GNU Linux-libre 5.10.215-gnu1
[releases.git] / kernel / bpf / btf.c
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/btf_ids.h>
26 #include <net/sock.h>
27
28 /* BTF (BPF Type Format) is the meta data format which describes
29  * the data types of BPF program/map.  Hence, it basically focus
30  * on the C programming language which the modern BPF is primary
31  * using.
32  *
33  * ELF Section:
34  * ~~~~~~~~~~~
35  * The BTF data is stored under the ".BTF" ELF section
36  *
37  * struct btf_type:
38  * ~~~~~~~~~~~~~~~
39  * Each 'struct btf_type' object describes a C data type.
40  * Depending on the type it is describing, a 'struct btf_type'
41  * object may be followed by more data.  F.e.
42  * To describe an array, 'struct btf_type' is followed by
43  * 'struct btf_array'.
44  *
45  * 'struct btf_type' and any extra data following it are
46  * 4 bytes aligned.
47  *
48  * Type section:
49  * ~~~~~~~~~~~~~
50  * The BTF type section contains a list of 'struct btf_type' objects.
51  * Each one describes a C type.  Recall from the above section
52  * that a 'struct btf_type' object could be immediately followed by extra
53  * data in order to desribe some particular C types.
54  *
55  * type_id:
56  * ~~~~~~~
57  * Each btf_type object is identified by a type_id.  The type_id
58  * is implicitly implied by the location of the btf_type object in
59  * the BTF type section.  The first one has type_id 1.  The second
60  * one has type_id 2...etc.  Hence, an earlier btf_type has
61  * a smaller type_id.
62  *
63  * A btf_type object may refer to another btf_type object by using
64  * type_id (i.e. the "type" in the "struct btf_type").
65  *
66  * NOTE that we cannot assume any reference-order.
67  * A btf_type object can refer to an earlier btf_type object
68  * but it can also refer to a later btf_type object.
69  *
70  * For example, to describe "const void *".  A btf_type
71  * object describing "const" may refer to another btf_type
72  * object describing "void *".  This type-reference is done
73  * by specifying type_id:
74  *
75  * [1] CONST (anon) type_id=2
76  * [2] PTR (anon) type_id=0
77  *
78  * The above is the btf_verifier debug log:
79  *   - Each line started with "[?]" is a btf_type object
80  *   - [?] is the type_id of the btf_type object.
81  *   - CONST/PTR is the BTF_KIND_XXX
82  *   - "(anon)" is the name of the type.  It just
83  *     happens that CONST and PTR has no name.
84  *   - type_id=XXX is the 'u32 type' in btf_type
85  *
86  * NOTE: "void" has type_id 0
87  *
88  * String section:
89  * ~~~~~~~~~~~~~~
90  * The BTF string section contains the names used by the type section.
91  * Each string is referred by an "offset" from the beginning of the
92  * string section.
93  *
94  * Each string is '\0' terminated.
95  *
96  * The first character in the string section must be '\0'
97  * which is used to mean 'anonymous'. Some btf_type may not
98  * have a name.
99  */
100
101 /* BTF verification:
102  *
103  * To verify BTF data, two passes are needed.
104  *
105  * Pass #1
106  * ~~~~~~~
107  * The first pass is to collect all btf_type objects to
108  * an array: "btf->types".
109  *
110  * Depending on the C type that a btf_type is describing,
111  * a btf_type may be followed by extra data.  We don't know
112  * how many btf_type is there, and more importantly we don't
113  * know where each btf_type is located in the type section.
114  *
115  * Without knowing the location of each type_id, most verifications
116  * cannot be done.  e.g. an earlier btf_type may refer to a later
117  * btf_type (recall the "const void *" above), so we cannot
118  * check this type-reference in the first pass.
119  *
120  * In the first pass, it still does some verifications (e.g.
121  * checking the name is a valid offset to the string section).
122  *
123  * Pass #2
124  * ~~~~~~~
125  * The main focus is to resolve a btf_type that is referring
126  * to another type.
127  *
128  * We have to ensure the referring type:
129  * 1) does exist in the BTF (i.e. in btf->types[])
130  * 2) does not cause a loop:
131  *      struct A {
132  *              struct B b;
133  *      };
134  *
135  *      struct B {
136  *              struct A a;
137  *      };
138  *
139  * btf_type_needs_resolve() decides if a btf_type needs
140  * to be resolved.
141  *
142  * The needs_resolve type implements the "resolve()" ops which
143  * essentially does a DFS and detects backedge.
144  *
145  * During resolve (or DFS), different C types have different
146  * "RESOLVED" conditions.
147  *
148  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
149  * members because a member is always referring to another
150  * type.  A struct's member can be treated as "RESOLVED" if
151  * it is referring to a BTF_KIND_PTR.  Otherwise, the
152  * following valid C struct would be rejected:
153  *
154  *      struct A {
155  *              int m;
156  *              struct A *a;
157  *      };
158  *
159  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
160  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
161  * detect a pointer loop, e.g.:
162  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
163  *                        ^                                         |
164  *                        +-----------------------------------------+
165  *
166  */
167
168 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
169 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
170 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
171 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
172 #define BITS_ROUNDUP_BYTES(bits) \
173         (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
174
175 #define BTF_INFO_MASK 0x8f00ffff
176 #define BTF_INT_MASK 0x0fffffff
177 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
178 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
179
180 /* 16MB for 64k structs and each has 16 members and
181  * a few MB spaces for the string section.
182  * The hard limit is S32_MAX.
183  */
184 #define BTF_MAX_SIZE (16 * 1024 * 1024)
185
186 #define for_each_member_from(i, from, struct_type, member)              \
187         for (i = from, member = btf_type_member(struct_type) + from;    \
188              i < btf_type_vlen(struct_type);                            \
189              i++, member++)
190
191 #define for_each_vsi_from(i, from, struct_type, member)                         \
192         for (i = from, member = btf_type_var_secinfo(struct_type) + from;       \
193              i < btf_type_vlen(struct_type);                                    \
194              i++, member++)
195
196 DEFINE_IDR(btf_idr);
197 DEFINE_SPINLOCK(btf_idr_lock);
198
199 struct btf {
200         void *data;
201         struct btf_type **types;
202         u32 *resolved_ids;
203         u32 *resolved_sizes;
204         const char *strings;
205         void *nohdr_data;
206         struct btf_header hdr;
207         u32 nr_types;
208         u32 types_size;
209         u32 data_size;
210         refcount_t refcnt;
211         u32 id;
212         struct rcu_head rcu;
213 };
214
215 enum verifier_phase {
216         CHECK_META,
217         CHECK_TYPE,
218 };
219
220 struct resolve_vertex {
221         const struct btf_type *t;
222         u32 type_id;
223         u16 next_member;
224 };
225
226 enum visit_state {
227         NOT_VISITED,
228         VISITED,
229         RESOLVED,
230 };
231
232 enum resolve_mode {
233         RESOLVE_TBD,    /* To Be Determined */
234         RESOLVE_PTR,    /* Resolving for Pointer */
235         RESOLVE_STRUCT_OR_ARRAY,        /* Resolving for struct/union
236                                          * or array
237                                          */
238 };
239
240 #define MAX_RESOLVE_DEPTH 32
241
242 struct btf_sec_info {
243         u32 off;
244         u32 len;
245 };
246
247 struct btf_verifier_env {
248         struct btf *btf;
249         u8 *visit_states;
250         struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
251         struct bpf_verifier_log log;
252         u32 log_type_id;
253         u32 top_stack;
254         enum verifier_phase phase;
255         enum resolve_mode resolve_mode;
256 };
257
258 static const char * const btf_kind_str[NR_BTF_KINDS] = {
259         [BTF_KIND_UNKN]         = "UNKNOWN",
260         [BTF_KIND_INT]          = "INT",
261         [BTF_KIND_PTR]          = "PTR",
262         [BTF_KIND_ARRAY]        = "ARRAY",
263         [BTF_KIND_STRUCT]       = "STRUCT",
264         [BTF_KIND_UNION]        = "UNION",
265         [BTF_KIND_ENUM]         = "ENUM",
266         [BTF_KIND_FWD]          = "FWD",
267         [BTF_KIND_TYPEDEF]      = "TYPEDEF",
268         [BTF_KIND_VOLATILE]     = "VOLATILE",
269         [BTF_KIND_CONST]        = "CONST",
270         [BTF_KIND_RESTRICT]     = "RESTRICT",
271         [BTF_KIND_FUNC]         = "FUNC",
272         [BTF_KIND_FUNC_PROTO]   = "FUNC_PROTO",
273         [BTF_KIND_VAR]          = "VAR",
274         [BTF_KIND_DATASEC]      = "DATASEC",
275 };
276
277 static const char *btf_type_str(const struct btf_type *t)
278 {
279         return btf_kind_str[BTF_INFO_KIND(t->info)];
280 }
281
282 /* Chunk size we use in safe copy of data to be shown. */
283 #define BTF_SHOW_OBJ_SAFE_SIZE          32
284
285 /*
286  * This is the maximum size of a base type value (equivalent to a
287  * 128-bit int); if we are at the end of our safe buffer and have
288  * less than 16 bytes space we can't be assured of being able
289  * to copy the next type safely, so in such cases we will initiate
290  * a new copy.
291  */
292 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE     16
293
294 /* Type name size */
295 #define BTF_SHOW_NAME_SIZE              80
296
297 /*
298  * Common data to all BTF show operations. Private show functions can add
299  * their own data to a structure containing a struct btf_show and consult it
300  * in the show callback.  See btf_type_show() below.
301  *
302  * One challenge with showing nested data is we want to skip 0-valued
303  * data, but in order to figure out whether a nested object is all zeros
304  * we need to walk through it.  As a result, we need to make two passes
305  * when handling structs, unions and arrays; the first path simply looks
306  * for nonzero data, while the second actually does the display.  The first
307  * pass is signalled by show->state.depth_check being set, and if we
308  * encounter a non-zero value we set show->state.depth_to_show to
309  * the depth at which we encountered it.  When we have completed the
310  * first pass, we will know if anything needs to be displayed if
311  * depth_to_show > depth.  See btf_[struct,array]_show() for the
312  * implementation of this.
313  *
314  * Another problem is we want to ensure the data for display is safe to
315  * access.  To support this, the anonymous "struct {} obj" tracks the data
316  * object and our safe copy of it.  We copy portions of the data needed
317  * to the object "copy" buffer, but because its size is limited to
318  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
319  * traverse larger objects for display.
320  *
321  * The various data type show functions all start with a call to
322  * btf_show_start_type() which returns a pointer to the safe copy
323  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
324  * raw data itself).  btf_show_obj_safe() is responsible for
325  * using copy_from_kernel_nofault() to update the safe data if necessary
326  * as we traverse the object's data.  skbuff-like semantics are
327  * used:
328  *
329  * - obj.head points to the start of the toplevel object for display
330  * - obj.size is the size of the toplevel object
331  * - obj.data points to the current point in the original data at
332  *   which our safe data starts.  obj.data will advance as we copy
333  *   portions of the data.
334  *
335  * In most cases a single copy will suffice, but larger data structures
336  * such as "struct task_struct" will require many copies.  The logic in
337  * btf_show_obj_safe() handles the logic that determines if a new
338  * copy_from_kernel_nofault() is needed.
339  */
340 struct btf_show {
341         u64 flags;
342         void *target;   /* target of show operation (seq file, buffer) */
343         void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
344         const struct btf *btf;
345         /* below are used during iteration */
346         struct {
347                 u8 depth;
348                 u8 depth_to_show;
349                 u8 depth_check;
350                 u8 array_member:1,
351                    array_terminated:1;
352                 u16 array_encoding;
353                 u32 type_id;
354                 int status;                     /* non-zero for error */
355                 const struct btf_type *type;
356                 const struct btf_member *member;
357                 char name[BTF_SHOW_NAME_SIZE];  /* space for member name/type */
358         } state;
359         struct {
360                 u32 size;
361                 void *head;
362                 void *data;
363                 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
364         } obj;
365 };
366
367 struct btf_kind_operations {
368         s32 (*check_meta)(struct btf_verifier_env *env,
369                           const struct btf_type *t,
370                           u32 meta_left);
371         int (*resolve)(struct btf_verifier_env *env,
372                        const struct resolve_vertex *v);
373         int (*check_member)(struct btf_verifier_env *env,
374                             const struct btf_type *struct_type,
375                             const struct btf_member *member,
376                             const struct btf_type *member_type);
377         int (*check_kflag_member)(struct btf_verifier_env *env,
378                                   const struct btf_type *struct_type,
379                                   const struct btf_member *member,
380                                   const struct btf_type *member_type);
381         void (*log_details)(struct btf_verifier_env *env,
382                             const struct btf_type *t);
383         void (*show)(const struct btf *btf, const struct btf_type *t,
384                          u32 type_id, void *data, u8 bits_offsets,
385                          struct btf_show *show);
386 };
387
388 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
389 static struct btf_type btf_void;
390
391 static int btf_resolve(struct btf_verifier_env *env,
392                        const struct btf_type *t, u32 type_id);
393
394 static bool btf_type_is_modifier(const struct btf_type *t)
395 {
396         /* Some of them is not strictly a C modifier
397          * but they are grouped into the same bucket
398          * for BTF concern:
399          *   A type (t) that refers to another
400          *   type through t->type AND its size cannot
401          *   be determined without following the t->type.
402          *
403          * ptr does not fall into this bucket
404          * because its size is always sizeof(void *).
405          */
406         switch (BTF_INFO_KIND(t->info)) {
407         case BTF_KIND_TYPEDEF:
408         case BTF_KIND_VOLATILE:
409         case BTF_KIND_CONST:
410         case BTF_KIND_RESTRICT:
411                 return true;
412         }
413
414         return false;
415 }
416
417 bool btf_type_is_void(const struct btf_type *t)
418 {
419         return t == &btf_void;
420 }
421
422 static bool btf_type_is_fwd(const struct btf_type *t)
423 {
424         return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
425 }
426
427 static bool btf_type_nosize(const struct btf_type *t)
428 {
429         return btf_type_is_void(t) || btf_type_is_fwd(t) ||
430                btf_type_is_func(t) || btf_type_is_func_proto(t);
431 }
432
433 static bool btf_type_nosize_or_null(const struct btf_type *t)
434 {
435         return !t || btf_type_nosize(t);
436 }
437
438 static bool __btf_type_is_struct(const struct btf_type *t)
439 {
440         return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
441 }
442
443 static bool btf_type_is_array(const struct btf_type *t)
444 {
445         return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
446 }
447
448 static bool btf_type_is_datasec(const struct btf_type *t)
449 {
450         return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
451 }
452
453 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
454 {
455         const struct btf_type *t;
456         const char *tname;
457         u32 i;
458
459         for (i = 1; i <= btf->nr_types; i++) {
460                 t = btf->types[i];
461                 if (BTF_INFO_KIND(t->info) != kind)
462                         continue;
463
464                 tname = btf_name_by_offset(btf, t->name_off);
465                 if (!strcmp(tname, name))
466                         return i;
467         }
468
469         return -ENOENT;
470 }
471
472 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
473                                                u32 id, u32 *res_id)
474 {
475         const struct btf_type *t = btf_type_by_id(btf, id);
476
477         while (btf_type_is_modifier(t)) {
478                 id = t->type;
479                 t = btf_type_by_id(btf, t->type);
480         }
481
482         if (res_id)
483                 *res_id = id;
484
485         return t;
486 }
487
488 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
489                                             u32 id, u32 *res_id)
490 {
491         const struct btf_type *t;
492
493         t = btf_type_skip_modifiers(btf, id, NULL);
494         if (!btf_type_is_ptr(t))
495                 return NULL;
496
497         return btf_type_skip_modifiers(btf, t->type, res_id);
498 }
499
500 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
501                                                  u32 id, u32 *res_id)
502 {
503         const struct btf_type *ptype;
504
505         ptype = btf_type_resolve_ptr(btf, id, res_id);
506         if (ptype && btf_type_is_func_proto(ptype))
507                 return ptype;
508
509         return NULL;
510 }
511
512 /* Types that act only as a source, not sink or intermediate
513  * type when resolving.
514  */
515 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
516 {
517         return btf_type_is_var(t) ||
518                btf_type_is_datasec(t);
519 }
520
521 /* What types need to be resolved?
522  *
523  * btf_type_is_modifier() is an obvious one.
524  *
525  * btf_type_is_struct() because its member refers to
526  * another type (through member->type).
527  *
528  * btf_type_is_var() because the variable refers to
529  * another type. btf_type_is_datasec() holds multiple
530  * btf_type_is_var() types that need resolving.
531  *
532  * btf_type_is_array() because its element (array->type)
533  * refers to another type.  Array can be thought of a
534  * special case of struct while array just has the same
535  * member-type repeated by array->nelems of times.
536  */
537 static bool btf_type_needs_resolve(const struct btf_type *t)
538 {
539         return btf_type_is_modifier(t) ||
540                btf_type_is_ptr(t) ||
541                btf_type_is_struct(t) ||
542                btf_type_is_array(t) ||
543                btf_type_is_var(t) ||
544                btf_type_is_datasec(t);
545 }
546
547 /* t->size can be used */
548 static bool btf_type_has_size(const struct btf_type *t)
549 {
550         switch (BTF_INFO_KIND(t->info)) {
551         case BTF_KIND_INT:
552         case BTF_KIND_STRUCT:
553         case BTF_KIND_UNION:
554         case BTF_KIND_ENUM:
555         case BTF_KIND_DATASEC:
556                 return true;
557         }
558
559         return false;
560 }
561
562 static const char *btf_int_encoding_str(u8 encoding)
563 {
564         if (encoding == 0)
565                 return "(none)";
566         else if (encoding == BTF_INT_SIGNED)
567                 return "SIGNED";
568         else if (encoding == BTF_INT_CHAR)
569                 return "CHAR";
570         else if (encoding == BTF_INT_BOOL)
571                 return "BOOL";
572         else
573                 return "UNKN";
574 }
575
576 static u32 btf_type_int(const struct btf_type *t)
577 {
578         return *(u32 *)(t + 1);
579 }
580
581 static const struct btf_array *btf_type_array(const struct btf_type *t)
582 {
583         return (const struct btf_array *)(t + 1);
584 }
585
586 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
587 {
588         return (const struct btf_enum *)(t + 1);
589 }
590
591 static const struct btf_var *btf_type_var(const struct btf_type *t)
592 {
593         return (const struct btf_var *)(t + 1);
594 }
595
596 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
597 {
598         return kind_ops[BTF_INFO_KIND(t->info)];
599 }
600
601 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
602 {
603         return BTF_STR_OFFSET_VALID(offset) &&
604                 offset < btf->hdr.str_len;
605 }
606
607 static bool __btf_name_char_ok(char c, bool first)
608 {
609         if ((first ? !isalpha(c) :
610                      !isalnum(c)) &&
611             c != '_' &&
612             c != '.')
613                 return false;
614         return true;
615 }
616
617 static bool __btf_name_valid(const struct btf *btf, u32 offset)
618 {
619         /* offset must be valid */
620         const char *src = &btf->strings[offset];
621         const char *src_limit;
622
623         if (!__btf_name_char_ok(*src, true))
624                 return false;
625
626         /* set a limit on identifier length */
627         src_limit = src + KSYM_NAME_LEN;
628         src++;
629         while (*src && src < src_limit) {
630                 if (!__btf_name_char_ok(*src, false))
631                         return false;
632                 src++;
633         }
634
635         return !*src;
636 }
637
638 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
639 {
640         return __btf_name_valid(btf, offset);
641 }
642
643 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
644 {
645         return __btf_name_valid(btf, offset);
646 }
647
648 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
649 {
650         if (!offset)
651                 return "(anon)";
652         else if (offset < btf->hdr.str_len)
653                 return &btf->strings[offset];
654         else
655                 return "(invalid-name-offset)";
656 }
657
658 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
659 {
660         if (offset < btf->hdr.str_len)
661                 return &btf->strings[offset];
662
663         return NULL;
664 }
665
666 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
667 {
668         if (type_id > btf->nr_types)
669                 return NULL;
670
671         return btf->types[type_id];
672 }
673
674 /*
675  * Regular int is not a bit field and it must be either
676  * u8/u16/u32/u64 or __int128.
677  */
678 static bool btf_type_int_is_regular(const struct btf_type *t)
679 {
680         u8 nr_bits, nr_bytes;
681         u32 int_data;
682
683         int_data = btf_type_int(t);
684         nr_bits = BTF_INT_BITS(int_data);
685         nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
686         if (BITS_PER_BYTE_MASKED(nr_bits) ||
687             BTF_INT_OFFSET(int_data) ||
688             (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
689              nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
690              nr_bytes != (2 * sizeof(u64)))) {
691                 return false;
692         }
693
694         return true;
695 }
696
697 /*
698  * Check that given struct member is a regular int with expected
699  * offset and size.
700  */
701 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
702                            const struct btf_member *m,
703                            u32 expected_offset, u32 expected_size)
704 {
705         const struct btf_type *t;
706         u32 id, int_data;
707         u8 nr_bits;
708
709         id = m->type;
710         t = btf_type_id_size(btf, &id, NULL);
711         if (!t || !btf_type_is_int(t))
712                 return false;
713
714         int_data = btf_type_int(t);
715         nr_bits = BTF_INT_BITS(int_data);
716         if (btf_type_kflag(s)) {
717                 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
718                 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
719
720                 /* if kflag set, int should be a regular int and
721                  * bit offset should be at byte boundary.
722                  */
723                 return !bitfield_size &&
724                        BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
725                        BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
726         }
727
728         if (BTF_INT_OFFSET(int_data) ||
729             BITS_PER_BYTE_MASKED(m->offset) ||
730             BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
731             BITS_PER_BYTE_MASKED(nr_bits) ||
732             BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
733                 return false;
734
735         return true;
736 }
737
738 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
739 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
740                                                        u32 id)
741 {
742         const struct btf_type *t = btf_type_by_id(btf, id);
743
744         while (btf_type_is_modifier(t) &&
745                BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
746                 id = t->type;
747                 t = btf_type_by_id(btf, t->type);
748         }
749
750         return t;
751 }
752
753 #define BTF_SHOW_MAX_ITER       10
754
755 #define BTF_KIND_BIT(kind)      (1ULL << kind)
756
757 /*
758  * Populate show->state.name with type name information.
