         /* Bring struct page memory area to curr CPU. Read by
356                          * build_skb_around via page_is_pfmemalloc(), and when
357                          * freed written by page_frag_free call.
358                          */
359                         prefetchw(page);
360                 }
361
362                 /* Support running another XDP prog on this CPU */
363                 nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
364                 if (nframes) {
365                         m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
366                         if (unlikely(m == 0)) {
367                                 for (i = 0; i < nframes; i++)
368                                         skbs[i] = NULL; /* effect: xdp_return_frame */
369                                 kmem_alloc_drops += nframes;
370                         }
371                 }
372
373                 local_bh_disable();
374                 for (i = 0; i < nframes; i++) {
375                         struct xdp_frame *xdpf = frames[i];
376                         struct sk_buff *skb = skbs[i];
377
378                         skb = __xdp_build_skb_from_frame(xdpf, skb,
379                                                          xdpf->dev_rx);
380                         if (!skb) {
381                                 xdp_return_frame(xdpf);
382                                 continue;
383                         }
384
385                         list_add_tail(&skb->list, &list);
386                 }
387                 netif_receive_skb_list(&list);
388
389                 /* Feedback loop via tracepoint */
390                 trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
391                                          sched, &stats);
392
393                 local_bh_enable(); /* resched point, may call do_softirq() */
394         }
395         __set_current_state(TASK_RUNNING);
396
397         put_cpu_map_entry(rcpu);
398         return 0;
399 }
400
401 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
402                                       struct bpf_map *map, int fd)
403 {
404         struct bpf_prog *prog;
405
406         prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
407         if (IS_ERR(prog))
408                 return PTR_ERR(prog);
409
410         if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
411             !bpf_prog_map_compatible(map, prog)) {
412                 bpf_prog_put(prog);
413                 return -EINVAL;
414         }
415
416         rcpu->value.bpf_prog.id = prog->aux->id;
417         rcpu->prog = prog;
418
419         return 0;
420 }
421
422 static struct bpf_cpu_map_entry *
423 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
424                       u32 cpu)
425 {
426         int numa, err, i, fd = value->bpf_prog.fd;
427         gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
428         struct bpf_cpu_map_entry *rcpu;
429         struct xdp_bulk_queue *bq;
430
431         /* Have map->numa_node, but choose node of redirect target CPU */
432         numa = cpu_to_node(cpu);
433
434         rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
435         if (!rcpu)
436                 return NULL;
437
438         /* Alloc percpu bulkq */
439         rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
440                                            sizeof(void *), gfp);
441         if (!rcpu->bulkq)
442                 goto free_rcu;
443
444         for_each_possible_cpu(i) {
445                 bq = per_cpu_ptr(rcpu->bulkq, i);
446                 bq->obj = rcpu;
447         }
448
449         /* Alloc queue */
450         rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
451                                            numa);
452         if (!rcpu->queue)
453                 goto free_bulkq;
454
455         err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
456         if (err)
457                 goto free_queue;
458
459         rcpu->cpu    = cpu;
460         rcpu->map_id = map->id;
461         rcpu->value.qsize  = value->qsize;
462
463         if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
464                 goto free_ptr_ring;
465
466         /* Setup kthread */
467         rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
468                                                "cpumap/%d/map:%d", cpu,
469                                                map->id);
470         if (IS_ERR(rcpu->kthread))
471                 goto free_prog;
472
473         get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
474         get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
475
476         /* Make sure kthread runs on a single CPU */
477         kthread_bind(rcpu->kthread, cpu);
478         wake_up_process(rcpu->kthread);
479
480         return rcpu;
481
482 free_prog:
483         if (rcpu->prog)
484                 bpf_prog_put(rcpu->prog);
485 free_ptr_ring:
486         ptr_ring_cleanup(rcpu->queue, NULL);
487 free_queue:
488         kfree(rcpu->queue);
489 free_bulkq:
490         free_percpu(rcpu->bulkq);
491 free_rcu:
492         kfree(rcpu);
493         return NULL;
494 }
495
496 static void __cpu_map_entry_free(struct rcu_head *rcu)
497 {
498         struct bpf_cpu_map_entry *rcpu;
499
500         /* This cpu_map_entry have been disconnected from map and one
501          * RCU grace-period have elapsed.  Thus, XDP cannot queue any
502          * new packets and cannot change/set flush_needed that can
503          * find this entry.
