Mention branches and keyring.
[releases.git] / ipv4 / inet_connection_sock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
4  *              operating system.  INET is implemented using the  BSD Socket
5  *              interface as the means of communication with the user level.
6  *
7  *              Support for INET connection oriented protocols.
8  *
9  * Authors:     See the TCP sources
10  */
11
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *                              if IPv6 only, and any IPv4 addresses
29  *                              if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *                              IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *                              and 0.0.0.0 equals to 0.0.0.0 only
33  */
34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35                                  const struct in6_addr *sk2_rcv_saddr6,
36                                  __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37                                  bool sk1_ipv6only, bool sk2_ipv6only,
38                                  bool match_sk1_wildcard,
39                                  bool match_sk2_wildcard)
40 {
41         int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42         int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44         /* if both are mapped, treat as IPv4 */
45         if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46                 if (!sk2_ipv6only) {
47                         if (sk1_rcv_saddr == sk2_rcv_saddr)
48                                 return true;
49                         return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50                                 (match_sk2_wildcard && !sk2_rcv_saddr);
51                 }
52                 return false;
53         }
54
55         if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56                 return true;
57
58         if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59             !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60                 return true;
61
62         if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63             !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64                 return true;
65
66         if (sk2_rcv_saddr6 &&
67             ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68                 return true;
69
70         return false;
71 }
72 #endif
73
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *                              0.0.0.0 only equals to 0.0.0.0
77  */
78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79                                  bool sk2_ipv6only, bool match_sk1_wildcard,
80                                  bool match_sk2_wildcard)
81 {
82         if (!sk2_ipv6only) {
83                 if (sk1_rcv_saddr == sk2_rcv_saddr)
84                         return true;
85                 return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86                         (match_sk2_wildcard && !sk2_rcv_saddr);
87         }
88         return false;
89 }
90
91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92                           bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95         if (sk->sk_family == AF_INET6)
96                 return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97                                             inet6_rcv_saddr(sk2),
98                                             sk->sk_rcv_saddr,
99                                             sk2->sk_rcv_saddr,
100                                             ipv6_only_sock(sk),
101                                             ipv6_only_sock(sk2),
102                                             match_wildcard,
103                                             match_wildcard);
104 #endif
105         return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106                                     ipv6_only_sock(sk2), match_wildcard,
107                                     match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114         if (sk->sk_family == AF_INET6)
115                 return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117         return !sk->sk_rcv_saddr;
118 }
119
120 /**
121  *      inet_sk_get_local_port_range - fetch ephemeral ports range
122  *      @sk: socket
123  *      @low: pointer to low port
124  *      @high: pointer to high port
125  *
126  *      Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127  *      Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128  *      Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129  */
130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131 {
132         int lo, hi, sk_lo, sk_hi;
133         bool local_range = false;
134         u32 sk_range;
135
136         inet_get_local_port_range(sock_net(sk), &lo, &hi);
137
138         sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139         if (unlikely(sk_range)) {
140                 sk_lo = sk_range & 0xffff;
141                 sk_hi = sk_range >> 16;
142
143                 if (lo <= sk_lo && sk_lo <= hi)
144                         lo = sk_lo;
145                 if (lo <= sk_hi && sk_hi <= hi)
146                         hi = sk_hi;
147                 local_range = true;
148         }
149
150         *low = lo;
151         *high = hi;
152         return local_range;
153 }
154 EXPORT_SYMBOL(inet_sk_get_local_port_range);
155
156 static bool inet_use_bhash2_on_bind(const struct sock *sk)
157 {
158 #if IS_ENABLED(CONFIG_IPV6)
159         if (sk->sk_family == AF_INET6) {
160                 int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
161
162                 if (addr_type == IPV6_ADDR_ANY)
163                         return false;
164
165                 if (addr_type != IPV6_ADDR_MAPPED)
166                         return true;
167         }
168 #endif
169         return sk->sk_rcv_saddr != htonl(INADDR_ANY);
170 }
171
172 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
173                                kuid_t sk_uid, bool relax,
174                                bool reuseport_cb_ok, bool reuseport_ok)
175 {
176         int bound_dev_if2;
177
178         if (sk == sk2)
179                 return false;
180
181         bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
182
183         if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
184             sk->sk_bound_dev_if == bound_dev_if2) {
185                 if (sk->sk_reuse && sk2->sk_reuse &&
186                     sk2->sk_state != TCP_LISTEN) {
187                         if (!relax || (!reuseport_ok && sk->sk_reuseport &&
188                                        sk2->sk_reuseport && reuseport_cb_ok &&
189                                        (sk2->sk_state == TCP_TIME_WAIT ||
190                                         uid_eq(sk_uid, sock_i_uid(sk2)))))
191                                 return true;
192                 } else if (!reuseport_ok || !sk->sk_reuseport ||
193                            !sk2->sk_reuseport || !reuseport_cb_ok ||
194                            (sk2->sk_state != TCP_TIME_WAIT &&
195                             !uid_eq(sk_uid, sock_i_uid(sk2)))) {
196                         return true;
197                 }
198         }
199         return false;
200 }
201
202 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
203                                    kuid_t sk_uid, bool relax,
204                                    bool reuseport_cb_ok, bool reuseport_ok)
205 {
206         if (ipv6_only_sock(sk2)) {
207                 if (sk->sk_family == AF_INET)
208                         return false;
209
210 #if IS_ENABLED(CONFIG_IPV6)
211                 if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
212                         return false;
213 #endif
214         }
215
216         return inet_bind_conflict(sk, sk2, sk_uid, relax,
217                                   reuseport_cb_ok, reuseport_ok);
218 }
219
220 static bool inet_bhash2_conflict(const struct sock *sk,
221                                  const struct inet_bind2_bucket *tb2,
222                                  kuid_t sk_uid,
223                                  bool relax, bool reuseport_cb_ok,
224                                  bool reuseport_ok)
225 {
226         struct sock *sk2;
227
228         sk_for_each_bound(sk2, &tb2->owners) {
229                 if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
230                                            reuseport_cb_ok, reuseport_ok))
231                         return true;
232         }
233
234         return false;
235 }
236
237 #define sk_for_each_bound_bhash(__sk, __tb2, __tb)                      \
238         hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node)        \
239                 sk_for_each_bound(sk2, &(__tb2)->owners)
240
241 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
242 static int inet_csk_bind_conflict(const struct sock *sk,
243                                   const struct inet_bind_bucket *tb,
244                                   const struct inet_bind2_bucket *tb2, /* may be null */
245                                   bool relax, bool reuseport_ok)
246 {
247         kuid_t uid = sock_i_uid((struct sock *)sk);
248         struct sock_reuseport *reuseport_cb;
249         bool reuseport_cb_ok;
250         struct sock *sk2;
251
252         rcu_read_lock();
253         reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
254         /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
255         reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
256         rcu_read_unlock();
257
258         /* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
259          * ipv4) should have been checked already. We need to do these two
260          * checks separately because their spinlocks have to be acquired/released
261          * independently of each other, to prevent possible deadlocks
262          */
263         if (inet_use_bhash2_on_bind(sk))
264                 return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
265                                                    reuseport_cb_ok, reuseport_ok);
266
267         /* Unlike other sk lookup places we do not check
268          * for sk_net here, since _all_ the socks listed
269          * in tb->owners and tb2->owners list belong
270          * to the same net - the one this bucket belongs to.