759  * Format of type name is
760  *
761  * [.member_name = ] (type_name)
762  */
763 static const char *btf_show_name(struct btf_show *show)
764 {
765         /* BTF_MAX_ITER array suffixes "[]" */
766         const char *array_suffixes = "[][][][][][][][][][]";
767         const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
768         /* BTF_MAX_ITER pointer suffixes "*" */
769         const char *ptr_suffixes = "**********";
770         const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
771         const char *name = NULL, *prefix = "", *parens = "";
772         const struct btf_member *m = show->state.member;
773         const struct btf_type *t = show->state.type;
774         const struct btf_array *array;
775         u32 id = show->state.type_id;
776         const char *member = NULL;
777         bool show_member = false;
778         u64 kinds = 0;
779         int i;
780
781         show->state.name[0] = '\0';
782
783         /*
784          * Don't show type name if we're showing an array member;
785          * in that case we show the array type so don't need to repeat
786          * ourselves for each member.
787          */
788         if (show->state.array_member)
789                 return "";
790
791         /* Retrieve member name, if any. */
792         if (m) {
793                 member = btf_name_by_offset(show->btf, m->name_off);
794                 show_member = strlen(member) > 0;
795                 id = m->type;
796         }
797
798         /*
799          * Start with type_id, as we have resolved the struct btf_type *
800          * via btf_modifier_show() past the parent typedef to the child
801          * struct, int etc it is defined as.  In such cases, the type_id
802          * still represents the starting type while the struct btf_type *
803          * in our show->state points at the resolved type of the typedef.
804          */
805         t = btf_type_by_id(show->btf, id);
806         if (!t)
807                 return "";
808
809         /*
810          * The goal here is to build up the right number of pointer and
811          * array suffixes while ensuring the type name for a typedef
812          * is represented.  Along the way we accumulate a list of
813          * BTF kinds we have encountered, since these will inform later
814          * display; for example, pointer types will not require an
815          * opening "{" for struct, we will just display the pointer value.
816          *
817          * We also want to accumulate the right number of pointer or array
818          * indices in the format string while iterating until we get to
819          * the typedef/pointee/array member target type.
820          *
821          * We start by pointing at the end of pointer and array suffix
822          * strings; as we accumulate pointers and arrays we move the pointer
823          * or array string backwards so it will show the expected number of
824          * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
825          * and/or arrays and typedefs are supported as a precaution.
826          *
827          * We also want to get typedef name while proceeding to resolve
828          * type it points to so that we can add parentheses if it is a
829          * "typedef struct" etc.
830          */
831         for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
832
833                 switch (BTF_INFO_KIND(t->info)) {
834                 case BTF_KIND_TYPEDEF:
835                         if (!name)
836                                 name = btf_name_by_offset(show->btf,
837                                                                t->name_off);
838                         kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
839                         id = t->type;
840                         break;
841                 case BTF_KIND_ARRAY:
842                         kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
843                         parens = "[";
844                         if (!t)
845                                 return "";
846                         array = btf_type_array(t);
847                         if (array_suffix > array_suffixes)
848                                 array_suffix -= 2;
849                         id = array->type;
850                         break;
851                 case BTF_KIND_PTR:
852                         kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
853                         if (ptr_suffix > ptr_suffixes)
854                                 ptr_suffix -= 1;
855                         id = t->type;
856                         break;
857                 default:
858                         id = 0;
859                         break;
860                 }
861                 if (!id)
862                         break;
863                 t = btf_type_skip_qualifiers(show->btf, id);
864         }
865         /* We may not be able to represent this type; bail to be safe */
866         if (i == BTF_SHOW_MAX_ITER)
867                 return "";
868
869         if (!name)
870                 name = btf_name_by_offset(show->btf, t->name_off);
871
872         switch (BTF_INFO_KIND(t->info)) {
873         case BTF_KIND_STRUCT:
874         case BTF_KIND_UNION:
875                 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
876                          "struct" : "union";
877                 /* if it's an array of struct/union, parens is already set */
878                 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
879                         parens = "{";
880                 break;
881         case BTF_KIND_ENUM:
882                 prefix = "enum";
883                 break;
884         default:
885                 break;
886         }
887
888         /* pointer does not require parens */
889         if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
890                 parens = "";
891         /* typedef does not require struct/union/enum prefix */
892         if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
893                 prefix = "";
894
895         if (!name)
896                 name = "";
897
898         /* Even if we don't want type name info, we want parentheses etc */
899         if (show->flags & BTF_SHOW_NONAME)
900                 snprintf(show->state.name, sizeof(show->state.name), "%s",
901                          parens);
902         else
903                 snprintf(show->state.name, sizeof(show->state.name),
904                          "%s%s%s(%s%s%s%s%s%s)%s",
905                          /* first 3 strings comprise ".member = " */
906                          show_member ? "." : "",
907                          show_member ? member : "",
908                          show_member ? " = " : "",
909                          /* ...next is our prefix (struct, enum, etc) */
910                          prefix,
911                          strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
912                          /* ...this is the type name itself */
913                          name,
914                          /* ...suffixed by the appropriate '*', '[]' suffixes */
915                          strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
916                          array_suffix, parens);
917
918         return show->state.name;
919 }
920
921 static const char *__btf_show_indent(struct btf_show *show)
922 {
923         const char *indents = "                                ";
924         const char *indent = &indents[strlen(indents)];
925
926         if ((indent - show->state.depth) >= indents)
927                 return indent - show->state.depth;
928         return indents;
929 }
930
931 static const char *btf_show_indent(struct btf_show *show)
932 {
933         return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
934 }
935
936 static const char *btf_show_newline(struct btf_show *show)
937 {
938         return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
939 }
940
941 static const char *btf_show_delim(struct btf_show *show)
942 {
943         if (show->state.depth == 0)
944                 return "";
945
946         if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
947                 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
948                 return "|";
949
950         return ",";
951 }
952
953 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
954 {
955         va_list args;
956
957         if (!show->state.depth_check) {
958                 va_start(args, fmt);
959                 show->showfn(show, fmt, args);
960                 va_end(args);
961         }
962 }
963
964 /* Macros are used here as btf_show_type_value[s]() prepends and appends
965  * format specifiers to the format specifier passed in; these do the work of
966  * adding indentation, delimiters etc while the caller simply has to specify
967  * the type value(s) in the format specifier + value(s).
968  */
969 #define btf_show_type_value(show, fmt, value)                                  \
970         do {                                                                   \
971                 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||           \
972                     show->state.depth == 0) {                                  \
973                         btf_show(show, "%s%s" fmt "%s%s",                      \
974                                  btf_show_indent(show),                        \
975                                  btf_show_name(show),                          \
976                                  value, btf_show_delim(show),                  \
977                                  btf_show_newline(show));                      \
978                         if (show->state.depth > show->state.depth_to_show)     \
979                                 show->state.depth_to_show = show->state.depth; \
980                 }                                                              \
981         } while (0)
982
983 #define btf_show_type_values(show, fmt, ...)                                   \
984         do {                                                                   \
985                 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
986                          btf_show_name(show),                                  \
987                          __VA_ARGS__, btf_show_delim(show),                    \
988                          btf_show_newline(show));                              \
989                 if (show->state.depth > show->state.depth_to_show)             \
990                         show->state.depth_to_show = show->state.depth;         \
991         } while (0)
992
993 /* How much is left to copy to safe buffer after @data? */
994 static int btf_show_obj_size_left(struct btf_show *show, void *data)
995 {
996         return show->obj.head + show->obj.size - data;
997 }
998
999 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1000 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1001 {
1002         return data >= show->obj.data &&
1003                (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1004 }
1005
1006 /*
1007  * If object pointed to by @data of @size falls within our safe buffer, return
1008  * the equivalent pointer to the same safe data.  Assumes
1009  * copy_from_kernel_nofault() has already happened and our safe buffer is
1010  * populated.
1011  */
1012 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1013 {
1014         if (btf_show_obj_is_safe(show, data, size))
1015                 return show->obj.safe + (data - show->obj.data);
1016         return NULL;
1017 }
1018
1019 /*
1020  * Return a safe-to-access version of data pointed to by @data.
1021  * We do this by copying the relevant amount of information
1022  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1023  *
1024  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1025  * safe copy is needed.
1026  *
1027  * Otherwise we need to determine if we have the required amount
1028  * of data (determined by the @data pointer and the size of the
1029  * largest base type we can encounter (represented by
1030  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1031  * that we will be able to print some of the current object,
1032  * and if more is needed a copy will be triggered.
1033  * Some objects such as structs will not fit into the buffer;
1034  * in such cases additional copies when we iterate over their
1035  * members may be needed.
1036  *
1037  * btf_show_obj_safe() is used to return a safe buffer for
1038  * btf_show_start_type(); this ensures that as we recurse into
1039  * nested types we always have safe data for the given type.
1040  * This approach is somewhat wasteful; it's possible for example
1041  * that when iterating over a large union we'll end up copying the
1042  * same data repeatedly, but the goal is safety not performance.
1043  * We use stack data as opposed to per-CPU buffers because the
1044  * iteration over a type can take some time, and preemption handling
1045  * would greatly complicate use of the safe buffer.
1046  */
1047 static void *btf_show_obj_safe(struct btf_show *show,
1048                                const struct btf_type *t,
1049                                void *data)
1050 {
1051         const struct btf_type *rt;
1052         int size_left, size;
1053         void *safe = NULL;
1054
1055         if (show->flags & BTF_SHOW_UNSAFE)
1056                 return data;
1057
1058         rt = btf_resolve_size(show->btf, t, &size);
1059         if (IS_ERR(rt)) {
1060                 show->state.status = PTR_ERR(rt);
1061                 return NULL;
1062         }
1063
1064         /*
1065          * Is this toplevel object? If so, set total object size and
1066          * initialize pointers.  Otherwise check if we still fall within
1067          * our safe object data.
1068          */
1069         if (show->state.depth == 0) {
1070                 show->obj.size = size;
1071                 show->obj.head = data;
1072         } else {
1073                 /*
1074                  * If the size of the current object is > our remaining
1075                  * safe buffer we _may_ need to do a new copy.  However
1076                  * consider the case of a nested struct; it's size pushes
1077                  * us over the safe buffer limit, but showing any individual
1078                  * struct members does not.  In such cases, we don't need
1079                  * to initiate a fresh copy yet; however we definitely need
1080                  * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1081                  * in our buffer, regardless of the current object size.
1082                  * The logic here is that as we resolve types we will
1083                  * hit a base type at some point, and we need to be sure
1084                  * the next chunk of data is safely available to display
1085                  * that type info safely.  We cannot rely on the size of
1086                  * the current object here because it may be much larger
1087                  * than our current buffer (e.g. task_struct is 8k).
1088                  * All we want to do here is ensure that we can print the
1089                  * next basic type, which we can if either
1090                  * - the current type size is within the safe buffer; or
1091                  * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1092                  *   the safe buffer.
1093                  */
1094                 safe = __btf_show_obj_safe(show, data,
1095                                            min(size,
1096                                                BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1097         }
1098
1099         /*
1100          * We need a new copy to our safe object, either because we haven't
1101          * yet copied and are intializing safe data, or because the data
1102          * we want falls outside the boundaries of the safe object.
1103          */
1104         if (!safe) {
1105                 size_left = btf_show_obj_size_left(show, data);
1106                 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1107                         size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1108                 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1109                                                               data, size_left);
1110                 if (!show->state.status) {
1111                         show->obj.data = data;
1112                         safe = show->obj.safe;
1113                 }
1114         }
1115
1116         return safe;
1117 }
1118
1119 /*
1120  * Set the type we are starting to show and return a safe data pointer
1121  * to be used for showing the associated data.
1122  */
1123 static void *btf_show_start_type(struct btf_show *show,
1124                                  const struct btf_type *t,
1125                                  u32 type_id, void *data)
1126 {
1127         show->state.type = t;
1128         show->state.type_id = type_id;
1129         show->state.name[0] = '\0';
1130
1131         return btf_show_obj_safe(show, t, data);
1132 }
1133
1134 static void btf_show_end_type(struct btf_show *show)
1135 {
1136         show->state.type = NULL;
1137         show->state.type_id = 0;
1138         show->state.name[0] = '\0';
1139 }
1140
1141 static void *btf_show_start_aggr_type(struct btf_show *show,
1142                                       const struct btf_type *t,
1143                                       u32 type_id, void *data)
1144 {
1145         void *safe_data = btf_show_start_type(show, t, type_id, data);
1146
1147         if (!safe_data)
1148                 return safe_data;
1149
1150         btf_show(show, "%s%s%s", btf_show_indent(show),
1151                  btf_show_name(show),
1152                  btf_show_newline(show));
1153         show->state.depth++;
1154         return safe_data;
1155 }
1156
1157 static void btf_show_end_aggr_type(struct btf_show *show,
1158                                    const char *suffix)
1159 {
1160         show->state.depth--;
1161         btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1162                  btf_show_delim(show), btf_show_newline(show));
1163         btf_show_end_type(show);
1164 }
1165
1166 static void btf_show_start_member(struct btf_show *show,
1167                                   const struct btf_member *m)
1168 {
1169         show->state.member = m;
1170 }
1171
1172 static void btf_show_start_array_member(struct btf_show *show)
1173 {
1174         show->state.array_member = 1;
1175         btf_show_start_member(show, NULL);
1176 }
1177
1178 static void btf_show_end_member(struct btf_show *show)
1179 {
1180         show->state.member = NULL;
1181 }
1182
1183 static void btf_show_end_array_member(struct btf_show *show)
1184 {
1185         show->state.array_member = 0;
1186         btf_show_end_member(show);
1187 }
1188
1189 static void *btf_show_start_array_type(struct btf_show *show,
1190                                        const struct btf_type *t,
1191                                        u32 type_id,
1192                                        u16 array_encoding,
1193                                        void *data)
1194 {
1195         show->state.array_encoding = array_encoding;
1196         show->state.array_terminated = 0;
1197         return btf_show_start_aggr_type(show, t, type_id, data);
1198 }
1199
1200 static void btf_show_end_array_type(struct btf_show *show)
1201 {
1202         show->state.array_encoding = 0;
1203         show->state.array_terminated = 0;
1204         btf_show_end_aggr_type(show, "]");
1205 }
1206
1207 static void *btf_show_start_struct_type(struct btf_show *show,
1208                                         const struct btf_type *t,
1209                                         u32 type_id,
1210                                         void *data)
1211 {
1212         return btf_show_start_aggr_type(show, t, type_id, data);
1213 }
1214
1215 static void btf_show_end_struct_type(struct btf_show *show)
1216 {
1217         btf_show_end_aggr_type(show, "}");
1218 }
1219
1220 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1221                                               const char *fmt, ...)
1222 {
1223         va_list args;
1224
1225         va_start(args, fmt);
1226         bpf_verifier_vlog(log, fmt, args);
1227         va_end(args);
1228 }
1229
1230 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1231                                             const char *fmt, ...)
1232 {
1233         struct bpf_verifier_log *log = &env->log;
1234         va_list args;
1235
1236         if (!bpf_verifier_log_needed(log))
1237                 return;
1238
1239         va_start(args, fmt);
1240         bpf_verifier_vlog(log, fmt, args);
1241         va_end(args);
1242 }
1243
1244 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1245                                                    const struct btf_type *t,
1246                                                    bool log_details,
1247                                                    const char *fmt, ...)
1248 {
1249         struct bpf_verifier_log *log = &env->log;
1250         u8 kind = BTF_INFO_KIND(t->info);
1251         struct btf *btf = env->btf;
1252         va_list args;
1253
1254         if (!bpf_verifier_log_needed(log))
1255                 return;
1256
1257         /* btf verifier prints all types it is processing via
1258          * btf_verifier_log_type(..., fmt = NULL).
1259          * Skip those prints for in-kernel BTF verification.
1260          */
1261         if (log->level == BPF_LOG_KERNEL && !fmt)
1262                 return;
1263
1264         __btf_verifier_log(log, "[%u] %s %s%s",
1265                            env->log_type_id,
1266                            btf_kind_str[kind],
1267                            __btf_name_by_offset(btf, t->name_off),
1268                            log_details ? " " : "");
1269
1270         if (log_details)
1271                 btf_type_ops(t)->log_details(env, t);
1272
1273         if (fmt && *fmt) {
1274                 __btf_verifier_log(log, " ");
1275                 va_start(args, fmt);
1276                 bpf_verifier_vlog(log, fmt, args);
1277                 va_end(args);
1278         }
1279
1280         __btf_verifier_log(log, "\n");
1281 }
1282
1283 #define btf_verifier_log_type(env, t, ...) \
1284         __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1285 #define btf_verifier_log_basic(env, t, ...) \
1286         __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1287
1288 __printf(4, 5)
1289 static void btf_verifier_log_member(struct btf_verifier_env *env,
1290                                     const struct btf_type *struct_type,
1291                                     const struct btf_member *member,
1292                                     const char *fmt, ...)
1293 {
1294         struct bpf_verifier_log *log = &env->log;
1295         struct btf *btf = env->btf;
1296         va_list args;
1297
1298         if (!bpf_verifier_log_needed(log))
1299                 return;
1300
1301         if (log->level == BPF_LOG_KERNEL && !fmt)
1302                 return;
1303         /* The CHECK_META phase already did a btf dump.
1304          *
1305          * If member is logged again, it must hit an error in
1306          * parsing this member.  It is useful to print out which
1307          * struct this member belongs to.
1308          */
1309         if (env->phase != CHECK_META)
1310                 btf_verifier_log_type(env, struct_type, NULL);
1311
1312         if (btf_type_kflag(struct_type))
1313                 __btf_verifier_log(log,
1314                                    "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1315                                    __btf_name_by_offset(btf, member->name_off),
1316                                    member->type,
1317                                    BTF_MEMBER_BITFIELD_SIZE(member->offset),
1318                                    BTF_MEMBER_BIT_OFFSET(member->offset));
1319         else
1320                 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1321                                    __btf_name_by_offset(btf, member->name_off),
1322                                    member->type, member->offset);
1323
1324         if (fmt && *fmt) {
1325                 __btf_verifier_log(log, " ");
1326                 va_start(args, fmt);
1327                 bpf_verifier_vlog(log, fmt, args);
1328                 va_end(args);
1329         }
1330
1331         __btf_verifier_log(log, "\n");
1332 }
1333
1334 __printf(4, 5)
1335 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1336                                  const struct btf_type *datasec_type,
1337                                  const struct btf_var_secinfo *vsi,
1338                                  const char *fmt, ...)
1339 {
1340         struct bpf_verifier_log *log = &env->log;
1341         va_list args;
1342
1343         if (!bpf_verifier_log_needed(log))
1344                 return;
1345         if (log->level == BPF_LOG_KERNEL && !fmt)
1346                 return;
1347         if (env->phase != CHECK_META)
1348                 btf_verifier_log_type(env, datasec_type, NULL);
1349
1350         __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1351                            vsi->type, vsi->offset, vsi->size);
1352         if (fmt && *fmt) {
1353                 __btf_verifier_log(log, " ");
1354                 va_start(args, fmt);
1355                 bpf_verifier_vlog(log, fmt, args);
1356                 va_end(args);
1357         }
1358
1359         __btf_verifier_log(log, "\n");
1360 }
1361
1362 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1363                                  u32 btf_data_size)
1364 {
1365         struct bpf_verifier_log *log = &env->log;
1366         const struct btf *btf = env->btf;
1367         const struct btf_header *hdr;
1368
1369         if (!bpf_verifier_log_needed(log))
1370                 return;
1371
1372         if (log->level == BPF_LOG_KERNEL)
1373                 return;
1374         hdr = &btf->hdr;
1375         __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1376         __btf_verifier_log(log, "version: %u\n", hdr->version);
1377         __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1378         __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1379         __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1380         __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1381         __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1382         __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1383         __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1384 }
1385
1386 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1387 {
1388         struct btf *btf = env->btf;
1389
1390         /* < 2 because +1 for btf_void which is always in btf->types[0].
1391          * btf_void is not accounted in btf->nr_types because btf_void
1392          * does not come from the BTF file.
1393          */
1394         if (btf->types_size - btf->nr_types < 2) {
1395                 /* Expand 'types' array */
1396
1397                 struct btf_type **new_types;
1398                 u32 expand_by, new_size;
1399
1400                 if (btf->types_size == BTF_MAX_TYPE) {
1401                         btf_verifier_log(env, "Exceeded max num of types");
1402                         return -E2BIG;
1403                 }
1404
1405                 expand_by = max_t(u32, btf->types_size >> 2, 16);
1406                 new_size = min_t(u32, BTF_MAX_TYPE,
1407                                  btf->types_size + expand_by);
1408
1409                 new_types = kvcalloc(new_size, sizeof(*new_types),
1410                                      GFP_KERNEL | __GFP_NOWARN);
1411                 if (!new_types)
1412                         return -ENOMEM;
1413
1414                 if (btf->nr_types == 0)
1415                         new_types[0] = &btf_void;
1416                 else
1417                         memcpy(new_types, btf->types,
1418                                sizeof(*btf->types) * (btf->nr_types + 1));
1419
1420                 kvfree(btf->types);
1421                 btf->types = new_types;
1422                 btf->types_size = new_size;
1423         }
1424
1425         btf->types[++(btf->nr_types)] = t;
1426
1427         return 0;
1428 }
1429
1430 static int btf_alloc_id(struct btf *btf)
1431 {
1432         int id;
1433
1434         idr_preload(GFP_KERNEL);
1435         spin_lock_bh(&btf_idr_lock);
1436         id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1437         if (id > 0)
1438                 btf->id = id;
1439         spin_unlock_bh(&btf_idr_lock);
1440         idr_preload_end();
1441
1442         if (WARN_ON_ONCE(!id))
1443                 return -ENOSPC;
1444
1445         return id > 0 ? 0 : id;
1446 }
1447
1448 static void btf_free_id(struct btf *btf)
1449 {
1450         unsigned long flags;
1451
1452         /*
1453          * In map-in-map, calling map_delete_elem() on outer
1454          * map will call bpf_map_put on the inner map.
