1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
45 #include "ext4_jbd2.h"
50 #include <trace/events/ext4.h>
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
87 __u32 provided, calculated;
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 calculated &= 0xFFFF;
102 return provided == calculated;
105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
125 trace_ext4_begin_ordered_truncate(inode, new_size);
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
132 if (!EXT4_I(inode)->jinode)
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 * Test whether an inode is a fast symlink.
145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
147 int ext4_inode_is_fast_symlink(struct inode *inode)
149 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
153 if (ext4_has_inline_data(inode))
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
158 return S_ISLNK(inode->i_mode) && inode->i_size &&
159 (inode->i_size < EXT4_N_BLOCKS * 4);
163 * Called at the last iput() if i_nlink is zero.
165 void ext4_evict_inode(struct inode *inode)
170 * Credits for final inode cleanup and freeing:
171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 * (xattr block freeing), bitmap, group descriptor (inode freeing)
174 int extra_credits = 6;
175 struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 bool freeze_protected = false;
178 trace_ext4_evict_inode(inode);
180 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
181 ext4_evict_ea_inode(inode);
182 if (inode->i_nlink) {
184 * When journalling data dirty buffers are tracked only in the
185 * journal. So although mm thinks everything is clean and
186 * ready for reaping the inode might still have some pages to
187 * write in the running transaction or waiting to be
188 * checkpointed. Thus calling jbd2_journal_invalidate_folio()
189 * (via truncate_inode_pages()) to discard these buffers can
190 * cause data loss. Also even if we did not discard these
191 * buffers, we would have no way to find them after the inode
192 * is reaped and thus user could see stale data if he tries to
193 * read them before the transaction is checkpointed. So be
194 * careful and force everything to disk here... We use
195 * ei->i_datasync_tid to store the newest transaction
196 * containing inode's data.
198 * Note that directories do not have this problem because they
199 * don't use page cache.
201 if (inode->i_ino != EXT4_JOURNAL_INO &&
202 ext4_should_journal_data(inode) &&
203 S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
207 jbd2_complete_transaction(journal, commit_tid);
208 filemap_write_and_wait(&inode->i_data);
210 truncate_inode_pages_final(&inode->i_data);
215 if (is_bad_inode(inode))
217 dquot_initialize(inode);
219 if (ext4_should_order_data(inode))
220 ext4_begin_ordered_truncate(inode, 0);
221 truncate_inode_pages_final(&inode->i_data);
224 * For inodes with journalled data, transaction commit could have
225 * dirtied the inode. And for inodes with dioread_nolock, unwritten
226 * extents converting worker could merge extents and also have dirtied
227 * the inode. Flush worker is ignoring it because of I_FREEING flag but
228 * we still need to remove the inode from the writeback lists.
230 if (!list_empty_careful(&inode->i_io_list))
231 inode_io_list_del(inode);
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it. When we are in a running transaction though,
236 * we are already protected against freezing and we cannot grab further
237 * protection due to lock ordering constraints.
239 if (!ext4_journal_current_handle()) {
240 sb_start_intwrite(inode->i_sb);
241 freeze_protected = true;
244 if (!IS_NOQUOTA(inode))
245 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
248 * Block bitmap, group descriptor, and inode are accounted in both
249 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
251 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252 ext4_blocks_for_truncate(inode) + extra_credits - 3);
253 if (IS_ERR(handle)) {
254 ext4_std_error(inode->i_sb, PTR_ERR(handle));
256 * If we're going to skip the normal cleanup, we still need to
257 * make sure that the in-core orphan linked list is properly
260 ext4_orphan_del(NULL, inode);
261 if (freeze_protected)
262 sb_end_intwrite(inode->i_sb);
267 ext4_handle_sync(handle);
270 * Set inode->i_size to 0 before calling ext4_truncate(). We need
271 * special handling of symlinks here because i_size is used to
272 * determine whether ext4_inode_info->i_data contains symlink data or
273 * block mappings. Setting i_size to 0 will remove its fast symlink
274 * status. Erase i_data so that it becomes a valid empty block map.
276 if (ext4_inode_is_fast_symlink(inode))
277 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
279 err = ext4_mark_inode_dirty(handle, inode);
281 ext4_warning(inode->i_sb,
282 "couldn't mark inode dirty (err %d)", err);
285 if (inode->i_blocks) {
286 err = ext4_truncate(inode);
288 ext4_error_err(inode->i_sb, -err,
289 "couldn't truncate inode %lu (err %d)",
295 /* Remove xattr references. */
296 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
301 ext4_journal_stop(handle);
302 ext4_orphan_del(NULL, inode);
303 if (freeze_protected)
304 sb_end_intwrite(inode->i_sb);
305 ext4_xattr_inode_array_free(ea_inode_array);
310 * Kill off the orphan record which ext4_truncate created.
311 * AKPM: I think this can be inside the above `if'.
312 * Note that ext4_orphan_del() has to be able to cope with the
313 * deletion of a non-existent orphan - this is because we don't
314 * know if ext4_truncate() actually created an orphan record.
315 * (Well, we could do this if we need to, but heck - it works)
317 ext4_orphan_del(handle, inode);
318 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
321 * One subtle ordering requirement: if anything has gone wrong
322 * (transaction abort, IO errors, whatever), then we can still
323 * do these next steps (the fs will already have been marked as
324 * having errors), but we can't free the inode if the mark_dirty
327 if (ext4_mark_inode_dirty(handle, inode))
328 /* If that failed, just do the required in-core inode clear. */
329 ext4_clear_inode(inode);
331 ext4_free_inode(handle, inode);
332 ext4_journal_stop(handle);
333 if (freeze_protected)
334 sb_end_intwrite(inode->i_sb);
335 ext4_xattr_inode_array_free(ea_inode_array);
339 * Check out some where else accidentally dirty the evicting inode,
340 * which may probably cause inode use-after-free issues later.
342 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
344 if (!list_empty(&EXT4_I(inode)->i_fc_list))
345 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
346 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
350 qsize_t *ext4_get_reserved_space(struct inode *inode)
352 return &EXT4_I(inode)->i_reserved_quota;
357 * Called with i_data_sem down, which is important since we can call
358 * ext4_discard_preallocations() from here.
360 void ext4_da_update_reserve_space(struct inode *inode,
361 int used, int quota_claim)
363 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
364 struct ext4_inode_info *ei = EXT4_I(inode);
366 spin_lock(&ei->i_block_reservation_lock);
367 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
368 if (unlikely(used > ei->i_reserved_data_blocks)) {
369 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
370 "with only %d reserved data blocks",
371 __func__, inode->i_ino, used,
372 ei->i_reserved_data_blocks);
374 used = ei->i_reserved_data_blocks;
377 /* Update per-inode reservations */
378 ei->i_reserved_data_blocks -= used;
379 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
381 spin_unlock(&ei->i_block_reservation_lock);
383 /* Update quota subsystem for data blocks */
385 dquot_claim_block(inode, EXT4_C2B(sbi, used));
388 * We did fallocate with an offset that is already delayed
389 * allocated. So on delayed allocated writeback we should
390 * not re-claim the quota for fallocated blocks.
392 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396 * If we have done all the pending block allocations and if
397 * there aren't any writers on the inode, we can discard the
398 * inode's preallocations.
400 if ((ei->i_reserved_data_blocks == 0) &&
401 !inode_is_open_for_write(inode))
402 ext4_discard_preallocations(inode, 0);
405 static int __check_block_validity(struct inode *inode, const char *func,
407 struct ext4_map_blocks *map)
409 if (ext4_has_feature_journal(inode->i_sb) &&
411 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
413 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock %llu "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_pblk, map->m_len);
418 return -EFSCORRUPTED;
423 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
428 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
429 return fscrypt_zeroout_range(inode, lblk, pblk, len);
431 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
438 #define check_block_validity(inode, map) \
439 __check_block_validity((inode), __func__, __LINE__, (map))
441 #ifdef ES_AGGRESSIVE_TEST
442 static void ext4_map_blocks_es_recheck(handle_t *handle,
444 struct ext4_map_blocks *es_map,
445 struct ext4_map_blocks *map,
452 * There is a race window that the result is not the same.
453 * e.g. xfstests #223 when dioread_nolock enables. The reason
454 * is that we lookup a block mapping in extent status tree with
455 * out taking i_data_sem. So at the time the unwritten extent
456 * could be converted.
458 down_read(&EXT4_I(inode)->i_data_sem);
459 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
460 retval = ext4_ext_map_blocks(handle, inode, map, 0);
462 retval = ext4_ind_map_blocks(handle, inode, map, 0);
464 up_read((&EXT4_I(inode)->i_data_sem));
467 * We don't check m_len because extent will be collpased in status
468 * tree. So the m_len might not equal.
470 if (es_map->m_lblk != map->m_lblk ||
471 es_map->m_flags != map->m_flags ||
472 es_map->m_pblk != map->m_pblk) {
473 printk("ES cache assertion failed for inode: %lu "
474 "es_cached ex [%d/%d/%llu/%x] != "
475 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
476 inode->i_ino, es_map->m_lblk, es_map->m_len,
477 es_map->m_pblk, es_map->m_flags, map->m_lblk,
478 map->m_len, map->m_pblk, map->m_flags,
482 #endif /* ES_AGGRESSIVE_TEST */
485 * The ext4_map_blocks() function tries to look up the requested blocks,
486 * and returns if the blocks are already mapped.
488 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
489 * and store the allocated blocks in the result buffer head and mark it
492 * If file type is extents based, it will call ext4_ext_map_blocks(),
493 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
496 * On success, it returns the number of blocks being mapped or allocated. if
497 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
498 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
500 * It returns 0 if plain look up failed (blocks have not been allocated), in
501 * that case, @map is returned as unmapped but we still do fill map->m_len to
502 * indicate the length of a hole starting at map->m_lblk.
504 * It returns the error in case of allocation failure.
506 int ext4_map_blocks(handle_t *handle, struct inode *inode,
507 struct ext4_map_blocks *map, int flags)
509 struct extent_status es;
512 #ifdef ES_AGGRESSIVE_TEST
513 struct ext4_map_blocks orig_map;
515 memcpy(&orig_map, map, sizeof(*map));
519 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
520 flags, map->m_len, (unsigned long) map->m_lblk);
523 * ext4_map_blocks returns an int, and m_len is an unsigned int
525 if (unlikely(map->m_len > INT_MAX))
526 map->m_len = INT_MAX;
528 /* We can handle the block number less than EXT_MAX_BLOCKS */
529 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
530 return -EFSCORRUPTED;
532 /* Lookup extent status tree firstly */
533 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
534 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
535 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
536 map->m_pblk = ext4_es_pblock(&es) +
537 map->m_lblk - es.es_lblk;
538 map->m_flags |= ext4_es_is_written(&es) ?
539 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
540 retval = es.es_len - (map->m_lblk - es.es_lblk);
541 if (retval > map->m_len)
544 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
546 retval = es.es_len - (map->m_lblk - es.es_lblk);
547 if (retval > map->m_len)
555 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
557 #ifdef ES_AGGRESSIVE_TEST
558 ext4_map_blocks_es_recheck(handle, inode, map,
564 * In the query cache no-wait mode, nothing we can do more if we
565 * cannot find extent in the cache.
567 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
571 * Try to see if we can get the block without requesting a new
574 down_read(&EXT4_I(inode)->i_data_sem);
575 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
576 retval = ext4_ext_map_blocks(handle, inode, map, 0);
578 retval = ext4_ind_map_blocks(handle, inode, map, 0);
583 if (unlikely(retval != map->m_len)) {
584 ext4_warning(inode->i_sb,
585 "ES len assertion failed for inode "
586 "%lu: retval %d != map->m_len %d",
587 inode->i_ino, retval, map->m_len);
591 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
592 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
593 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
594 !(status & EXTENT_STATUS_WRITTEN) &&
595 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
596 map->m_lblk + map->m_len - 1))
597 status |= EXTENT_STATUS_DELAYED;
598 ret = ext4_es_insert_extent(inode, map->m_lblk,
599 map->m_len, map->m_pblk, status);
603 up_read((&EXT4_I(inode)->i_data_sem));
606 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
607 ret = check_block_validity(inode, map);
612 /* If it is only a block(s) look up */
613 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
617 * Returns if the blocks have already allocated
619 * Note that if blocks have been preallocated
620 * ext4_ext_get_block() returns the create = 0
621 * with buffer head unmapped.