271          */
272         sk_for_each_bound_bhash(sk2, tb2, tb) {
273                 if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
274                         continue;
275
276                 if (inet_rcv_saddr_equal(sk, sk2, true))
277                         return true;
278         }
279
280         return false;
281 }
282
283 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
284  * INADDR_ANY (if ipv4) socket.
285  *
286  * Caller must hold bhash hashbucket lock with local bh disabled, to protect
287  * against concurrent binds on the port for addr any
288  */
289 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
290                                           bool relax, bool reuseport_ok)
291 {
292         kuid_t uid = sock_i_uid((struct sock *)sk);
293         const struct net *net = sock_net(sk);
294         struct sock_reuseport *reuseport_cb;
295         struct inet_bind_hashbucket *head2;
296         struct inet_bind2_bucket *tb2;
297         bool conflict = false;
298         bool reuseport_cb_ok;
299
300         rcu_read_lock();
301         reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
302         /* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
303         reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
304         rcu_read_unlock();
305
306         head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
307
308         spin_lock(&head2->lock);
309
310         inet_bind_bucket_for_each(tb2, &head2->chain) {
311                 if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
312                         continue;
313
314                 if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok, reuseport_ok))
315                         continue;
316
317                 conflict = true;
318                 break;
319         }
320
321         spin_unlock(&head2->lock);
322
323         return conflict;
324 }
325
326 /*
327  * Find an open port number for the socket.  Returns with the
328  * inet_bind_hashbucket locks held if successful.
329  */
330 static struct inet_bind_hashbucket *
331 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
332                         struct inet_bind2_bucket **tb2_ret,
333                         struct inet_bind_hashbucket **head2_ret, int *port_ret)
334 {
335         struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
336         int i, low, high, attempt_half, port, l3mdev;
337         struct inet_bind_hashbucket *head, *head2;
338         struct net *net = sock_net(sk);
339         struct inet_bind2_bucket *tb2;
340         struct inet_bind_bucket *tb;
341         u32 remaining, offset;
342         bool relax = false;
343
344         l3mdev = inet_sk_bound_l3mdev(sk);
345 ports_exhausted:
346         attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
347 other_half_scan:
348         inet_sk_get_local_port_range(sk, &low, &high);
349         high++; /* [32768, 60999] -> [32768, 61000[ */
350         if (high - low < 4)
351                 attempt_half = 0;
352         if (attempt_half) {
353                 int half = low + (((high - low) >> 2) << 1);
354
355                 if (attempt_half == 1)
356                         high = half;
357                 else
358                         low = half;
359         }
360         remaining = high - low;
361         if (likely(remaining > 1))
362                 remaining &= ~1U;
363
364         offset = get_random_u32_below(remaining);
365         /* __inet_hash_connect() favors ports having @low parity
366          * We do the opposite to not pollute connect() users.
367          */
368         offset |= 1U;
369
370 other_parity_scan:
371         port = low + offset;
372         for (i = 0; i < remaining; i += 2, port += 2) {
373                 if (unlikely(port >= high))
374                         port -= remaining;
375                 if (inet_is_local_reserved_port(net, port))
376                         continue;
377                 head = &hinfo->bhash[inet_bhashfn(net, port,
378                                                   hinfo->bhash_size)];
379                 spin_lock_bh(&head->lock);
380                 if (inet_use_bhash2_on_bind(sk)) {
381                         if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
382                                 goto next_port;
383                 }
384
385                 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
386                 spin_lock(&head2->lock);
387                 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
388                 inet_bind_bucket_for_each(tb, &head->chain)
389                         if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
390                                 if (!inet_csk_bind_conflict(sk, tb, tb2,
391                                                             relax, false))
392                                         goto success;
393                                 spin_unlock(&head2->lock);
394                                 goto next_port;
395                         }
396                 tb = NULL;
397                 goto success;
398 next_port:
399                 spin_unlock_bh(&head->lock);
400                 cond_resched();
401         }
402
403         offset--;
404         if (!(offset & 1))
405                 goto other_parity_scan;
406
407         if (attempt_half == 1) {
408                 /* OK we now try the upper half of the range */
409                 attempt_half = 2;
410                 goto other_half_scan;
411         }
412
413         if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
414                 /* We still have a chance to connect to different destinations */
415                 relax = true;
416                 goto ports_exhausted;
417         }
418         return NULL;
419 success:
420         *port_ret = port;
421         *tb_ret = tb;
422         *tb2_ret = tb2;
423         *head2_ret = head2;
424         return head;
425 }
426
427 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
428                                      struct sock *sk)
429 {
430         kuid_t uid = sock_i_uid(sk);
431
432         if (tb->fastreuseport <= 0)
433                 return 0;
434         if (!sk->sk_reuseport)
435                 return 0;
436         if (rcu_access_pointer(sk->sk_reuseport_cb))
437                 return 0;
438         if (!uid_eq(tb->fastuid, uid))
439                 return 0;
440         /* We only need to check the rcv_saddr if this tb was once marked
441          * without fastreuseport and then was reset, as we can only know that
442          * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
443          * owners list.