1455          * It will then eventually call btf_free_id()
1456          * on the inner map.  Some of the map_delete_elem()
1457          * implementation may have irq disabled, so
1458          * we need to use the _irqsave() version instead
1459          * of the _bh() version.
1460          */
1461         spin_lock_irqsave(&btf_idr_lock, flags);
1462         idr_remove(&btf_idr, btf->id);
1463         spin_unlock_irqrestore(&btf_idr_lock, flags);
1464 }
1465
1466 static void btf_free(struct btf *btf)
1467 {
1468         kvfree(btf->types);
1469         kvfree(btf->resolved_sizes);
1470         kvfree(btf->resolved_ids);
1471         kvfree(btf->data);
1472         kfree(btf);
1473 }
1474
1475 static void btf_free_rcu(struct rcu_head *rcu)
1476 {
1477         struct btf *btf = container_of(rcu, struct btf, rcu);
1478
1479         btf_free(btf);
1480 }
1481
1482 void btf_put(struct btf *btf)
1483 {
1484         if (btf && refcount_dec_and_test(&btf->refcnt)) {
1485                 btf_free_id(btf);
1486                 call_rcu(&btf->rcu, btf_free_rcu);
1487         }
1488 }
1489
1490 static int env_resolve_init(struct btf_verifier_env *env)
1491 {
1492         struct btf *btf = env->btf;
1493         u32 nr_types = btf->nr_types;
1494         u32 *resolved_sizes = NULL;
1495         u32 *resolved_ids = NULL;
1496         u8 *visit_states = NULL;
1497
1498         /* +1 for btf_void */
1499         resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
1500                                   GFP_KERNEL | __GFP_NOWARN);
1501         if (!resolved_sizes)
1502                 goto nomem;
1503
1504         resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
1505                                 GFP_KERNEL | __GFP_NOWARN);
1506         if (!resolved_ids)
1507                 goto nomem;
1508
1509         visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
1510                                 GFP_KERNEL | __GFP_NOWARN);
1511         if (!visit_states)
1512                 goto nomem;
1513
1514         btf->resolved_sizes = resolved_sizes;
1515         btf->resolved_ids = resolved_ids;
1516         env->visit_states = visit_states;
1517
1518         return 0;
1519
1520 nomem:
1521         kvfree(resolved_sizes);
1522         kvfree(resolved_ids);
1523         kvfree(visit_states);
1524         return -ENOMEM;
1525 }
1526
1527 static void btf_verifier_env_free(struct btf_verifier_env *env)
1528 {
1529         kvfree(env->visit_states);
1530         kfree(env);
1531 }
1532
1533 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1534                                      const struct btf_type *next_type)
1535 {
1536         switch (env->resolve_mode) {
1537         case RESOLVE_TBD:
1538                 /* int, enum or void is a sink */
1539                 return !btf_type_needs_resolve(next_type);
1540         case RESOLVE_PTR:
1541                 /* int, enum, void, struct, array, func or func_proto is a sink
1542                  * for ptr
1543                  */
1544                 return !btf_type_is_modifier(next_type) &&
1545                         !btf_type_is_ptr(next_type);
1546         case RESOLVE_STRUCT_OR_ARRAY:
1547                 /* int, enum, void, ptr, func or func_proto is a sink
1548                  * for struct and array
1549                  */
1550                 return !btf_type_is_modifier(next_type) &&
1551                         !btf_type_is_array(next_type) &&
1552                         !btf_type_is_struct(next_type);
1553         default:
1554                 BUG();
1555         }
1556 }
1557
1558 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1559                                  u32 type_id)
1560 {
1561         return env->visit_states[type_id] == RESOLVED;
1562 }
1563
1564 static int env_stack_push(struct btf_verifier_env *env,
1565                           const struct btf_type *t, u32 type_id)
1566 {
1567         struct resolve_vertex *v;
1568
1569         if (env->top_stack == MAX_RESOLVE_DEPTH)
1570                 return -E2BIG;
1571
1572         if (env->visit_states[type_id] != NOT_VISITED)
1573                 return -EEXIST;
1574
1575         env->visit_states[type_id] = VISITED;
1576
1577         v = &env->stack[env->top_stack++];
1578         v->t = t;
1579         v->type_id = type_id;
1580         v->next_member = 0;
1581
1582         if (env->resolve_mode == RESOLVE_TBD) {
1583                 if (btf_type_is_ptr(t))
1584                         env->resolve_mode = RESOLVE_PTR;
1585                 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1586                         env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1587         }
1588
1589         return 0;
1590 }
1591
1592 static void env_stack_set_next_member(struct btf_verifier_env *env,
1593                                       u16 next_member)
1594 {
1595         env->stack[env->top_stack - 1].next_member = next_member;
1596 }
1597
1598 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1599                                    u32 resolved_type_id,
1600                                    u32 resolved_size)
1601 {
1602         u32 type_id = env->stack[--(env->top_stack)].type_id;
1603         struct btf *btf = env->btf;
1604
1605         btf->resolved_sizes[type_id] = resolved_size;
1606         btf->resolved_ids[type_id] = resolved_type_id;
1607         env->visit_states[type_id] = RESOLVED;
1608 }
1609
1610 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1611 {
1612         return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1613 }
1614
1615 /* Resolve the size of a passed-in "type"
1616  *
1617  * type: is an array (e.g. u32 array[x][y])
1618  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1619  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1620  *             corresponds to the return type.
1621  * *elem_type: u32
1622  * *elem_id: id of u32
1623  * *total_nelems: (x * y).  Hence, individual elem size is
1624  *                (*type_size / *total_nelems)
1625  * *type_id: id of type if it's changed within the function, 0 if not
1626  *
1627  * type: is not an array (e.g. const struct X)
1628  * return type: type "struct X"
1629  * *type_size: sizeof(struct X)
1630  * *elem_type: same as return type ("struct X")
1631  * *elem_id: 0
1632  * *total_nelems: 1
1633  * *type_id: id of type if it's changed within the function, 0 if not
1634  */
1635 static const struct btf_type *
1636 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1637                    u32 *type_size, const struct btf_type **elem_type,
1638                    u32 *elem_id, u32 *total_nelems, u32 *type_id)
1639 {
1640         const struct btf_type *array_type = NULL;
1641         const struct btf_array *array = NULL;
1642         u32 i, size, nelems = 1, id = 0;
1643
1644         for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1645                 switch (BTF_INFO_KIND(type->info)) {
1646                 /* type->size can be used */
1647                 case BTF_KIND_INT:
1648                 case BTF_KIND_STRUCT:
1649                 case BTF_KIND_UNION:
1650                 case BTF_KIND_ENUM:
1651                         size = type->size;
1652                         goto resolved;
1653
1654                 case BTF_KIND_PTR:
1655                         size = sizeof(void *);
1656                         goto resolved;
1657
1658                 /* Modifiers */
1659                 case BTF_KIND_TYPEDEF:
1660                 case BTF_KIND_VOLATILE:
1661                 case BTF_KIND_CONST:
1662                 case BTF_KIND_RESTRICT:
1663                         id = type->type;
1664                         type = btf_type_by_id(btf, type->type);
1665                         break;
1666
1667                 case BTF_KIND_ARRAY:
1668                         if (!array_type)
1669                                 array_type = type;
1670                         array = btf_type_array(type);
1671                         if (nelems && array->nelems > U32_MAX / nelems)
1672                                 return ERR_PTR(-EINVAL);
1673                         nelems *= array->nelems;
1674                         type = btf_type_by_id(btf, array->type);
1675                         break;
1676
1677                 /* type without size */
1678                 default:
1679                         return ERR_PTR(-EINVAL);
1680                 }
1681         }
1682
1683         return ERR_PTR(-EINVAL);
1684
1685 resolved:
1686         if (nelems && size > U32_MAX / nelems)
1687                 return ERR_PTR(-EINVAL);
1688
1689         *type_size = nelems * size;
1690         if (total_nelems)
1691                 *total_nelems = nelems;
1692         if (elem_type)
1693                 *elem_type = type;
1694         if (elem_id)
1695                 *elem_id = array ? array->type : 0;
1696         if (type_id && id)
1697                 *type_id = id;
1698
1699         return array_type ? : type;
1700 }
1701
1702 const struct btf_type *
1703 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1704                  u32 *type_size)
1705 {
1706         return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1707 }
1708
1709 /* The input param "type_id" must point to a needs_resolve type */
1710 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1711                                                   u32 *type_id)
1712 {
1713         *type_id = btf->resolved_ids[*type_id];
1714         return btf_type_by_id(btf, *type_id);
1715 }
1716
1717 const struct btf_type *btf_type_id_size(const struct btf *btf,
1718                                         u32 *type_id, u32 *ret_size)
1719 {
1720         const struct btf_type *size_type;
1721         u32 size_type_id = *type_id;
1722         u32 size = 0;
1723
1724         size_type = btf_type_by_id(btf, size_type_id);
1725         if (btf_type_nosize_or_null(size_type))
1726                 return NULL;
1727
1728         if (btf_type_has_size(size_type)) {
1729                 size = size_type->size;
1730         } else if (btf_type_is_array(size_type)) {
1731                 size = btf->resolved_sizes[size_type_id];
1732         } else if (btf_type_is_ptr(size_type)) {
1733                 size = sizeof(void *);
1734         } else {
1735                 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1736                                  !btf_type_is_var(size_type)))
1737                         return NULL;
1738
1739                 size_type_id = btf->resolved_ids[size_type_id];
1740                 size_type = btf_type_by_id(btf, size_type_id);
1741                 if (btf_type_nosize_or_null(size_type))
1742                         return NULL;
1743                 else if (btf_type_has_size(size_type))
1744                         size = size_type->size;
1745                 else if (btf_type_is_array(size_type))
1746                         size = btf->resolved_sizes[size_type_id];
1747                 else if (btf_type_is_ptr(size_type))
1748                         size = sizeof(void *);
1749                 else
1750                         return NULL;
1751         }
1752
1753         *type_id = size_type_id;
1754         if (ret_size)
1755                 *ret_size = size;
1756
1757         return size_type;
1758 }
1759
1760 static int btf_df_check_member(struct btf_verifier_env *env,
1761                                const struct btf_type *struct_type,
1762                                const struct btf_member *member,
1763                                const struct btf_type *member_type)
1764 {
1765         btf_verifier_log_basic(env, struct_type,
1766                                "Unsupported check_member");
1767         return -EINVAL;
1768 }
1769
1770 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1771                                      const struct btf_type *struct_type,
1772                                      const struct btf_member *member,
1773                                      const struct btf_type *member_type)
1774 {
1775         btf_verifier_log_basic(env, struct_type,
1776                                "Unsupported check_kflag_member");
1777         return -EINVAL;
1778 }
1779
1780 /* Used for ptr, array and struct/union type members.
1781  * int, enum and modifier types have their specific callback functions.
1782  */
1783 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1784                                           const struct btf_type *struct_type,
1785                                           const struct btf_member *member,
1786                                           const struct btf_type *member_type)
1787 {
1788         if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1789                 btf_verifier_log_member(env, struct_type, member,
1790                                         "Invalid member bitfield_size");
1791                 return -EINVAL;
1792         }
1793
1794         /* bitfield size is 0, so member->offset represents bit offset only.
1795          * It is safe to call non kflag check_member variants.
1796          */
1797         return btf_type_ops(member_type)->check_member(env, struct_type,
1798                                                        member,
1799                                                        member_type);
1800 }
1801
1802 static int btf_df_resolve(struct btf_verifier_env *env,
1803                           const struct resolve_vertex *v)
1804 {
1805         btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1806         return -EINVAL;
1807 }
1808
1809 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1810                         u32 type_id, void *data, u8 bits_offsets,
1811                         struct btf_show *show)
1812 {
1813         btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1814 }
1815
1816 static int btf_int_check_member(struct btf_verifier_env *env,
1817                                 const struct btf_type *struct_type,
1818                                 const struct btf_member *member,
1819                                 const struct btf_type *member_type)
1820 {
1821         u32 int_data = btf_type_int(member_type);
1822         u32 struct_bits_off = member->offset;
1823         u32 struct_size = struct_type->size;
1824         u32 nr_copy_bits;
1825         u32 bytes_offset;
1826
1827         if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1828                 btf_verifier_log_member(env, struct_type, member,
1829                                         "bits_offset exceeds U32_MAX");
1830                 return -EINVAL;
1831         }
1832
1833         struct_bits_off += BTF_INT_OFFSET(int_data);
1834         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1835         nr_copy_bits = BTF_INT_BITS(int_data) +
1836                 BITS_PER_BYTE_MASKED(struct_bits_off);
1837
1838         if (nr_copy_bits > BITS_PER_U128) {
1839                 btf_verifier_log_member(env, struct_type, member,
1840                                         "nr_copy_bits exceeds 128");
1841                 return -EINVAL;
1842         }
1843
1844         if (struct_size < bytes_offset ||
1845             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1846                 btf_verifier_log_member(env, struct_type, member,
1847                                         "Member exceeds struct_size");
1848                 return -EINVAL;
1849         }
1850
1851         return 0;
1852 }
1853
1854 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1855                                       const struct btf_type *struct_type,
1856                                       const struct btf_member *member,
1857                                       const struct btf_type *member_type)
1858 {
1859         u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1860         u32 int_data = btf_type_int(member_type);
1861         u32 struct_size = struct_type->size;
1862         u32 nr_copy_bits;
1863
1864         /* a regular int type is required for the kflag int member */
1865         if (!btf_type_int_is_regular(member_type)) {
1866                 btf_verifier_log_member(env, struct_type, member,
1867                                         "Invalid member base type");
1868                 return -EINVAL;
1869         }
1870
1871         /* check sanity of bitfield size */
1872         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1873         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1874         nr_int_data_bits = BTF_INT_BITS(int_data);
1875         if (!nr_bits) {
1876                 /* Not a bitfield member, member offset must be at byte
1877                  * boundary.
1878                  */
1879                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1880                         btf_verifier_log_member(env, struct_type, member,
1881                                                 "Invalid member offset");
1882                         return -EINVAL;
1883                 }
1884
1885                 nr_bits = nr_int_data_bits;
1886         } else if (nr_bits > nr_int_data_bits) {
1887                 btf_verifier_log_member(env, struct_type, member,
1888                                         "Invalid member bitfield_size");
1889                 return -EINVAL;
1890         }
1891
1892         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1893         nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1894         if (nr_copy_bits > BITS_PER_U128) {
1895                 btf_verifier_log_member(env, struct_type, member,
1896                                         "nr_copy_bits exceeds 128");
1897                 return -EINVAL;
1898         }
1899
1900         if (struct_size < bytes_offset ||
1901             struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1902                 btf_verifier_log_member(env, struct_type, member,
1903                                         "Member exceeds struct_size");
1904                 return -EINVAL;
1905         }
1906
1907         return 0;
1908 }
1909
1910 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1911                               const struct btf_type *t,
1912                               u32 meta_left)
1913 {
1914         u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1915         u16 encoding;
1916
1917         if (meta_left < meta_needed) {
1918                 btf_verifier_log_basic(env, t,
1919                                        "meta_left:%u meta_needed:%u",
1920                                        meta_left, meta_needed);
1921                 return -EINVAL;
1922         }
1923
1924         if (btf_type_vlen(t)) {
1925                 btf_verifier_log_type(env, t, "vlen != 0");
1926                 return -EINVAL;
1927         }
1928
1929         if (btf_type_kflag(t)) {
1930                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1931                 return -EINVAL;
1932         }
1933
1934         int_data = btf_type_int(t);
1935         if (int_data & ~BTF_INT_MASK) {
1936                 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1937                                        int_data);
1938                 return -EINVAL;
1939         }
1940
1941         nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1942
1943         if (nr_bits > BITS_PER_U128) {
1944                 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1945                                       BITS_PER_U128);
1946                 return -EINVAL;
1947         }
1948
1949         if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1950                 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1951                 return -EINVAL;
1952         }
1953
1954         /*
1955          * Only one of the encoding bits is allowed and it
1956          * should be sufficient for the pretty print purpose (i.e. decoding).
1957          * Multiple bits can be allowed later if it is found
1958          * to be insufficient.
1959          */
1960         encoding = BTF_INT_ENCODING(int_data);
1961         if (encoding &&
1962             encoding != BTF_INT_SIGNED &&
1963             encoding != BTF_INT_CHAR &&
1964             encoding != BTF_INT_BOOL) {
1965                 btf_verifier_log_type(env, t, "Unsupported encoding");
1966                 return -ENOTSUPP;
1967         }
1968
1969         btf_verifier_log_type(env, t, NULL);
1970
1971         return meta_needed;
1972 }
1973
1974 static void btf_int_log(struct btf_verifier_env *env,
1975                         const struct btf_type *t)
1976 {
1977         int int_data = btf_type_int(t);
1978
1979         btf_verifier_log(env,
1980                          "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1981                          t->size, BTF_INT_OFFSET(int_data),
1982                          BTF_INT_BITS(int_data),
1983                          btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1984 }
1985
1986 static void btf_int128_print(struct btf_show *show, void *data)
1987 {
1988         /* data points to a __int128 number.
1989          * Suppose
1990          *     int128_num = *(__int128 *)data;
1991          * The below formulas shows what upper_num and lower_num represents:
1992          *     upper_num = int128_num >> 64;
1993          *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1994          */
1995         u64 upper_num, lower_num;
1996
1997 #ifdef __BIG_ENDIAN_BITFIELD
1998         upper_num = *(u64 *)data;
1999         lower_num = *(u64 *)(data + 8);
2000 #else
2001         upper_num = *(u64 *)(data + 8);
2002         lower_num = *(u64 *)data;
2003 #endif
2004         if (upper_num == 0)
2005                 btf_show_type_value(show, "0x%llx", lower_num);
2006         else
2007                 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2008                                      lower_num);
2009 }
2010
2011 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2012                              u16 right_shift_bits)
2013 {
2014         u64 upper_num, lower_num;
2015
2016 #ifdef __BIG_ENDIAN_BITFIELD
2017         upper_num = print_num[0];
2018         lower_num = print_num[1];
2019 #else
2020         upper_num = print_num[1];
2021         lower_num = print_num[0];
2022 #endif
2023
2024         /* shake out un-needed bits by shift/or operations */
2025         if (left_shift_bits >= 64) {
2026                 upper_num = lower_num << (left_shift_bits - 64);
2027                 lower_num = 0;
2028         } else {
2029                 upper_num = (upper_num << left_shift_bits) |
2030                             (lower_num >> (64 - left_shift_bits));
2031                 lower_num = lower_num << left_shift_bits;
2032         }
2033
2034         if (right_shift_bits >= 64) {
2035                 lower_num = upper_num >> (right_shift_bits - 64);
2036                 upper_num = 0;
2037         } else {
2038                 lower_num = (lower_num >> right_shift_bits) |
2039                             (upper_num << (64 - right_shift_bits));
2040                 upper_num = upper_num >> right_shift_bits;
2041         }
2042
2043 #ifdef __BIG_ENDIAN_BITFIELD
2044         print_num[0] = upper_num;
2045         print_num[1] = lower_num;
2046 #else
2047         print_num[0] = lower_num;
2048         print_num[1] = upper_num;
2049 #endif
2050 }
2051
2052 static void btf_bitfield_show(void *data, u8 bits_offset,
2053                               u8 nr_bits, struct btf_show *show)
2054 {
2055         u16 left_shift_bits, right_shift_bits;
2056         u8 nr_copy_bytes;
2057         u8 nr_copy_bits;
2058         u64 print_num[2] = {};
2059
2060         nr_copy_bits = nr_bits + bits_offset;
2061         nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2062
2063         memcpy(print_num, data, nr_copy_bytes);
2064
2065 #ifdef __BIG_ENDIAN_BITFIELD
2066         left_shift_bits = bits_offset;
2067 #else
2068         left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2069 #endif
2070         right_shift_bits = BITS_PER_U128 - nr_bits;
2071
2072         btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2073         btf_int128_print(show, print_num);
2074 }
2075
2076
2077 static void btf_int_bits_show(const struct btf *btf,
2078                               const struct btf_type *t,
2079                               void *data, u8 bits_offset,
2080                               struct btf_show *show)
2081 {
2082         u32 int_data = btf_type_int(t);
2083         u8 nr_bits = BTF_INT_BITS(int_data);
2084         u8 total_bits_offset;
2085
2086         /*
2087          * bits_offset is at most 7.
2088          * BTF_INT_OFFSET() cannot exceed 128 bits.