623 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
625 * If we need to convert extent to unwritten
626 * we continue and do the actual work in
627 * ext4_ext_map_blocks()
629 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
633 * Here we clear m_flags because after allocating an new extent,
634 * it will be set again.
636 map->m_flags &= ~EXT4_MAP_FLAGS;
639 * New blocks allocate and/or writing to unwritten extent
640 * will possibly result in updating i_data, so we take
641 * the write lock of i_data_sem, and call get_block()
642 * with create == 1 flag.
644 down_write(&EXT4_I(inode)->i_data_sem);
647 * We need to check for EXT4 here because migrate
648 * could have changed the inode type in between
650 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
651 retval = ext4_ext_map_blocks(handle, inode, map, flags);
653 retval = ext4_ind_map_blocks(handle, inode, map, flags);
655 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
657 * We allocated new blocks which will result in
658 * i_data's format changing. Force the migrate
659 * to fail by clearing migrate flags
661 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
668 if (unlikely(retval != map->m_len)) {
669 ext4_warning(inode->i_sb,
670 "ES len assertion failed for inode "
671 "%lu: retval %d != map->m_len %d",
672 inode->i_ino, retval, map->m_len);
677 * We have to zeroout blocks before inserting them into extent
678 * status tree. Otherwise someone could look them up there and
679 * use them before they are really zeroed. We also have to
680 * unmap metadata before zeroing as otherwise writeback can
681 * overwrite zeros with stale data from block device.
683 if (flags & EXT4_GET_BLOCKS_ZERO &&
684 map->m_flags & EXT4_MAP_MAPPED &&
685 map->m_flags & EXT4_MAP_NEW) {
686 ret = ext4_issue_zeroout(inode, map->m_lblk,
687 map->m_pblk, map->m_len);
695 * If the extent has been zeroed out, we don't need to update
696 * extent status tree.
698 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
699 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
700 if (ext4_es_is_written(&es))
703 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
704 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
705 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
706 !(status & EXTENT_STATUS_WRITTEN) &&
707 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
708 map->m_lblk + map->m_len - 1))
709 status |= EXTENT_STATUS_DELAYED;
710 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
711 map->m_pblk, status);
719 up_write((&EXT4_I(inode)->i_data_sem));
720 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
721 ret = check_block_validity(inode, map);
726 * Inodes with freshly allocated blocks where contents will be
727 * visible after transaction commit must be on transaction's
730 if (map->m_flags & EXT4_MAP_NEW &&
731 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
732 !(flags & EXT4_GET_BLOCKS_ZERO) &&
733 !ext4_is_quota_file(inode) &&
734 ext4_should_order_data(inode)) {
736 (loff_t)map->m_lblk << inode->i_blkbits;
737 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
739 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
740 ret = ext4_jbd2_inode_add_wait(handle, inode,
743 ret = ext4_jbd2_inode_add_write(handle, inode,
749 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
750 map->m_flags & EXT4_MAP_MAPPED))
751 ext4_fc_track_range(handle, inode, map->m_lblk,
752 map->m_lblk + map->m_len - 1);
754 ext_debug(inode, "failed with err %d\n", retval);
759 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
760 * we have to be careful as someone else may be manipulating b_state as well.
762 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
764 unsigned long old_state;
765 unsigned long new_state;
767 flags &= EXT4_MAP_FLAGS;
769 /* Dummy buffer_head? Set non-atomically. */
771 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
775 * Someone else may be modifying b_state. Be careful! This is ugly but
776 * once we get rid of using bh as a container for mapping information
777 * to pass to / from get_block functions, this can go away.
780 old_state = READ_ONCE(bh->b_state);
781 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
783 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
786 static int _ext4_get_block(struct inode *inode, sector_t iblock,
787 struct buffer_head *bh, int flags)
789 struct ext4_map_blocks map;
792 if (ext4_has_inline_data(inode))
796 map.m_len = bh->b_size >> inode->i_blkbits;
798 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
801 map_bh(bh, inode->i_sb, map.m_pblk);
802 ext4_update_bh_state(bh, map.m_flags);
803 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
805 } else if (ret == 0) {
806 /* hole case, need to fill in bh->b_size */
807 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
812 int ext4_get_block(struct inode *inode, sector_t iblock,
813 struct buffer_head *bh, int create)
815 return _ext4_get_block(inode, iblock, bh,
816 create ? EXT4_GET_BLOCKS_CREATE : 0);
820 * Get block function used when preparing for buffered write if we require
821 * creating an unwritten extent if blocks haven't been allocated. The extent
822 * will be converted to written after the IO is complete.
824 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
825 struct buffer_head *bh_result, int create)
829 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
830 inode->i_ino, create);
831 ret = _ext4_get_block(inode, iblock, bh_result,
832 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
835 * If the buffer is marked unwritten, mark it as new to make sure it is
836 * zeroed out correctly in case of partial writes. Otherwise, there is
837 * a chance of stale data getting exposed.
839 if (ret == 0 && buffer_unwritten(bh_result))
840 set_buffer_new(bh_result);
845 /* Maximum number of blocks we map for direct IO at once. */
846 #define DIO_MAX_BLOCKS 4096
849 * `handle' can be NULL if create is zero
851 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
852 ext4_lblk_t block, int map_flags)
854 struct ext4_map_blocks map;
855 struct buffer_head *bh;
856 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
857 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
860 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
861 || handle != NULL || create == 0);
862 ASSERT(create == 0 || !nowait);
866 err = ext4_map_blocks(handle, inode, &map, map_flags);
869 return create ? ERR_PTR(-ENOSPC) : NULL;
874 return sb_find_get_block(inode->i_sb, map.m_pblk);
876 bh = sb_getblk(inode->i_sb, map.m_pblk);
878 return ERR_PTR(-ENOMEM);
879 if (map.m_flags & EXT4_MAP_NEW) {
881 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
882 || (handle != NULL));
885 * Now that we do not always journal data, we should
886 * keep in mind whether this should always journal the
887 * new buffer as metadata. For now, regular file
888 * writes use ext4_get_block instead, so it's not a
892 BUFFER_TRACE(bh, "call get_create_access");
893 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
899 if (!buffer_uptodate(bh)) {
900 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
901 set_buffer_uptodate(bh);
904 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
905 err = ext4_handle_dirty_metadata(handle, inode, bh);
909 BUFFER_TRACE(bh, "not a new buffer");
916 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
917 ext4_lblk_t block, int map_flags)
919 struct buffer_head *bh;
922 bh = ext4_getblk(handle, inode, block, map_flags);
925 if (!bh || ext4_buffer_uptodate(bh))
928 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
936 /* Read a contiguous batch of blocks. */
937 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
938 bool wait, struct buffer_head **bhs)
942 for (i = 0; i < bh_count; i++) {
943 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
944 if (IS_ERR(bhs[i])) {
945 err = PTR_ERR(bhs[i]);
951 for (i = 0; i < bh_count; i++)
952 /* Note that NULL bhs[i] is valid because of holes. */
953 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
954 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
959 for (i = 0; i < bh_count; i++)
961 wait_on_buffer(bhs[i]);
963 for (i = 0; i < bh_count; i++) {
964 if (bhs[i] && !buffer_uptodate(bhs[i])) {
972 for (i = 0; i < bh_count; i++) {
979 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
980 struct buffer_head *head,
984 int (*fn)(handle_t *handle, struct inode *inode,
985 struct buffer_head *bh))
987 struct buffer_head *bh;
988 unsigned block_start, block_end;
989 unsigned blocksize = head->b_size;
991 struct buffer_head *next;
993 for (bh = head, block_start = 0;
994 ret == 0 && (bh != head || !block_start);
995 block_start = block_end, bh = next) {
996 next = bh->b_this_page;
997 block_end = block_start + blocksize;
998 if (block_end <= from || block_start >= to) {
999 if (partial && !buffer_uptodate(bh))
1003 err = (*fn)(handle, inode, bh);
1011 * To preserve ordering, it is essential that the hole instantiation and
1012 * the data write be encapsulated in a single transaction. We cannot
1013 * close off a transaction and start a new one between the ext4_get_block()
1014 * and the commit_write(). So doing the jbd2_journal_start at the start of
1015 * prepare_write() is the right place.
1017 * Also, this function can nest inside ext4_writepage(). In that case, we
1018 * *know* that ext4_writepage() has generated enough buffer credits to do the
1019 * whole page. So we won't block on the journal in that case, which is good,
1020 * because the caller may be PF_MEMALLOC.
1022 * By accident, ext4 can be reentered when a transaction is open via
1023 * quota file writes. If we were to commit the transaction while thus
1024 * reentered, there can be a deadlock - we would be holding a quota
1025 * lock, and the commit would never complete if another thread had a
1026 * transaction open and was blocking on the quota lock - a ranking
1029 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1030 * will _not_ run commit under these circumstances because handle->h_ref
1031 * is elevated. We'll still have enough credits for the tiny quotafile
1034 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1035 struct buffer_head *bh)
1037 int dirty = buffer_dirty(bh);
1040 if (!buffer_mapped(bh) || buffer_freed(bh))
1043 * __block_write_begin() could have dirtied some buffers. Clean
1044 * the dirty bit as jbd2_journal_get_write_access() could complain
1045 * otherwise about fs integrity issues. Setting of the dirty bit
1046 * by __block_write_begin() isn't a real problem here as we clear
1047 * the bit before releasing a page lock and thus writeback cannot
1048 * ever write the buffer.
1051 clear_buffer_dirty(bh);
1052 BUFFER_TRACE(bh, "get write access");
1053 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1056 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1060 #ifdef CONFIG_FS_ENCRYPTION
1061 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1062 get_block_t *get_block)
1064 unsigned from = pos & (PAGE_SIZE - 1);
1065 unsigned to = from + len;
1066 struct inode *inode = page->mapping->host;
1067 unsigned block_start, block_end;
1070 unsigned blocksize = inode->i_sb->s_blocksize;
1072 struct buffer_head *bh, *head, *wait[2];
1076 BUG_ON(!PageLocked(page));
1077 BUG_ON(from > PAGE_SIZE);
1078 BUG_ON(to > PAGE_SIZE);
1081 if (!page_has_buffers(page))
1082 create_empty_buffers(page, blocksize, 0);
1083 head = page_buffers(page);
1084 bbits = ilog2(blocksize);
1085 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1087 for (bh = head, block_start = 0; bh != head || !block_start;
1088 block++, block_start = block_end, bh = bh->b_this_page) {
1089 block_end = block_start + blocksize;
1090 if (block_end <= from || block_start >= to) {
1091 if (PageUptodate(page)) {
1092 set_buffer_uptodate(bh);
1097 clear_buffer_new(bh);
1098 if (!buffer_mapped(bh)) {
1099 WARN_ON(bh->b_size != blocksize);
1100 err = get_block(inode, block, bh, 1);
1103 if (buffer_new(bh)) {
1104 if (PageUptodate(page)) {
1105 clear_buffer_new(bh);
1106 set_buffer_uptodate(bh);
1107 mark_buffer_dirty(bh);
1110 if (block_end > to || block_start < from)
1111 zero_user_segments(page, to, block_end,
1116 if (PageUptodate(page)) {
1117 set_buffer_uptodate(bh);
1120 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1121 !buffer_unwritten(bh) &&
1122 (block_start < from || block_end > to)) {
1123 ext4_read_bh_lock(bh, 0, false);
1124 wait[nr_wait++] = bh;
1128 * If we issued read requests, let them complete.
1130 for (i = 0; i < nr_wait; i++) {
1131 wait_on_buffer(wait[i]);
1132 if (!buffer_uptodate(wait[i]))
1135 if (unlikely(err)) {
1136 page_zero_new_buffers(page, from, to);
1137 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1138 for (i = 0; i < nr_wait; i++) {
1141 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1142 bh_offset(wait[i]));
1144 clear_buffer_uptodate(wait[i]);
1154 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1155 loff_t pos, unsigned len,
1156 struct page **pagep, void **fsdata)
1158 struct inode *inode = mapping->host;
1159 int ret, needed_blocks;
1166 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1169 trace_ext4_write_begin(inode, pos, len);
1171 * Reserve one block more for addition to orphan list in case
1172 * we allocate blocks but write fails for some reason
1174 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1175 index = pos >> PAGE_SHIFT;
1176 from = pos & (PAGE_SIZE - 1);
1179 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1180 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1189 * grab_cache_page_write_begin() can take a long time if the
1190 * system is thrashing due to memory pressure, or if the page
1191 * is being written back. So grab it first before we start
1192 * the transaction handle. This also allows us to allocate
1193 * the page (if needed) without using GFP_NOFS.