444          */
445         if (tb->fastreuseport == FASTREUSEPORT_ANY)
446                 return 1;
447 #if IS_ENABLED(CONFIG_IPV6)
448         if (tb->fast_sk_family == AF_INET6)
449                 return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
450                                             inet6_rcv_saddr(sk),
451                                             tb->fast_rcv_saddr,
452                                             sk->sk_rcv_saddr,
453                                             tb->fast_ipv6_only,
454                                             ipv6_only_sock(sk), true, false);
455 #endif
456         return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
457                                     ipv6_only_sock(sk), true, false);
458 }
459
460 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
461                                struct sock *sk)
462 {
463         kuid_t uid = sock_i_uid(sk);
464         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
465
466         if (hlist_empty(&tb->bhash2)) {
467                 tb->fastreuse = reuse;
468                 if (sk->sk_reuseport) {
469                         tb->fastreuseport = FASTREUSEPORT_ANY;
470                         tb->fastuid = uid;
471                         tb->fast_rcv_saddr = sk->sk_rcv_saddr;
472                         tb->fast_ipv6_only = ipv6_only_sock(sk);
473                         tb->fast_sk_family = sk->sk_family;
474 #if IS_ENABLED(CONFIG_IPV6)
475                         tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
476 #endif
477                 } else {
478                         tb->fastreuseport = 0;
479                 }
480         } else {
481                 if (!reuse)
482                         tb->fastreuse = 0;
483                 if (sk->sk_reuseport) {
484                         /* We didn't match or we don't have fastreuseport set on
485                          * the tb, but we have sk_reuseport set on this socket
486                          * and we know that there are no bind conflicts with
487                          * this socket in this tb, so reset our tb's reuseport
488                          * settings so that any subsequent sockets that match
489                          * our current socket will be put on the fast path.
490                          *
491                          * If we reset we need to set FASTREUSEPORT_STRICT so we
492                          * do extra checking for all subsequent sk_reuseport
493                          * socks.
494                          */
495                         if (!sk_reuseport_match(tb, sk)) {
496                                 tb->fastreuseport = FASTREUSEPORT_STRICT;
497                                 tb->fastuid = uid;
498                                 tb->fast_rcv_saddr = sk->sk_rcv_saddr;
499                                 tb->fast_ipv6_only = ipv6_only_sock(sk);
500                                 tb->fast_sk_family = sk->sk_family;
501 #if IS_ENABLED(CONFIG_IPV6)
502                                 tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
503 #endif
504                         }
505                 } else {
506                         tb->fastreuseport = 0;
507                 }
508         }
509 }
510
511 /* Obtain a reference to a local port for the given sock,
512  * if snum is zero it means select any available local port.
513  * We try to allocate an odd port (and leave even ports for connect())
514  */
515 int inet_csk_get_port(struct sock *sk, unsigned short snum)
516 {
517         struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
518         bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
519         bool found_port = false, check_bind_conflict = true;
520         bool bhash_created = false, bhash2_created = false;
521         int ret = -EADDRINUSE, port = snum, l3mdev;
522         struct inet_bind_hashbucket *head, *head2;
523         struct inet_bind2_bucket *tb2 = NULL;
524         struct inet_bind_bucket *tb = NULL;
525         bool head2_lock_acquired = false;
526         struct net *net = sock_net(sk);
527
528         l3mdev = inet_sk_bound_l3mdev(sk);
529
530         if (!port) {
531                 head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
532                 if (!head)
533                         return ret;
534
535                 head2_lock_acquired = true;
536
537                 if (tb && tb2)
538                         goto success;
539                 found_port = true;
540         } else {
541                 head = &hinfo->bhash[inet_bhashfn(net, port,
542                                                   hinfo->bhash_size)];
543                 spin_lock_bh(&head->lock);
544                 inet_bind_bucket_for_each(tb, &head->chain)
545                         if (inet_bind_bucket_match(tb, net, port, l3mdev))
546                                 break;
547         }
548
549         if (!tb) {
550                 tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
551                                              head, port, l3mdev);
552                 if (!tb)
553                         goto fail_unlock;
554                 bhash_created = true;
555         }
556
557         if (!found_port) {
558                 if (!hlist_empty(&tb->bhash2)) {
559                         if (sk->sk_reuse == SK_FORCE_REUSE ||
560                             (tb->fastreuse > 0 && reuse) ||
561                             sk_reuseport_match(tb, sk))
562                                 check_bind_conflict = false;
563                 }
564
565                 if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
566                         if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
567                                 goto fail_unlock;
568                 }
569
570                 head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
571                 spin_lock(&head2->lock);
572                 head2_lock_acquired = true;
573                 tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
574         }
575
576         if (!tb2) {
577                 tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
578                                                net, head2, tb, sk);
579                 if (!tb2)
580                         goto fail_unlock;
581                 bhash2_created = true;
582         }
583
584         if (!found_port && check_bind_conflict) {
585                 if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
586                         goto fail_unlock;
587         }
588
589 success:
590         inet_csk_update_fastreuse(tb, sk);
591
592         if (!inet_csk(sk)->icsk_bind_hash)
593                 inet_bind_hash(sk, tb, tb2, port);
594         WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
595         WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
596         ret = 0;
597
598 fail_unlock:
599         if (ret) {
600                 if (bhash2_created)
601                         inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
602                 if (bhash_created)
603                         inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
604         }
605         if (head2_lock_acquired)
606                 spin_unlock(&head2->lock);
607         spin_unlock_bh(&head->lock);
608         return ret;
609 }
610 EXPORT_SYMBOL_GPL(inet_csk_get_port);
611
612 /*
613  * Wait for an incoming connection, avoid race conditions. This must be called
614  * with the socket locked.