2089          */
2090         total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2091         data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2092         bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2093         btf_bitfield_show(data, bits_offset, nr_bits, show);
2094 }
2095
2096 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2097                          u32 type_id, void *data, u8 bits_offset,
2098                          struct btf_show *show)
2099 {
2100         u32 int_data = btf_type_int(t);
2101         u8 encoding = BTF_INT_ENCODING(int_data);
2102         bool sign = encoding & BTF_INT_SIGNED;
2103         u8 nr_bits = BTF_INT_BITS(int_data);
2104         void *safe_data;
2105
2106         safe_data = btf_show_start_type(show, t, type_id, data);
2107         if (!safe_data)
2108                 return;
2109
2110         if (bits_offset || BTF_INT_OFFSET(int_data) ||
2111             BITS_PER_BYTE_MASKED(nr_bits)) {
2112                 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2113                 goto out;
2114         }
2115
2116         switch (nr_bits) {
2117         case 128:
2118                 btf_int128_print(show, safe_data);
2119                 break;
2120         case 64:
2121                 if (sign)
2122                         btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2123                 else
2124                         btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2125                 break;
2126         case 32:
2127                 if (sign)
2128                         btf_show_type_value(show, "%d", *(s32 *)safe_data);
2129                 else
2130                         btf_show_type_value(show, "%u", *(u32 *)safe_data);
2131                 break;
2132         case 16:
2133                 if (sign)
2134                         btf_show_type_value(show, "%d", *(s16 *)safe_data);
2135                 else
2136                         btf_show_type_value(show, "%u", *(u16 *)safe_data);
2137                 break;
2138         case 8:
2139                 if (show->state.array_encoding == BTF_INT_CHAR) {
2140                         /* check for null terminator */
2141                         if (show->state.array_terminated)
2142                                 break;
2143                         if (*(char *)data == '\0') {
2144                                 show->state.array_terminated = 1;
2145                                 break;
2146                         }
2147                         if (isprint(*(char *)data)) {
2148                                 btf_show_type_value(show, "'%c'",
2149                                                     *(char *)safe_data);
2150                                 break;
2151                         }
2152                 }
2153                 if (sign)
2154                         btf_show_type_value(show, "%d", *(s8 *)safe_data);
2155                 else
2156                         btf_show_type_value(show, "%u", *(u8 *)safe_data);
2157                 break;
2158         default:
2159                 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2160                 break;
2161         }
2162 out:
2163         btf_show_end_type(show);
2164 }
2165
2166 static const struct btf_kind_operations int_ops = {
2167         .check_meta = btf_int_check_meta,
2168         .resolve = btf_df_resolve,
2169         .check_member = btf_int_check_member,
2170         .check_kflag_member = btf_int_check_kflag_member,
2171         .log_details = btf_int_log,
2172         .show = btf_int_show,
2173 };
2174
2175 static int btf_modifier_check_member(struct btf_verifier_env *env,
2176                                      const struct btf_type *struct_type,
2177                                      const struct btf_member *member,
2178                                      const struct btf_type *member_type)
2179 {
2180         const struct btf_type *resolved_type;
2181         u32 resolved_type_id = member->type;
2182         struct btf_member resolved_member;
2183         struct btf *btf = env->btf;
2184
2185         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2186         if (!resolved_type) {
2187                 btf_verifier_log_member(env, struct_type, member,
2188                                         "Invalid member");
2189                 return -EINVAL;
2190         }
2191
2192         resolved_member = *member;
2193         resolved_member.type = resolved_type_id;
2194
2195         return btf_type_ops(resolved_type)->check_member(env, struct_type,
2196                                                          &resolved_member,
2197                                                          resolved_type);
2198 }
2199
2200 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2201                                            const struct btf_type *struct_type,
2202                                            const struct btf_member *member,
2203                                            const struct btf_type *member_type)
2204 {
2205         const struct btf_type *resolved_type;
2206         u32 resolved_type_id = member->type;
2207         struct btf_member resolved_member;
2208         struct btf *btf = env->btf;
2209
2210         resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2211         if (!resolved_type) {
2212                 btf_verifier_log_member(env, struct_type, member,
2213                                         "Invalid member");
2214                 return -EINVAL;
2215         }
2216
2217         resolved_member = *member;
2218         resolved_member.type = resolved_type_id;
2219
2220         return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2221                                                                &resolved_member,
2222                                                                resolved_type);
2223 }
2224
2225 static int btf_ptr_check_member(struct btf_verifier_env *env,
2226                                 const struct btf_type *struct_type,
2227                                 const struct btf_member *member,
2228                                 const struct btf_type *member_type)
2229 {
2230         u32 struct_size, struct_bits_off, bytes_offset;
2231
2232         struct_size = struct_type->size;
2233         struct_bits_off = member->offset;
2234         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2235
2236         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2237                 btf_verifier_log_member(env, struct_type, member,
2238                                         "Member is not byte aligned");
2239                 return -EINVAL;
2240         }
2241
2242         if (struct_size - bytes_offset < sizeof(void *)) {
2243                 btf_verifier_log_member(env, struct_type, member,
2244                                         "Member exceeds struct_size");
2245                 return -EINVAL;
2246         }
2247
2248         return 0;
2249 }
2250
2251 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2252                                    const struct btf_type *t,
2253                                    u32 meta_left)
2254 {
2255         if (btf_type_vlen(t)) {
2256                 btf_verifier_log_type(env, t, "vlen != 0");
2257                 return -EINVAL;
2258         }
2259
2260         if (btf_type_kflag(t)) {
2261                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2262                 return -EINVAL;
2263         }
2264
2265         if (!BTF_TYPE_ID_VALID(t->type)) {
2266                 btf_verifier_log_type(env, t, "Invalid type_id");
2267                 return -EINVAL;
2268         }
2269
2270         /* typedef type must have a valid name, and other ref types,
2271          * volatile, const, restrict, should have a null name.
2272          */
2273         if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2274                 if (!t->name_off ||
2275                     !btf_name_valid_identifier(env->btf, t->name_off)) {
2276                         btf_verifier_log_type(env, t, "Invalid name");
2277                         return -EINVAL;
2278                 }
2279         } else {
2280                 if (t->name_off) {
2281                         btf_verifier_log_type(env, t, "Invalid name");
2282                         return -EINVAL;
2283                 }
2284         }
2285
2286         btf_verifier_log_type(env, t, NULL);
2287
2288         return 0;
2289 }
2290
2291 static int btf_modifier_resolve(struct btf_verifier_env *env,
2292                                 const struct resolve_vertex *v)
2293 {
2294         const struct btf_type *t = v->t;
2295         const struct btf_type *next_type;
2296         u32 next_type_id = t->type;
2297         struct btf *btf = env->btf;
2298
2299         next_type = btf_type_by_id(btf, next_type_id);
2300         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2301                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2302                 return -EINVAL;
2303         }
2304
2305         if (!env_type_is_resolve_sink(env, next_type) &&
2306             !env_type_is_resolved(env, next_type_id))
2307                 return env_stack_push(env, next_type, next_type_id);
2308
2309         /* Figure out the resolved next_type_id with size.
2310          * They will be stored in the current modifier's
2311          * resolved_ids and resolved_sizes such that it can
2312          * save us a few type-following when we use it later (e.g. in
2313          * pretty print).
2314          */
2315         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2316                 if (env_type_is_resolved(env, next_type_id))
2317                         next_type = btf_type_id_resolve(btf, &next_type_id);
2318
2319                 /* "typedef void new_void", "const void"...etc */
2320                 if (!btf_type_is_void(next_type) &&
2321                     !btf_type_is_fwd(next_type) &&
2322                     !btf_type_is_func_proto(next_type)) {
2323                         btf_verifier_log_type(env, v->t, "Invalid type_id");
2324                         return -EINVAL;
2325                 }
2326         }
2327
2328         env_stack_pop_resolved(env, next_type_id, 0);
2329
2330         return 0;
2331 }
2332
2333 static int btf_var_resolve(struct btf_verifier_env *env,
2334                            const struct resolve_vertex *v)
2335 {
2336         const struct btf_type *next_type;
2337         const struct btf_type *t = v->t;
2338         u32 next_type_id = t->type;
2339         struct btf *btf = env->btf;
2340
2341         next_type = btf_type_by_id(btf, next_type_id);
2342         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2343                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2344                 return -EINVAL;
2345         }
2346
2347         if (!env_type_is_resolve_sink(env, next_type) &&
2348             !env_type_is_resolved(env, next_type_id))
2349                 return env_stack_push(env, next_type, next_type_id);
2350
2351         if (btf_type_is_modifier(next_type)) {
2352                 const struct btf_type *resolved_type;
2353                 u32 resolved_type_id;
2354
2355                 resolved_type_id = next_type_id;
2356                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2357
2358                 if (btf_type_is_ptr(resolved_type) &&
2359                     !env_type_is_resolve_sink(env, resolved_type) &&
2360                     !env_type_is_resolved(env, resolved_type_id))
2361                         return env_stack_push(env, resolved_type,
2362                                               resolved_type_id);
2363         }
2364
2365         /* We must resolve to something concrete at this point, no
2366          * forward types or similar that would resolve to size of
2367          * zero is allowed.
2368          */
2369         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2370                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2371                 return -EINVAL;
2372         }
2373
2374         env_stack_pop_resolved(env, next_type_id, 0);
2375
2376         return 0;
2377 }
2378
2379 static int btf_ptr_resolve(struct btf_verifier_env *env,
2380                            const struct resolve_vertex *v)
2381 {
2382         const struct btf_type *next_type;
2383         const struct btf_type *t = v->t;
2384         u32 next_type_id = t->type;
2385         struct btf *btf = env->btf;
2386
2387         next_type = btf_type_by_id(btf, next_type_id);
2388         if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2389                 btf_verifier_log_type(env, v->t, "Invalid type_id");
2390                 return -EINVAL;
2391         }
2392
2393         if (!env_type_is_resolve_sink(env, next_type) &&
2394             !env_type_is_resolved(env, next_type_id))
2395                 return env_stack_push(env, next_type, next_type_id);
2396
2397         /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2398          * the modifier may have stopped resolving when it was resolved
2399          * to a ptr (last-resolved-ptr).
2400          *
2401          * We now need to continue from the last-resolved-ptr to
2402          * ensure the last-resolved-ptr will not referring back to
2403          * the currenct ptr (t).
2404          */
2405         if (btf_type_is_modifier(next_type)) {
2406                 const struct btf_type *resolved_type;
2407                 u32 resolved_type_id;
2408
2409                 resolved_type_id = next_type_id;
2410                 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2411
2412                 if (btf_type_is_ptr(resolved_type) &&
2413                     !env_type_is_resolve_sink(env, resolved_type) &&
2414                     !env_type_is_resolved(env, resolved_type_id))
2415                         return env_stack_push(env, resolved_type,
2416                                               resolved_type_id);
2417         }
2418
2419         if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2420                 if (env_type_is_resolved(env, next_type_id))
2421                         next_type = btf_type_id_resolve(btf, &next_type_id);
2422
2423                 if (!btf_type_is_void(next_type) &&
2424                     !btf_type_is_fwd(next_type) &&
2425                     !btf_type_is_func_proto(next_type)) {
2426                         btf_verifier_log_type(env, v->t, "Invalid type_id");
2427                         return -EINVAL;
2428                 }
2429         }
2430
2431         env_stack_pop_resolved(env, next_type_id, 0);
2432
2433         return 0;
2434 }
2435
2436 static void btf_modifier_show(const struct btf *btf,
2437                               const struct btf_type *t,
2438                               u32 type_id, void *data,
2439                               u8 bits_offset, struct btf_show *show)
2440 {
2441         if (btf->resolved_ids)
2442                 t = btf_type_id_resolve(btf, &type_id);
2443         else
2444                 t = btf_type_skip_modifiers(btf, type_id, NULL);
2445
2446         btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2447 }
2448
2449 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2450                          u32 type_id, void *data, u8 bits_offset,
2451                          struct btf_show *show)
2452 {
2453         t = btf_type_id_resolve(btf, &type_id);
2454
2455         btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2456 }
2457
2458 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2459                          u32 type_id, void *data, u8 bits_offset,
2460                          struct btf_show *show)
2461 {
2462         void *safe_data;
2463
2464         safe_data = btf_show_start_type(show, t, type_id, data);
2465         if (!safe_data)
2466                 return;
2467
2468         /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2469         if (show->flags & BTF_SHOW_PTR_RAW)
2470                 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2471         else
2472                 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2473         btf_show_end_type(show);
2474 }
2475
2476 static void btf_ref_type_log(struct btf_verifier_env *env,
2477                              const struct btf_type *t)
2478 {
2479         btf_verifier_log(env, "type_id=%u", t->type);
2480 }
2481
2482 static struct btf_kind_operations modifier_ops = {
2483         .check_meta = btf_ref_type_check_meta,
2484         .resolve = btf_modifier_resolve,
2485         .check_member = btf_modifier_check_member,
2486         .check_kflag_member = btf_modifier_check_kflag_member,
2487         .log_details = btf_ref_type_log,
2488         .show = btf_modifier_show,
2489 };
2490
2491 static struct btf_kind_operations ptr_ops = {
2492         .check_meta = btf_ref_type_check_meta,
2493         .resolve = btf_ptr_resolve,
2494         .check_member = btf_ptr_check_member,
2495         .check_kflag_member = btf_generic_check_kflag_member,
2496         .log_details = btf_ref_type_log,
2497         .show = btf_ptr_show,
2498 };
2499
2500 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2501                               const struct btf_type *t,
2502                               u32 meta_left)
2503 {
2504         if (btf_type_vlen(t)) {
2505                 btf_verifier_log_type(env, t, "vlen != 0");
2506                 return -EINVAL;
2507         }
2508
2509         if (t->type) {
2510                 btf_verifier_log_type(env, t, "type != 0");
2511                 return -EINVAL;
2512         }
2513
2514         /* fwd type must have a valid name */
2515         if (!t->name_off ||
2516             !btf_name_valid_identifier(env->btf, t->name_off)) {
2517                 btf_verifier_log_type(env, t, "Invalid name");
2518                 return -EINVAL;
2519         }
2520
2521         btf_verifier_log_type(env, t, NULL);
2522
2523         return 0;
2524 }
2525
2526 static void btf_fwd_type_log(struct btf_verifier_env *env,
2527                              const struct btf_type *t)
2528 {
2529         btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2530 }
2531
2532 static struct btf_kind_operations fwd_ops = {
2533         .check_meta = btf_fwd_check_meta,
2534         .resolve = btf_df_resolve,
2535         .check_member = btf_df_check_member,
2536         .check_kflag_member = btf_df_check_kflag_member,
2537         .log_details = btf_fwd_type_log,
2538         .show = btf_df_show,
2539 };
2540
2541 static int btf_array_check_member(struct btf_verifier_env *env,
2542                                   const struct btf_type *struct_type,
2543                                   const struct btf_member *member,
2544                                   const struct btf_type *member_type)
2545 {
2546         u32 struct_bits_off = member->offset;
2547         u32 struct_size, bytes_offset;
2548         u32 array_type_id, array_size;
2549         struct btf *btf = env->btf;
2550
2551         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2552                 btf_verifier_log_member(env, struct_type, member,
2553                                         "Member is not byte aligned");
2554                 return -EINVAL;
2555         }
2556
2557         array_type_id = member->type;
2558         btf_type_id_size(btf, &array_type_id, &array_size);
2559         struct_size = struct_type->size;
2560         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2561         if (struct_size - bytes_offset < array_size) {
2562                 btf_verifier_log_member(env, struct_type, member,
2563                                         "Member exceeds struct_size");
2564                 return -EINVAL;
2565         }
2566
2567         return 0;
2568 }
2569
2570 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2571                                 const struct btf_type *t,
2572                                 u32 meta_left)
2573 {
2574         const struct btf_array *array = btf_type_array(t);
2575         u32 meta_needed = sizeof(*array);
2576
2577         if (meta_left < meta_needed) {
2578                 btf_verifier_log_basic(env, t,
2579                                        "meta_left:%u meta_needed:%u",
2580                                        meta_left, meta_needed);
2581                 return -EINVAL;
2582         }
2583
2584         /* array type should not have a name */
2585         if (t->name_off) {
2586                 btf_verifier_log_type(env, t, "Invalid name");
2587                 return -EINVAL;
2588         }
2589
2590         if (btf_type_vlen(t)) {
2591                 btf_verifier_log_type(env, t, "vlen != 0");
2592                 return -EINVAL;
2593         }
2594
2595         if (btf_type_kflag(t)) {
2596                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2597                 return -EINVAL;
2598         }
2599
2600         if (t->size) {
2601                 btf_verifier_log_type(env, t, "size != 0");
2602                 return -EINVAL;
2603         }
2604
2605         /* Array elem type and index type cannot be in type void,
2606          * so !array->type and !array->index_type are not allowed.
2607          */
2608         if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2609                 btf_verifier_log_type(env, t, "Invalid elem");
2610                 return -EINVAL;
2611         }
2612
2613         if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2614                 btf_verifier_log_type(env, t, "Invalid index");
2615                 return -EINVAL;
2616         }
2617
2618         btf_verifier_log_type(env, t, NULL);
2619
2620         return meta_needed;
2621 }
2622
2623 static int btf_array_resolve(struct btf_verifier_env *env,
2624                              const struct resolve_vertex *v)
2625 {
2626         const struct btf_array *array = btf_type_array(v->t);
2627         const struct btf_type *elem_type, *index_type;
2628         u32 elem_type_id, index_type_id;
2629         struct btf *btf = env->btf;
2630         u32 elem_size;
2631
2632         /* Check array->index_type */
2633         index_type_id = array->index_type;
2634         index_type = btf_type_by_id(btf, index_type_id);
2635         if (btf_type_nosize_or_null(index_type) ||
2636             btf_type_is_resolve_source_only(index_type)) {
2637                 btf_verifier_log_type(env, v->t, "Invalid index");
2638                 return -EINVAL;
2639         }
2640
2641         if (!env_type_is_resolve_sink(env, index_type) &&
2642             !env_type_is_resolved(env, index_type_id))
2643                 return env_stack_push(env, index_type, index_type_id);
2644
2645         index_type = btf_type_id_size(btf, &index_type_id, NULL);
2646         if (!index_type || !btf_type_is_int(index_type) ||
2647             !btf_type_int_is_regular(index_type)) {
2648                 btf_verifier_log_type(env, v->t, "Invalid index");
2649                 return -EINVAL;
2650         }
2651
2652         /* Check array->type */
2653         elem_type_id = array->type;
2654         elem_type = btf_type_by_id(btf, elem_type_id);
2655         if (btf_type_nosize_or_null(elem_type) ||
2656             btf_type_is_resolve_source_only(elem_type)) {
2657                 btf_verifier_log_type(env, v->t,
2658                                       "Invalid elem");
2659                 return -EINVAL;
2660         }
2661
2662         if (!env_type_is_resolve_sink(env, elem_type) &&
2663             !env_type_is_resolved(env, elem_type_id))
2664                 return env_stack_push(env, elem_type, elem_type_id);
2665
2666         elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2667         if (!elem_type) {
2668                 btf_verifier_log_type(env, v->t, "Invalid elem");
2669                 return -EINVAL;
2670         }
2671
2672         if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2673                 btf_verifier_log_type(env, v->t, "Invalid array of int");
2674                 return -EINVAL;
2675         }
2676
2677         if (array->nelems && elem_size > U32_MAX / array->nelems) {
2678                 btf_verifier_log_type(env, v->t,
2679                                       "Array size overflows U32_MAX");
2680                 return -EINVAL;
2681         }
2682
2683         env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2684
2685         return 0;
2686 }
2687
2688 static void btf_array_log(struct btf_verifier_env *env,
2689                           const struct btf_type *t)
2690 {
2691         const struct btf_array *array = btf_type_array(t);
2692
2693         btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2694                          array->type, array->index_type, array->nelems);
2695 }
2696
2697 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2698                              u32 type_id, void *data, u8 bits_offset,
2699                              struct btf_show *show)
2700 {
2701         const struct btf_array *array = btf_type_array(t);
2702         const struct btf_kind_operations *elem_ops;
2703         const struct btf_type *elem_type;
2704         u32 i, elem_size = 0, elem_type_id;
2705         u16 encoding = 0;
2706
2707         elem_type_id = array->type;
2708         elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2709         if (elem_type && btf_type_has_size(elem_type))
2710                 elem_size = elem_type->size;
2711
2712         if (elem_type && btf_type_is_int(elem_type)) {
2713                 u32 int_type = btf_type_int(elem_type);
2714
2715                 encoding = BTF_INT_ENCODING(int_type);
2716
2717                 /*
2718                  * BTF_INT_CHAR encoding never seems to be set for
2719                  * char arrays, so if size is 1 and element is
2720                  * printable as a char, we'll do that.
2721                  */
2722                 if (elem_size == 1)
2723                         encoding = BTF_INT_CHAR;
2724         }
2725
2726         if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2727                 return;
2728
2729         if (!elem_type)
2730                 goto out;
2731         elem_ops = btf_type_ops(elem_type);
2732
2733         for (i = 0; i < array->nelems; i++) {
2734
2735                 btf_show_start_array_member(show);
2736
2737                 elem_ops->show(btf, elem_type, elem_type_id, data,
2738                                bits_offset, show);
2739                 data += elem_size;
2740
2741                 btf_show_end_array_member(show);
2742
2743                 if (show->state.array_terminated)
2744                         break;
2745         }
2746 out:
2747         btf_show_end_array_type(show);
2748 }
2749
2750 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2751                            u32 type_id, void *data, u8 bits_offset,
2752                            struct btf_show *show)
2753 {
2754         const struct btf_member *m = show->state.member;
2755
2756         /*
2757          * First check if any members would be shown (are non-zero).
2758          * See comments above "struct btf_show" definition for more
2759          * details on how this works at a high-level.
2760          */
2761         if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2762                 if (!show->state.depth_check) {
2763                         show->state.depth_check = show->state.depth + 1;
2764                         show->state.depth_to_show = 0;
2765                 }
2766                 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2767                 show->state.member = m;
2768
2769                 if (show->state.depth_check != show->state.depth + 1)
2770                         return;
2771                 show->state.depth_check = 0;
2772
2773                 if (show->state.depth_to_show <= show->state.depth)
2774                         return;
2775                 /*
2776                  * Reaching here indicates we have recursed and found
2777                  * non-zero array member(s).