1196 page = grab_cache_page_write_begin(mapping, index);
1200 * The same as page allocation, we prealloc buffer heads before
1201 * starting the handle.
1203 if (!page_has_buffers(page))
1204 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1209 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1210 if (IS_ERR(handle)) {
1212 return PTR_ERR(handle);
1216 if (page->mapping != mapping) {
1217 /* The page got truncated from under us */
1220 ext4_journal_stop(handle);
1223 /* In case writeback began while the page was unlocked */
1224 wait_for_stable_page(page);
1226 #ifdef CONFIG_FS_ENCRYPTION
1227 if (ext4_should_dioread_nolock(inode))
1228 ret = ext4_block_write_begin(page, pos, len,
1229 ext4_get_block_unwritten);
1231 ret = ext4_block_write_begin(page, pos, len,
1234 if (ext4_should_dioread_nolock(inode))
1235 ret = __block_write_begin(page, pos, len,
1236 ext4_get_block_unwritten);
1238 ret = __block_write_begin(page, pos, len, ext4_get_block);
1240 if (!ret && ext4_should_journal_data(inode)) {
1241 ret = ext4_walk_page_buffers(handle, inode,
1242 page_buffers(page), from, to, NULL,
1243 do_journal_get_write_access);
1247 bool extended = (pos + len > inode->i_size) &&
1248 !ext4_verity_in_progress(inode);
1252 * __block_write_begin may have instantiated a few blocks
1253 * outside i_size. Trim these off again. Don't need
1254 * i_size_read because we hold i_rwsem.
1256 * Add inode to orphan list in case we crash before
1259 if (extended && ext4_can_truncate(inode))
1260 ext4_orphan_add(handle, inode);
1262 ext4_journal_stop(handle);
1264 ext4_truncate_failed_write(inode);
1266 * If truncate failed early the inode might
1267 * still be on the orphan list; we need to
1268 * make sure the inode is removed from the
1269 * orphan list in that case.
1272 ext4_orphan_del(NULL, inode);
1275 if (ret == -ENOSPC &&
1276 ext4_should_retry_alloc(inode->i_sb, &retries))
1285 /* For write_end() in data=journal mode */
1286 static int write_end_fn(handle_t *handle, struct inode *inode,
1287 struct buffer_head *bh)
1290 if (!buffer_mapped(bh) || buffer_freed(bh))
1292 set_buffer_uptodate(bh);
1293 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1294 clear_buffer_meta(bh);
1295 clear_buffer_prio(bh);
1300 * We need to pick up the new inode size which generic_commit_write gave us
1301 * `file' can be NULL - eg, when called from page_symlink().
1303 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1304 * buffers are managed internally.
1306 static int ext4_write_end(struct file *file,
1307 struct address_space *mapping,
1308 loff_t pos, unsigned len, unsigned copied,
1309 struct page *page, void *fsdata)
1311 handle_t *handle = ext4_journal_current_handle();
1312 struct inode *inode = mapping->host;
1313 loff_t old_size = inode->i_size;
1315 int i_size_changed = 0;
1316 bool verity = ext4_verity_in_progress(inode);
1318 trace_ext4_write_end(inode, pos, len, copied);
1320 if (ext4_has_inline_data(inode) &&
1321 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1322 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1324 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1326 * it's important to update i_size while still holding page lock:
1327 * page writeout could otherwise come in and zero beyond i_size.
1329 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1330 * blocks are being written past EOF, so skip the i_size update.
1333 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1337 if (old_size < pos && !verity)
1338 pagecache_isize_extended(inode, old_size, pos);
1340 * Don't mark the inode dirty under page lock. First, it unnecessarily
1341 * makes the holding time of page lock longer. Second, it forces lock
1342 * ordering of page lock and transaction start for journaling
1346 ret = ext4_mark_inode_dirty(handle, inode);
1348 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1349 /* if we have allocated more blocks and copied
1350 * less. We will have blocks allocated outside
1351 * inode->i_size. So truncate them
1353 ext4_orphan_add(handle, inode);
1355 ret2 = ext4_journal_stop(handle);
1359 if (pos + len > inode->i_size && !verity) {
1360 ext4_truncate_failed_write(inode);
1362 * If truncate failed early the inode might still be
1363 * on the orphan list; we need to make sure the inode
1364 * is removed from the orphan list in that case.
1367 ext4_orphan_del(NULL, inode);
1370 return ret ? ret : copied;
1374 * This is a private version of page_zero_new_buffers() which doesn't
1375 * set the buffer to be dirty, since in data=journalled mode we need
1376 * to call ext4_handle_dirty_metadata() instead.
1378 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1379 struct inode *inode,
1381 unsigned from, unsigned to)
1383 unsigned int block_start = 0, block_end;
1384 struct buffer_head *head, *bh;
1386 bh = head = page_buffers(page);
1388 block_end = block_start + bh->b_size;
1389 if (buffer_new(bh)) {
1390 if (block_end > from && block_start < to) {
1391 if (!PageUptodate(page)) {
1392 unsigned start, size;
1394 start = max(from, block_start);
1395 size = min(to, block_end) - start;
1397 zero_user(page, start, size);
1398 write_end_fn(handle, inode, bh);
1400 clear_buffer_new(bh);
1403 block_start = block_end;
1404 bh = bh->b_this_page;
1405 } while (bh != head);
1408 static int ext4_journalled_write_end(struct file *file,
1409 struct address_space *mapping,
1410 loff_t pos, unsigned len, unsigned copied,
1411 struct page *page, void *fsdata)
1413 handle_t *handle = ext4_journal_current_handle();
1414 struct inode *inode = mapping->host;
1415 loff_t old_size = inode->i_size;
1419 int size_changed = 0;
1420 bool verity = ext4_verity_in_progress(inode);
1422 trace_ext4_journalled_write_end(inode, pos, len, copied);
1423 from = pos & (PAGE_SIZE - 1);
1426 BUG_ON(!ext4_handle_valid(handle));
1428 if (ext4_has_inline_data(inode))
1429 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1431 if (unlikely(copied < len) && !PageUptodate(page)) {
1433 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1435 if (unlikely(copied < len))
1436 ext4_journalled_zero_new_buffers(handle, inode, page,
1438 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1439 from, from + copied, &partial,
1442 SetPageUptodate(page);
1445 size_changed = ext4_update_inode_size(inode, pos + copied);
1446 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1447 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1451 if (old_size < pos && !verity)
1452 pagecache_isize_extended(inode, old_size, pos);
1455 ret2 = ext4_mark_inode_dirty(handle, inode);
1460 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1461 /* if we have allocated more blocks and copied
1462 * less. We will have blocks allocated outside
1463 * inode->i_size. So truncate them
1465 ext4_orphan_add(handle, inode);
1467 ret2 = ext4_journal_stop(handle);
1470 if (pos + len > inode->i_size && !verity) {
1471 ext4_truncate_failed_write(inode);
1473 * If truncate failed early the inode might still be
1474 * on the orphan list; we need to make sure the inode
1475 * is removed from the orphan list in that case.
1478 ext4_orphan_del(NULL, inode);
1481 return ret ? ret : copied;
1485 * Reserve space for a single cluster
1487 static int ext4_da_reserve_space(struct inode *inode)
1489 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1490 struct ext4_inode_info *ei = EXT4_I(inode);
1494 * We will charge metadata quota at writeout time; this saves
1495 * us from metadata over-estimation, though we may go over by
1496 * a small amount in the end. Here we just reserve for data.
1498 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1502 spin_lock(&ei->i_block_reservation_lock);
1503 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1504 spin_unlock(&ei->i_block_reservation_lock);
1505 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1508 ei->i_reserved_data_blocks++;
1509 trace_ext4_da_reserve_space(inode);
1510 spin_unlock(&ei->i_block_reservation_lock);
1512 return 0; /* success */
1515 void ext4_da_release_space(struct inode *inode, int to_free)
1517 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1518 struct ext4_inode_info *ei = EXT4_I(inode);
1521 return; /* Nothing to release, exit */
1523 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1525 trace_ext4_da_release_space(inode, to_free);
1526 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1528 * if there aren't enough reserved blocks, then the
1529 * counter is messed up somewhere. Since this
1530 * function is called from invalidate page, it's
1531 * harmless to return without any action.
1533 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1534 "ino %lu, to_free %d with only %d reserved "
1535 "data blocks", inode->i_ino, to_free,
1536 ei->i_reserved_data_blocks);
1538 to_free = ei->i_reserved_data_blocks;
1540 ei->i_reserved_data_blocks -= to_free;
1542 /* update fs dirty data blocks counter */
1543 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1545 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1547 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1551 * Delayed allocation stuff
1554 struct mpage_da_data {
1555 struct inode *inode;
1556 struct writeback_control *wbc;
1558 pgoff_t first_page; /* The first page to write */
1559 pgoff_t next_page; /* Current page to examine */
1560 pgoff_t last_page; /* Last page to examine */
1562 * Extent to map - this can be after first_page because that can be
1563 * fully mapped. We somewhat abuse m_flags to store whether the extent
1564 * is delalloc or unwritten.
1566 struct ext4_map_blocks map;
1567 struct ext4_io_submit io_submit; /* IO submission data */
1568 unsigned int do_map:1;
1569 unsigned int scanned_until_end:1;
1572 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1577 struct folio_batch fbatch;
1578 struct inode *inode = mpd->inode;
1579 struct address_space *mapping = inode->i_mapping;
1581 /* This is necessary when next_page == 0. */
1582 if (mpd->first_page >= mpd->next_page)
1585 mpd->scanned_until_end = 0;
1586 index = mpd->first_page;
1587 end = mpd->next_page - 1;
1589 ext4_lblk_t start, last;
1590 start = index << (PAGE_SHIFT - inode->i_blkbits);
1591 last = end << (PAGE_SHIFT - inode->i_blkbits);
1594 * avoid racing with extent status tree scans made by
1595 * ext4_insert_delayed_block()
1597 down_write(&EXT4_I(inode)->i_data_sem);
1598 ext4_es_remove_extent(inode, start, last - start + 1);
1599 up_write(&EXT4_I(inode)->i_data_sem);
1602 folio_batch_init(&fbatch);
1603 while (index <= end) {
1604 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1607 for (i = 0; i < nr; i++) {
1608 struct folio *folio = fbatch.folios[i];
1610 if (folio->index < mpd->first_page)
1612 if (folio->index + folio_nr_pages(folio) - 1 > end)
1614 BUG_ON(!folio_test_locked(folio));
1615 BUG_ON(folio_test_writeback(folio));
1617 if (folio_mapped(folio))
1618 folio_clear_dirty_for_io(folio);
1619 block_invalidate_folio(folio, 0,
1621 folio_clear_uptodate(folio);
1623 folio_unlock(folio);
1625 folio_batch_release(&fbatch);
1629 static void ext4_print_free_blocks(struct inode *inode)
1631 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1632 struct super_block *sb = inode->i_sb;
1633 struct ext4_inode_info *ei = EXT4_I(inode);
1635 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1636 EXT4_C2B(EXT4_SB(inode->i_sb),
1637 ext4_count_free_clusters(sb)));
1638 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1639 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1640 (long long) EXT4_C2B(EXT4_SB(sb),
1641 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1642 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1643 (long long) EXT4_C2B(EXT4_SB(sb),
1644 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1645 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1646 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1647 ei->i_reserved_data_blocks);
1651 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1652 struct buffer_head *bh)
1654 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1658 * ext4_insert_delayed_block - adds a delayed block to the extents status
1659 * tree, incrementing the reserved cluster/block
1660 * count or making a pending reservation
1663 * @inode - file containing the newly added block
1664 * @lblk - logical block to be added
1666 * Returns 0 on success, negative error code on failure.
1668 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1670 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1672 bool allocated = false;
1673 bool reserved = false;
1676 * If the cluster containing lblk is shared with a delayed,
1677 * written, or unwritten extent in a bigalloc file system, it's
1678 * already been accounted for and does not need to be reserved.