615  */
616 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
617 {
618         struct inet_connection_sock *icsk = inet_csk(sk);
619         DEFINE_WAIT(wait);
620         int err;
621
622         /*
623          * True wake-one mechanism for incoming connections: only
624          * one process gets woken up, not the 'whole herd'.
625          * Since we do not 'race & poll' for established sockets
626          * anymore, the common case will execute the loop only once.
627          *
628          * Subtle issue: "add_wait_queue_exclusive()" will be added
629          * after any current non-exclusive waiters, and we know that
630          * it will always _stay_ after any new non-exclusive waiters
631          * because all non-exclusive waiters are added at the
632          * beginning of the wait-queue. As such, it's ok to "drop"
633          * our exclusiveness temporarily when we get woken up without
634          * having to remove and re-insert us on the wait queue.
635          */
636         for (;;) {
637                 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
638                                           TASK_INTERRUPTIBLE);
639                 release_sock(sk);
640                 if (reqsk_queue_empty(&icsk->icsk_accept_queue))
641                         timeo = schedule_timeout(timeo);
642                 sched_annotate_sleep();
643                 lock_sock(sk);
644                 err = 0;
645                 if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
646                         break;
647                 err = -EINVAL;
648                 if (sk->sk_state != TCP_LISTEN)
649                         break;
650                 err = sock_intr_errno(timeo);
651                 if (signal_pending(current))
652                         break;
653                 err = -EAGAIN;
654                 if (!timeo)
655                         break;
656         }
657         finish_wait(sk_sleep(sk), &wait);
658         return err;
659 }
660
661 /*
662  * This will accept the next outstanding connection.
663  */
664 struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
665 {
666         struct inet_connection_sock *icsk = inet_csk(sk);
667         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
668         struct request_sock *req;
669         struct sock *newsk;
670         int error;
671
672         lock_sock(sk);
673
674         /* We need to make sure that this socket is listening,
675          * and that it has something pending.
676          */
677         error = -EINVAL;
678         if (sk->sk_state != TCP_LISTEN)
679                 goto out_err;
680
681         /* Find already established connection */
682         if (reqsk_queue_empty(queue)) {
683                 long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
684
685                 /* If this is a non blocking socket don't sleep */
686                 error = -EAGAIN;
687                 if (!timeo)
688                         goto out_err;
689
690                 error = inet_csk_wait_for_connect(sk, timeo);
691                 if (error)
692                         goto out_err;
693         }
694         req = reqsk_queue_remove(queue, sk);
695         newsk = req->sk;
696
697         if (sk->sk_protocol == IPPROTO_TCP &&
698             tcp_rsk(req)->tfo_listener) {
699                 spin_lock_bh(&queue->fastopenq.lock);
700                 if (tcp_rsk(req)->tfo_listener) {
701                         /* We are still waiting for the final ACK from 3WHS
702                          * so can't free req now. Instead, we set req->sk to
703                          * NULL to signify that the child socket is taken
704                          * so reqsk_fastopen_remove() will free the req
705                          * when 3WHS finishes (or is aborted).
706                          */
707                         req->sk = NULL;
708                         req = NULL;
709                 }
710                 spin_unlock_bh(&queue->fastopenq.lock);
711         }
712
713 out:
714         release_sock(sk);
715         if (newsk && mem_cgroup_sockets_enabled) {
716                 int amt = 0;
717
718                 /* atomically get the memory usage, set and charge the
719                  * newsk->sk_memcg.
720                  */
721                 lock_sock(newsk);
722
723                 mem_cgroup_sk_alloc(newsk);
724                 if (newsk->sk_memcg) {
725                         /* The socket has not been accepted yet, no need
726                          * to look at newsk->sk_wmem_queued.
727                          */
728                         amt = sk_mem_pages(newsk->sk_forward_alloc +
729                                            atomic_read(&newsk->sk_rmem_alloc));
730                 }
731
732                 if (amt)
733                         mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
734                                                 GFP_KERNEL | __GFP_NOFAIL);
735
736                 release_sock(newsk);
737         }
738         if (req)
739                 reqsk_put(req);
740
741         if (newsk)
742                 inet_init_csk_locks(newsk);
743
744         return newsk;
745 out_err:
746         newsk = NULL;
747         req = NULL;
748         *err = error;
749         goto out;
750 }
751 EXPORT_SYMBOL(inet_csk_accept);
752
753 /*
754  * Using different timers for retransmit, delayed acks and probes
755  * We may wish use just one timer maintaining a list of expire jiffies
756  * to optimize.