2778                  */
2779         }
2780         __btf_array_show(btf, t, type_id, data, bits_offset, show);
2781 }
2782
2783 static struct btf_kind_operations array_ops = {
2784         .check_meta = btf_array_check_meta,
2785         .resolve = btf_array_resolve,
2786         .check_member = btf_array_check_member,
2787         .check_kflag_member = btf_generic_check_kflag_member,
2788         .log_details = btf_array_log,
2789         .show = btf_array_show,
2790 };
2791
2792 static int btf_struct_check_member(struct btf_verifier_env *env,
2793                                    const struct btf_type *struct_type,
2794                                    const struct btf_member *member,
2795                                    const struct btf_type *member_type)
2796 {
2797         u32 struct_bits_off = member->offset;
2798         u32 struct_size, bytes_offset;
2799
2800         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2801                 btf_verifier_log_member(env, struct_type, member,
2802                                         "Member is not byte aligned");
2803                 return -EINVAL;
2804         }
2805
2806         struct_size = struct_type->size;
2807         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2808         if (struct_size - bytes_offset < member_type->size) {
2809                 btf_verifier_log_member(env, struct_type, member,
2810                                         "Member exceeds struct_size");
2811                 return -EINVAL;
2812         }
2813
2814         return 0;
2815 }
2816
2817 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2818                                  const struct btf_type *t,
2819                                  u32 meta_left)
2820 {
2821         bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2822         const struct btf_member *member;
2823         u32 meta_needed, last_offset;
2824         struct btf *btf = env->btf;
2825         u32 struct_size = t->size;
2826         u32 offset;
2827         u16 i;
2828
2829         meta_needed = btf_type_vlen(t) * sizeof(*member);
2830         if (meta_left < meta_needed) {
2831                 btf_verifier_log_basic(env, t,
2832                                        "meta_left:%u meta_needed:%u",
2833                                        meta_left, meta_needed);
2834                 return -EINVAL;
2835         }
2836
2837         /* struct type either no name or a valid one */
2838         if (t->name_off &&
2839             !btf_name_valid_identifier(env->btf, t->name_off)) {
2840                 btf_verifier_log_type(env, t, "Invalid name");
2841                 return -EINVAL;
2842         }
2843
2844         btf_verifier_log_type(env, t, NULL);
2845
2846         last_offset = 0;
2847         for_each_member(i, t, member) {
2848                 if (!btf_name_offset_valid(btf, member->name_off)) {
2849                         btf_verifier_log_member(env, t, member,
2850                                                 "Invalid member name_offset:%u",
2851                                                 member->name_off);
2852                         return -EINVAL;
2853                 }
2854
2855                 /* struct member either no name or a valid one */
2856                 if (member->name_off &&
2857                     !btf_name_valid_identifier(btf, member->name_off)) {
2858                         btf_verifier_log_member(env, t, member, "Invalid name");
2859                         return -EINVAL;
2860                 }
2861                 /* A member cannot be in type void */
2862                 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2863                         btf_verifier_log_member(env, t, member,
2864                                                 "Invalid type_id");
2865                         return -EINVAL;
2866                 }
2867
2868                 offset = btf_member_bit_offset(t, member);
2869                 if (is_union && offset) {
2870                         btf_verifier_log_member(env, t, member,
2871                                                 "Invalid member bits_offset");
2872                         return -EINVAL;
2873                 }
2874
2875                 /*
2876                  * ">" instead of ">=" because the last member could be
2877                  * "char a[0];"
2878                  */
2879                 if (last_offset > offset) {
2880                         btf_verifier_log_member(env, t, member,
2881                                                 "Invalid member bits_offset");
2882                         return -EINVAL;
2883                 }
2884
2885                 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2886                         btf_verifier_log_member(env, t, member,
2887                                                 "Member bits_offset exceeds its struct size");
2888                         return -EINVAL;
2889                 }
2890
2891                 btf_verifier_log_member(env, t, member, NULL);
2892                 last_offset = offset;
2893         }
2894
2895         return meta_needed;
2896 }
2897
2898 static int btf_struct_resolve(struct btf_verifier_env *env,
2899                               const struct resolve_vertex *v)
2900 {
2901         const struct btf_member *member;
2902         int err;
2903         u16 i;
2904
2905         /* Before continue resolving the next_member,
2906          * ensure the last member is indeed resolved to a
2907          * type with size info.
2908          */
2909         if (v->next_member) {
2910                 const struct btf_type *last_member_type;
2911                 const struct btf_member *last_member;
2912                 u32 last_member_type_id;
2913
2914                 last_member = btf_type_member(v->t) + v->next_member - 1;
2915                 last_member_type_id = last_member->type;
2916                 if (WARN_ON_ONCE(!env_type_is_resolved(env,
2917                                                        last_member_type_id)))
2918                         return -EINVAL;
2919
2920                 last_member_type = btf_type_by_id(env->btf,
2921                                                   last_member_type_id);
2922                 if (btf_type_kflag(v->t))
2923                         err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2924                                                                 last_member,
2925                                                                 last_member_type);
2926                 else
2927                         err = btf_type_ops(last_member_type)->check_member(env, v->t,
2928                                                                 last_member,
2929                                                                 last_member_type);
2930                 if (err)
2931                         return err;
2932         }
2933
2934         for_each_member_from(i, v->next_member, v->t, member) {
2935                 u32 member_type_id = member->type;
2936                 const struct btf_type *member_type = btf_type_by_id(env->btf,
2937                                                                 member_type_id);
2938
2939                 if (btf_type_nosize_or_null(member_type) ||
2940                     btf_type_is_resolve_source_only(member_type)) {
2941                         btf_verifier_log_member(env, v->t, member,
2942                                                 "Invalid member");
2943                         return -EINVAL;
2944                 }
2945
2946                 if (!env_type_is_resolve_sink(env, member_type) &&
2947                     !env_type_is_resolved(env, member_type_id)) {
2948                         env_stack_set_next_member(env, i + 1);
2949                         return env_stack_push(env, member_type, member_type_id);
2950                 }
2951
2952                 if (btf_type_kflag(v->t))
2953                         err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2954                                                                             member,
2955                                                                             member_type);
2956                 else
2957                         err = btf_type_ops(member_type)->check_member(env, v->t,
2958                                                                       member,
2959                                                                       member_type);
2960                 if (err)
2961                         return err;
2962         }
2963
2964         env_stack_pop_resolved(env, 0, 0);
2965
2966         return 0;
2967 }
2968
2969 static void btf_struct_log(struct btf_verifier_env *env,
2970                            const struct btf_type *t)
2971 {
2972         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2973 }
2974
2975 /* find 'struct bpf_spin_lock' in map value.
2976  * return >= 0 offset if found
2977  * and < 0 in case of error
2978  */
2979 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
2980 {
2981         const struct btf_member *member;
2982         u32 i, off = -ENOENT;
2983
2984         if (!__btf_type_is_struct(t))
2985                 return -EINVAL;
2986
2987         for_each_member(i, t, member) {
2988                 const struct btf_type *member_type = btf_type_by_id(btf,
2989                                                                     member->type);
2990                 if (!__btf_type_is_struct(member_type))
2991                         continue;
2992                 if (member_type->size != sizeof(struct bpf_spin_lock))
2993                         continue;
2994                 if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
2995                            "bpf_spin_lock"))
2996                         continue;
2997                 if (off != -ENOENT)
2998                         /* only one 'struct bpf_spin_lock' is allowed */
2999                         return -E2BIG;
3000                 off = btf_member_bit_offset(t, member);
3001                 if (off % 8)
3002                         /* valid C code cannot generate such BTF */
3003                         return -EINVAL;
3004                 off /= 8;
3005                 if (off % __alignof__(struct bpf_spin_lock))
3006                         /* valid struct bpf_spin_lock will be 4 byte aligned */
3007                         return -EINVAL;
3008         }
3009         return off;
3010 }
3011
3012 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3013                               u32 type_id, void *data, u8 bits_offset,
3014                               struct btf_show *show)
3015 {
3016         const struct btf_member *member;
3017         void *safe_data;
3018         u32 i;
3019
3020         safe_data = btf_show_start_struct_type(show, t, type_id, data);
3021         if (!safe_data)
3022                 return;
3023
3024         for_each_member(i, t, member) {
3025                 const struct btf_type *member_type = btf_type_by_id(btf,
3026                                                                 member->type);
3027                 const struct btf_kind_operations *ops;
3028                 u32 member_offset, bitfield_size;
3029                 u32 bytes_offset;
3030                 u8 bits8_offset;
3031
3032                 btf_show_start_member(show, member);
3033
3034                 member_offset = btf_member_bit_offset(t, member);
3035                 bitfield_size = btf_member_bitfield_size(t, member);
3036                 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3037                 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3038                 if (bitfield_size) {
3039                         safe_data = btf_show_start_type(show, member_type,
3040                                                         member->type,
3041                                                         data + bytes_offset);
3042                         if (safe_data)
3043                                 btf_bitfield_show(safe_data,
3044                                                   bits8_offset,
3045                                                   bitfield_size, show);
3046                         btf_show_end_type(show);
3047                 } else {
3048                         ops = btf_type_ops(member_type);
3049                         ops->show(btf, member_type, member->type,
3050                                   data + bytes_offset, bits8_offset, show);
3051                 }
3052
3053                 btf_show_end_member(show);
3054         }
3055
3056         btf_show_end_struct_type(show);
3057 }
3058
3059 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3060                             u32 type_id, void *data, u8 bits_offset,
3061                             struct btf_show *show)
3062 {
3063         const struct btf_member *m = show->state.member;
3064
3065         /*
3066          * First check if any members would be shown (are non-zero).
3067          * See comments above "struct btf_show" definition for more
3068          * details on how this works at a high-level.
3069          */
3070         if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3071                 if (!show->state.depth_check) {
3072                         show->state.depth_check = show->state.depth + 1;
3073                         show->state.depth_to_show = 0;
3074                 }
3075                 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3076                 /* Restore saved member data here */
3077                 show->state.member = m;
3078                 if (show->state.depth_check != show->state.depth + 1)
3079                         return;
3080                 show->state.depth_check = 0;
3081
3082                 if (show->state.depth_to_show <= show->state.depth)
3083                         return;
3084                 /*
3085                  * Reaching here indicates we have recursed and found
3086                  * non-zero child values.
3087                  */
3088         }
3089
3090         __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3091 }
3092
3093 static struct btf_kind_operations struct_ops = {
3094         .check_meta = btf_struct_check_meta,
3095         .resolve = btf_struct_resolve,
3096         .check_member = btf_struct_check_member,
3097         .check_kflag_member = btf_generic_check_kflag_member,
3098         .log_details = btf_struct_log,
3099         .show = btf_struct_show,
3100 };
3101
3102 static int btf_enum_check_member(struct btf_verifier_env *env,
3103                                  const struct btf_type *struct_type,
3104                                  const struct btf_member *member,
3105                                  const struct btf_type *member_type)
3106 {
3107         u32 struct_bits_off = member->offset;
3108         u32 struct_size, bytes_offset;
3109
3110         if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3111                 btf_verifier_log_member(env, struct_type, member,
3112                                         "Member is not byte aligned");
3113                 return -EINVAL;
3114         }
3115
3116         struct_size = struct_type->size;
3117         bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3118         if (struct_size - bytes_offset < member_type->size) {
3119                 btf_verifier_log_member(env, struct_type, member,
3120                                         "Member exceeds struct_size");
3121                 return -EINVAL;
3122         }
3123
3124         return 0;
3125 }
3126
3127 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3128                                        const struct btf_type *struct_type,
3129                                        const struct btf_member *member,
3130                                        const struct btf_type *member_type)
3131 {
3132         u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3133         u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3134
3135         struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3136         nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3137         if (!nr_bits) {
3138                 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3139                         btf_verifier_log_member(env, struct_type, member,
3140                                                 "Member is not byte aligned");
3141                         return -EINVAL;
3142                 }
3143
3144                 nr_bits = int_bitsize;
3145         } else if (nr_bits > int_bitsize) {
3146                 btf_verifier_log_member(env, struct_type, member,
3147                                         "Invalid member bitfield_size");
3148                 return -EINVAL;
3149         }
3150
3151         struct_size = struct_type->size;
3152         bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3153         if (struct_size < bytes_end) {
3154                 btf_verifier_log_member(env, struct_type, member,
3155                                         "Member exceeds struct_size");
3156                 return -EINVAL;
3157         }
3158
3159         return 0;
3160 }
3161
3162 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3163                                const struct btf_type *t,
3164                                u32 meta_left)
3165 {
3166         const struct btf_enum *enums = btf_type_enum(t);
3167         struct btf *btf = env->btf;
3168         u16 i, nr_enums;
3169         u32 meta_needed;
3170
3171         nr_enums = btf_type_vlen(t);
3172         meta_needed = nr_enums * sizeof(*enums);
3173
3174         if (meta_left < meta_needed) {
3175                 btf_verifier_log_basic(env, t,
3176                                        "meta_left:%u meta_needed:%u",
3177                                        meta_left, meta_needed);
3178                 return -EINVAL;
3179         }
3180
3181         if (btf_type_kflag(t)) {
3182                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3183                 return -EINVAL;
3184         }
3185
3186         if (t->size > 8 || !is_power_of_2(t->size)) {
3187                 btf_verifier_log_type(env, t, "Unexpected size");
3188                 return -EINVAL;
3189         }
3190
3191         /* enum type either no name or a valid one */
3192         if (t->name_off &&
3193             !btf_name_valid_identifier(env->btf, t->name_off)) {
3194                 btf_verifier_log_type(env, t, "Invalid name");
3195                 return -EINVAL;
3196         }
3197
3198         btf_verifier_log_type(env, t, NULL);
3199
3200         for (i = 0; i < nr_enums; i++) {
3201                 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3202                         btf_verifier_log(env, "\tInvalid name_offset:%u",
3203                                          enums[i].name_off);
3204                         return -EINVAL;
3205                 }
3206
3207                 /* enum member must have a valid name */
3208                 if (!enums[i].name_off ||
3209                     !btf_name_valid_identifier(btf, enums[i].name_off)) {
3210                         btf_verifier_log_type(env, t, "Invalid name");
3211                         return -EINVAL;
3212                 }
3213
3214                 if (env->log.level == BPF_LOG_KERNEL)
3215                         continue;
3216                 btf_verifier_log(env, "\t%s val=%d\n",
3217                                  __btf_name_by_offset(btf, enums[i].name_off),
3218                                  enums[i].val);
3219         }
3220
3221         return meta_needed;
3222 }
3223
3224 static void btf_enum_log(struct btf_verifier_env *env,
3225                          const struct btf_type *t)
3226 {
3227         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3228 }
3229
3230 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3231                           u32 type_id, void *data, u8 bits_offset,
3232                           struct btf_show *show)
3233 {
3234         const struct btf_enum *enums = btf_type_enum(t);
3235         u32 i, nr_enums = btf_type_vlen(t);
3236         void *safe_data;
3237         int v;
3238
3239         safe_data = btf_show_start_type(show, t, type_id, data);
3240         if (!safe_data)
3241                 return;
3242
3243         v = *(int *)safe_data;
3244
3245         for (i = 0; i < nr_enums; i++) {
3246                 if (v != enums[i].val)
3247                         continue;
3248
3249                 btf_show_type_value(show, "%s",
3250                                     __btf_name_by_offset(btf,
3251                                                          enums[i].name_off));
3252
3253                 btf_show_end_type(show);
3254                 return;
3255         }
3256
3257         btf_show_type_value(show, "%d", v);
3258         btf_show_end_type(show);
3259 }
3260
3261 static struct btf_kind_operations enum_ops = {
3262         .check_meta = btf_enum_check_meta,
3263         .resolve = btf_df_resolve,
3264         .check_member = btf_enum_check_member,
3265         .check_kflag_member = btf_enum_check_kflag_member,
3266         .log_details = btf_enum_log,
3267         .show = btf_enum_show,
3268 };
3269
3270 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3271                                      const struct btf_type *t,
3272                                      u32 meta_left)
3273 {
3274         u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3275
3276         if (meta_left < meta_needed) {
3277                 btf_verifier_log_basic(env, t,
3278                                        "meta_left:%u meta_needed:%u",
3279                                        meta_left, meta_needed);
3280                 return -EINVAL;
3281         }
3282
3283         if (t->name_off) {
3284                 btf_verifier_log_type(env, t, "Invalid name");
3285                 return -EINVAL;
3286         }
3287
3288         if (btf_type_kflag(t)) {
3289                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3290                 return -EINVAL;
3291         }
3292
3293         btf_verifier_log_type(env, t, NULL);
3294
3295         return meta_needed;
3296 }
3297
3298 static void btf_func_proto_log(struct btf_verifier_env *env,
3299                                const struct btf_type *t)
3300 {
3301         const struct btf_param *args = (const struct btf_param *)(t + 1);
3302         u16 nr_args = btf_type_vlen(t), i;
3303
3304         btf_verifier_log(env, "return=%u args=(", t->type);
3305         if (!nr_args) {
3306                 btf_verifier_log(env, "void");
3307                 goto done;
3308         }
3309
3310         if (nr_args == 1 && !args[0].type) {
3311                 /* Only one vararg */
3312                 btf_verifier_log(env, "vararg");
3313                 goto done;
3314         }
3315
3316         btf_verifier_log(env, "%u %s", args[0].type,
3317                          __btf_name_by_offset(env->btf,
3318                                               args[0].name_off));
3319         for (i = 1; i < nr_args - 1; i++)
3320                 btf_verifier_log(env, ", %u %s", args[i].type,
3321                                  __btf_name_by_offset(env->btf,
3322                                                       args[i].name_off));
3323
3324         if (nr_args > 1) {
3325                 const struct btf_param *last_arg = &args[nr_args - 1];
3326
3327                 if (last_arg->type)
3328                         btf_verifier_log(env, ", %u %s", last_arg->type,
3329                                          __btf_name_by_offset(env->btf,
3330                                                               last_arg->name_off));
3331                 else
3332                         btf_verifier_log(env, ", vararg");
3333         }
3334
3335 done:
3336         btf_verifier_log(env, ")");
3337 }
3338
3339 static struct btf_kind_operations func_proto_ops = {
3340         .check_meta = btf_func_proto_check_meta,
3341         .resolve = btf_df_resolve,
3342         /*
3343          * BTF_KIND_FUNC_PROTO cannot be directly referred by
3344          * a struct's member.
3345          *
3346          * It should be a funciton pointer instead.
3347          * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3348          *
3349          * Hence, there is no btf_func_check_member().