1679 * A pending reservation must be made for the cluster if it's
1680 * shared with a written or unwritten extent and doesn't already
1681 * have one. Written and unwritten extents can be purged from the
1682 * extents status tree if the system is under memory pressure, so
1683 * it's necessary to examine the extent tree if a search of the
1684 * extents status tree doesn't get a match.
1686 if (sbi->s_cluster_ratio == 1) {
1687 ret = ext4_da_reserve_space(inode);
1688 if (ret != 0) /* ENOSPC */
1691 } else { /* bigalloc */
1692 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1693 if (!ext4_es_scan_clu(inode,
1694 &ext4_es_is_mapped, lblk)) {
1695 ret = ext4_clu_mapped(inode,
1696 EXT4_B2C(sbi, lblk));
1700 ret = ext4_da_reserve_space(inode);
1701 if (ret != 0) /* ENOSPC */
1713 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1714 if (ret && reserved)
1715 ext4_da_release_space(inode, 1);
1722 * This function is grabs code from the very beginning of
1723 * ext4_map_blocks, but assumes that the caller is from delayed write
1724 * time. This function looks up the requested blocks and sets the
1725 * buffer delay bit under the protection of i_data_sem.
1727 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1728 struct ext4_map_blocks *map,
1729 struct buffer_head *bh)
1731 struct extent_status es;
1733 sector_t invalid_block = ~((sector_t) 0xffff);
1734 #ifdef ES_AGGRESSIVE_TEST
1735 struct ext4_map_blocks orig_map;
1737 memcpy(&orig_map, map, sizeof(*map));
1740 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1744 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1745 (unsigned long) map->m_lblk);
1747 /* Lookup extent status tree firstly */
1748 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1749 if (ext4_es_is_hole(&es)) {
1751 down_read(&EXT4_I(inode)->i_data_sem);
1756 * Delayed extent could be allocated by fallocate.
1757 * So we need to check it.
1759 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1760 map_bh(bh, inode->i_sb, invalid_block);
1762 set_buffer_delay(bh);
1766 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1767 retval = es.es_len - (iblock - es.es_lblk);
1768 if (retval > map->m_len)
1769 retval = map->m_len;
1770 map->m_len = retval;
1771 if (ext4_es_is_written(&es))
1772 map->m_flags |= EXT4_MAP_MAPPED;
1773 else if (ext4_es_is_unwritten(&es))
1774 map->m_flags |= EXT4_MAP_UNWRITTEN;
1778 #ifdef ES_AGGRESSIVE_TEST
1779 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1785 * Try to see if we can get the block without requesting a new
1786 * file system block.
1788 down_read(&EXT4_I(inode)->i_data_sem);
1789 if (ext4_has_inline_data(inode))
1791 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1792 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1794 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1801 * XXX: __block_prepare_write() unmaps passed block,
1805 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1811 map_bh(bh, inode->i_sb, invalid_block);
1813 set_buffer_delay(bh);
1814 } else if (retval > 0) {
1816 unsigned int status;
1818 if (unlikely(retval != map->m_len)) {
1819 ext4_warning(inode->i_sb,
1820 "ES len assertion failed for inode "
1821 "%lu: retval %d != map->m_len %d",
1822 inode->i_ino, retval, map->m_len);
1826 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1827 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1828 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1829 map->m_pblk, status);
1835 up_read((&EXT4_I(inode)->i_data_sem));
1841 * This is a special get_block_t callback which is used by
1842 * ext4_da_write_begin(). It will either return mapped block or
1843 * reserve space for a single block.
1845 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1846 * We also have b_blocknr = -1 and b_bdev initialized properly
1848 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1849 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1850 * initialized properly.
1852 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1853 struct buffer_head *bh, int create)
1855 struct ext4_map_blocks map;
1858 BUG_ON(create == 0);
1859 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861 map.m_lblk = iblock;
1865 * first, we need to know whether the block is allocated already
1866 * preallocated blocks are unmapped but should treated
1867 * the same as allocated blocks.
1869 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1873 map_bh(bh, inode->i_sb, map.m_pblk);
1874 ext4_update_bh_state(bh, map.m_flags);
1876 if (buffer_unwritten(bh)) {
1877 /* A delayed write to unwritten bh should be marked
1878 * new and mapped. Mapped ensures that we don't do
1879 * get_block multiple times when we write to the same
1880 * offset and new ensures that we do proper zero out
1881 * for partial write.
1884 set_buffer_mapped(bh);
1889 static int __ext4_journalled_writepage(struct page *page,
1892 struct address_space *mapping = page->mapping;
1893 struct inode *inode = mapping->host;
1894 handle_t *handle = NULL;
1895 int ret = 0, err = 0;
1896 int inline_data = ext4_has_inline_data(inode);
1897 struct buffer_head *inode_bh = NULL;
1900 ClearPageChecked(page);
1903 BUG_ON(page->index != 0);
1904 BUG_ON(len > ext4_get_max_inline_size(inode));
1905 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1906 if (inode_bh == NULL)
1910 * We need to release the page lock before we start the
1911 * journal, so grab a reference so the page won't disappear
1912 * out from under us.
1917 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1918 ext4_writepage_trans_blocks(inode));
1919 if (IS_ERR(handle)) {
1920 ret = PTR_ERR(handle);
1922 goto out_no_pagelock;
1924 BUG_ON(!ext4_handle_valid(handle));
1928 size = i_size_read(inode);
1929 if (page->mapping != mapping || page_offset(page) > size) {
1930 /* The page got truncated from under us */
1931 ext4_journal_stop(handle);
1937 ret = ext4_mark_inode_dirty(handle, inode);
1939 struct buffer_head *page_bufs = page_buffers(page);
1941 if (page->index == size >> PAGE_SHIFT)
1942 len = size & ~PAGE_MASK;
1946 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1947 NULL, do_journal_get_write_access);
1949 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1950 NULL, write_end_fn);
1954 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1957 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1958 err = ext4_journal_stop(handle);
1962 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1971 * Note that we don't need to start a transaction unless we're journaling data
1972 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1973 * need to file the inode to the transaction's list in ordered mode because if
1974 * we are writing back data added by write(), the inode is already there and if
1975 * we are writing back data modified via mmap(), no one guarantees in which
1976 * transaction the data will hit the disk. In case we are journaling data, we
1977 * cannot start transaction directly because transaction start ranks above page
1978 * lock so we have to do some magic.
1980 * This function can get called via...
1981 * - ext4_writepages after taking page lock (have journal handle)
1982 * - journal_submit_inode_data_buffers (no journal handle)
1983 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1984 * - grab_page_cache when doing write_begin (have journal handle)
1986 * We don't do any block allocation in this function. If we have page with
1987 * multiple blocks we need to write those buffer_heads that are mapped. This
1988 * is important for mmaped based write. So if we do with blocksize 1K
1989 * truncate(f, 1024);
1990 * a = mmap(f, 0, 4096);
1992 * truncate(f, 4096);
1993 * we have in the page first buffer_head mapped via page_mkwrite call back
1994 * but other buffer_heads would be unmapped but dirty (dirty done via the
1995 * do_wp_page). So writepage should write the first block. If we modify
1996 * the mmap area beyond 1024 we will again get a page_fault and the
1997 * page_mkwrite callback will do the block allocation and mark the
1998 * buffer_heads mapped.
2000 * We redirty the page if we have any buffer_heads that is either delay or
2001 * unwritten in the page.
2003 * We can get recursively called as show below.
2005 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2008 * But since we don't do any block allocation we should not deadlock.
2009 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2011 static int ext4_writepage(struct page *page,
2012 struct writeback_control *wbc)
2014 struct folio *folio = page_folio(page);
2018 struct buffer_head *page_bufs = NULL;
2019 struct inode *inode = page->mapping->host;
2020 struct ext4_io_submit io_submit;
2021 bool keep_towrite = false;
2023 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2024 folio_invalidate(folio, 0, folio_size(folio));
2025 folio_unlock(folio);
2029 trace_ext4_writepage(page);
2030 size = i_size_read(inode);
2031 if (page->index == size >> PAGE_SHIFT &&
2032 !ext4_verity_in_progress(inode))
2033 len = size & ~PAGE_MASK;
2037 /* Should never happen but for bugs in other kernel subsystems */
2038 if (!page_has_buffers(page)) {
2039 ext4_warning_inode(inode,
2040 "page %lu does not have buffers attached", page->index);
2041 ClearPageDirty(page);
2046 page_bufs = page_buffers(page);
2048 * We cannot do block allocation or other extent handling in this
2049 * function. If there are buffers needing that, we have to redirty
2050 * the page. But we may reach here when we do a journal commit via
2051 * journal_submit_inode_data_buffers() and in that case we must write
2052 * allocated buffers to achieve data=ordered mode guarantees.
2054 * Also, if there is only one buffer per page (the fs block
2055 * size == the page size), if one buffer needs block
2056 * allocation or needs to modify the extent tree to clear the
2057 * unwritten flag, we know that the page can't be written at
2058 * all, so we might as well refuse the write immediately.
2059 * Unfortunately if the block size != page size, we can't as
2060 * easily detect this case using ext4_walk_page_buffers(), but
2061 * for the extremely common case, this is an optimization that
2062 * skips a useless round trip through ext4_bio_write_page().
2064 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2065 ext4_bh_delay_or_unwritten)) {
2066 redirty_page_for_writepage(wbc, page);
2067 if ((current->flags & PF_MEMALLOC) ||
2068 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2070 * For memory cleaning there's no point in writing only
2071 * some buffers. So just bail out. Warn if we came here
2072 * from direct reclaim.
2074 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2079 keep_towrite = true;
2082 if (PageChecked(page) && ext4_should_journal_data(inode))
2084 * It's mmapped pagecache. Add buffers and journal it. There
2085 * doesn't seem much point in redirtying the page here.
2087 return __ext4_journalled_writepage(page, len);
2089 ext4_io_submit_init(&io_submit, wbc);
2090 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2091 if (!io_submit.io_end) {
2092 redirty_page_for_writepage(wbc, page);
2096 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2097 ext4_io_submit(&io_submit);
2098 /* Drop io_end reference we got from init */
2099 ext4_put_io_end_defer(io_submit.io_end);
2103 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2109 BUG_ON(page->index != mpd->first_page);
2110 clear_page_dirty_for_io(page);
2112 * We have to be very careful here! Nothing protects writeback path
2113 * against i_size changes and the page can be writeably mapped into
2114 * page tables. So an application can be growing i_size and writing
2115 * data through mmap while writeback runs. clear_page_dirty_for_io()
2116 * write-protects our page in page tables and the page cannot get
2117 * written to again until we release page lock. So only after
2118 * clear_page_dirty_for_io() we are safe to sample i_size for
2119 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2120 * on the barrier provided by TestClearPageDirty in
2121 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2122 * after page tables are updated.
2124 size = i_size_read(mpd->inode);
2125 if (page->index == size >> PAGE_SHIFT &&
2126 !ext4_verity_in_progress(mpd->inode))
2127 len = size & ~PAGE_MASK;
2130 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2132 mpd->wbc->nr_to_write--;
2138 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2141 * mballoc gives us at most this number of blocks...
2142 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2143 * The rest of mballoc seems to handle chunks up to full group size.
2145 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2148 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2150 * @mpd - extent of blocks
2151 * @lblk - logical number of the block in the file
2152 * @bh - buffer head we want to add to the extent
2154 * The function is used to collect contig. blocks in the same state. If the
2155 * buffer doesn't require mapping for writeback and we haven't started the
2156 * extent of buffers to map yet, the function returns 'true' immediately - the
2157 * caller can write the buffer right away. Otherwise the function returns true
2158 * if the block has been added to the extent, false if the block couldn't be
2161 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2162 struct buffer_head *bh)
2164 struct ext4_map_blocks *map = &mpd->map;
2166 /* Buffer that doesn't need mapping for writeback? */
2167 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2168 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2169 /* So far no extent to map => we write the buffer right away */
2170 if (map->m_len == 0)
2175 /* First block in the extent? */
2176 if (map->m_len == 0) {
2177 /* We cannot map unless handle is started... */
2182 map->m_flags = bh->b_state & BH_FLAGS;
2186 /* Don't go larger than mballoc is willing to allocate */
2187 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2190 /* Can we merge the block to our big extent? */
2191 if (lblk == map->m_lblk + map->m_len &&
2192 (bh->b_state & BH_FLAGS) == map->m_flags) {
2200 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2202 * @mpd - extent of blocks for mapping
2203 * @head - the first buffer in the page
2204 * @bh - buffer we should start processing from
2205 * @lblk - logical number of the block in the file corresponding to @bh
2207 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2208 * the page for IO if all buffers in this page were mapped and there's no
2209 * accumulated extent of buffers to map or add buffers in the page to the
2210 * extent of buffers to map. The function returns 1 if the caller can continue
2211 * by processing the next page, 0 if it should stop adding buffers to the
2212 * extent to map because we cannot extend it anymore. It can also return value
2213 * < 0 in case of error during IO submission.
