adc836f15fde1274a20135b42f193509c405200c
[releases.git] / intel_device_info.c
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <drm/drm_print.h>
26 #include <drm/i915_pciids.h>
27
28 #include "display/intel_cdclk.h"
29 #include "display/intel_de.h"
30 #include "intel_device_info.h"
31 #include "i915_drv.h"
32
33 #define PLATFORM_NAME(x) [INTEL_##x] = #x
34 static const char * const platform_names[] = {
35         PLATFORM_NAME(I830),
36         PLATFORM_NAME(I845G),
37         PLATFORM_NAME(I85X),
38         PLATFORM_NAME(I865G),
39         PLATFORM_NAME(I915G),
40         PLATFORM_NAME(I915GM),
41         PLATFORM_NAME(I945G),
42         PLATFORM_NAME(I945GM),
43         PLATFORM_NAME(G33),
44         PLATFORM_NAME(PINEVIEW),
45         PLATFORM_NAME(I965G),
46         PLATFORM_NAME(I965GM),
47         PLATFORM_NAME(G45),
48         PLATFORM_NAME(GM45),
49         PLATFORM_NAME(IRONLAKE),
50         PLATFORM_NAME(SANDYBRIDGE),
51         PLATFORM_NAME(IVYBRIDGE),
52         PLATFORM_NAME(VALLEYVIEW),
53         PLATFORM_NAME(HASWELL),
54         PLATFORM_NAME(BROADWELL),
55         PLATFORM_NAME(CHERRYVIEW),
56         PLATFORM_NAME(SKYLAKE),
57         PLATFORM_NAME(BROXTON),
58         PLATFORM_NAME(KABYLAKE),
59         PLATFORM_NAME(GEMINILAKE),
60         PLATFORM_NAME(COFFEELAKE),
61         PLATFORM_NAME(COMETLAKE),
62         PLATFORM_NAME(CANNONLAKE),
63         PLATFORM_NAME(ICELAKE),
64         PLATFORM_NAME(ELKHARTLAKE),
65         PLATFORM_NAME(TIGERLAKE),
66         PLATFORM_NAME(ROCKETLAKE),
67         PLATFORM_NAME(DG1),
68 };
69 #undef PLATFORM_NAME
70
71 const char *intel_platform_name(enum intel_platform platform)
72 {
73         BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
74
75         if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
76                          platform_names[platform] == NULL))
77                 return "<unknown>";
78
79         return platform_names[platform];
80 }
81
82 static const char *iommu_name(void)
83 {
84         const char *msg = "n/a";
85
86 #ifdef CONFIG_INTEL_IOMMU
87         msg = enableddisabled(intel_iommu_gfx_mapped);
88 #endif
89
90         return msg;
91 }
92
93 void intel_device_info_print_static(const struct intel_device_info *info,
94                                     struct drm_printer *p)
95 {
96         drm_printf(p, "gen: %d\n", info->gen);
97         drm_printf(p, "gt: %d\n", info->gt);
98         drm_printf(p, "iommu: %s\n", iommu_name());
99         drm_printf(p, "memory-regions: %x\n", info->memory_regions);
100         drm_printf(p, "page-sizes: %x\n", info->page_sizes);
101         drm_printf(p, "platform: %s\n", intel_platform_name(info->platform));
102         drm_printf(p, "ppgtt-size: %d\n", info->ppgtt_size);
103         drm_printf(p, "ppgtt-type: %d\n", info->ppgtt_type);
104         drm_printf(p, "dma_mask_size: %u\n", info->dma_mask_size);
105
106 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
107         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
108 #undef PRINT_FLAG
109
110 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
111         DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
112 #undef PRINT_FLAG
113 }
114
115 void intel_device_info_print_runtime(const struct intel_runtime_info *info,
116                                      struct drm_printer *p)
117 {
118         drm_printf(p, "rawclk rate: %u kHz\n", info->rawclk_freq);
119         drm_printf(p, "CS timestamp frequency: %u Hz\n",
120                    info->cs_timestamp_frequency_hz);
121 }
122
123 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
124 {
125         u32 ts_override = intel_uncore_read(&dev_priv->uncore,
126                                             GEN9_TIMESTAMP_OVERRIDE);
127         u32 base_freq, frac_freq;
128
129         base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
130                      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
131         base_freq *= 1000000;
132
133         frac_freq = ((ts_override &
134                       GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
135                      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
136         frac_freq = 1000000 / (frac_freq + 1);
137
138         return base_freq + frac_freq;
139 }
140
141 static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
142                                         u32 rpm_config_reg)
143 {
144         u32 f19_2_mhz = 19200000;
145         u32 f24_mhz = 24000000;
146         u32 crystal_clock = (rpm_config_reg &
147                              GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
148                             GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
149
150         switch (crystal_clock) {