3350          */
3351         .check_member = btf_df_check_member,
3352         .check_kflag_member = btf_df_check_kflag_member,
3353         .log_details = btf_func_proto_log,
3354         .show = btf_df_show,
3355 };
3356
3357 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3358                                const struct btf_type *t,
3359                                u32 meta_left)
3360 {
3361         if (!t->name_off ||
3362             !btf_name_valid_identifier(env->btf, t->name_off)) {
3363                 btf_verifier_log_type(env, t, "Invalid name");
3364                 return -EINVAL;
3365         }
3366
3367         if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3368                 btf_verifier_log_type(env, t, "Invalid func linkage");
3369                 return -EINVAL;
3370         }
3371
3372         if (btf_type_kflag(t)) {
3373                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3374                 return -EINVAL;
3375         }
3376
3377         btf_verifier_log_type(env, t, NULL);
3378
3379         return 0;
3380 }
3381
3382 static struct btf_kind_operations func_ops = {
3383         .check_meta = btf_func_check_meta,
3384         .resolve = btf_df_resolve,
3385         .check_member = btf_df_check_member,
3386         .check_kflag_member = btf_df_check_kflag_member,
3387         .log_details = btf_ref_type_log,
3388         .show = btf_df_show,
3389 };
3390
3391 static s32 btf_var_check_meta(struct btf_verifier_env *env,
3392                               const struct btf_type *t,
3393                               u32 meta_left)
3394 {
3395         const struct btf_var *var;
3396         u32 meta_needed = sizeof(*var);
3397
3398         if (meta_left < meta_needed) {
3399                 btf_verifier_log_basic(env, t,
3400                                        "meta_left:%u meta_needed:%u",
3401                                        meta_left, meta_needed);
3402                 return -EINVAL;
3403         }
3404
3405         if (btf_type_vlen(t)) {
3406                 btf_verifier_log_type(env, t, "vlen != 0");
3407                 return -EINVAL;
3408         }
3409
3410         if (btf_type_kflag(t)) {
3411                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3412                 return -EINVAL;
3413         }
3414
3415         if (!t->name_off ||
3416             !__btf_name_valid(env->btf, t->name_off)) {
3417                 btf_verifier_log_type(env, t, "Invalid name");
3418                 return -EINVAL;
3419         }
3420
3421         /* A var cannot be in type void */
3422         if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3423                 btf_verifier_log_type(env, t, "Invalid type_id");
3424                 return -EINVAL;
3425         }
3426
3427         var = btf_type_var(t);
3428         if (var->linkage != BTF_VAR_STATIC &&
3429             var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3430                 btf_verifier_log_type(env, t, "Linkage not supported");
3431                 return -EINVAL;
3432         }
3433
3434         btf_verifier_log_type(env, t, NULL);
3435
3436         return meta_needed;
3437 }
3438
3439 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3440 {
3441         const struct btf_var *var = btf_type_var(t);
3442
3443         btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3444 }
3445
3446 static const struct btf_kind_operations var_ops = {
3447         .check_meta             = btf_var_check_meta,
3448         .resolve                = btf_var_resolve,
3449         .check_member           = btf_df_check_member,
3450         .check_kflag_member     = btf_df_check_kflag_member,
3451         .log_details            = btf_var_log,
3452         .show                   = btf_var_show,
3453 };
3454
3455 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3456                                   const struct btf_type *t,
3457                                   u32 meta_left)
3458 {
3459         const struct btf_var_secinfo *vsi;
3460         u64 last_vsi_end_off = 0, sum = 0;
3461         u32 i, meta_needed;
3462
3463         meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3464         if (meta_left < meta_needed) {
3465                 btf_verifier_log_basic(env, t,
3466                                        "meta_left:%u meta_needed:%u",
3467                                        meta_left, meta_needed);
3468                 return -EINVAL;
3469         }
3470
3471         if (!btf_type_vlen(t)) {
3472                 btf_verifier_log_type(env, t, "vlen == 0");
3473                 return -EINVAL;
3474         }
3475
3476         if (!t->size) {
3477                 btf_verifier_log_type(env, t, "size == 0");
3478                 return -EINVAL;
3479         }
3480
3481         if (btf_type_kflag(t)) {
3482                 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3483                 return -EINVAL;
3484         }
3485
3486         if (!t->name_off ||
3487             !btf_name_valid_section(env->btf, t->name_off)) {
3488                 btf_verifier_log_type(env, t, "Invalid name");
3489                 return -EINVAL;
3490         }
3491
3492         btf_verifier_log_type(env, t, NULL);
3493
3494         for_each_vsi(i, t, vsi) {
3495                 /* A var cannot be in type void */
3496                 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3497                         btf_verifier_log_vsi(env, t, vsi,
3498                                              "Invalid type_id");
3499                         return -EINVAL;
3500                 }
3501
3502                 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3503                         btf_verifier_log_vsi(env, t, vsi,
3504                                              "Invalid offset");
3505                         return -EINVAL;
3506                 }
3507
3508                 if (!vsi->size || vsi->size > t->size) {
3509                         btf_verifier_log_vsi(env, t, vsi,
3510                                              "Invalid size");
3511                         return -EINVAL;
3512                 }
3513
3514                 last_vsi_end_off = vsi->offset + vsi->size;
3515                 if (last_vsi_end_off > t->size) {
3516                         btf_verifier_log_vsi(env, t, vsi,
3517                                              "Invalid offset+size");
3518                         return -EINVAL;
3519                 }
3520
3521                 btf_verifier_log_vsi(env, t, vsi, NULL);
3522                 sum += vsi->size;
3523         }
3524
3525         if (t->size < sum) {
3526                 btf_verifier_log_type(env, t, "Invalid btf_info size");
3527                 return -EINVAL;
3528         }
3529
3530         return meta_needed;
3531 }
3532
3533 static int btf_datasec_resolve(struct btf_verifier_env *env,
3534                                const struct resolve_vertex *v)
3535 {
3536         const struct btf_var_secinfo *vsi;
3537         struct btf *btf = env->btf;
3538         u16 i;
3539
3540         env->resolve_mode = RESOLVE_TBD;
3541         for_each_vsi_from(i, v->next_member, v->t, vsi) {
3542                 u32 var_type_id = vsi->type, type_id, type_size = 0;
3543                 const struct btf_type *var_type = btf_type_by_id(env->btf,
3544                                                                  var_type_id);
3545                 if (!var_type || !btf_type_is_var(var_type)) {
3546                         btf_verifier_log_vsi(env, v->t, vsi,
3547                                              "Not a VAR kind member");
3548                         return -EINVAL;
3549                 }
3550
3551                 if (!env_type_is_resolve_sink(env, var_type) &&
3552                     !env_type_is_resolved(env, var_type_id)) {
3553                         env_stack_set_next_member(env, i + 1);
3554                         return env_stack_push(env, var_type, var_type_id);
3555                 }
3556
3557                 type_id = var_type->type;
3558                 if (!btf_type_id_size(btf, &type_id, &type_size)) {
3559                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3560                         return -EINVAL;
3561                 }
3562
3563                 if (vsi->size < type_size) {
3564                         btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3565                         return -EINVAL;
3566                 }
3567         }
3568
3569         env_stack_pop_resolved(env, 0, 0);
3570         return 0;
3571 }
3572
3573 static void btf_datasec_log(struct btf_verifier_env *env,
3574                             const struct btf_type *t)
3575 {
3576         btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3577 }
3578
3579 static void btf_datasec_show(const struct btf *btf,
3580                              const struct btf_type *t, u32 type_id,
3581                              void *data, u8 bits_offset,
3582                              struct btf_show *show)
3583 {
3584         const struct btf_var_secinfo *vsi;
3585         const struct btf_type *var;
3586         u32 i;
3587
3588         if (!btf_show_start_type(show, t, type_id, data))
3589                 return;
3590
3591         btf_show_type_value(show, "section (\"%s\") = {",
3592                             __btf_name_by_offset(btf, t->name_off));
3593         for_each_vsi(i, t, vsi) {
3594                 var = btf_type_by_id(btf, vsi->type);
3595                 if (i)
3596                         btf_show(show, ",");
3597                 btf_type_ops(var)->show(btf, var, vsi->type,
3598                                         data + vsi->offset, bits_offset, show);
3599         }
3600         btf_show_end_type(show);
3601 }
3602
3603 static const struct btf_kind_operations datasec_ops = {
3604         .check_meta             = btf_datasec_check_meta,
3605         .resolve                = btf_datasec_resolve,
3606         .check_member           = btf_df_check_member,
3607         .check_kflag_member     = btf_df_check_kflag_member,
3608         .log_details            = btf_datasec_log,
3609         .show                   = btf_datasec_show,
3610 };
3611
3612 static int btf_func_proto_check(struct btf_verifier_env *env,
3613                                 const struct btf_type *t)
3614 {
3615         const struct btf_type *ret_type;
3616         const struct btf_param *args;
3617         const struct btf *btf;
3618         u16 nr_args, i;
3619         int err;
3620
3621         btf = env->btf;
3622         args = (const struct btf_param *)(t + 1);
3623         nr_args = btf_type_vlen(t);
3624
3625         /* Check func return type which could be "void" (t->type == 0) */
3626         if (t->type) {
3627                 u32 ret_type_id = t->type;
3628
3629                 ret_type = btf_type_by_id(btf, ret_type_id);
3630                 if (!ret_type) {
3631                         btf_verifier_log_type(env, t, "Invalid return type");
3632                         return -EINVAL;
3633                 }
3634
3635                 if (btf_type_needs_resolve(ret_type) &&
3636                     !env_type_is_resolved(env, ret_type_id)) {
3637                         err = btf_resolve(env, ret_type, ret_type_id);
3638                         if (err)
3639                                 return err;
3640                 }
3641
3642                 /* Ensure the return type is a type that has a size */
3643                 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3644                         btf_verifier_log_type(env, t, "Invalid return type");
3645                         return -EINVAL;
3646                 }
3647         }
3648
3649         if (!nr_args)
3650                 return 0;
3651
3652         /* Last func arg type_id could be 0 if it is a vararg */
3653         if (!args[nr_args - 1].type) {
3654                 if (args[nr_args - 1].name_off) {
3655                         btf_verifier_log_type(env, t, "Invalid arg#%u",
3656                                               nr_args);
3657                         return -EINVAL;
3658                 }
3659                 nr_args--;
3660         }
3661
3662         err = 0;
3663         for (i = 0; i < nr_args; i++) {
3664                 const struct btf_type *arg_type;
3665                 u32 arg_type_id;
3666
3667                 arg_type_id = args[i].type;
3668                 arg_type = btf_type_by_id(btf, arg_type_id);
3669                 if (!arg_type) {
3670                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3671                         err = -EINVAL;
3672                         break;
3673                 }
3674
3675                 if (btf_type_is_resolve_source_only(arg_type)) {
3676                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3677                         return -EINVAL;
3678                 }
3679
3680                 if (args[i].name_off &&
3681                     (!btf_name_offset_valid(btf, args[i].name_off) ||
3682                      !btf_name_valid_identifier(btf, args[i].name_off))) {
3683                         btf_verifier_log_type(env, t,
3684                                               "Invalid arg#%u", i + 1);
3685                         err = -EINVAL;
3686                         break;
3687                 }
3688
3689                 if (btf_type_needs_resolve(arg_type) &&
3690                     !env_type_is_resolved(env, arg_type_id)) {
3691                         err = btf_resolve(env, arg_type, arg_type_id);
3692                         if (err)
3693                                 break;
3694                 }
3695
3696                 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
3697                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3698                         err = -EINVAL;
3699                         break;
3700                 }
3701         }
3702
3703         return err;
3704 }
3705
3706 static int btf_func_check(struct btf_verifier_env *env,
3707                           const struct btf_type *t)
3708 {
3709         const struct btf_type *proto_type;
3710         const struct btf_param *args;
3711         const struct btf *btf;
3712         u16 nr_args, i;
3713
3714         btf = env->btf;
3715         proto_type = btf_type_by_id(btf, t->type);
3716
3717         if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3718                 btf_verifier_log_type(env, t, "Invalid type_id");
3719                 return -EINVAL;
3720         }
3721
3722         args = (const struct btf_param *)(proto_type + 1);
3723         nr_args = btf_type_vlen(proto_type);
3724         for (i = 0; i < nr_args; i++) {
3725                 if (!args[i].name_off && args[i].type) {
3726                         btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3727                         return -EINVAL;
3728                 }
3729         }
3730
3731         return 0;
3732 }
3733
3734 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3735         [BTF_KIND_INT] = &int_ops,
3736         [BTF_KIND_PTR] = &ptr_ops,
3737         [BTF_KIND_ARRAY] = &array_ops,
3738         [BTF_KIND_STRUCT] = &struct_ops,
3739         [BTF_KIND_UNION] = &struct_ops,
3740         [BTF_KIND_ENUM] = &enum_ops,
3741         [BTF_KIND_FWD] = &fwd_ops,
3742         [BTF_KIND_TYPEDEF] = &modifier_ops,
3743         [BTF_KIND_VOLATILE] = &modifier_ops,
3744         [BTF_KIND_CONST] = &modifier_ops,
3745         [BTF_KIND_RESTRICT] = &modifier_ops,
3746         [BTF_KIND_FUNC] = &func_ops,
3747         [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3748         [BTF_KIND_VAR] = &var_ops,
3749         [BTF_KIND_DATASEC] = &datasec_ops,
3750 };
3751
3752 static s32 btf_check_meta(struct btf_verifier_env *env,
3753                           const struct btf_type *t,
3754                           u32 meta_left)
3755 {
3756         u32 saved_meta_left = meta_left;
3757         s32 var_meta_size;
3758
3759         if (meta_left < sizeof(*t)) {
3760                 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3761                                  env->log_type_id, meta_left, sizeof(*t));
3762                 return -EINVAL;
3763         }
3764         meta_left -= sizeof(*t);
3765
3766         if (t->info & ~BTF_INFO_MASK) {
3767                 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3768                                  env->log_type_id, t->info);
3769                 return -EINVAL;
3770         }
3771
3772         if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3773             BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3774                 btf_verifier_log(env, "[%u] Invalid kind:%u",
3775                                  env->log_type_id, BTF_INFO_KIND(t->info));
3776                 return -EINVAL;
3777         }
3778
3779         if (!btf_name_offset_valid(env->btf, t->name_off)) {
3780                 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3781                                  env->log_type_id, t->name_off);
3782                 return -EINVAL;
3783         }
3784
3785         var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3786         if (var_meta_size < 0)
3787                 return var_meta_size;
3788
3789         meta_left -= var_meta_size;
3790
3791         return saved_meta_left - meta_left;
3792 }
3793
3794 static int btf_check_all_metas(struct btf_verifier_env *env)
3795 {
3796         struct btf *btf = env->btf;
3797         struct btf_header *hdr;
3798         void *cur, *end;
3799
3800         hdr = &btf->hdr;
3801         cur = btf->nohdr_data + hdr->type_off;
3802         end = cur + hdr->type_len;
3803
3804         env->log_type_id = 1;
3805         while (cur < end) {
3806                 struct btf_type *t = cur;
3807                 s32 meta_size;
3808
3809                 meta_size = btf_check_meta(env, t, end - cur);
3810                 if (meta_size < 0)
3811                         return meta_size;
3812
3813                 btf_add_type(env, t);
3814                 cur += meta_size;
3815                 env->log_type_id++;
3816         }
3817
3818         return 0;
3819 }
3820
3821 static bool btf_resolve_valid(struct btf_verifier_env *env,
3822                               const struct btf_type *t,
3823                               u32 type_id)
3824 {
3825         struct btf *btf = env->btf;
3826
3827         if (!env_type_is_resolved(env, type_id))
3828                 return false;
3829
3830         if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3831                 return !btf->resolved_ids[type_id] &&
3832                        !btf->resolved_sizes[type_id];
3833
3834         if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3835             btf_type_is_var(t)) {
3836                 t = btf_type_id_resolve(btf, &type_id);
3837                 return t &&
3838                        !btf_type_is_modifier(t) &&
3839                        !btf_type_is_var(t) &&
3840                        !btf_type_is_datasec(t);
3841         }
3842
3843         if (btf_type_is_array(t)) {
3844                 const struct btf_array *array = btf_type_array(t);
3845                 const struct btf_type *elem_type;
3846                 u32 elem_type_id = array->type;
3847                 u32 elem_size;
3848
3849                 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3850                 return elem_type && !btf_type_is_modifier(elem_type) &&
3851                         (array->nelems * elem_size ==
3852                          btf->resolved_sizes[type_id]);
3853         }
3854
3855         return false;
3856 }
3857
3858 static int btf_resolve(struct btf_verifier_env *env,
3859                        const struct btf_type *t, u32 type_id)
3860 {
3861         u32 save_log_type_id = env->log_type_id;
3862         const struct resolve_vertex *v;
3863         int err = 0;
3864
3865         env->resolve_mode = RESOLVE_TBD;
3866         env_stack_push(env, t, type_id);
3867         while (!err && (v = env_stack_peak(env))) {
3868                 env->log_type_id = v->type_id;
3869                 err = btf_type_ops(v->t)->resolve(env, v);
3870         }
3871
3872         env->log_type_id = type_id;
3873         if (err == -E2BIG) {
3874                 btf_verifier_log_type(env, t,
3875                                       "Exceeded max resolving depth:%u",
3876                                       MAX_RESOLVE_DEPTH);
3877         } else if (err == -EEXIST) {
3878                 btf_verifier_log_type(env, t, "Loop detected");
3879         }
3880
3881         /* Final sanity check */
3882         if (!err && !btf_resolve_valid(env, t, type_id)) {
3883                 btf_verifier_log_type(env, t, "Invalid resolve state");
3884                 err = -EINVAL;
3885         }
3886
3887         env->log_type_id = save_log_type_id;
3888         return err;
3889 }
3890
3891 static int btf_check_all_types(struct btf_verifier_env *env)
3892 {
3893         struct btf *btf = env->btf;
3894         u32 type_id;
3895         int err;
3896
3897         err = env_resolve_init(env);
3898         if (err)
3899                 return err;
3900
3901         env->phase++;
3902         for (type_id = 1; type_id <= btf->nr_types; type_id++) {
3903                 const struct btf_type *t = btf_type_by_id(btf, type_id);
3904
3905                 env->log_type_id = type_id;
3906                 if (btf_type_needs_resolve(t) &&
3907                     !env_type_is_resolved(env, type_id)) {
3908                         err = btf_resolve(env, t, type_id);
3909                         if (err)
3910                                 return err;
3911                 }
3912
3913                 if (btf_type_is_func_proto(t)) {
3914                         err = btf_func_proto_check(env, t);
3915                         if (err)
3916                                 return err;
3917                 }
3918
3919                 if (btf_type_is_func(t)) {
3920                         err = btf_func_check(env, t);
3921                         if (err)
3922                                 return err;
3923                 }
3924         }
3925
3926         return 0;
3927 }
3928
3929 static int btf_parse_type_sec(struct btf_verifier_env *env)
3930 {
3931         const struct btf_header *hdr = &env->btf->hdr;
3932         int err;
3933
3934         /* Type section must align to 4 bytes */
3935         if (hdr->type_off & (sizeof(u32) - 1)) {
3936                 btf_verifier_log(env, "Unaligned type_off");
3937                 return -EINVAL;
3938         }
3939
3940         if (!hdr->type_len) {
3941                 btf_verifier_log(env, "No type found");
3942                 return -EINVAL;
3943         }
3944
3945         err = btf_check_all_metas(env);
3946         if (err)
3947                 return err;
3948
3949         return btf_check_all_types(env);
3950 }
3951
3952 static int btf_parse_str_sec(struct btf_verifier_env *env)
3953 {
3954         const struct btf_header *hdr;
3955         struct btf *btf = env->btf;
3956         const char *start, *end;
3957
3958         hdr = &btf->hdr;
3959         start = btf->nohdr_data + hdr->str_off;
3960         end = start + hdr->str_len;
3961
3962         if (end != btf->data + btf->data_size) {
3963                 btf_verifier_log(env, "String section is not at the end");
3964                 return -EINVAL;
3965         }
3966
3967         if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
3968             start[0] || end[-1]) {
3969                 btf_verifier_log(env, "Invalid string section");
3970                 return -EINVAL;
3971         }
3972
3973         btf->strings = start;
3974
3975         return 0;
3976 }
3977
3978 static const size_t btf_sec_info_offset[] = {
3979         offsetof(struct btf_header, type_off),
3980         offsetof(struct btf_header, str_off),
3981 };
3982
3983 static int btf_sec_info_cmp(const void *a, const void *b)
3984 {
3985         const struct btf_sec_info *x = a;
3986         const struct btf_sec_info *y = b;
3987
3988         return (int)(x->off - y->off) ? : (int)(x->len - y->len);
3989 }
3990
3991 static int btf_check_sec_info(struct btf_verifier_env *env,
3992                               u32 btf_data_size)
3993 {
3994         struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
3995         u32 total, expected_total, i;
3996         const struct btf_header *hdr;
3997         const struct btf *btf;
3998
3999         btf = env->btf;
4000         hdr = &btf->hdr;
4001
4002         /* Populate the secs from hdr */
4003         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4004                 secs[i] = *(struct btf_sec_info *)((void *)hdr +
4005                                                    btf_sec_info_offset[i]);
4006
4007         sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4008              sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4009
4010         /* Check for gaps and overlap among sections */
4011         total = 0;
4012         expected_total = btf_data_size - hdr->hdr_len;
4013         for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4014                 if (expected_total < secs[i].off) {
4015                         btf_verifier_log(env, "Invalid section offset");
4016                         return -EINVAL;
4017                 }
4018                 if (total < secs[i].off) {
4019                         /* gap */
4020                         btf_verifier_log(env, "Unsupported section found");
4021                         return -EINVAL;
4022                 }
4023                 if (total > secs[i].off) {
4024                         btf_verifier_log(env, "Section overlap found");
4025                         return -EINVAL;
4026                 }
4027                 if (expected_total - total < secs[i].len) {
4028                         btf_verifier_log(env,
4029                                          "Total section length too long");
4030                         return -EINVAL;
4031                 }
4032                 total += secs[i].len;
4033         }
4034
4035         /* There is data other than hdr and known sections */
4036         if (expected_total != total) {
4037                 btf_verifier_log(env, "Unsupported section found");
4038                 return -EINVAL;
4039         }
4040
4041         return 0;
4042 }
4043
4044 static int btf_parse_hdr(struct btf_verifier_env *env)
4045 {
4046         u32 hdr_len, hdr_copy, btf_data_size;
4047         const struct btf_header *hdr;
4048         struct btf *btf;
4049         int err;
4050
4051         btf = env->btf;
4052         btf_data_size = btf->data_size;
4053
4054         if (btf_data_size <
4055             offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
4056                 btf_verifier_log(env, "hdr_len not found");
4057                 return -EINVAL;
4058         }
4059
4060         hdr = btf->data;
4061         hdr_len = hdr->hdr_len;
4062         if (btf_data_size < hdr_len) {
4063                 btf_verifier_log(env, "btf_header not found");
4064                 return -EINVAL;
4065         }
4066
4067         /* Ensure the unsupported header fields are zero */
4068         if (hdr_len > sizeof(btf->hdr)) {
4069                 u8 *expected_zero = btf->data + sizeof(btf->hdr);
4070                 u8 *end = btf->data + hdr_len;
4071
4072                 for (; expected_zero < end; expected_zero++) {
4073                         if (*expected_zero) {
4074                                 btf_verifier_log(env, "Unsupported btf_header");
4075                                 return -E2BIG;
4076                         }
4077                 }
4078         }
4079
4080         hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4081         memcpy(&btf->hdr, btf->data, hdr_copy);
4082
4083         hdr = &btf->hdr;
4084
4085         btf_verifier_log_hdr(env, btf_data_size);
4086
4087         if (hdr->magic != BTF_MAGIC) {
4088                 btf_verifier_log(env, "Invalid magic");
4089                 return -EINVAL;
4090         }
4091
4092         if (hdr->version != BTF_VERSION) {
4093                 btf_verifier_log(env, "Unsupported version");
4094                 return -ENOTSUPP;
4095         }
4096
4097         if (hdr->flags) {
4098                 btf_verifier_log(env, "Unsupported flags");
4099                 return -ENOTSUPP;
4100         }
4101
4102         if (btf_data_size == hdr->hdr_len) {
4103                 btf_verifier_log(env, "No data");
4104                 return -EINVAL;
4105         }
4106
4107         err = btf_check_sec_info(env, btf_data_size);
4108         if (err)
4109                 return err;
4110
4111         return 0;
4112 }
4113
4114 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
4115                              u32 log_level, char __user *log_ubuf, u32 log_size)
4116 {
4117         struct btf_verifier_env *env = NULL;
4118         struct bpf_verifier_log *log;
4119         struct btf *btf = NULL;
4120         u8 *data;
4121         int err;
4122
4123         if (btf_data_size > BTF_MAX_SIZE)
4124                 return ERR_PTR(-E2BIG);
4125
4126         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4127         if (!env)
4128                 return ERR_PTR(-ENOMEM);
4129
4130         log = &env->log;
4131         if (log_level || log_ubuf || log_size) {
4132                 /* user requested verbose verifier output
4133                  * and supplied buffer to store the verification trace
4134                  */
4135                 log->level = log_level;
4136                 log->ubuf = log_ubuf;
4137                 log->len_total = log_size;
4138
4139                 /* log attributes have to be sane */
4140                 if (!bpf_verifier_log_attr_valid(log)) {
4141                         err = -EINVAL;
4142                         goto errout;
4143                 }
4144         }
4145
4146         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4147         if (!btf) {
4148                 err = -ENOMEM;
4149                 goto errout;
4150         }
4151         env->btf = btf;
4152
4153         data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4154         if (!data) {
4155                 err = -ENOMEM;
4156                 goto errout;
4157         }
4158
4159         btf->data = data;
4160         btf->data_size = btf_data_size;
4161
4162         if (copy_from_user(data, btf_data, btf_data_size)) {
4163                 err = -EFAULT;
4164                 goto errout;
4165         }
4166
4167         err = btf_parse_hdr(env);
4168         if (err)
4169                 goto errout;
4170
4171         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4172
4173         err = btf_parse_str_sec(env);
4174         if (err)
4175                 goto errout;
4176
4177         err = btf_parse_type_sec(env);
4178         if (err)
4179                 goto errout;
4180
4181         if (log->level && bpf_verifier_log_full(log)) {
4182                 err = -ENOSPC;
4183                 goto errout;
4184         }
4185
4186         btf_verifier_env_free(env);
4187         refcount_set(&btf->refcnt, 1);
4188         return btf;
4189
4190 errout:
4191         btf_verifier_env_free(env);
4192         if (btf)
4193                 btf_free(btf);
4194         return ERR_PTR(err);
4195 }
4196
4197 extern char __weak __start_BTF[];
4198 extern char __weak __stop_BTF[];
4199 extern struct btf *btf_vmlinux;
4200
4201 #define BPF_MAP_TYPE(_id, _ops)
4202 #define BPF_LINK_TYPE(_id, _name)
4203 static union {
4204         struct bpf_ctx_convert {
4205 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4206         prog_ctx_type _id##_prog; \
4207         kern_ctx_type _id##_kern;
4208 #include <linux/bpf_types.h>
4209 #undef BPF_PROG_TYPE
4210         } *__t;
4211         /* 't' is written once under lock. Read many times. */
4212         const struct btf_type *t;
4213 } bpf_ctx_convert;
4214 enum {
4215 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4216         __ctx_convert##_id,
4217 #include <linux/bpf_types.h>
4218 #undef BPF_PROG_TYPE
4219         __ctx_convert_unused, /* to avoid empty enum in extreme .config */
4220 };
4221 static u8 bpf_ctx_convert_map[] = {
4222 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4223         [_id] = __ctx_convert##_id,
4224 #include <linux/bpf_types.h>
4225 #undef BPF_PROG_TYPE
4226         0, /* avoid empty array */
4227 };
4228 #undef BPF_MAP_TYPE
4229 #undef BPF_LINK_TYPE
4230
4231 static const struct btf_member *
4232 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
4233                       const struct btf_type *t, enum bpf_prog_type prog_type,
4234                       int arg)
4235 {
4236         const struct btf_type *conv_struct;
4237         const struct btf_type *ctx_struct;
4238         const struct btf_member *ctx_type;
4239         const char *tname, *ctx_tname;
4240
4241         conv_struct = bpf_ctx_convert.t;
4242         if (!conv_struct) {
4243                 bpf_log(log, "btf_vmlinux is malformed\n");
4244                 return NULL;
4245         }
4246         t = btf_type_by_id(btf, t->type);
4247         while (btf_type_is_modifier(t))
4248                 t = btf_type_by_id(btf, t->type);
4249         if (!btf_type_is_struct(t)) {
4250                 /* Only pointer to struct is supported for now.