2215 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2216 struct buffer_head *head,
2217 struct buffer_head *bh,
2220 struct inode *inode = mpd->inode;
2222 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2223 >> inode->i_blkbits;
2225 if (ext4_verity_in_progress(inode))
2226 blocks = EXT_MAX_BLOCKS;
2229 BUG_ON(buffer_locked(bh));
2231 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2232 /* Found extent to map? */
2235 /* Buffer needs mapping and handle is not started? */
2238 /* Everything mapped so far and we hit EOF */
2241 } while (lblk++, (bh = bh->b_this_page) != head);
2242 /* So far everything mapped? Submit the page for IO. */
2243 if (mpd->map.m_len == 0) {
2244 err = mpage_submit_page(mpd, head->b_page);
2248 if (lblk >= blocks) {
2249 mpd->scanned_until_end = 1;
2256 * mpage_process_page - update page buffers corresponding to changed extent and
2257 * may submit fully mapped page for IO
2259 * @mpd - description of extent to map, on return next extent to map
2260 * @m_lblk - logical block mapping.
2261 * @m_pblk - corresponding physical mapping.
2262 * @map_bh - determines on return whether this page requires any further
2264 * Scan given page buffers corresponding to changed extent and update buffer
2265 * state according to new extent state.
2266 * We map delalloc buffers to their physical location, clear unwritten bits.
2267 * If the given page is not fully mapped, we update @map to the next extent in
2268 * the given page that needs mapping & return @map_bh as true.
2270 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2271 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2274 struct buffer_head *head, *bh;
2275 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2276 ext4_lblk_t lblk = *m_lblk;
2277 ext4_fsblk_t pblock = *m_pblk;
2279 int blkbits = mpd->inode->i_blkbits;
2280 ssize_t io_end_size = 0;
2281 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2283 bh = head = page_buffers(page);
2285 if (lblk < mpd->map.m_lblk)
2287 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2289 * Buffer after end of mapped extent.
2290 * Find next buffer in the page to map.
2293 mpd->map.m_flags = 0;
2294 io_end_vec->size += io_end_size;
2296 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2299 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2300 io_end_vec = ext4_alloc_io_end_vec(io_end);
2301 if (IS_ERR(io_end_vec)) {
2302 err = PTR_ERR(io_end_vec);
2305 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2310 if (buffer_delay(bh)) {
2311 clear_buffer_delay(bh);
2312 bh->b_blocknr = pblock++;
2314 clear_buffer_unwritten(bh);
2315 io_end_size += (1 << blkbits);
2316 } while (lblk++, (bh = bh->b_this_page) != head);
2318 io_end_vec->size += io_end_size;
2327 * mpage_map_buffers - update buffers corresponding to changed extent and
2328 * submit fully mapped pages for IO
2330 * @mpd - description of extent to map, on return next extent to map
2332 * Scan buffers corresponding to changed extent (we expect corresponding pages
2333 * to be already locked) and update buffer state according to new extent state.
2334 * We map delalloc buffers to their physical location, clear unwritten bits,
2335 * and mark buffers as uninit when we perform writes to unwritten extents
2336 * and do extent conversion after IO is finished. If the last page is not fully
2337 * mapped, we update @map to the next extent in the last page that needs
2338 * mapping. Otherwise we submit the page for IO.
2340 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2342 struct folio_batch fbatch;
2344 struct inode *inode = mpd->inode;
2345 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2348 ext4_fsblk_t pblock;
2350 bool map_bh = false;
2352 start = mpd->map.m_lblk >> bpp_bits;
2353 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2354 lblk = start << bpp_bits;
2355 pblock = mpd->map.m_pblk;
2357 folio_batch_init(&fbatch);
2358 while (start <= end) {
2359 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2362 for (i = 0; i < nr; i++) {
2363 struct page *page = &fbatch.folios[i]->page;
2365 err = mpage_process_page(mpd, page, &lblk, &pblock,
2368 * If map_bh is true, means page may require further bh
2369 * mapping, or maybe the page was submitted for IO.
2370 * So we return to call further extent mapping.
2372 if (err < 0 || map_bh)
2374 /* Page fully mapped - let IO run! */
2375 err = mpage_submit_page(mpd, page);
2379 folio_batch_release(&fbatch);
2381 /* Extent fully mapped and matches with page boundary. We are done. */
2383 mpd->map.m_flags = 0;
2386 folio_batch_release(&fbatch);
2390 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2392 struct inode *inode = mpd->inode;
2393 struct ext4_map_blocks *map = &mpd->map;
2394 int get_blocks_flags;
2395 int err, dioread_nolock;
2397 trace_ext4_da_write_pages_extent(inode, map);
2399 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2400 * to convert an unwritten extent to be initialized (in the case
2401 * where we have written into one or more preallocated blocks). It is
2402 * possible that we're going to need more metadata blocks than
2403 * previously reserved. However we must not fail because we're in
2404 * writeback and there is nothing we can do about it so it might result
2405 * in data loss. So use reserved blocks to allocate metadata if
2408 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2409 * the blocks in question are delalloc blocks. This indicates
2410 * that the blocks and quotas has already been checked when
2411 * the data was copied into the page cache.
2413 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2414 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2415 EXT4_GET_BLOCKS_IO_SUBMIT;
2416 dioread_nolock = ext4_should_dioread_nolock(inode);
2418 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2419 if (map->m_flags & BIT(BH_Delay))
2420 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2422 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2425 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2426 if (!mpd->io_submit.io_end->handle &&
2427 ext4_handle_valid(handle)) {
2428 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2429 handle->h_rsv_handle = NULL;
2431 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2434 BUG_ON(map->m_len == 0);
2439 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2440 * mpd->len and submit pages underlying it for IO
2442 * @handle - handle for journal operations
2443 * @mpd - extent to map
2444 * @give_up_on_write - we set this to true iff there is a fatal error and there
2445 * is no hope of writing the data. The caller should discard
2446 * dirty pages to avoid infinite loops.
2448 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2449 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2450 * them to initialized or split the described range from larger unwritten
2451 * extent. Note that we need not map all the described range since allocation
2452 * can return less blocks or the range is covered by more unwritten extents. We
2453 * cannot map more because we are limited by reserved transaction credits. On
2454 * the other hand we always make sure that the last touched page is fully
2455 * mapped so that it can be written out (and thus forward progress is
2456 * guaranteed). After mapping we submit all mapped pages for IO.
2458 static int mpage_map_and_submit_extent(handle_t *handle,
2459 struct mpage_da_data *mpd,
2460 bool *give_up_on_write)
2462 struct inode *inode = mpd->inode;
2463 struct ext4_map_blocks *map = &mpd->map;
2467 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2468 struct ext4_io_end_vec *io_end_vec;
2470 io_end_vec = ext4_alloc_io_end_vec(io_end);
2471 if (IS_ERR(io_end_vec))
2472 return PTR_ERR(io_end_vec);
2473 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2475 err = mpage_map_one_extent(handle, mpd);
2477 struct super_block *sb = inode->i_sb;
2479 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2480 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2481 goto invalidate_dirty_pages;
2483 * Let the uper layers retry transient errors.
2484 * In the case of ENOSPC, if ext4_count_free_blocks()
2485 * is non-zero, a commit should free up blocks.
2487 if ((err == -ENOMEM) ||
2488 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2490 goto update_disksize;
2493 ext4_msg(sb, KERN_CRIT,
2494 "Delayed block allocation failed for "
2495 "inode %lu at logical offset %llu with"
2496 " max blocks %u with error %d",
2498 (unsigned long long)map->m_lblk,
2499 (unsigned)map->m_len, -err);
2500 ext4_msg(sb, KERN_CRIT,
2501 "This should not happen!! Data will "
2504 ext4_print_free_blocks(inode);
2505 invalidate_dirty_pages:
2506 *give_up_on_write = true;
2511 * Update buffer state, submit mapped pages, and get us new
2514 err = mpage_map_and_submit_buffers(mpd);
2516 goto update_disksize;
2517 } while (map->m_len);
2521 * Update on-disk size after IO is submitted. Races with
2522 * truncate are avoided by checking i_size under i_data_sem.
2524 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2525 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2529 down_write(&EXT4_I(inode)->i_data_sem);
2530 i_size = i_size_read(inode);
2531 if (disksize > i_size)
2533 if (disksize > EXT4_I(inode)->i_disksize)
2534 EXT4_I(inode)->i_disksize = disksize;
2535 up_write(&EXT4_I(inode)->i_data_sem);
2536 err2 = ext4_mark_inode_dirty(handle, inode);
2538 ext4_error_err(inode->i_sb, -err2,
2539 "Failed to mark inode %lu dirty",
2549 * Calculate the total number of credits to reserve for one writepages
2550 * iteration. This is called from ext4_writepages(). We map an extent of
2551 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2552 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2553 * bpp - 1 blocks in bpp different extents.
2555 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2557 int bpp = ext4_journal_blocks_per_page(inode);
2559 return ext4_meta_trans_blocks(inode,
2560 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2564 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2565 * and underlying extent to map
2567 * @mpd - where to look for pages
2569 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2570 * IO immediately. When we find a page which isn't mapped we start accumulating
2571 * extent of buffers underlying these pages that needs mapping (formed by
2572 * either delayed or unwritten buffers). We also lock the pages containing
2573 * these buffers. The extent found is returned in @mpd structure (starting at
2574 * mpd->lblk with length mpd->len blocks).
2576 * Note that this function can attach bios to one io_end structure which are
2577 * neither logically nor physically contiguous. Although it may seem as an
2578 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2579 * case as we need to track IO to all buffers underlying a page in one io_end.
2581 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2583 struct address_space *mapping = mpd->inode->i_mapping;
2584 struct pagevec pvec;
2585 unsigned int nr_pages;
2586 long left = mpd->wbc->nr_to_write;
2587 pgoff_t index = mpd->first_page;
2588 pgoff_t end = mpd->last_page;
2591 int blkbits = mpd->inode->i_blkbits;
2593 struct buffer_head *head;
2595 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2596 tag = PAGECACHE_TAG_TOWRITE;
2598 tag = PAGECACHE_TAG_DIRTY;
2600 pagevec_init(&pvec);
2602 mpd->next_page = index;
2603 while (index <= end) {
2604 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2609 for (i = 0; i < nr_pages; i++) {
2610 struct page *page = pvec.pages[i];
2613 * Accumulated enough dirty pages? This doesn't apply
2614 * to WB_SYNC_ALL mode. For integrity sync we have to
2615 * keep going because someone may be concurrently
2616 * dirtying pages, and we might have synced a lot of
2617 * newly appeared dirty pages, but have not synced all
2618 * of the old dirty pages.