151         case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
152                 return f19_2_mhz;
153         case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
154                 return f24_mhz;
155         default:
156                 MISSING_CASE(crystal_clock);
157                 return 0;
158         }
159 }
160
161 static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
162                                         u32 rpm_config_reg)
163 {
164         u32 f19_2_mhz = 19200000;
165         u32 f24_mhz = 24000000;
166         u32 f25_mhz = 25000000;
167         u32 f38_4_mhz = 38400000;
168         u32 crystal_clock = (rpm_config_reg &
169                              GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
170                             GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
171
172         switch (crystal_clock) {
173         case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
174                 return f24_mhz;
175         case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
176                 return f19_2_mhz;
177         case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
178                 return f38_4_mhz;
179         case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
180                 return f25_mhz;
181         default:
182                 MISSING_CASE(crystal_clock);
183                 return 0;
184         }
185 }
186
187 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
188 {
189         struct intel_uncore *uncore = &dev_priv->uncore;
190         u32 f12_5_mhz = 12500000;
191         u32 f19_2_mhz = 19200000;
192         u32 f24_mhz = 24000000;
193
194         if (INTEL_GEN(dev_priv) <= 4) {
195                 /* PRMs say:
196                  *
197                  *     "The value in this register increments once every 16
198                  *      hclks." (through the “Clocking Configuration”
199                  *      (“CLKCFG”) MCHBAR register)
200                  */
201                 return RUNTIME_INFO(dev_priv)->rawclk_freq * 1000 / 16;
202         } else if (INTEL_GEN(dev_priv) <= 8) {
203                 /* PRMs say:
204                  *
205                  *     "The PCU TSC counts 10ns increments; this timestamp
206                  *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
207                  *      rolling over every 1.5 hours).
208                  */
209                 return f12_5_mhz;
210         } else if (INTEL_GEN(dev_priv) <= 9) {
211                 u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
212                 u32 freq = 0;
213
214                 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
215                         freq = read_reference_ts_freq(dev_priv);
216                 } else {
217                         freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
218
219                         /* Now figure out how the command stream's timestamp
220                          * register increments from this frequency (it might
221                          * increment only every few clock cycle).
222                          */
223                         freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
224                                       CTC_SHIFT_PARAMETER_SHIFT);
225                 }
226
227                 return freq;
228         } else if (INTEL_GEN(dev_priv) <= 12) {
229                 u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
230                 u32 freq = 0;
231
232                 /* First figure out the reference frequency. There are 2 ways
233                  * we can compute the frequency, either through the
234                  * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
235                  * tells us which one we should use.
236                  */
237                 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
238                         freq = read_reference_ts_freq(dev_priv);
239                 } else {
240                         u32 rpm_config_reg = intel_uncore_read(uncore, RPM_CONFIG0);
241
242                         if (INTEL_GEN(dev_priv) <= 10)
243                                 freq = gen10_get_crystal_clock_freq(dev_priv,
244                                                                 rpm_config_reg);
245                         else
246                                 freq = gen11_get_crystal_clock_freq(dev_priv,
247                                                                 rpm_config_reg);
248
249                         /* Now figure out how the command stream's timestamp
250                          * register increments from this frequency (it might
251                          * increment only every few clock cycle).