4251                  * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4252                  * is not supported yet.
4253                  * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4254                  */
4255                 if (log->level & BPF_LOG_LEVEL)
4256                         bpf_log(log, "arg#%d type is not a struct\n", arg);
4257                 return NULL;
4258         }
4259         tname = btf_name_by_offset(btf, t->name_off);
4260         if (!tname) {
4261                 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4262                 return NULL;
4263         }
4264         /* prog_type is valid bpf program type. No need for bounds check. */
4265         ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4266         /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4267          * Like 'struct __sk_buff'
4268          */
4269         ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4270         if (!ctx_struct)
4271                 /* should not happen */
4272                 return NULL;
4273 again:
4274         ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4275         if (!ctx_tname) {
4276                 /* should not happen */
4277                 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4278                 return NULL;
4279         }
4280         /* only compare that prog's ctx type name is the same as
4281          * kernel expects. No need to compare field by field.
4282          * It's ok for bpf prog to do:
4283          * struct __sk_buff {};
4284          * int socket_filter_bpf_prog(struct __sk_buff *skb)
4285          * { // no fields of skb are ever used }
4286          */
4287         if (strcmp(ctx_tname, tname)) {
4288                 /* bpf_user_pt_regs_t is a typedef, so resolve it to
4289                  * underlying struct and check name again
4290                  */
4291                 if (!btf_type_is_modifier(ctx_struct))
4292                         return NULL;
4293                 while (btf_type_is_modifier(ctx_struct))
4294                         ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type);
4295                 goto again;
4296         }
4297         return ctx_type;
4298 }
4299
4300 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4301 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4302 #define BPF_LINK_TYPE(_id, _name)
4303 #define BPF_MAP_TYPE(_id, _ops) \
4304         [_id] = &_ops,
4305 #include <linux/bpf_types.h>
4306 #undef BPF_PROG_TYPE
4307 #undef BPF_LINK_TYPE
4308 #undef BPF_MAP_TYPE
4309 };
4310
4311 static int btf_vmlinux_map_ids_init(const struct btf *btf,
4312                                     struct bpf_verifier_log *log)
4313 {
4314         const struct bpf_map_ops *ops;
4315         int i, btf_id;
4316
4317         for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4318                 ops = btf_vmlinux_map_ops[i];
4319                 if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4320                         continue;
4321                 if (!ops->map_btf_name || !ops->map_btf_id) {
4322                         bpf_log(log, "map type %d is misconfigured\n", i);
4323                         return -EINVAL;
4324                 }
4325                 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4326                                                BTF_KIND_STRUCT);
4327                 if (btf_id < 0)
4328                         return btf_id;
4329                 *ops->map_btf_id = btf_id;
4330         }
4331
4332         return 0;
4333 }
4334
4335 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4336                                      struct btf *btf,
4337                                      const struct btf_type *t,
4338                                      enum bpf_prog_type prog_type,
4339                                      int arg)
4340 {
4341         const struct btf_member *prog_ctx_type, *kern_ctx_type;
4342
4343         prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4344         if (!prog_ctx_type)
4345                 return -ENOENT;
4346         kern_ctx_type = prog_ctx_type + 1;
4347         return kern_ctx_type->type;
4348 }
4349
4350 BTF_ID_LIST(bpf_ctx_convert_btf_id)
4351 BTF_ID(struct, bpf_ctx_convert)
4352
4353 struct btf *btf_parse_vmlinux(void)
4354 {
4355         struct btf_verifier_env *env = NULL;
4356         struct bpf_verifier_log *log;
4357         struct btf *btf = NULL;
4358         int err;
4359
4360         env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4361         if (!env)
4362                 return ERR_PTR(-ENOMEM);
4363
4364         log = &env->log;
4365         log->level = BPF_LOG_KERNEL;
4366
4367         btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4368         if (!btf) {
4369                 err = -ENOMEM;
4370                 goto errout;
4371         }
4372         env->btf = btf;
4373
4374         btf->data = __start_BTF;
4375         btf->data_size = __stop_BTF - __start_BTF;
4376
4377         err = btf_parse_hdr(env);
4378         if (err)
4379                 goto errout;
4380
4381         btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4382
4383         err = btf_parse_str_sec(env);
4384         if (err)
4385                 goto errout;
4386
4387         err = btf_check_all_metas(env);
4388         if (err)
4389                 goto errout;
4390
4391         /* btf_parse_vmlinux() runs under bpf_verifier_lock */
4392         bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4393
4394         /* find bpf map structs for map_ptr access checking */
4395         err = btf_vmlinux_map_ids_init(btf, log);
4396         if (err < 0)
4397                 goto errout;
4398
4399         bpf_struct_ops_init(btf, log);
4400
4401         btf_verifier_env_free(env);
4402         refcount_set(&btf->refcnt, 1);
4403         return btf;
4404
4405 errout:
4406         btf_verifier_env_free(env);
4407         if (btf) {
4408                 kvfree(btf->types);
4409                 kfree(btf);
4410         }
4411         return ERR_PTR(err);
4412 }
4413
4414 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4415 {
4416         struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4417
4418         if (tgt_prog) {
4419                 return tgt_prog->aux->btf;
4420         } else {
4421                 return btf_vmlinux;
4422         }
4423 }
4424
4425 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4426 {
4427         /* t comes in already as a pointer */
4428         t = btf_type_by_id(btf, t->type);
4429
4430         /* allow const */
4431         if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4432                 t = btf_type_by_id(btf, t->type);
4433
4434         /* char, signed char, unsigned char */
4435         return btf_type_is_int(t) && t->size == 1;
4436 }
4437
4438 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4439                     const struct bpf_prog *prog,
4440                     struct bpf_insn_access_aux *info)
4441 {
4442         const struct btf_type *t = prog->aux->attach_func_proto;
4443         struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4444         struct btf *btf = bpf_prog_get_target_btf(prog);
4445         const char *tname = prog->aux->attach_func_name;
4446         struct bpf_verifier_log *log = info->log;
4447         const struct btf_param *args;
4448         u32 nr_args, arg;
4449         int i, ret;
4450
4451         if (off % 8) {
4452                 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4453                         tname, off);
4454                 return false;
4455         }
4456         arg = off / 8;
4457         args = (const struct btf_param *)(t + 1);
4458         /* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
4459         nr_args = t ? btf_type_vlen(t) : 5;
4460         if (prog->aux->attach_btf_trace) {
4461                 /* skip first 'void *__data' argument in btf_trace_##name typedef */
4462                 args++;
4463                 nr_args--;
4464         }
4465
4466         if (arg > nr_args) {
4467                 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4468                         tname, arg + 1);
4469                 return false;
4470         }
4471
4472         if (arg == nr_args) {
4473                 switch (prog->expected_attach_type) {
4474                 case BPF_LSM_MAC:
4475                 case BPF_TRACE_FEXIT:
4476                         /* When LSM programs are attached to void LSM hooks
4477                          * they use FEXIT trampolines and when attached to
4478                          * int LSM hooks, they use MODIFY_RETURN trampolines.
4479                          *
4480                          * While the LSM programs are BPF_MODIFY_RETURN-like
4481                          * the check:
4482                          *
4483                          *      if (ret_type != 'int')
4484                          *              return -EINVAL;
4485                          *
4486                          * is _not_ done here. This is still safe as LSM hooks
4487                          * have only void and int return types.
4488                          */
4489                         if (!t)
4490                                 return true;
4491                         t = btf_type_by_id(btf, t->type);
4492                         break;
4493                 case BPF_MODIFY_RETURN:
4494                         /* For now the BPF_MODIFY_RETURN can only be attached to
4495                          * functions that return an int.
4496                          */
4497                         if (!t)
4498                                 return false;
4499
4500                         t = btf_type_skip_modifiers(btf, t->type, NULL);
4501                         if (!btf_type_is_small_int(t)) {
4502                                 bpf_log(log,
4503                                         "ret type %s not allowed for fmod_ret\n",
4504                                         btf_kind_str[BTF_INFO_KIND(t->info)]);
4505                                 return false;
4506                         }
4507                         break;
4508                 default:
4509                         bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4510                                 tname, arg + 1);
4511                         return false;
4512                 }
4513         } else {
4514                 if (!t)
4515                         /* Default prog with 5 args */
4516                         return true;
4517                 t = btf_type_by_id(btf, args[arg].type);
4518         }
4519
4520         /* skip modifiers */
4521         while (btf_type_is_modifier(t))
4522                 t = btf_type_by_id(btf, t->type);
4523         if (btf_type_is_small_int(t) || btf_type_is_enum(t))
4524                 /* accessing a scalar */
4525                 return true;
4526         if (!btf_type_is_ptr(t)) {
4527                 bpf_log(log,
4528                         "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
4529                         tname, arg,
4530                         __btf_name_by_offset(btf, t->name_off),
4531                         btf_kind_str[BTF_INFO_KIND(t->info)]);
4532                 return false;
4533         }
4534
4535         /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4536         for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4537                 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4538
4539                 if (ctx_arg_info->offset == off &&
4540                     (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
4541                      ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
4542                         info->reg_type = ctx_arg_info->reg_type;
4543                         return true;
4544                 }
4545         }
4546
4547         if (t->type == 0)
4548                 /* This is a pointer to void.
4549                  * It is the same as scalar from the verifier safety pov.
4550                  * No further pointer walking is allowed.
4551                  */
4552                 return true;
4553
4554         if (is_string_ptr(btf, t))
4555                 return true;
4556
4557         /* this is a pointer to another type */
4558         for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4559                 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4560
4561                 if (ctx_arg_info->offset == off) {
4562                         info->reg_type = ctx_arg_info->reg_type;
4563                         info->btf_id = ctx_arg_info->btf_id;
4564                         return true;
4565                 }
4566         }
4567
4568         info->reg_type = PTR_TO_BTF_ID;
4569         if (tgt_prog) {
4570                 enum bpf_prog_type tgt_type;
4571
4572                 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4573                         tgt_type = tgt_prog->aux->saved_dst_prog_type;
4574                 else
4575                         tgt_type = tgt_prog->type;
4576
4577                 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
4578                 if (ret > 0) {
4579                         info->btf_id = ret;
4580                         return true;
4581                 } else {
4582                         return false;
4583                 }
4584         }
4585
4586         info->btf_id = t->type;
4587         t = btf_type_by_id(btf, t->type);
4588         /* skip modifiers */
4589         while (btf_type_is_modifier(t)) {
4590                 info->btf_id = t->type;
4591                 t = btf_type_by_id(btf, t->type);
4592         }
4593         if (!btf_type_is_struct(t)) {
4594                 bpf_log(log,
4595                         "func '%s' arg%d type %s is not a struct\n",
4596                         tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
4597                 return false;
4598         }
4599         bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
4600                 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
4601                 __btf_name_by_offset(btf, t->name_off));
4602         return true;
4603 }
4604
4605 enum bpf_struct_walk_result {
4606         /* < 0 error */
4607         WALK_SCALAR = 0,
4608         WALK_PTR,
4609         WALK_STRUCT,
4610 };
4611
4612 static int btf_struct_walk(struct bpf_verifier_log *log,
4613                            const struct btf_type *t, int off, int size,
4614                            u32 *next_btf_id)
4615 {
4616         u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
4617         const struct btf_type *mtype, *elem_type = NULL;
4618         const struct btf_member *member;
4619         const char *tname, *mname;
4620         u32 vlen, elem_id, mid;
4621
4622 again:
4623         tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
4624         if (!btf_type_is_struct(t)) {
4625                 bpf_log(log, "Type '%s' is not a struct\n", tname);
4626                 return -EINVAL;
4627         }
4628
4629         vlen = btf_type_vlen(t);
4630         if (off + size > t->size) {
4631                 /* If the last element is a variable size array, we may
4632                  * need to relax the rule.
4633                  */
4634                 struct btf_array *array_elem;
4635
4636                 if (vlen == 0)
4637                         goto error;
4638
4639                 member = btf_type_member(t) + vlen - 1;
4640                 mtype = btf_type_skip_modifiers(btf_vmlinux, member->type,
4641                                                 NULL);
4642                 if (!btf_type_is_array(mtype))
4643                         goto error;
4644
4645                 array_elem = (struct btf_array *)(mtype + 1);
4646                 if (array_elem->nelems != 0)
4647                         goto error;
4648
4649                 moff = btf_member_bit_offset(t, member) / 8;
4650                 if (off < moff)
4651                         goto error;
4652
4653                 /* Only allow structure for now, can be relaxed for
4654                  * other types later.
4655                  */
4656                 t = btf_type_skip_modifiers(btf_vmlinux, array_elem->type,
4657                                             NULL);
4658                 if (!btf_type_is_struct(t))
4659                         goto error;
4660
4661                 off = (off - moff) % t->size;
4662                 goto again;
4663
4664 error:
4665                 bpf_log(log, "access beyond struct %s at off %u size %u\n",
4666                         tname, off, size);
4667                 return -EACCES;
4668         }
4669
4670         for_each_member(i, t, member) {
4671                 /* offset of the field in bytes */
4672                 moff = btf_member_bit_offset(t, member) / 8;
4673                 if (off + size <= moff)
4674                         /* won't find anything, field is already too far */
4675                         break;
4676
4677                 if (btf_member_bitfield_size(t, member)) {
4678                         u32 end_bit = btf_member_bit_offset(t, member) +
4679                                 btf_member_bitfield_size(t, member);
4680
4681                         /* off <= moff instead of off == moff because clang
4682                          * does not generate a BTF member for anonymous
4683                          * bitfield like the ":16" here:
4684                          * struct {
4685                          *      int :16;
4686                          *      int x:8;
4687                          * };
4688                          */
4689                         if (off <= moff &&
4690                             BITS_ROUNDUP_BYTES(end_bit) <= off + size)
4691                                 return WALK_SCALAR;
4692
4693                         /* off may be accessing a following member
4694                          *
4695                          * or
4696                          *
4697                          * Doing partial access at either end of this
4698                          * bitfield.  Continue on this case also to
4699                          * treat it as not accessing this bitfield
4700                          * and eventually error out as field not
4701                          * found to keep it simple.
4702                          * It could be relaxed if there was a legit
4703                          * partial access case later.
4704                          */
4705                         continue;
4706                 }
4707
4708                 /* In case of "off" is pointing to holes of a struct */
4709                 if (off < moff)
4710                         break;
4711
4712                 /* type of the field */
4713                 mid = member->type;
4714                 mtype = btf_type_by_id(btf_vmlinux, member->type);
4715                 mname = __btf_name_by_offset(btf_vmlinux, member->name_off);
4716
4717                 mtype = __btf_resolve_size(btf_vmlinux, mtype, &msize,
4718                                            &elem_type, &elem_id, &total_nelems,
4719                                            &mid);
4720                 if (IS_ERR(mtype)) {
4721                         bpf_log(log, "field %s doesn't have size\n", mname);
4722                         return -EFAULT;
4723                 }
4724
4725                 mtrue_end = moff + msize;
4726                 if (off >= mtrue_end)
4727                         /* no overlap with member, keep iterating */
4728                         continue;
4729
4730                 if (btf_type_is_array(mtype)) {
4731                         u32 elem_idx;
4732
4733                         /* __btf_resolve_size() above helps to
4734                          * linearize a multi-dimensional array.
4735                          *
4736                          * The logic here is treating an array
4737                          * in a struct as the following way:
4738                          *
4739                          * struct outer {
4740                          *      struct inner array[2][2];
4741                          * };
4742                          *
4743                          * looks like:
4744                          *
4745                          * struct outer {
4746                          *      struct inner array_elem0;
4747                          *      struct inner array_elem1;
4748                          *      struct inner array_elem2;
4749                          *      struct inner array_elem3;
4750                          * };
4751                          *
4752                          * When accessing outer->array[1][0], it moves
4753                          * moff to "array_elem2", set mtype to
4754                          * "struct inner", and msize also becomes
4755                          * sizeof(struct inner).  Then most of the
4756                          * remaining logic will fall through without
4757                          * caring the current member is an array or
4758                          * not.
4759                          *
4760                          * Unlike mtype/msize/moff, mtrue_end does not
4761                          * change.  The naming difference ("_true") tells
4762                          * that it is not always corresponding to
4763                          * the current mtype/msize/moff.
4764                          * It is the true end of the current
4765                          * member (i.e. array in this case).  That
4766                          * will allow an int array to be accessed like
4767                          * a scratch space,
4768                          * i.e. allow access beyond the size of
4769                          *      the array's element as long as it is
4770                          *      within the mtrue_end boundary.
4771                          */
4772
4773                         /* skip empty array */
4774                         if (moff == mtrue_end)
4775                                 continue;
4776
4777                         msize /= total_nelems;
4778                         elem_idx = (off - moff) / msize;
4779                         moff += elem_idx * msize;
4780                         mtype = elem_type;
4781                         mid = elem_id;
4782                 }
4783
4784                 /* the 'off' we're looking for is either equal to start
4785                  * of this field or inside of this struct
4786                  */
4787                 if (btf_type_is_struct(mtype)) {
4788                         /* our field must be inside that union or struct */
4789                         t = mtype;
4790
4791                         /* return if the offset matches the member offset */
4792                         if (off == moff) {
4793                                 *next_btf_id = mid;
4794                                 return WALK_STRUCT;
4795                         }
4796
4797                         /* adjust offset we're looking for */
4798                         off -= moff;
4799                         goto again;
4800                 }
4801
4802                 if (btf_type_is_ptr(mtype)) {
4803                         const struct btf_type *stype;
4804                         u32 id;
4805
4806                         if (msize != size || off != moff) {
4807                                 bpf_log(log,
4808                                         "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
4809                                         mname, moff, tname, off, size);
4810                                 return -EACCES;
4811                         }
4812                         stype = btf_type_skip_modifiers(btf_vmlinux, mtype->type, &id);
4813                         if (btf_type_is_struct(stype)) {
4814                                 *next_btf_id = id;
4815                                 return WALK_PTR;
4816                         }
4817                 }
4818
4819                 /* Allow more flexible access within an int as long as
4820                  * it is within mtrue_end.
4821                  * Since mtrue_end could be the end of an array,
4822                  * that also allows using an array of int as a scratch
4823                  * space. e.g. skb->cb[].
4824                  */
4825                 if (off + size > mtrue_end) {
4826                         bpf_log(log,
4827                                 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
4828                                 mname, mtrue_end, tname, off, size);
4829                         return -EACCES;
4830                 }
4831
4832                 return WALK_SCALAR;
4833         }
4834         bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
4835         return -EINVAL;
4836 }
4837
4838 int btf_struct_access(struct bpf_verifier_log *log,
4839                       const struct btf_type *t, int off, int size,
4840                       enum bpf_access_type atype __maybe_unused,
4841                       u32 *next_btf_id)
4842 {
4843         int err;
4844         u32 id;
4845
4846         do {
4847                 err = btf_struct_walk(log, t, off, size, &id);
4848
4849                 switch (err) {
4850                 case WALK_PTR:
4851                         /* If we found the pointer or scalar on t+off,
4852                          * we're done.
4853                          */
4854                         *next_btf_id = id;
4855                         return PTR_TO_BTF_ID;
4856                 case WALK_SCALAR:
4857                         return SCALAR_VALUE;
4858                 case WALK_STRUCT:
4859                         /* We found nested struct, so continue the search
4860                          * by diving in it. At this point the offset is
4861                          * aligned with the new type, so set it to 0.
4862                          */
4863                         t = btf_type_by_id(btf_vmlinux, id);
4864                         off = 0;
4865                         break;
4866                 default:
4867                         /* It's either error or unknown return value..
4868                          * scream and leave.
4869                          */
4870                         if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
4871                                 return -EINVAL;
4872                         return err;
4873                 }
4874         } while (t);
4875
4876         return -EINVAL;
4877 }
4878
4879 bool btf_struct_ids_match(struct bpf_verifier_log *log,
4880                           int off, u32 id, u32 need_type_id)
4881 {
4882         const struct btf_type *type;
4883         int err;
4884
4885         /* Are we already done? */
4886         if (need_type_id == id && off == 0)
4887                 return true;
4888
4889 again:
4890         type = btf_type_by_id(btf_vmlinux, id);
4891         if (!type)
4892                 return false;
4893         err = btf_struct_walk(log, type, off, 1, &id);
4894         if (err != WALK_STRUCT)
4895                 return false;
4896
4897         /* We found nested struct object. If it matches
4898          * the requested ID, we're done. Otherwise let's
4899          * continue the search with offset 0 in the new
4900          * type.