2620 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2623 /* If we can't merge this page, we are done. */
2624 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2629 * If the page is no longer dirty, or its mapping no
2630 * longer corresponds to inode we are writing (which
2631 * means it has been truncated or invalidated), or the
2632 * page is already under writeback and we are not doing
2633 * a data integrity writeback, skip the page
2635 if (!PageDirty(page) ||
2636 (PageWriteback(page) &&
2637 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2638 unlikely(page->mapping != mapping)) {
2643 wait_on_page_writeback(page);
2644 BUG_ON(PageWriteback(page));
2647 * Should never happen but for buggy code in
2648 * other subsystems that call
2649 * set_page_dirty() without properly warning
2650 * the file system first. See [1] for more
2653 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2655 if (!page_has_buffers(page)) {
2656 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2657 ClearPageDirty(page);
2662 if (mpd->map.m_len == 0)
2663 mpd->first_page = page->index;
2664 mpd->next_page = page->index + 1;
2665 /* Add all dirty buffers to mpd */
2666 lblk = ((ext4_lblk_t)page->index) <<
2667 (PAGE_SHIFT - blkbits);
2668 head = page_buffers(page);
2669 err = mpage_process_page_bufs(mpd, head, head, lblk);
2675 pagevec_release(&pvec);
2678 mpd->scanned_until_end = 1;
2681 pagevec_release(&pvec);
2685 static int ext4_writepages(struct address_space *mapping,
2686 struct writeback_control *wbc)
2688 pgoff_t writeback_index = 0;
2689 long nr_to_write = wbc->nr_to_write;
2690 int range_whole = 0;
2692 handle_t *handle = NULL;
2693 struct mpage_da_data mpd;
2694 struct inode *inode = mapping->host;
2695 int needed_blocks, rsv_blocks = 0, ret = 0;
2696 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2697 struct blk_plug plug;
2698 bool give_up_on_write = false;
2700 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2703 percpu_down_read(&sbi->s_writepages_rwsem);
2704 trace_ext4_writepages(inode, wbc);
2707 * No pages to write? This is mainly a kludge to avoid starting
2708 * a transaction for special inodes like journal inode on last iput()
2709 * because that could violate lock ordering on umount
2711 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2712 goto out_writepages;
2714 if (ext4_should_journal_data(inode)) {
2715 ret = generic_writepages(mapping, wbc);
2716 goto out_writepages;
2720 * If the filesystem has aborted, it is read-only, so return
2721 * right away instead of dumping stack traces later on that
2722 * will obscure the real source of the problem. We test
2723 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2724 * the latter could be true if the filesystem is mounted
2725 * read-only, and in that case, ext4_writepages should
2726 * *never* be called, so if that ever happens, we would want
2729 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2730 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2732 goto out_writepages;
2736 * If we have inline data and arrive here, it means that
2737 * we will soon create the block for the 1st page, so
2738 * we'd better clear the inline data here.
2740 if (ext4_has_inline_data(inode)) {
2741 /* Just inode will be modified... */
2742 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2743 if (IS_ERR(handle)) {
2744 ret = PTR_ERR(handle);
2745 goto out_writepages;
2747 BUG_ON(ext4_test_inode_state(inode,
2748 EXT4_STATE_MAY_INLINE_DATA));
2749 ext4_destroy_inline_data(handle, inode);
2750 ext4_journal_stop(handle);
2753 if (ext4_should_dioread_nolock(inode)) {
2755 * We may need to convert up to one extent per block in
2756 * the page and we may dirty the inode.
2758 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2759 PAGE_SIZE >> inode->i_blkbits);
2762 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2765 if (wbc->range_cyclic) {
2766 writeback_index = mapping->writeback_index;
2767 if (writeback_index)
2769 mpd.first_page = writeback_index;
2772 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2773 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2778 ext4_io_submit_init(&mpd.io_submit, wbc);
2780 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2781 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2782 blk_start_plug(&plug);
2785 * First writeback pages that don't need mapping - we can avoid
2786 * starting a transaction unnecessarily and also avoid being blocked
2787 * in the block layer on device congestion while having transaction
2791 mpd.scanned_until_end = 0;
2792 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2793 if (!mpd.io_submit.io_end) {
2797 ret = mpage_prepare_extent_to_map(&mpd);
2798 /* Unlock pages we didn't use */
2799 mpage_release_unused_pages(&mpd, false);
2800 /* Submit prepared bio */
2801 ext4_io_submit(&mpd.io_submit);
2802 ext4_put_io_end_defer(mpd.io_submit.io_end);
2803 mpd.io_submit.io_end = NULL;
2807 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2808 /* For each extent of pages we use new io_end */
2809 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2810 if (!mpd.io_submit.io_end) {
2816 * We have two constraints: We find one extent to map and we
2817 * must always write out whole page (makes a difference when
2818 * blocksize < pagesize) so that we don't block on IO when we
2819 * try to write out the rest of the page. Journalled mode is
2820 * not supported by delalloc.
2822 BUG_ON(ext4_should_journal_data(inode));
2823 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2825 /* start a new transaction */
2826 handle = ext4_journal_start_with_reserve(inode,
2827 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2828 if (IS_ERR(handle)) {
2829 ret = PTR_ERR(handle);
2830 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2831 "%ld pages, ino %lu; err %d", __func__,
2832 wbc->nr_to_write, inode->i_ino, ret);
2833 /* Release allocated io_end */
2834 ext4_put_io_end(mpd.io_submit.io_end);
2835 mpd.io_submit.io_end = NULL;
2840 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2841 ret = mpage_prepare_extent_to_map(&mpd);
2842 if (!ret && mpd.map.m_len)
2843 ret = mpage_map_and_submit_extent(handle, &mpd,
2846 * Caution: If the handle is synchronous,
2847 * ext4_journal_stop() can wait for transaction commit
2848 * to finish which may depend on writeback of pages to
2849 * complete or on page lock to be released. In that
2850 * case, we have to wait until after we have
2851 * submitted all the IO, released page locks we hold,
2852 * and dropped io_end reference (for extent conversion
2853 * to be able to complete) before stopping the handle.
2855 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2856 ext4_journal_stop(handle);
2860 /* Unlock pages we didn't use */
2861 mpage_release_unused_pages(&mpd, give_up_on_write);
2862 /* Submit prepared bio */
2863 ext4_io_submit(&mpd.io_submit);
2866 * Drop our io_end reference we got from init. We have
2867 * to be careful and use deferred io_end finishing if
2868 * we are still holding the transaction as we can
2869 * release the last reference to io_end which may end
2870 * up doing unwritten extent conversion.
2873 ext4_put_io_end_defer(mpd.io_submit.io_end);
2874 ext4_journal_stop(handle);
2876 ext4_put_io_end(mpd.io_submit.io_end);
2877 mpd.io_submit.io_end = NULL;
2879 if (ret == -ENOSPC && sbi->s_journal) {
2881 * Commit the transaction which would
2882 * free blocks released in the transaction
2885 jbd2_journal_force_commit_nested(sbi->s_journal);
2889 /* Fatal error - ENOMEM, EIO... */
2894 blk_finish_plug(&plug);
2895 if (!ret && !cycled && wbc->nr_to_write > 0) {
2897 mpd.last_page = writeback_index - 1;
2903 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2905 * Set the writeback_index so that range_cyclic
2906 * mode will write it back later
2908 mapping->writeback_index = mpd.first_page;
2911 trace_ext4_writepages_result(inode, wbc, ret,
2912 nr_to_write - wbc->nr_to_write);
2913 percpu_up_read(&sbi->s_writepages_rwsem);
2917 static int ext4_dax_writepages(struct address_space *mapping,
2918 struct writeback_control *wbc)
2921 long nr_to_write = wbc->nr_to_write;
2922 struct inode *inode = mapping->host;
2923 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2925 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2928 percpu_down_read(&sbi->s_writepages_rwsem);
2929 trace_ext4_writepages(inode, wbc);
2931 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2932 trace_ext4_writepages_result(inode, wbc, ret,
2933 nr_to_write - wbc->nr_to_write);
2934 percpu_up_read(&sbi->s_writepages_rwsem);
2938 static int ext4_nonda_switch(struct super_block *sb)
2940 s64 free_clusters, dirty_clusters;
2941 struct ext4_sb_info *sbi = EXT4_SB(sb);
2944 * switch to non delalloc mode if we are running low
2945 * on free block. The free block accounting via percpu
2946 * counters can get slightly wrong with percpu_counter_batch getting
2947 * accumulated on each CPU without updating global counters
2948 * Delalloc need an accurate free block accounting. So switch
2949 * to non delalloc when we are near to error range.
2952 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2954 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2956 * Start pushing delalloc when 1/2 of free blocks are dirty.
2958 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2959 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2961 if (2 * free_clusters < 3 * dirty_clusters ||
2962 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2964 * free block count is less than 150% of dirty blocks
2965 * or free blocks is less than watermark
2972 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2973 loff_t pos, unsigned len,
2974 struct page **pagep, void **fsdata)
2976 int ret, retries = 0;
2979 struct inode *inode = mapping->host;
2981 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2984 index = pos >> PAGE_SHIFT;
2986 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2987 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2988 return ext4_write_begin(file, mapping, pos,
2989 len, pagep, fsdata);
2991 *fsdata = (void *)0;
2992 trace_ext4_da_write_begin(inode, pos, len);
2994 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2995 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
3004 page = grab_cache_page_write_begin(mapping, index);
3008 /* In case writeback began while the page was unlocked */
3009 wait_for_stable_page(page);
3011 #ifdef CONFIG_FS_ENCRYPTION
3012 ret = ext4_block_write_begin(page, pos, len,
3013 ext4_da_get_block_prep);
3015 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3021 * block_write_begin may have instantiated a few blocks
3022 * outside i_size. Trim these off again. Don't need
3023 * i_size_read because we hold inode lock.
3025 if (pos + len > inode->i_size)
3026 ext4_truncate_failed_write(inode);
3028 if (ret == -ENOSPC &&
3029 ext4_should_retry_alloc(inode->i_sb, &retries))
3039 * Check if we should update i_disksize
3040 * when write to the end of file but not require block allocation
3042 static int ext4_da_should_update_i_disksize(struct page *page,
3043 unsigned long offset)
3045 struct buffer_head *bh;
3046 struct inode *inode = page->mapping->host;
3050 bh = page_buffers(page);
3051 idx = offset >> inode->i_blkbits;
3053 for (i = 0; i < idx; i++)
3054 bh = bh->b_this_page;
3056 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3061 static int ext4_da_write_end(struct file *file,
3062 struct address_space *mapping,
3063 loff_t pos, unsigned len, unsigned copied,
3064 struct page *page, void *fsdata)
3066 struct inode *inode = mapping->host;
3068 unsigned long start, end;
3069 int write_mode = (int)(unsigned long)fsdata;
3071 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3072 return ext4_write_end(file, mapping, pos,
3073 len, copied, page, fsdata);
3075 trace_ext4_da_write_end(inode, pos, len, copied);
3077 if (write_mode != CONVERT_INLINE_DATA &&
3078 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3079 ext4_has_inline_data(inode))
3080 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3082 if (unlikely(copied < len) && !PageUptodate(page))
3085 start = pos & (PAGE_SIZE - 1);
3086 end = start + copied - 1;
3089 * Since we are holding inode lock, we are sure i_disksize <=
3090 * i_size. We also know that if i_disksize < i_size, there are
3091 * delalloc writes pending in the range upto i_size. If the end of
3092 * the current write is <= i_size, there's no need to touch
3093 * i_disksize since writeback will push i_disksize upto i_size
3094 * eventually. If the end of the current write is > i_size and
3095 * inside an allocated block (ext4_da_should_update_i_disksize()
3096 * check), we need to update i_disksize here as neither
3097 * ext4_writepage() nor certain ext4_writepages() paths not
3098 * allocating blocks update i_disksize.
3100 * Note that we defer inode dirtying to generic_write_end() /
3101 * ext4_da_write_inline_data_end().
3103 new_i_size = pos + copied;
3104 if (copied && new_i_size > inode->i_size &&
3105 ext4_da_should_update_i_disksize(page, end))
3106 ext4_update_i_disksize(inode, new_i_size);
3108 return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3112 * Force all delayed allocation blocks to be allocated for a given inode.
3114 int ext4_alloc_da_blocks(struct inode *inode)
3116 trace_ext4_alloc_da_blocks(inode);
3118 if (!EXT4_I(inode)->i_reserved_data_blocks)
3122 * We do something simple for now. The filemap_flush() will
3123 * also start triggering a write of the data blocks, which is
3124 * not strictly speaking necessary (and for users of
3125 * laptop_mode, not even desirable). However, to do otherwise
3126 * would require replicating code paths in:
3128 * ext4_writepages() ->
3129 * write_cache_pages() ---> (via passed in callback function)
3130 * __mpage_da_writepage() -->
3131 * mpage_add_bh_to_extent()
3132 * mpage_da_map_blocks()
3134 * The problem is that write_cache_pages(), located in
3135 * mm/page-writeback.c, marks pages clean in preparation for
3136 * doing I/O, which is not desirable if we're not planning on
3139 * We could call write_cache_pages(), and then redirty all of
3140 * the pages by calling redirty_page_for_writepage() but that
3141 * would be ugly in the extreme. So instead we would need to
3142 * replicate parts of the code in the above functions,
3143 * simplifying them because we wouldn't actually intend to
3144 * write out the pages, but rather only collect contiguous
3145 * logical block extents, call the multi-block allocator, and
3146 * then update the buffer heads with the block allocations.