757  */
758 void inet_csk_init_xmit_timers(struct sock *sk,
759                                void (*retransmit_handler)(struct timer_list *t),
760                                void (*delack_handler)(struct timer_list *t),
761                                void (*keepalive_handler)(struct timer_list *t))
762 {
763         struct inet_connection_sock *icsk = inet_csk(sk);
764
765         timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
766         timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
767         timer_setup(&sk->sk_timer, keepalive_handler, 0);
768         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
769 }
770 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
771
772 void inet_csk_clear_xmit_timers(struct sock *sk)
773 {
774         struct inet_connection_sock *icsk = inet_csk(sk);
775
776         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
777
778         sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
779         sk_stop_timer(sk, &icsk->icsk_delack_timer);
780         sk_stop_timer(sk, &sk->sk_timer);
781 }
782 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
783
784 void inet_csk_clear_xmit_timers_sync(struct sock *sk)
785 {
786         struct inet_connection_sock *icsk = inet_csk(sk);
787
788         /* ongoing timer handlers need to acquire socket lock. */
789         sock_not_owned_by_me(sk);
790
791         icsk->icsk_pending = icsk->icsk_ack.pending = 0;
792
793         sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
794         sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
795         sk_stop_timer_sync(sk, &sk->sk_timer);
796 }
797
798 void inet_csk_delete_keepalive_timer(struct sock *sk)
799 {
800         sk_stop_timer(sk, &sk->sk_timer);
801 }
802 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
803
804 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
805 {
806         sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
807 }
808 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
809
810 struct dst_entry *inet_csk_route_req(const struct sock *sk,
811                                      struct flowi4 *fl4,
812                                      const struct request_sock *req)
813 {
814         const struct inet_request_sock *ireq = inet_rsk(req);
815         struct net *net = read_pnet(&ireq->ireq_net);
816         struct ip_options_rcu *opt;
817         struct rtable *rt;
818
819         rcu_read_lock();
820         opt = rcu_dereference(ireq->ireq_opt);
821
822         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
823                            ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
824                            sk->sk_protocol, inet_sk_flowi_flags(sk),
825                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
826                            ireq->ir_loc_addr, ireq->ir_rmt_port,
827                            htons(ireq->ir_num), sk->sk_uid);
828         security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
829         rt = ip_route_output_flow(net, fl4, sk);
830         if (IS_ERR(rt))
831                 goto no_route;
832         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
833                 goto route_err;
834         rcu_read_unlock();
835         return &rt->dst;
836
837 route_err:
838         ip_rt_put(rt);
839 no_route:
840         rcu_read_unlock();
841         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
842         return NULL;
843 }
844 EXPORT_SYMBOL_GPL(inet_csk_route_req);
845
846 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
847                                             struct sock *newsk,
848                                             const struct request_sock *req)
849 {
850         const struct inet_request_sock *ireq = inet_rsk(req);
851         struct net *net = read_pnet(&ireq->ireq_net);
852         struct inet_sock *newinet = inet_sk(newsk);
853         struct ip_options_rcu *opt;
854         struct flowi4 *fl4;
855         struct rtable *rt;
856
857         opt = rcu_dereference(ireq->ireq_opt);
858         fl4 = &newinet->cork.fl.u.ip4;
859
860         flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
861                            ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
862                            sk->sk_protocol, inet_sk_flowi_flags(sk),
863                            (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
864                            ireq->ir_loc_addr, ireq->ir_rmt_port,
865                            htons(ireq->ir_num), sk->sk_uid);
866         security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
867         rt = ip_route_output_flow(net, fl4, sk);
868         if (IS_ERR(rt))
869                 goto no_route;
870         if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
871                 goto route_err;
872         return &rt->dst;
873
874 route_err:
875         ip_rt_put(rt);
876 no_route:
877         __IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
878         return NULL;
879 }
880 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
881
882 /* Decide when to expire the request and when to resend SYN-ACK */
883 static void syn_ack_recalc(struct request_sock *req,
884                            const int max_syn_ack_retries,
885                            const u8 rskq_defer_accept,
886                            int *expire, int *resend)
887 {
888         if (!rskq_defer_accept) {
889                 *expire = req->num_timeout >= max_syn_ack_retries;
890                 *resend = 1;
891                 return;
892         }
893         *expire = req->num_timeout >= max_syn_ack_retries &&
894                   (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
895         /* Do not resend while waiting for data after ACK,
896          * start to resend on end of deferring period to give
897          * last chance for data or ACK to create established socket.
898          */
899         *resend = !inet_rsk(req)->acked ||
900                   req->num_timeout >= rskq_defer_accept - 1;
901 }
902
903 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
904 {
905         int err = req->rsk_ops->rtx_syn_ack(parent, req);
906
907         if (!err)
908                 req->num_retrans++;
909         return err;
910 }
911 EXPORT_SYMBOL(inet_rtx_syn_ack);
912
913 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
914                                              struct sock *sk)
915 {
916         struct sock *req_sk, *nreq_sk;
917         struct request_sock *nreq;
918
919         nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
920         if (!nreq) {
921                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
922
923                 /* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
924                 sock_put(sk);
925                 return NULL;
926         }
927
928         req_sk = req_to_sk(req);
929         nreq_sk = req_to_sk(nreq);
930
931         memcpy(nreq_sk, req_sk,
932                offsetof(struct sock, sk_dontcopy_begin));
933         memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
934                req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
935
936         sk_node_init(&nreq_sk->sk_node);
937         nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
938 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
939         nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
940 #endif
941         nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
942
943         nreq->rsk_listener = sk;
944
945         /* We need not acquire fastopenq->lock
946          * because the child socket is locked in inet_csk_listen_stop().