252                          */
253                         freq >>= 3 - ((rpm_config_reg &
254                                        GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
255                                       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
256                 }
257
258                 return freq;
259         }
260
261         MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
262         return 0;
263 }
264
265 #undef INTEL_VGA_DEVICE
266 #define INTEL_VGA_DEVICE(id, info) (id)
267
268 static const u16 subplatform_ult_ids[] = {
269         INTEL_HSW_ULT_GT1_IDS(0),
270         INTEL_HSW_ULT_GT2_IDS(0),
271         INTEL_HSW_ULT_GT3_IDS(0),
272         INTEL_BDW_ULT_GT1_IDS(0),
273         INTEL_BDW_ULT_GT2_IDS(0),
274         INTEL_BDW_ULT_GT3_IDS(0),
275         INTEL_BDW_ULT_RSVD_IDS(0),
276         INTEL_SKL_ULT_GT1_IDS(0),
277         INTEL_SKL_ULT_GT2_IDS(0),
278         INTEL_SKL_ULT_GT3_IDS(0),
279         INTEL_KBL_ULT_GT1_IDS(0),
280         INTEL_KBL_ULT_GT2_IDS(0),
281         INTEL_KBL_ULT_GT3_IDS(0),
282         INTEL_CFL_U_GT2_IDS(0),
283         INTEL_CFL_U_GT3_IDS(0),
284         INTEL_WHL_U_GT1_IDS(0),
285         INTEL_WHL_U_GT2_IDS(0),
286         INTEL_WHL_U_GT3_IDS(0),
287         INTEL_CML_U_GT1_IDS(0),
288         INTEL_CML_U_GT2_IDS(0),
289 };
290
291 static const u16 subplatform_ulx_ids[] = {
292         INTEL_HSW_ULX_GT1_IDS(0),
293         INTEL_HSW_ULX_GT2_IDS(0),
294         INTEL_BDW_ULX_GT1_IDS(0),
295         INTEL_BDW_ULX_GT2_IDS(0),
296         INTEL_BDW_ULX_GT3_IDS(0),
297         INTEL_BDW_ULX_RSVD_IDS(0),
298         INTEL_SKL_ULX_GT1_IDS(0),
299         INTEL_SKL_ULX_GT2_IDS(0),
300         INTEL_KBL_ULX_GT1_IDS(0),
301         INTEL_KBL_ULX_GT2_IDS(0),
302         INTEL_AML_KBL_GT2_IDS(0),
303         INTEL_AML_CFL_GT2_IDS(0),
304 };
305
306 static const u16 subplatform_portf_ids[] = {
307         INTEL_CNL_PORT_F_IDS(0),
308         INTEL_ICL_PORT_F_IDS(0),
309 };
310
311 static bool find_devid(u16 id, const u16 *p, unsigned int num)
312 {
313         for (; num; num--, p++) {
314                 if (*p == id)
315                         return true;
316         }
317
318         return false;
319 }
320
321 void intel_device_info_subplatform_init(struct drm_i915_private *i915)
322 {
323         const struct intel_device_info *info = INTEL_INFO(i915);
324         const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
325         const unsigned int pi = __platform_mask_index(rinfo, info->platform);
326         const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
327         u16 devid = INTEL_DEVID(i915);
328         u32 mask = 0;
329
330         /* Make sure IS_<platform> checks are working. */
331         RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
332
333         /* Find and mark subplatform bits based on the PCI device id. */
334         if (find_devid(devid, subplatform_ult_ids,
335                        ARRAY_SIZE(subplatform_ult_ids))) {
336                 mask = BIT(INTEL_SUBPLATFORM_ULT);
337         } else if (find_devid(devid, subplatform_ulx_ids,
338                               ARRAY_SIZE(subplatform_ulx_ids))) {
339                 mask = BIT(INTEL_SUBPLATFORM_ULX);
340                 if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
341                         /* ULX machines are also considered ULT. */
342                         mask |= BIT(INTEL_SUBPLATFORM_ULT);
343                 }
344         } else if (find_devid(devid, subplatform_portf_ids,
345                               ARRAY_SIZE(subplatform_portf_ids))) {
346                 mask = BIT(INTEL_SUBPLATFORM_PORTF);
347         }
348
349         if (IS_TIGERLAKE(i915)) {
350                 struct pci_dev *root, *pdev = i915->drm.pdev;
351
352                 root = list_first_entry(&pdev->bus->devices, typeof(*root), bus_list);
353
354                 drm_WARN_ON(&i915->drm, mask);
355                 drm_WARN_ON(&i915->drm, (root->device & TGL_ROOT_DEVICE_MASK) !=
356                             TGL_ROOT_DEVICE_ID);
357
358                 switch (root->device & TGL_ROOT_DEVICE_SKU_MASK) {
359                 case TGL_ROOT_DEVICE_SKU_ULX:
360                         mask = BIT(INTEL_SUBPLATFORM_ULX);
361                         break;
362                 case TGL_ROOT_DEVICE_SKU_ULT:
363                         mask = BIT(INTEL_SUBPLATFORM_ULT);
364                         break;
365                 }
366         }
367
368         GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
369
370         RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
371 }
372
373 /**
374  * intel_device_info_runtime_init - initialize runtime info
375  * @dev_priv: the i915 device
376  *
377  * Determine various intel_device_info fields at runtime.