3148 * For now, though, we'll cheat by calling filemap_flush(),
3149 * which will map the blocks, and start the I/O, but not
3150 * actually wait for the I/O to complete.
3152 return filemap_flush(inode->i_mapping);
3156 * bmap() is special. It gets used by applications such as lilo and by
3157 * the swapper to find the on-disk block of a specific piece of data.
3159 * Naturally, this is dangerous if the block concerned is still in the
3160 * journal. If somebody makes a swapfile on an ext4 data-journaling
3161 * filesystem and enables swap, then they may get a nasty shock when the
3162 * data getting swapped to that swapfile suddenly gets overwritten by
3163 * the original zero's written out previously to the journal and
3164 * awaiting writeback in the kernel's buffer cache.
3166 * So, if we see any bmap calls here on a modified, data-journaled file,
3167 * take extra steps to flush any blocks which might be in the cache.
3169 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3171 struct inode *inode = mapping->host;
3176 inode_lock_shared(inode);
3178 * We can get here for an inline file via the FIBMAP ioctl
3180 if (ext4_has_inline_data(inode))
3183 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3184 test_opt(inode->i_sb, DELALLOC)) {
3186 * With delalloc we want to sync the file
3187 * so that we can make sure we allocate
3190 filemap_write_and_wait(mapping);
3193 if (EXT4_JOURNAL(inode) &&
3194 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3196 * This is a REALLY heavyweight approach, but the use of
3197 * bmap on dirty files is expected to be extremely rare:
3198 * only if we run lilo or swapon on a freshly made file
3199 * do we expect this to happen.
3201 * (bmap requires CAP_SYS_RAWIO so this does not
3202 * represent an unprivileged user DOS attack --- we'd be
3203 * in trouble if mortal users could trigger this path at
3206 * NB. EXT4_STATE_JDATA is not set on files other than
3207 * regular files. If somebody wants to bmap a directory
3208 * or symlink and gets confused because the buffer
3209 * hasn't yet been flushed to disk, they deserve
3210 * everything they get.
3213 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3214 journal = EXT4_JOURNAL(inode);
3215 jbd2_journal_lock_updates(journal);
3216 err = jbd2_journal_flush(journal, 0);
3217 jbd2_journal_unlock_updates(journal);
3223 ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3226 inode_unlock_shared(inode);
3230 static int ext4_read_folio(struct file *file, struct folio *folio)
3232 struct page *page = &folio->page;
3234 struct inode *inode = page->mapping->host;
3236 trace_ext4_readpage(page);
3238 if (ext4_has_inline_data(inode))
3239 ret = ext4_readpage_inline(inode, page);
3242 return ext4_mpage_readpages(inode, NULL, page);
3247 static void ext4_readahead(struct readahead_control *rac)
3249 struct inode *inode = rac->mapping->host;
3251 /* If the file has inline data, no need to do readahead. */
3252 if (ext4_has_inline_data(inode))
3255 ext4_mpage_readpages(inode, rac, NULL);
3258 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3261 trace_ext4_invalidate_folio(folio, offset, length);
3263 /* No journalling happens on data buffers when this function is used */
3264 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3266 block_invalidate_folio(folio, offset, length);
3269 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3270 size_t offset, size_t length)
3272 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3274 trace_ext4_journalled_invalidate_folio(folio, offset, length);
3277 * If it's a full truncate we just forget about the pending dirtying
3279 if (offset == 0 && length == folio_size(folio))
3280 folio_clear_checked(folio);
3282 return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3285 /* Wrapper for aops... */
3286 static void ext4_journalled_invalidate_folio(struct folio *folio,
3290 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3293 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3295 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3297 trace_ext4_releasepage(&folio->page);
3299 /* Page has dirty journalled data -> cannot release */
3300 if (folio_test_checked(folio))
3303 return jbd2_journal_try_to_free_buffers(journal, folio);
3305 return try_to_free_buffers(folio);
3308 static bool ext4_inode_datasync_dirty(struct inode *inode)
3310 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3313 if (jbd2_transaction_committed(journal,
3314 EXT4_I(inode)->i_datasync_tid))
3316 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3317 return !list_empty(&EXT4_I(inode)->i_fc_list);
3321 /* Any metadata buffers to write? */
3322 if (!list_empty(&inode->i_mapping->private_list))
3324 return inode->i_state & I_DIRTY_DATASYNC;
3327 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3328 struct ext4_map_blocks *map, loff_t offset,
3329 loff_t length, unsigned int flags)
3331 u8 blkbits = inode->i_blkbits;
3334 * Writes that span EOF might trigger an I/O size update on completion,
3335 * so consider them to be dirty for the purpose of O_DSYNC, even if
3336 * there is no other metadata changes being made or are pending.
3339 if (ext4_inode_datasync_dirty(inode) ||
3340 offset + length > i_size_read(inode))
3341 iomap->flags |= IOMAP_F_DIRTY;
3343 if (map->m_flags & EXT4_MAP_NEW)
3344 iomap->flags |= IOMAP_F_NEW;
3346 if (flags & IOMAP_DAX)
3347 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3349 iomap->bdev = inode->i_sb->s_bdev;
3350 iomap->offset = (u64) map->m_lblk << blkbits;
3351 iomap->length = (u64) map->m_len << blkbits;
3353 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3354 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3355 iomap->flags |= IOMAP_F_MERGED;
3358 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3359 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3360 * set. In order for any allocated unwritten extents to be converted
3361 * into written extents correctly within the ->end_io() handler, we
3362 * need to ensure that the iomap->type is set appropriately. Hence, the
3363 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3366 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3367 iomap->type = IOMAP_UNWRITTEN;
3368 iomap->addr = (u64) map->m_pblk << blkbits;
3369 if (flags & IOMAP_DAX)
3370 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3371 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3372 iomap->type = IOMAP_MAPPED;
3373 iomap->addr = (u64) map->m_pblk << blkbits;
3374 if (flags & IOMAP_DAX)
3375 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3377 iomap->type = IOMAP_HOLE;
3378 iomap->addr = IOMAP_NULL_ADDR;
3382 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3386 u8 blkbits = inode->i_blkbits;
3387 int ret, dio_credits, m_flags = 0, retries = 0;
3390 * Trim the mapping request to the maximum value that we can map at
3391 * once for direct I/O.
3393 if (map->m_len > DIO_MAX_BLOCKS)
3394 map->m_len = DIO_MAX_BLOCKS;
3395 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3399 * Either we allocate blocks and then don't get an unwritten extent, so
3400 * in that case we have reserved enough credits. Or, the blocks are
3401 * already allocated and unwritten. In that case, the extent conversion
3402 * fits into the credits as well.
3404 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3406 return PTR_ERR(handle);
3409 * DAX and direct I/O are the only two operations that are currently
3410 * supported with IOMAP_WRITE.
3412 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3413 if (flags & IOMAP_DAX)
3414 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3416 * We use i_size instead of i_disksize here because delalloc writeback
3417 * can complete at any point during the I/O and subsequently push the
3418 * i_disksize out to i_size. This could be beyond where direct I/O is
3419 * happening and thus expose allocated blocks to direct I/O reads.
3421 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3422 m_flags = EXT4_GET_BLOCKS_CREATE;
3423 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3424 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3426 ret = ext4_map_blocks(handle, inode, map, m_flags);
3429 * We cannot fill holes in indirect tree based inodes as that could
3430 * expose stale data in the case of a crash. Use the magic error code
3431 * to fallback to buffered I/O.
3433 if (!m_flags && !ret)
3436 ext4_journal_stop(handle);
3437 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3444 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3445 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3448 struct ext4_map_blocks map;
3449 u8 blkbits = inode->i_blkbits;
3451 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3454 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3458 * Calculate the first and last logical blocks respectively.
3460 map.m_lblk = offset >> blkbits;
3461 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3462 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3464 if (flags & IOMAP_WRITE) {
3466 * We check here if the blocks are already allocated, then we
3467 * don't need to start a journal txn and we can directly return
3468 * the mapping information. This could boost performance
3469 * especially in multi-threaded overwrite requests.
3471 if (offset + length <= i_size_read(inode)) {
3472 ret = ext4_map_blocks(NULL, inode, &map, 0);
3473 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3476 ret = ext4_iomap_alloc(inode, &map, flags);
3478 ret = ext4_map_blocks(NULL, inode, &map, 0);
3485 * When inline encryption is enabled, sometimes I/O to an encrypted file
3486 * has to be broken up to guarantee DUN contiguity. Handle this by
3487 * limiting the length of the mapping returned.
3489 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3491 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3496 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3497 loff_t length, unsigned flags, struct iomap *iomap,
3498 struct iomap *srcmap)
3503 * Even for writes we don't need to allocate blocks, so just pretend
3504 * we are reading to save overhead of starting a transaction.
3506 flags &= ~IOMAP_WRITE;
3507 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3508 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3512 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3513 ssize_t written, unsigned flags, struct iomap *iomap)
3516 * Check to see whether an error occurred while writing out the data to
3517 * the allocated blocks. If so, return the magic error code so that we
3518 * fallback to buffered I/O and attempt to complete the remainder of
3519 * the I/O. Any blocks that may have been allocated in preparation for
3520 * the direct I/O will be reused during buffered I/O.
3522 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3528 const struct iomap_ops ext4_iomap_ops = {
3529 .iomap_begin = ext4_iomap_begin,
3530 .iomap_end = ext4_iomap_end,
3533 const struct iomap_ops ext4_iomap_overwrite_ops = {
3534 .iomap_begin = ext4_iomap_overwrite_begin,
3535 .iomap_end = ext4_iomap_end,
3538 static bool ext4_iomap_is_delalloc(struct inode *inode,
3539 struct ext4_map_blocks *map)
3541 struct extent_status es;
3542 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3544 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3545 map->m_lblk, end, &es);
3547 if (!es.es_len || es.es_lblk > end)
3550 if (es.es_lblk > map->m_lblk) {
3551 map->m_len = es.es_lblk - map->m_lblk;
3555 offset = map->m_lblk - es.es_lblk;
3556 map->m_len = es.es_len - offset;
3561 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3562 loff_t length, unsigned int flags,
3563 struct iomap *iomap, struct iomap *srcmap)
3566 bool delalloc = false;
3567 struct ext4_map_blocks map;
3568 u8 blkbits = inode->i_blkbits;
3570 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3573 if (ext4_has_inline_data(inode)) {
3574 ret = ext4_inline_data_iomap(inode, iomap);
3575 if (ret != -EAGAIN) {
3576 if (ret == 0 && offset >= iomap->length)
3583 * Calculate the first and last logical block respectively.
3585 map.m_lblk = offset >> blkbits;
3586 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3587 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3590 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3591 * So handle it here itself instead of querying ext4_map_blocks().
3592 * Since ext4_map_blocks() will warn about it and will return
3595 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3596 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3598 if (offset >= sbi->s_bitmap_maxbytes) {
3604 ret = ext4_map_blocks(NULL, inode, &map, 0);
3608 delalloc = ext4_iomap_is_delalloc(inode, &map);
3611 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3612 if (delalloc && iomap->type == IOMAP_HOLE)
3613 iomap->type = IOMAP_DELALLOC;
3618 const struct iomap_ops ext4_iomap_report_ops = {
3619 .iomap_begin = ext4_iomap_begin_report,
3623 * Whenever the folio is being dirtied, corresponding buffers should already
3624 * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3625 * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3626 * lists here because ->dirty_folio is called under VFS locks and the folio
3627 * is not necessarily locked.
3629 * We cannot just dirty the folio and leave attached buffers clean, because the
3630 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3631 * or jbddirty because all the journalling code will explode.
3633 * So what we do is to mark the folio "pending dirty" and next time writepage
3634 * is called, propagate that into the buffers appropriately.