947          */
948         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
949                 rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
950
951         return nreq;
952 }
953
954 static void reqsk_queue_migrated(struct request_sock_queue *queue,
955                                  const struct request_sock *req)
956 {
957         if (req->num_timeout == 0)
958                 atomic_inc(&queue->young);
959         atomic_inc(&queue->qlen);
960 }
961
962 static void reqsk_migrate_reset(struct request_sock *req)
963 {
964         req->saved_syn = NULL;
965 #if IS_ENABLED(CONFIG_IPV6)
966         inet_rsk(req)->ipv6_opt = NULL;
967         inet_rsk(req)->pktopts = NULL;
968 #else
969         inet_rsk(req)->ireq_opt = NULL;
970 #endif
971 }
972
973 /* return true if req was found in the ehash table */
974 static bool reqsk_queue_unlink(struct request_sock *req)
975 {
976         struct sock *sk = req_to_sk(req);
977         bool found = false;
978
979         if (sk_hashed(sk)) {
980                 struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
981                 spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
982
983                 spin_lock(lock);
984                 found = __sk_nulls_del_node_init_rcu(sk);
985                 spin_unlock(lock);
986         }
987         if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
988                 reqsk_put(req);
989         return found;
990 }
991
992 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
993 {
994         bool unlinked = reqsk_queue_unlink(req);
995
996         if (unlinked) {
997                 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
998                 reqsk_put(req);
999         }
1000         return unlinked;
1001 }
1002 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
1003
1004 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1005 {
1006         inet_csk_reqsk_queue_drop(sk, req);
1007         reqsk_put(req);
1008 }
1009 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
1010
1011 static void reqsk_timer_handler(struct timer_list *t)
1012 {
1013         struct request_sock *req = from_timer(req, t, rsk_timer);
1014         struct request_sock *nreq = NULL, *oreq = req;
1015         struct sock *sk_listener = req->rsk_listener;
1016         struct inet_connection_sock *icsk;
1017         struct request_sock_queue *queue;
1018         struct net *net;
1019         int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1020
1021         if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1022                 struct sock *nsk;
1023
1024                 nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1025                 if (!nsk)
1026                         goto drop;
1027
1028                 nreq = inet_reqsk_clone(req, nsk);
1029                 if (!nreq)
1030                         goto drop;
1031
1032                 /* The new timer for the cloned req can decrease the 2
1033                  * by calling inet_csk_reqsk_queue_drop_and_put(), so
1034                  * hold another count to prevent use-after-free and
1035                  * call reqsk_put() just before return.
1036                  */
1037                 refcount_set(&nreq->rsk_refcnt, 2 + 1);
1038                 timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1039                 reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1040
1041                 req = nreq;
1042                 sk_listener = nsk;
1043         }
1044
1045         icsk = inet_csk(sk_listener);
1046         net = sock_net(sk_listener);
1047         max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1048                 READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1049         /* Normally all the openreqs are young and become mature
1050          * (i.e. converted to established socket) for first timeout.
1051          * If synack was not acknowledged for 1 second, it means
1052          * one of the following things: synack was lost, ack was lost,
1053          * rtt is high or nobody planned to ack (i.e. synflood).
1054          * When server is a bit loaded, queue is populated with old
1055          * open requests, reducing effective size of queue.
1056          * When server is well loaded, queue size reduces to zero
1057          * after several minutes of work. It is not synflood,
1058          * it is normal operation. The solution is pruning
1059          * too old entries overriding normal timeout, when
1060          * situation becomes dangerous.
1061          *
1062          * Essentially, we reserve half of room for young
1063          * embrions; and abort old ones without pity, if old
1064          * ones are about to clog our table.
1065          */
1066         queue = &icsk->icsk_accept_queue;
1067         qlen = reqsk_queue_len(queue);
1068         if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1069                 int young = reqsk_queue_len_young(queue) << 1;
1070
1071                 while (max_syn_ack_retries > 2) {
1072                         if (qlen < young)
1073                                 break;
1074                         max_syn_ack_retries--;
1075                         young <<= 1;
1076                 }
1077         }
1078         syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1079                        &expire, &resend);
1080         req->rsk_ops->syn_ack_timeout(req);
1081         if (!expire &&
1082             (!resend ||
1083              !inet_rtx_syn_ack(sk_listener, req) ||
1084              inet_rsk(req)->acked)) {
1085                 if (req->num_timeout++ == 0)
1086                         atomic_dec(&queue->young);
1087                 mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1088
1089                 if (!nreq)
1090                         return;
1091
1092                 if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1093                         /* delete timer */
1094                         inet_csk_reqsk_queue_drop(sk_listener, nreq);
1095                         goto no_ownership;
1096                 }
1097
1098                 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1099                 reqsk_migrate_reset(oreq);
1100                 reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1101                 reqsk_put(oreq);
1102
1103                 reqsk_put(nreq);
1104                 return;
1105         }
1106
1107         /* Even if we can clone the req, we may need not retransmit any more
1108          * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1109          * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1110          */
1111         if (nreq) {
1112                 __NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1113 no_ownership:
1114                 reqsk_migrate_reset(nreq);
1115                 reqsk_queue_removed(queue, nreq);
1116                 __reqsk_free(nreq);
1117         }
1118
1119 drop:
1120         inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1121 }
1122
1123 static void reqsk_queue_hash_req(struct request_sock *req,
1124                                  unsigned long timeout)
1125 {
1126         timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1127         mod_timer(&req->rsk_timer, jiffies + timeout);
1128
1129         inet_ehash_insert(req_to_sk(req), NULL, NULL);
1130         /* before letting lookups find us, make sure all req fields
1131          * are committed to memory and refcnt initialized.