378  *
379  * Use it when either:
380  *   - it's judged too laborious to fill n static structures with the limit
381  *     when a simple if statement does the job,
382  *   - run-time checks (eg read fuse/strap registers) are needed.
383  *
384  * This function needs to be called:
385  *   - after the MMIO has been setup as we are reading registers,
386  *   - after the PCH has been detected,
387  *   - before the first usage of the fields it can tweak.
388  */
389 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
390 {
391         struct intel_device_info *info = mkwrite_device_info(dev_priv);
392         struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
393         enum pipe pipe;
394
395         if (INTEL_GEN(dev_priv) >= 10) {
396                 for_each_pipe(dev_priv, pipe)
397                         runtime->num_scalers[pipe] = 2;
398         } else if (IS_GEN(dev_priv, 9)) {
399                 runtime->num_scalers[PIPE_A] = 2;
400                 runtime->num_scalers[PIPE_B] = 2;
401                 runtime->num_scalers[PIPE_C] = 1;
402         }
403
404         BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
405
406         if (IS_ROCKETLAKE(dev_priv))
407                 for_each_pipe(dev_priv, pipe)
408                         runtime->num_sprites[pipe] = 4;
409         else if (INTEL_GEN(dev_priv) >= 11)
410                 for_each_pipe(dev_priv, pipe)
411                         runtime->num_sprites[pipe] = 6;
412         else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
413                 for_each_pipe(dev_priv, pipe)
414                         runtime->num_sprites[pipe] = 3;
415         else if (IS_BROXTON(dev_priv)) {
416                 /*
417                  * Skylake and Broxton currently don't expose the topmost plane as its
418                  * use is exclusive with the legacy cursor and we only want to expose
419                  * one of those, not both. Until we can safely expose the topmost plane
420                  * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
421                  * we don't expose the topmost plane at all to prevent ABI breakage
422                  * down the line.
423                  */
424
425                 runtime->num_sprites[PIPE_A] = 2;
426                 runtime->num_sprites[PIPE_B] = 2;
427                 runtime->num_sprites[PIPE_C] = 1;
428         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
429                 for_each_pipe(dev_priv, pipe)
430                         runtime->num_sprites[pipe] = 2;
431         } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
432                 for_each_pipe(dev_priv, pipe)
433                         runtime->num_sprites[pipe] = 1;
434         }
435
436         if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) &&
437             HAS_PCH_SPLIT(dev_priv)) {
438                 u32 fuse_strap = intel_de_read(dev_priv, FUSE_STRAP);
439                 u32 sfuse_strap = intel_de_read(dev_priv, SFUSE_STRAP);
440
441                 /*
442                  * SFUSE_STRAP is supposed to have a bit signalling the display
443                  * is fused off. Unfortunately it seems that, at least in
444                  * certain cases, fused off display means that PCH display
445                  * reads don't land anywhere. In that case, we read 0s.