4901          */
4902         if (need_type_id != id) {
4903                 off = 0;
4904                 goto again;
4905         }
4906
4907         return true;
4908 }
4909
4910 static int __get_type_size(struct btf *btf, u32 btf_id,
4911                            const struct btf_type **bad_type)
4912 {
4913         const struct btf_type *t;
4914
4915         if (!btf_id)
4916                 /* void */
4917                 return 0;
4918         t = btf_type_by_id(btf, btf_id);
4919         while (t && btf_type_is_modifier(t))
4920                 t = btf_type_by_id(btf, t->type);
4921         if (!t) {
4922                 *bad_type = btf->types[0];
4923                 return -EINVAL;
4924         }
4925         if (btf_type_is_ptr(t))
4926                 /* kernel size of pointer. Not BPF's size of pointer*/
4927                 return sizeof(void *);
4928         if (btf_type_is_int(t) || btf_type_is_enum(t))
4929                 return t->size;
4930         *bad_type = t;
4931         return -EINVAL;
4932 }
4933
4934 int btf_distill_func_proto(struct bpf_verifier_log *log,
4935                            struct btf *btf,
4936                            const struct btf_type *func,
4937                            const char *tname,
4938                            struct btf_func_model *m)
4939 {
4940         const struct btf_param *args;
4941         const struct btf_type *t;
4942         u32 i, nargs;
4943         int ret;
4944
4945         if (!func) {
4946                 /* BTF function prototype doesn't match the verifier types.
4947                  * Fall back to 5 u64 args.
4948                  */
4949                 for (i = 0; i < 5; i++)
4950                         m->arg_size[i] = 8;
4951                 m->ret_size = 8;
4952                 m->nr_args = 5;
4953                 return 0;
4954         }
4955         args = (const struct btf_param *)(func + 1);
4956         nargs = btf_type_vlen(func);
4957         if (nargs >= MAX_BPF_FUNC_ARGS) {
4958                 bpf_log(log,
4959                         "The function %s has %d arguments. Too many.\n",
4960                         tname, nargs);
4961                 return -EINVAL;
4962         }
4963         ret = __get_type_size(btf, func->type, &t);
4964         if (ret < 0) {
4965                 bpf_log(log,
4966                         "The function %s return type %s is unsupported.\n",
4967                         tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
4968                 return -EINVAL;
4969         }
4970         m->ret_size = ret;
4971
4972         for (i = 0; i < nargs; i++) {
4973                 if (i == nargs - 1 && args[i].type == 0) {
4974                         bpf_log(log,
4975                                 "The function %s with variable args is unsupported.\n",
4976                                 tname);
4977                         return -EINVAL;
4978                 }
4979                 ret = __get_type_size(btf, args[i].type, &t);
4980                 if (ret < 0) {
4981                         bpf_log(log,
4982                                 "The function %s arg%d type %s is unsupported.\n",
4983                                 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4984                         return -EINVAL;
4985                 }
4986                 if (ret == 0) {
4987                         bpf_log(log,
4988                                 "The function %s has malformed void argument.\n",
4989                                 tname);
4990                         return -EINVAL;
4991                 }
4992                 m->arg_size[i] = ret;
4993         }
4994         m->nr_args = nargs;
4995         return 0;
4996 }
4997
4998 /* Compare BTFs of two functions assuming only scalars and pointers to context.
4999  * t1 points to BTF_KIND_FUNC in btf1
5000  * t2 points to BTF_KIND_FUNC in btf2
5001  * Returns:
5002  * EINVAL - function prototype mismatch
5003  * EFAULT - verifier bug
5004  * 0 - 99% match. The last 1% is validated by the verifier.
5005  */
5006 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5007                                      struct btf *btf1, const struct btf_type *t1,
5008                                      struct btf *btf2, const struct btf_type *t2)
5009 {
5010         const struct btf_param *args1, *args2;
5011         const char *fn1, *fn2, *s1, *s2;
5012         u32 nargs1, nargs2, i;
5013
5014         fn1 = btf_name_by_offset(btf1, t1->name_off);
5015         fn2 = btf_name_by_offset(btf2, t2->name_off);
5016
5017         if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5018                 bpf_log(log, "%s() is not a global function\n", fn1);
5019                 return -EINVAL;
5020         }
5021         if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5022                 bpf_log(log, "%s() is not a global function\n", fn2);
5023                 return -EINVAL;
5024         }
5025
5026         t1 = btf_type_by_id(btf1, t1->type);
5027         if (!t1 || !btf_type_is_func_proto(t1))
5028                 return -EFAULT;
5029         t2 = btf_type_by_id(btf2, t2->type);
5030         if (!t2 || !btf_type_is_func_proto(t2))
5031                 return -EFAULT;
5032
5033         args1 = (const struct btf_param *)(t1 + 1);
5034         nargs1 = btf_type_vlen(t1);
5035         args2 = (const struct btf_param *)(t2 + 1);
5036         nargs2 = btf_type_vlen(t2);
5037
5038         if (nargs1 != nargs2) {
5039                 bpf_log(log, "%s() has %d args while %s() has %d args\n",
5040                         fn1, nargs1, fn2, nargs2);
5041                 return -EINVAL;
5042         }
5043
5044         t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5045         t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5046         if (t1->info != t2->info) {
5047                 bpf_log(log,
5048                         "Return type %s of %s() doesn't match type %s of %s()\n",
5049                         btf_type_str(t1), fn1,
5050                         btf_type_str(t2), fn2);
5051                 return -EINVAL;
5052         }
5053
5054         for (i = 0; i < nargs1; i++) {
5055                 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5056                 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5057
5058                 if (t1->info != t2->info) {
5059                         bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5060                                 i, fn1, btf_type_str(t1),
5061                                 fn2, btf_type_str(t2));
5062                         return -EINVAL;
5063                 }
5064                 if (btf_type_has_size(t1) && t1->size != t2->size) {
5065                         bpf_log(log,
5066                                 "arg%d in %s() has size %d while %s() has %d\n",
5067                                 i, fn1, t1->size,
5068                                 fn2, t2->size);
5069                         return -EINVAL;
5070                 }
5071
5072                 /* global functions are validated with scalars and pointers
5073                  * to context only. And only global functions can be replaced.
5074                  * Hence type check only those types.
5075                  */
5076                 if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5077                         continue;
5078                 if (!btf_type_is_ptr(t1)) {
5079                         bpf_log(log,
5080                                 "arg%d in %s() has unrecognized type\n",
5081                                 i, fn1);
5082                         return -EINVAL;
5083                 }
5084                 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5085                 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5086                 if (!btf_type_is_struct(t1)) {
5087                         bpf_log(log,
5088                                 "arg%d in %s() is not a pointer to context\n",
5089                                 i, fn1);
5090                         return -EINVAL;
5091                 }
5092                 if (!btf_type_is_struct(t2)) {
5093                         bpf_log(log,
5094                                 "arg%d in %s() is not a pointer to context\n",
5095                                 i, fn2);
5096                         return -EINVAL;
5097                 }
5098                 /* This is an optional check to make program writing easier.
5099                  * Compare names of structs and report an error to the user.
5100                  * btf_prepare_func_args() already checked that t2 struct
5101                  * is a context type. btf_prepare_func_args() will check
5102                  * later that t1 struct is a context type as well.
5103                  */
5104                 s1 = btf_name_by_offset(btf1, t1->name_off);
5105                 s2 = btf_name_by_offset(btf2, t2->name_off);
5106                 if (strcmp(s1, s2)) {
5107                         bpf_log(log,
5108                                 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5109                                 i, fn1, s1, fn2, s2);
5110                         return -EINVAL;
5111                 }
5112         }
5113         return 0;
5114 }
5115
5116 /* Compare BTFs of given program with BTF of target program */
5117 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5118                          struct btf *btf2, const struct btf_type *t2)
5119 {
5120         struct btf *btf1 = prog->aux->btf;
5121         const struct btf_type *t1;
5122         u32 btf_id = 0;
5123
5124         if (!prog->aux->func_info) {
5125                 bpf_log(log, "Program extension requires BTF\n");
5126                 return -EINVAL;
5127         }
5128
5129         btf_id = prog->aux->func_info[0].type_id;
5130         if (!btf_id)
5131                 return -EFAULT;
5132
5133         t1 = btf_type_by_id(btf1, btf_id);
5134         if (!t1 || !btf_type_is_func(t1))
5135                 return -EFAULT;
5136
5137         return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5138 }
5139
5140 /* Compare BTF of a function with given bpf_reg_state.
5141  * Returns:
5142  * EFAULT - there is a verifier bug. Abort verification.
5143  * EINVAL - there is a type mismatch or BTF is not available.
5144  * 0 - BTF matches with what bpf_reg_state expects.
5145  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5146  */
5147 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
5148                              struct bpf_reg_state *reg)
5149 {
5150         struct bpf_verifier_log *log = &env->log;
5151         struct bpf_prog *prog = env->prog;
5152         struct btf *btf = prog->aux->btf;
5153         const struct btf_param *args;
5154         const struct btf_type *t;
5155         u32 i, nargs, btf_id;
5156         const char *tname;
5157
5158         if (!prog->aux->func_info)
5159                 return -EINVAL;
5160
5161         btf_id = prog->aux->func_info[subprog].type_id;
5162         if (!btf_id)
5163                 return -EFAULT;
5164
5165         if (prog->aux->func_info_aux[subprog].unreliable)
5166                 return -EINVAL;
5167
5168         t = btf_type_by_id(btf, btf_id);
5169         if (!t || !btf_type_is_func(t)) {
5170                 /* These checks were already done by the verifier while loading
5171                  * struct bpf_func_info
5172                  */
5173                 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5174                         subprog);
5175                 return -EFAULT;
5176         }
5177         tname = btf_name_by_offset(btf, t->name_off);
5178
5179         t = btf_type_by_id(btf, t->type);
5180         if (!t || !btf_type_is_func_proto(t)) {
5181                 bpf_log(log, "Invalid BTF of func %s\n", tname);
5182                 return -EFAULT;
5183         }
5184         args = (const struct btf_param *)(t + 1);
5185         nargs = btf_type_vlen(t);
5186         if (nargs > 5) {
5187                 bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
5188                 goto out;
5189         }
5190         /* check that BTF function arguments match actual types that the
5191          * verifier sees.
5192          */
5193         for (i = 0; i < nargs; i++) {
5194                 t = btf_type_by_id(btf, args[i].type);
5195                 while (btf_type_is_modifier(t))
5196                         t = btf_type_by_id(btf, t->type);
5197                 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5198                         if (reg[i + 1].type == SCALAR_VALUE)
5199                                 continue;
5200                         bpf_log(log, "R%d is not a scalar\n", i + 1);
5201                         goto out;
5202                 }
5203                 if (btf_type_is_ptr(t)) {
5204                         if (reg[i + 1].type == SCALAR_VALUE) {
5205                                 bpf_log(log, "R%d is not a pointer\n", i + 1);
5206                                 goto out;
5207                         }
5208                         /* If function expects ctx type in BTF check that caller
5209                          * is passing PTR_TO_CTX.
5210                          */
5211                         if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
5212                                 if (reg[i + 1].type != PTR_TO_CTX) {
5213                                         bpf_log(log,
5214                                                 "arg#%d expected pointer to ctx, but got %s\n",
5215                                                 i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5216                                         goto out;
5217                                 }
5218                                 if (check_ctx_reg(env, &reg[i + 1], i + 1))
5219                                         goto out;
5220                                 continue;
5221                         }
5222                 }
5223                 bpf_log(log, "Unrecognized arg#%d type %s\n",
5224                         i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5225                 goto out;
5226         }
5227         return 0;
5228 out:
5229         /* Compiler optimizations can remove arguments from static functions
5230          * or mismatched type can be passed into a global function.
5231          * In such cases mark the function as unreliable from BTF point of view.
5232          */
5233         prog->aux->func_info_aux[subprog].unreliable = true;
5234         return -EINVAL;
5235 }
5236
5237 /* Convert BTF of a function into bpf_reg_state if possible
5238  * Returns:
5239  * EFAULT - there is a verifier bug. Abort verification.
5240  * EINVAL - cannot convert BTF.
5241  * 0 - Successfully converted BTF into bpf_reg_state
5242  * (either PTR_TO_CTX or SCALAR_VALUE).
5243  */
5244 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5245                           struct bpf_reg_state *reg)
5246 {
5247         struct bpf_verifier_log *log = &env->log;
5248         struct bpf_prog *prog = env->prog;
5249         enum bpf_prog_type prog_type = prog->type;
5250         struct btf *btf = prog->aux->btf;
5251         const struct btf_param *args;
5252         const struct btf_type *t;
5253         u32 i, nargs, btf_id;
5254         const char *tname;
5255
5256         if (!prog->aux->func_info ||
5257             prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5258                 bpf_log(log, "Verifier bug\n");
5259                 return -EFAULT;
5260         }
5261
5262         btf_id = prog->aux->func_info[subprog].type_id;
5263         if (!btf_id) {
5264                 bpf_log(log, "Global functions need valid BTF\n");
5265                 return -EFAULT;
5266         }
5267
5268         t = btf_type_by_id(btf, btf_id);
5269         if (!t || !btf_type_is_func(t)) {
5270                 /* These checks were already done by the verifier while loading
5271                  * struct bpf_func_info
5272                  */
5273                 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5274                         subprog);
5275                 return -EFAULT;
5276         }
5277         tname = btf_name_by_offset(btf, t->name_off);
5278
5279         if (log->level & BPF_LOG_LEVEL)
5280                 bpf_log(log, "Validating %s() func#%d...\n",
5281                         tname, subprog);
5282
5283         if (prog->aux->func_info_aux[subprog].unreliable) {
5284                 bpf_log(log, "Verifier bug in function %s()\n", tname);
5285                 return -EFAULT;
5286         }
5287         if (prog_type == BPF_PROG_TYPE_EXT)
5288                 prog_type = prog->aux->dst_prog->type;
5289
5290         t = btf_type_by_id(btf, t->type);
5291         if (!t || !btf_type_is_func_proto(t)) {
5292                 bpf_log(log, "Invalid type of function %s()\n", tname);
5293                 return -EFAULT;
5294         }
5295         args = (const struct btf_param *)(t + 1);
5296         nargs = btf_type_vlen(t);
5297         if (nargs > 5) {
5298                 bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n",
5299                         tname, nargs);
5300                 return -EINVAL;
5301         }
5302         /* check that function returns int */
5303         t = btf_type_by_id(btf, t->type);
5304         while (btf_type_is_modifier(t))
5305                 t = btf_type_by_id(btf, t->type);
5306         if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5307                 bpf_log(log,
5308                         "Global function %s() doesn't return scalar. Only those are supported.\n",
5309                         tname);
5310                 return -EINVAL;
5311         }
5312         /* Convert BTF function arguments into verifier types.
5313          * Only PTR_TO_CTX and SCALAR are supported atm.
5314          */
5315         for (i = 0; i < nargs; i++) {
5316                 t = btf_type_by_id(btf, args[i].type);
5317                 while (btf_type_is_modifier(t))
5318                         t = btf_type_by_id(btf, t->type);
5319                 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5320                         reg[i + 1].type = SCALAR_VALUE;
5321                         continue;
5322                 }
5323                 if (btf_type_is_ptr(t) &&
5324                     btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5325                         reg[i + 1].type = PTR_TO_CTX;
5326                         continue;
5327                 }
5328                 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5329                         i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5330                 return -EINVAL;
5331         }
5332         return 0;
5333 }
5334
5335 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5336                           struct btf_show *show)
5337 {
5338         const struct btf_type *t = btf_type_by_id(btf, type_id);
5339
5340         show->btf = btf;
5341         memset(&show->state, 0, sizeof(show->state));
5342         memset(&show->obj, 0, sizeof(show->obj));
5343
5344         btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5345 }
5346
5347 static void btf_seq_show(struct btf_show *show, const char *fmt,
5348                          va_list args)
5349 {
5350         seq_vprintf((struct seq_file *)show->target, fmt, args);
5351 }
5352
5353 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5354                             void *obj, struct seq_file *m, u64 flags)
5355 {
5356         struct btf_show sseq;
5357
5358         sseq.target = m;
5359         sseq.showfn = btf_seq_show;
5360         sseq.flags = flags;
5361
5362         btf_type_show(btf, type_id, obj, &sseq);
5363
5364         return sseq.state.status;
5365 }
5366
5367 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5368                        struct seq_file *m)
5369 {
5370         (void) btf_type_seq_show_flags(btf, type_id, obj, m,
5371                                        BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5372                                        BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5373 }
5374
5375 struct btf_show_snprintf {
5376         struct btf_show show;
5377         int len_left;           /* space left in string */
5378         int len;                /* length we would have written */
5379 };
5380
5381 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5382                               va_list args)
5383 {
5384         struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5385         int len;
5386
5387         len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5388
5389         if (len < 0) {
5390                 ssnprintf->len_left = 0;
5391                 ssnprintf->len = len;
5392         } else if (len > ssnprintf->len_left) {
5393                 /* no space, drive on to get length we would have written */
5394                 ssnprintf->len_left = 0;
5395                 ssnprintf->len += len;
5396         } else {
5397                 ssnprintf->len_left -= len;
5398                 ssnprintf->len += len;
5399                 show->target += len;
5400         }
5401 }
5402
5403 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5404                            char *buf, int len, u64 flags)
5405 {
5406         struct btf_show_snprintf ssnprintf;
5407
5408         ssnprintf.show.target = buf;
5409         ssnprintf.show.flags = flags;
5410         ssnprintf.show.showfn = btf_snprintf_show;
5411         ssnprintf.len_left = len;
5412         ssnprintf.len = 0;
5413
5414         btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5415
5416         /* If we encontered an error, return it. */
5417         if (ssnprintf.show.state.status)
5418                 return ssnprintf.show.state.status;
5419
5420         /* Otherwise return length we would have written */
5421         return ssnprintf.len;
5422 }
5423
5424 #ifdef CONFIG_PROC_FS
5425 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5426 {
5427         const struct btf *btf = filp->private_data;
5428
5429         seq_printf(m, "btf_id:\t%u\n", btf->id);
5430 }
5431 #endif
5432
5433 static int btf_release(struct inode *inode, struct file *filp)
5434 {
5435         btf_put(filp->private_data);
5436         return 0;
5437 }
5438
5439 const struct file_operations btf_fops = {
5440 #ifdef CONFIG_PROC_FS
5441         .show_fdinfo    = bpf_btf_show_fdinfo,
5442 #endif
5443         .release        = btf_release,
5444 };
5445
5446 static int __btf_new_fd(struct btf *btf)
5447 {
5448         return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5449 }
5450
5451 int btf_new_fd(const union bpf_attr *attr)
5452 {
5453         struct btf *btf;
5454         int ret;
5455
5456         btf = btf_parse(u64_to_user_ptr(attr->btf),
5457                         attr->btf_size, attr->btf_log_level,
5458                         u64_to_user_ptr(attr->btf_log_buf),
5459                         attr->btf_log_size);
5460         if (IS_ERR(btf))
5461                 return PTR_ERR(btf);
5462
5463         ret = btf_alloc_id(btf);
5464         if (ret) {
5465                 btf_free(btf);
5466                 return ret;
5467         }
5468
5469         /*
5470          * The BTF ID is published to the userspace.
5471          * All BTF free must go through call_rcu() from
5472          * now on (i.e. free by calling btf_put()).
5473          */
5474
5475         ret = __btf_new_fd(btf);
5476         if (ret < 0)
5477                 btf_put(btf);
5478
5479         return ret;
5480 }
5481
5482 struct btf *btf_get_by_fd(int fd)
5483 {
5484         struct btf *btf;
5485         struct fd f;
5486
5487         f = fdget(fd);
5488
5489         if (!f.file)
5490                 return ERR_PTR(-EBADF);
5491
5492         if (f.file->f_op != &btf_fops) {
5493                 fdput(f);
5494                 return ERR_PTR(-EINVAL);
5495         }
5496
5497         btf = f.file->private_data;
5498         refcount_inc(&btf->refcnt);
5499         fdput(f);
5500
5501         return btf;
5502 }
5503
5504 int btf_get_info_by_fd(const struct btf *btf,
5505                        const union bpf_attr *attr,
5506                        union bpf_attr __user *uattr)
5507 {
5508         struct bpf_btf_info __user *uinfo;
5509         struct bpf_btf_info info;
5510         u32 info_copy, btf_copy;
5511         void __user *ubtf;
5512         u32 uinfo_len;
5513
5514         uinfo = u64_to_user_ptr(attr->info.info);
5515         uinfo_len = attr->info.info_len;
5516
5517         info_copy = min_t(u32, uinfo_len, sizeof(info));
5518         memset(&info, 0, sizeof(info));
5519         if (copy_from_user(&info, uinfo, info_copy))
5520                 return -EFAULT;
5521
5522         info.id = btf->id;
5523         ubtf = u64_to_user_ptr(info.btf);
5524         btf_copy = min_t(u32, btf->data_size, info.btf_size);
5525         if (copy_to_user(ubtf, btf->data, btf_copy))
5526                 return -EFAULT;
5527         info.btf_size = btf->data_size;
5528
5529         if (copy_to_user(uinfo, &info, info_copy) ||
5530             put_user(info_copy, &uattr->info.info_len))
5531                 return -EFAULT;
5532
5533         return 0;
5534 }
5535
5536 int btf_get_fd_by_id(u32 id)
5537 {
5538         struct btf *btf;
5539         int fd;
5540
5541         rcu_read_lock();
5542         btf = idr_find(&btf_idr, id);
5543         if (!btf || !refcount_inc_not_zero(&btf->refcnt))
5544                 btf = ERR_PTR(-ENOENT);
5545         rcu_read_unlock();
5546
5547         if (IS_ERR(btf))
5548                 return PTR_ERR(btf);
5549
5550         fd = __btf_new_fd(btf);
5551         if (fd < 0)
5552                 btf_put(btf);
5553
5554         return fd;
5555 }
5556
5557 u32 btf_id(const struct btf *btf)
5558 {
5559         return btf->id;
5560 }
5561
5562 static int btf_id_cmp_func(const void *a, const void *b)
5563 {
5564         const int *pa = a, *pb = b;
5565
5566         return *pa - *pb;
5567 }
5568
5569 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
5570 {
5571         return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
5572 }