504          */
505         rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
506
507         free_percpu(rcpu->bulkq);
508         /* Cannot kthread_stop() here, last put free rcpu resources */
509         put_cpu_map_entry(rcpu);
510 }
511
512 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
513  * ensure any driver rcu critical sections have completed, but this
514  * does not guarantee a flush has happened yet. Because driver side
515  * rcu_read_lock/unlock only protects the running XDP program.  The
516  * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
517  * pending flush op doesn't fail.
518  *
519  * The bpf_cpu_map_entry is still used by the kthread, and there can
520  * still be pending packets (in queue and percpu bulkq).  A refcnt
521  * makes sure to last user (kthread_stop vs. call_rcu) free memory
522  * resources.
523  *
524  * The rcu callback __cpu_map_entry_free flush remaining packets in
525  * percpu bulkq to queue.  Due to caller map_delete_elem() disable
526  * preemption, cannot call kthread_stop() to make sure queue is empty.
527  * Instead a work_queue is started for stopping kthread,
528  * cpu_map_kthread_stop, which waits for an RCU grace period before
529  * stopping kthread, emptying the queue.
530  */
531 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
532                                     u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
533 {
534         struct bpf_cpu_map_entry *old_rcpu;
535
536         old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
537         if (old_rcpu) {
538                 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
539                 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
540                 schedule_work(&old_rcpu->kthread_stop_wq);
541         }
542 }
543
544 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
545 {
546         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
547         u32 key_cpu = *(u32 *)key;
548
549         if (key_cpu >= map->max_entries)
550                 return -EINVAL;
551
552         /* notice caller map_delete_elem() use preempt_disable() */
553         __cpu_map_entry_replace(cmap, key_cpu, NULL);
554         return 0;
555 }
556
557 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
558                                u64 map_flags)
559 {
560         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
561         struct bpf_cpumap_val cpumap_value = {};
562         struct bpf_cpu_map_entry *rcpu;
563         /* Array index key correspond to CPU number */
564         u32 key_cpu = *(u32 *)key;
565
566         memcpy(&cpumap_value, value, map->value_size);
567
568         if (unlikely(map_flags > BPF_EXIST))
569                 return -EINVAL;
570         if (unlikely(key_cpu >= cmap->map.max_entries))
571                 return -E2BIG;
572         if (unlikely(map_flags == BPF_NOEXIST))
573                 return -EEXIST;
574         if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
575                 return -EOVERFLOW;
576
577         /* Make sure CPU is a valid possible cpu */
578         if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
579                 return -ENODEV;
580
581         if (cpumap_value.qsize == 0) {
582                 rcpu = NULL; /* Same as deleting */
583         } else {
584                 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
585                 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
586                 if (!rcpu)
587                         return -ENOMEM;
588                 rcpu->cmap = cmap;
589         }
590         rcu_read_lock();
591         __cpu_map_entry_replace(cmap, key_cpu, rcpu);
592         rcu_read_unlock();
593         return 0;
594 }
595
596 static void cpu_map_free(struct bpf_map *map)
597 {
598         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
599         u32 i;
600
601         /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
602          * so the bpf programs (can be more than one that used this map) were
603          * disconnected from events. Wait for outstanding critical sections in
604          * these programs to complete. The rcu critical section only guarantees
605          * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
606          * It does __not__ ensure pending flush operations (if any) are
607          * complete.
608          */
609
610         synchronize_rcu();
611
612         /* For cpu_map the remote CPUs can still be using the entries
613          * (struct bpf_cpu_map_entry).
614          */
615         for (i = 0; i < cmap->map.max_entries; i++) {
616                 struct bpf_cpu_map_entry *rcpu;
617
618                 rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
619                 if (!rcpu)
620                         continue;
621
622                 /* bq flush and cleanup happens after RCU grace-period */
623                 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
624         }
625         bpf_map_area_free(cmap->cpu_map);
626         kfree(cmap);
627 }
628
629 /* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
630  * by local_bh_disable() (from XDP calls inside NAPI). The
631  * rcu_read_lock_bh_held() below makes lockdep accept both.