1132          */
1133         smp_wmb();
1134         refcount_set(&req->rsk_refcnt, 2 + 1);
1135 }
1136
1137 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1138                                    unsigned long timeout)
1139 {
1140         reqsk_queue_hash_req(req, timeout);
1141         inet_csk_reqsk_queue_added(sk);
1142 }
1143 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1144
1145 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1146                            const gfp_t priority)
1147 {
1148         struct inet_connection_sock *icsk = inet_csk(newsk);
1149
1150         if (!icsk->icsk_ulp_ops)
1151                 return;
1152
1153         icsk->icsk_ulp_ops->clone(req, newsk, priority);
1154 }
1155
1156 /**
1157  *      inet_csk_clone_lock - clone an inet socket, and lock its clone
1158  *      @sk: the socket to clone
1159  *      @req: request_sock
1160  *      @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1161  *
1162  *      Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1163  */
1164 struct sock *inet_csk_clone_lock(const struct sock *sk,
1165                                  const struct request_sock *req,
1166                                  const gfp_t priority)
1167 {
1168         struct sock *newsk = sk_clone_lock(sk, priority);
1169
1170         if (newsk) {
1171                 struct inet_connection_sock *newicsk = inet_csk(newsk);
1172
1173                 inet_sk_set_state(newsk, TCP_SYN_RECV);
1174                 newicsk->icsk_bind_hash = NULL;
1175                 newicsk->icsk_bind2_hash = NULL;
1176
1177                 inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1178                 inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1179                 inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1180
1181                 /* listeners have SOCK_RCU_FREE, not the children */
1182                 sock_reset_flag(newsk, SOCK_RCU_FREE);
1183
1184                 inet_sk(newsk)->mc_list = NULL;
1185
1186                 newsk->sk_mark = inet_rsk(req)->ir_mark;
1187                 atomic64_set(&newsk->sk_cookie,
1188                              atomic64_read(&inet_rsk(req)->ir_cookie));
1189
1190                 newicsk->icsk_retransmits = 0;
1191                 newicsk->icsk_backoff     = 0;
1192                 newicsk->icsk_probes_out  = 0;
1193                 newicsk->icsk_probes_tstamp = 0;
1194
1195                 /* Deinitialize accept_queue to trap illegal accesses. */
1196                 memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1197
1198                 inet_clone_ulp(req, newsk, priority);
1199
1200                 security_inet_csk_clone(newsk, req);
1201         }
1202         return newsk;
1203 }
1204 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1205
1206 /*
1207  * At this point, there should be no process reference to this
1208  * socket, and thus no user references at all.  Therefore we
1209  * can assume the socket waitqueue is inactive and nobody will
1210  * try to jump onto it.
1211  */
1212 void inet_csk_destroy_sock(struct sock *sk)
1213 {
1214         WARN_ON(sk->sk_state != TCP_CLOSE);
1215         WARN_ON(!sock_flag(sk, SOCK_DEAD));
1216
1217         /* It cannot be in hash table! */
1218         WARN_ON(!sk_unhashed(sk));
1219
1220         /* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1221         WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1222
1223         sk->sk_prot->destroy(sk);
1224
1225         sk_stream_kill_queues(sk);
1226
1227         xfrm_sk_free_policy(sk);
1228
1229         this_cpu_dec(*sk->sk_prot->orphan_count);
1230
1231         sock_put(sk);
1232 }
1233 EXPORT_SYMBOL(inet_csk_destroy_sock);
1234
1235 /* This function allows to force a closure of a socket after the call to
1236  * tcp/dccp_create_openreq_child().
1237  */
1238 void inet_csk_prepare_forced_close(struct sock *sk)
1239         __releases(&sk->sk_lock.slock)
1240 {
1241         /* sk_clone_lock locked the socket and set refcnt to 2 */
1242         bh_unlock_sock(sk);
1243         sock_put(sk);
1244         inet_csk_prepare_for_destroy_sock(sk);
1245         inet_sk(sk)->inet_num = 0;
1246 }
1247 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1248
1249 static int inet_ulp_can_listen(const struct sock *sk)
1250 {
1251         const struct inet_connection_sock *icsk = inet_csk(sk);
1252
1253         if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1254                 return -EINVAL;
1255
1256         return 0;
1257 }
1258
1259 int inet_csk_listen_start(struct sock *sk)
1260 {
1261         struct inet_connection_sock *icsk = inet_csk(sk);
1262         struct inet_sock *inet = inet_sk(sk);
1263         int err;
1264
1265         err = inet_ulp_can_listen(sk);
1266         if (unlikely(err))
1267                 return err;
1268
1269         reqsk_queue_alloc(&icsk->icsk_accept_queue);
1270
1271         sk->sk_ack_backlog = 0;
1272         inet_csk_delack_init(sk);
1273
1274         /* There is race window here: we announce ourselves listening,
1275          * but this transition is still not validated by get_port().
1276          * It is OK, because this socket enters to hash table only
1277          * after validation is complete.
1278          */
1279         inet_sk_state_store(sk, TCP_LISTEN);
1280         err = sk->sk_prot->get_port(sk, inet->inet_num);
1281         if (!err) {
1282                 inet->inet_sport = htons(inet->inet_num);
1283
1284                 sk_dst_reset(sk);
1285                 err = sk->sk_prot->hash(sk);
1286
1287                 if (likely(!err))
1288                         return 0;
1289         }
1290
1291         inet_sk_set_state(sk, TCP_CLOSE);
1292         return err;
1293 }
1294 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1295
1296 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1297                               struct sock *child)
1298 {
1299         sk->sk_prot->disconnect(child, O_NONBLOCK);
1300
1301         sock_orphan(child);
1302
1303         this_cpu_inc(*sk->sk_prot->orphan_count);
1304
1305         if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1306                 BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1307                 BUG_ON(sk != req->rsk_listener);
1308
1309                 /* Paranoid, to prevent race condition if
1310                  * an inbound pkt destined for child is
1311                  * blocked by sock lock in tcp_v4_rcv().
1312                  * Also to satisfy an assertion in
1313                  * tcp_v4_destroy_sock().
1314                  */
1315                 RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1316         }
1317         inet_csk_destroy_sock(child);
1318 }
1319
1320 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1321                                       struct request_sock *req,
1322                                       struct sock *child)
1323 {
1324         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1325
1326         spin_lock(&queue->rskq_lock);
1327         if (unlikely(sk->sk_state != TCP_LISTEN)) {
1328                 inet_child_forget(sk, req, child);
1329                 child = NULL;
1330         } else {
1331                 req->sk = child;
1332                 req->dl_next = NULL;
1333                 if (queue->rskq_accept_head == NULL)
1334                         WRITE_ONCE(queue->rskq_accept_head, req);
1335                 else
1336                         queue->rskq_accept_tail->dl_next = req;
1337                 queue->rskq_accept_tail = req;
1338                 sk_acceptq_added(sk);
1339         }
1340         spin_unlock(&queue->rskq_lock);
1341         return child;
1342 }
1343 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1344
1345 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1346                                          struct request_sock *req, bool own_req)
1347 {
1348         if (own_req) {
1349                 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1350                 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1351
1352                 if (sk != req->rsk_listener) {
1353                         /* another listening sk has been selected,
1354                          * migrate the req to it.