446                  *
447                  * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
448                  * should be set when taking over after the firmware.
449                  */
450                 if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
451                     sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
452                     (HAS_PCH_CPT(dev_priv) &&
453                      !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
454                         drm_info(&dev_priv->drm,
455                                  "Display fused off, disabling\n");
456                         info->pipe_mask = 0;
457                         info->cpu_transcoder_mask = 0;
458                 } else if (fuse_strap & IVB_PIPE_C_DISABLE) {
459                         drm_info(&dev_priv->drm, "PipeC fused off\n");
460                         info->pipe_mask &= ~BIT(PIPE_C);
461                         info->cpu_transcoder_mask &= ~BIT(TRANSCODER_C);
462                 }
463         } else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
464                 u32 dfsm = intel_de_read(dev_priv, SKL_DFSM);
465
466                 if (dfsm & SKL_DFSM_PIPE_A_DISABLE) {
467                         info->pipe_mask &= ~BIT(PIPE_A);
468                         info->cpu_transcoder_mask &= ~BIT(TRANSCODER_A);
469                 }
470                 if (dfsm & SKL_DFSM_PIPE_B_DISABLE) {
471                         info->pipe_mask &= ~BIT(PIPE_B);
472                         info->cpu_transcoder_mask &= ~BIT(TRANSCODER_B);
473                 }
474                 if (dfsm & SKL_DFSM_PIPE_C_DISABLE) {
475                         info->pipe_mask &= ~BIT(PIPE_C);
476                         info->cpu_transcoder_mask &= ~BIT(TRANSCODER_C);
477                 }
478                 if (INTEL_GEN(dev_priv) >= 12 &&
479                     (dfsm & TGL_DFSM_PIPE_D_DISABLE)) {
480                         info->pipe_mask &= ~BIT(PIPE_D);
481                         info->cpu_transcoder_mask &= ~BIT(TRANSCODER_D);
482                 }
483
484                 if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE)
485                         info->display.has_hdcp = 0;
486
487                 if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE)
488                         info->display.has_fbc = 0;
489
490                 if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE))
491                         info->display.has_csr = 0;
492
493                 if (INTEL_GEN(dev_priv) >= 10 &&
494                     (dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE))
495                         info->display.has_dsc = 0;
496         }
497
498         if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
499                 drm_info(&dev_priv->drm,
500                          "Disabling ppGTT for VT-d support\n");
501                 info->ppgtt_type = INTEL_PPGTT_NONE;
502         }
503
504         runtime->rawclk_freq = intel_read_rawclk(dev_priv);
505         drm_dbg(&dev_priv->drm, "rawclk rate: %d kHz\n", runtime->rawclk_freq);
506
507         /* Initialize command stream timestamp frequency */
508         runtime->cs_timestamp_frequency_hz =
509                 read_timestamp_frequency(dev_priv);
510         if (runtime->cs_timestamp_frequency_hz) {
511                 runtime->cs_timestamp_period_ns =
512                         i915_cs_timestamp_ticks_to_ns(dev_priv, 1);
513                 drm_dbg(&dev_priv->drm,
514                         "CS timestamp wraparound in %lldms\n",
515                         div_u64(mul_u32_u32(runtime->cs_timestamp_period_ns,
516                                             S32_MAX),
517                                 USEC_PER_SEC));
518         }
519
520         if (!HAS_DISPLAY(dev_priv)) {
521                 dev_priv->drm.driver_features &= ~(DRIVER_MODESET |
522                                                    DRIVER_ATOMIC);
523                 memset(&info->display, 0, sizeof(info->display));
524                 memset(runtime->num_sprites, 0, sizeof(runtime->num_sprites));
525                 memset(runtime->num_scalers, 0, sizeof(runtime->num_scalers));
526         }
527 }
528
529 void intel_driver_caps_print(const struct intel_driver_caps *caps,
530                              struct drm_printer *p)
531 {
532         drm_printf(p, "Has logical contexts? %s\n",
533                    yesno(caps->has_logical_contexts));
534         drm_printf(p, "scheduler: %x\n", caps->scheduler);
535 }