632  */
633 static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
634 {
635         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
636         struct bpf_cpu_map_entry *rcpu;
637
638         if (key >= map->max_entries)
639                 return NULL;
640
641         rcpu = rcu_dereference_check(cmap->cpu_map[key],
642                                      rcu_read_lock_bh_held());
643         return rcpu;
644 }
645
646 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
647 {
648         struct bpf_cpu_map_entry *rcpu =
649                 __cpu_map_lookup_elem(map, *(u32 *)key);
650
651         return rcpu ? &rcpu->value : NULL;
652 }
653
654 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
655 {
656         struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
657         u32 index = key ? *(u32 *)key : U32_MAX;
658         u32 *next = next_key;
659
660         if (index >= cmap->map.max_entries) {
661                 *next = 0;
662                 return 0;
663         }
664
665         if (index == cmap->map.max_entries - 1)
666                 return -ENOENT;
667         *next = index + 1;
668         return 0;
669 }
670
671 static int cpu_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
672 {
673         return __bpf_xdp_redirect_map(map, ifindex, flags, 0,
674                                       __cpu_map_lookup_elem);
675 }
676
677 BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
678 const struct bpf_map_ops cpu_map_ops = {
679         .map_meta_equal         = bpf_map_meta_equal,
680         .map_alloc              = cpu_map_alloc,
681         .map_free               = cpu_map_free,
682         .map_delete_elem        = cpu_map_delete_elem,
683         .map_update_elem        = cpu_map_update_elem,
684         .map_lookup_elem        = cpu_map_lookup_elem,
685         .map_get_next_key       = cpu_map_get_next_key,
686         .map_check_btf          = map_check_no_btf,
687         .map_btf_id             = &cpu_map_btf_ids[0],
688         .map_redirect           = cpu_map_redirect,
689 };
690
691 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
692 {
693         struct bpf_cpu_map_entry *rcpu = bq->obj;
694         unsigned int processed = 0, drops = 0;
695         const int to_cpu = rcpu->cpu;
696         struct ptr_ring *q;
697         int i;
698
699         if (unlikely(!bq->count))
700                 return;
701
702         q = rcpu->queue;
703         spin_lock(&q->producer_lock);
704
705         for (i = 0; i < bq->count; i++) {
706                 struct xdp_frame *xdpf = bq->q[i];
707                 int err;
708
709                 err = __ptr_ring_produce(q, xdpf);
710                 if (err) {
711                         drops++;
712                         xdp_return_frame_rx_napi(xdpf);
713                 }
714                 processed++;
715         }
716         bq->count = 0;
717         spin_unlock(&q->producer_lock);
718
719         __list_del_clearprev(&bq->flush_node);
720
721         /* Feedback loop via tracepoints */
722         trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
723 }
724
725 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
726  * Thus, safe percpu variable access.
727  */
728 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
729 {
730         struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
731         struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
732
733         if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
734                 bq_flush_to_queue(bq);
735
736         /* Notice, xdp_buff/page MUST be queued here, long enough for
737          * driver to code invoking us to finished, due to driver
738          * (e.g. ixgbe) recycle tricks based on page-refcnt.
739          *
740          * Thus, incoming xdp_frame is always queued here (else we race
741          * with another CPU on page-refcnt and remaining driver code).
742          * Queue time is very short, as driver will invoke flush
743          * operation, when completing napi->poll call.
744          */
745         bq->q[bq->count++] = xdpf;
746
747         if (!bq->flush_node.prev)
748                 list_add(&bq->flush_node, flush_list);
749 }
750
751 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
752                     struct net_device *dev_rx)
753 {
754         /* Info needed when constructing SKB on remote CPU */
755         xdpf->dev_rx = dev_rx;
756
757         bq_enqueue(rcpu, xdpf);
758         return 0;
759 }
760
761 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
762                              struct sk_buff *skb)
763 {
764         int ret;
765
766         __skb_pull(skb, skb->mac_len);
767         skb_set_redirected(skb, false);
768         __ptr_set_bit(0, &skb);
769
770         ret = ptr_ring_produce(rcpu->queue, skb);
771         if (ret < 0)
772                 goto trace;
773
774         wake_up_process(rcpu->kthread);
775 trace:
776         trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
777         return ret;
778 }
779
780 void __cpu_map_flush(void)
781 {
782         struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
783         struct xdp_bulk_queue *bq, *tmp;
784
785         list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
786                 bq_flush_to_queue(bq);
787
788                 /* If already running, costs spin_lock_irqsave + smb_mb */
789                 wake_up_process(bq->obj->kthread);
790         }
791 }
792
793 static int __init cpu_map_init(void)
794 {
795         int cpu;
796
797         for_each_possible_cpu(cpu)
798                 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
799         return 0;
800 }
801
802 subsys_initcall(cpu_map_init);