1355                          */
1356                         struct request_sock *nreq;
1357
1358                         /* hold a refcnt for the nreq->rsk_listener
1359                          * which is assigned in inet_reqsk_clone()
1360                          */
1361                         sock_hold(sk);
1362                         nreq = inet_reqsk_clone(req, sk);
1363                         if (!nreq) {
1364                                 inet_child_forget(sk, req, child);
1365                                 goto child_put;
1366                         }
1367
1368                         refcount_set(&nreq->rsk_refcnt, 1);
1369                         if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1370                                 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1371                                 reqsk_migrate_reset(req);
1372                                 reqsk_put(req);
1373                                 return child;
1374                         }
1375
1376                         __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1377                         reqsk_migrate_reset(nreq);
1378                         __reqsk_free(nreq);
1379                 } else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1380                         return child;
1381                 }
1382         }
1383         /* Too bad, another child took ownership of the request, undo. */
1384 child_put:
1385         bh_unlock_sock(child);
1386         sock_put(child);
1387         return NULL;
1388 }
1389 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1390
1391 /*
1392  *      This routine closes sockets which have been at least partially
1393  *      opened, but not yet accepted.
1394  */
1395 void inet_csk_listen_stop(struct sock *sk)
1396 {
1397         struct inet_connection_sock *icsk = inet_csk(sk);
1398         struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1399         struct request_sock *next, *req;
1400
1401         /* Following specs, it would be better either to send FIN
1402          * (and enter FIN-WAIT-1, it is normal close)
1403          * or to send active reset (abort).
1404          * Certainly, it is pretty dangerous while synflood, but it is
1405          * bad justification for our negligence 8)
1406          * To be honest, we are not able to make either
1407          * of the variants now.                 --ANK
1408          */
1409         while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1410                 struct sock *child = req->sk, *nsk;
1411                 struct request_sock *nreq;
1412
1413                 local_bh_disable();
1414                 bh_lock_sock(child);
1415                 WARN_ON(sock_owned_by_user(child));
1416                 sock_hold(child);
1417
1418                 nsk = reuseport_migrate_sock(sk, child, NULL);
1419                 if (nsk) {
1420                         nreq = inet_reqsk_clone(req, nsk);
1421                         if (nreq) {
1422                                 refcount_set(&nreq->rsk_refcnt, 1);
1423
1424                                 if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1425                                         __NET_INC_STATS(sock_net(nsk),
1426                                                         LINUX_MIB_TCPMIGRATEREQSUCCESS);
1427                                         reqsk_migrate_reset(req);
1428                                 } else {
1429                                         __NET_INC_STATS(sock_net(nsk),
1430                                                         LINUX_MIB_TCPMIGRATEREQFAILURE);
1431                                         reqsk_migrate_reset(nreq);
1432                                         __reqsk_free(nreq);
1433                                 }
1434
1435                                 /* inet_csk_reqsk_queue_add() has already
1436                                  * called inet_child_forget() on failure case.
1437                                  */
1438                                 goto skip_child_forget;
1439                         }
1440                 }
1441
1442                 inet_child_forget(sk, req, child);
1443 skip_child_forget:
1444                 reqsk_put(req);
1445                 bh_unlock_sock(child);
1446                 local_bh_enable();
1447                 sock_put(child);
1448
1449                 cond_resched();
1450         }
1451         if (queue->fastopenq.rskq_rst_head) {
1452                 /* Free all the reqs queued in rskq_rst_head. */
1453                 spin_lock_bh(&queue->fastopenq.lock);
1454                 req = queue->fastopenq.rskq_rst_head;
1455                 queue->fastopenq.rskq_rst_head = NULL;
1456                 spin_unlock_bh(&queue->fastopenq.lock);
1457                 while (req != NULL) {
1458                         next = req->dl_next;
1459                         reqsk_put(req);
1460                         req = next;
1461                 }
1462         }
1463         WARN_ON_ONCE(sk->sk_ack_backlog);
1464 }
1465 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1466
1467 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1468 {
1469         struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1470         const struct inet_sock *inet = inet_sk(sk);
1471
1472         sin->sin_family         = AF_INET;
1473         sin->sin_addr.s_addr    = inet->inet_daddr;
1474         sin->sin_port           = inet->inet_dport;
1475 }
1476 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1477
1478 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1479 {
1480         const struct inet_sock *inet = inet_sk(sk);
1481         const struct ip_options_rcu *inet_opt;
1482         __be32 daddr = inet->inet_daddr;
1483         struct flowi4 *fl4;
1484         struct rtable *rt;
1485
1486         rcu_read_lock();
1487         inet_opt = rcu_dereference(inet->inet_opt);
1488         if (inet_opt && inet_opt->opt.srr)
1489                 daddr = inet_opt->opt.faddr;
1490         fl4 = &fl->u.ip4;
1491         rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1492                                    inet->inet_saddr, inet->inet_dport,
1493                                    inet->inet_sport, sk->sk_protocol,
1494                                    RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1495         if (IS_ERR(rt))
1496                 rt = NULL;
1497         if (rt)
1498                 sk_setup_caps(sk, &rt->dst);
1499         rcu_read_unlock();
1500
1501         return &rt->dst;
1502 }
1503
1504 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1505 {
1506         struct dst_entry *dst = __sk_dst_check(sk, 0);
1507         struct inet_sock *inet = inet_sk(sk);
1508
1509         if (!dst) {
1510                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1511                 if (!dst)
1512                         goto out;
1513         }
1514         dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1515
1516         dst = __sk_dst_check(sk, 0);
1517         if (!dst)
1518                 dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1519 out:
1520         return dst;
1521 }
1522 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);