3636 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3637 struct folio *folio)
3639 WARN_ON_ONCE(!folio_buffers(folio));
3640 folio_set_checked(folio);
3641 return filemap_dirty_folio(mapping, folio);
3644 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3646 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3647 WARN_ON_ONCE(!folio_buffers(folio));
3648 return block_dirty_folio(mapping, folio);
3651 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3652 struct file *file, sector_t *span)
3654 return iomap_swapfile_activate(sis, file, span,
3655 &ext4_iomap_report_ops);
3658 static const struct address_space_operations ext4_aops = {
3659 .read_folio = ext4_read_folio,
3660 .readahead = ext4_readahead,
3661 .writepage = ext4_writepage,
3662 .writepages = ext4_writepages,
3663 .write_begin = ext4_write_begin,
3664 .write_end = ext4_write_end,
3665 .dirty_folio = ext4_dirty_folio,
3667 .invalidate_folio = ext4_invalidate_folio,
3668 .release_folio = ext4_release_folio,
3669 .direct_IO = noop_direct_IO,
3670 .migrate_folio = buffer_migrate_folio,
3671 .is_partially_uptodate = block_is_partially_uptodate,
3672 .error_remove_page = generic_error_remove_page,
3673 .swap_activate = ext4_iomap_swap_activate,
3676 static const struct address_space_operations ext4_journalled_aops = {
3677 .read_folio = ext4_read_folio,
3678 .readahead = ext4_readahead,
3679 .writepage = ext4_writepage,
3680 .writepages = ext4_writepages,
3681 .write_begin = ext4_write_begin,
3682 .write_end = ext4_journalled_write_end,
3683 .dirty_folio = ext4_journalled_dirty_folio,
3685 .invalidate_folio = ext4_journalled_invalidate_folio,
3686 .release_folio = ext4_release_folio,
3687 .direct_IO = noop_direct_IO,
3688 .is_partially_uptodate = block_is_partially_uptodate,
3689 .error_remove_page = generic_error_remove_page,
3690 .swap_activate = ext4_iomap_swap_activate,
3693 static const struct address_space_operations ext4_da_aops = {
3694 .read_folio = ext4_read_folio,
3695 .readahead = ext4_readahead,
3696 .writepage = ext4_writepage,
3697 .writepages = ext4_writepages,
3698 .write_begin = ext4_da_write_begin,
3699 .write_end = ext4_da_write_end,
3700 .dirty_folio = ext4_dirty_folio,
3702 .invalidate_folio = ext4_invalidate_folio,
3703 .release_folio = ext4_release_folio,
3704 .direct_IO = noop_direct_IO,
3705 .migrate_folio = buffer_migrate_folio,
3706 .is_partially_uptodate = block_is_partially_uptodate,
3707 .error_remove_page = generic_error_remove_page,
3708 .swap_activate = ext4_iomap_swap_activate,
3711 static const struct address_space_operations ext4_dax_aops = {
3712 .writepages = ext4_dax_writepages,
3713 .direct_IO = noop_direct_IO,
3714 .dirty_folio = noop_dirty_folio,
3716 .swap_activate = ext4_iomap_swap_activate,
3719 void ext4_set_aops(struct inode *inode)
3721 switch (ext4_inode_journal_mode(inode)) {
3722 case EXT4_INODE_ORDERED_DATA_MODE:
3723 case EXT4_INODE_WRITEBACK_DATA_MODE:
3725 case EXT4_INODE_JOURNAL_DATA_MODE:
3726 inode->i_mapping->a_ops = &ext4_journalled_aops;
3732 inode->i_mapping->a_ops = &ext4_dax_aops;
3733 else if (test_opt(inode->i_sb, DELALLOC))
3734 inode->i_mapping->a_ops = &ext4_da_aops;
3736 inode->i_mapping->a_ops = &ext4_aops;
3739 static int __ext4_block_zero_page_range(handle_t *handle,
3740 struct address_space *mapping, loff_t from, loff_t length)
3742 ext4_fsblk_t index = from >> PAGE_SHIFT;
3743 unsigned offset = from & (PAGE_SIZE-1);
3744 unsigned blocksize, pos;
3746 struct inode *inode = mapping->host;
3747 struct buffer_head *bh;
3751 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3752 mapping_gfp_constraint(mapping, ~__GFP_FS));
3756 blocksize = inode->i_sb->s_blocksize;
3758 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3760 if (!page_has_buffers(page))
3761 create_empty_buffers(page, blocksize, 0);
3763 /* Find the buffer that contains "offset" */
3764 bh = page_buffers(page);
3766 while (offset >= pos) {
3767 bh = bh->b_this_page;
3771 if (buffer_freed(bh)) {
3772 BUFFER_TRACE(bh, "freed: skip");
3775 if (!buffer_mapped(bh)) {
3776 BUFFER_TRACE(bh, "unmapped");
3777 ext4_get_block(inode, iblock, bh, 0);
3778 /* unmapped? It's a hole - nothing to do */
3779 if (!buffer_mapped(bh)) {
3780 BUFFER_TRACE(bh, "still unmapped");
3785 /* Ok, it's mapped. Make sure it's up-to-date */
3786 if (PageUptodate(page))
3787 set_buffer_uptodate(bh);
3789 if (!buffer_uptodate(bh)) {
3790 err = ext4_read_bh_lock(bh, 0, true);
3793 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3794 /* We expect the key to be set. */
3795 BUG_ON(!fscrypt_has_encryption_key(inode));
3796 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3799 clear_buffer_uptodate(bh);
3804 if (ext4_should_journal_data(inode)) {
3805 BUFFER_TRACE(bh, "get write access");
3806 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3811 zero_user(page, offset, length);
3812 BUFFER_TRACE(bh, "zeroed end of block");
3814 if (ext4_should_journal_data(inode)) {
3815 err = ext4_handle_dirty_metadata(handle, inode, bh);
3818 mark_buffer_dirty(bh);
3819 if (ext4_should_order_data(inode))
3820 err = ext4_jbd2_inode_add_write(handle, inode, from,
3831 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3832 * starting from file offset 'from'. The range to be zero'd must
3833 * be contained with in one block. If the specified range exceeds
3834 * the end of the block it will be shortened to end of the block
3835 * that corresponds to 'from'
3837 static int ext4_block_zero_page_range(handle_t *handle,
3838 struct address_space *mapping, loff_t from, loff_t length)
3840 struct inode *inode = mapping->host;
3841 unsigned offset = from & (PAGE_SIZE-1);
3842 unsigned blocksize = inode->i_sb->s_blocksize;
3843 unsigned max = blocksize - (offset & (blocksize - 1));
3846 * correct length if it does not fall between
3847 * 'from' and the end of the block
3849 if (length > max || length < 0)
3852 if (IS_DAX(inode)) {
3853 return dax_zero_range(inode, from, length, NULL,
3856 return __ext4_block_zero_page_range(handle, mapping, from, length);
3860 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3861 * up to the end of the block which corresponds to `from'.
3862 * This required during truncate. We need to physically zero the tail end
3863 * of that block so it doesn't yield old data if the file is later grown.
3865 static int ext4_block_truncate_page(handle_t *handle,
3866 struct address_space *mapping, loff_t from)
3868 unsigned offset = from & (PAGE_SIZE-1);
3871 struct inode *inode = mapping->host;
3873 /* If we are processing an encrypted inode during orphan list handling */
3874 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3877 blocksize = inode->i_sb->s_blocksize;
3878 length = blocksize - (offset & (blocksize - 1));
3880 return ext4_block_zero_page_range(handle, mapping, from, length);
3883 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3884 loff_t lstart, loff_t length)
3886 struct super_block *sb = inode->i_sb;
3887 struct address_space *mapping = inode->i_mapping;
3888 unsigned partial_start, partial_end;
3889 ext4_fsblk_t start, end;
3890 loff_t byte_end = (lstart + length - 1);
3893 partial_start = lstart & (sb->s_blocksize - 1);
3894 partial_end = byte_end & (sb->s_blocksize - 1);
3896 start = lstart >> sb->s_blocksize_bits;
3897 end = byte_end >> sb->s_blocksize_bits;
3899 /* Handle partial zero within the single block */
3901 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3902 err = ext4_block_zero_page_range(handle, mapping,
3906 /* Handle partial zero out on the start of the range */
3907 if (partial_start) {
3908 err = ext4_block_zero_page_range(handle, mapping,
3909 lstart, sb->s_blocksize);
3913 /* Handle partial zero out on the end of the range */
3914 if (partial_end != sb->s_blocksize - 1)
3915 err = ext4_block_zero_page_range(handle, mapping,
3916 byte_end - partial_end,
3921 int ext4_can_truncate(struct inode *inode)
3923 if (S_ISREG(inode->i_mode))
3925 if (S_ISDIR(inode->i_mode))
3927 if (S_ISLNK(inode->i_mode))
3928 return !ext4_inode_is_fast_symlink(inode);
3933 * We have to make sure i_disksize gets properly updated before we truncate
3934 * page cache due to hole punching or zero range. Otherwise i_disksize update
3935 * can get lost as it may have been postponed to submission of writeback but
3936 * that will never happen after we truncate page cache.
3938 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3944 loff_t size = i_size_read(inode);
3946 WARN_ON(!inode_is_locked(inode));
3947 if (offset > size || offset + len < size)
3950 if (EXT4_I(inode)->i_disksize >= size)
3953 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3955 return PTR_ERR(handle);
3956 ext4_update_i_disksize(inode, size);
3957 ret = ext4_mark_inode_dirty(handle, inode);
3958 ext4_journal_stop(handle);
3963 static void ext4_wait_dax_page(struct inode *inode)
3965 filemap_invalidate_unlock(inode->i_mapping);
3967 filemap_invalidate_lock(inode->i_mapping);
3970 int ext4_break_layouts(struct inode *inode)
3975 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3979 page = dax_layout_busy_page(inode->i_mapping);
3983 error = ___wait_var_event(&page->_refcount,
3984 atomic_read(&page->_refcount) == 1,
3985 TASK_INTERRUPTIBLE, 0, 0,
3986 ext4_wait_dax_page(inode));
3987 } while (error == 0);
3993 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3994 * associated with the given offset and length
3996 * @inode: File inode
3997 * @offset: The offset where the hole will begin
3998 * @len: The length of the hole
4000 * Returns: 0 on success or negative on failure
4003 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4005 struct inode *inode = file_inode(file);
4006 struct super_block *sb = inode->i_sb;
4007 ext4_lblk_t first_block, stop_block;
4008 struct address_space *mapping = inode->i_mapping;
4009 loff_t first_block_offset, last_block_offset, max_length;
4010 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4012 unsigned int credits;
4013 int ret = 0, ret2 = 0;
4015 trace_ext4_punch_hole(inode, offset, length, 0);
4018 * Write out all dirty pages to avoid race conditions
4019 * Then release them.
4021 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4022 ret = filemap_write_and_wait_range(mapping, offset,
4023 offset + length - 1);
4030 /* No need to punch hole beyond i_size */
4031 if (offset >= inode->i_size)
4035 * If the hole extends beyond i_size, set the hole
4036 * to end after the page that contains i_size
4038 if (offset + length > inode->i_size) {
4039 length = inode->i_size +
4040 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4045 * For punch hole the length + offset needs to be within one block
4046 * before last range. Adjust the length if it goes beyond that limit.
4048 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4049 if (offset + length > max_length)
4050 length = max_length - offset;
4052 if (offset & (sb->s_blocksize - 1) ||
4053 (offset + length) & (sb->s_blocksize - 1)) {
4055 * Attach jinode to inode for jbd2 if we do any zeroing of
4058 ret = ext4_inode_attach_jinode(inode);
4064 /* Wait all existing dio workers, newcomers will block on i_rwsem */
4065 inode_dio_wait(inode);
4067 ret = file_modified(file);
4072 * Prevent page faults from reinstantiating pages we have released from
4075 filemap_invalidate_lock(mapping);
4077 ret = ext4_break_layouts(inode);
4081 first_block_offset = round_up(offset, sb->s_blocksize);
4082 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4084 /* Now release the pages and zero block aligned part of pages*/
4085 if (last_block_offset > first_block_offset) {
4086 ret = ext4_update_disksize_before_punch(inode, offset, length);
4089 truncate_pagecache_range(inode, first_block_offset,
4093 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4094 credits = ext4_writepage_trans_blocks(inode);
4096 credits = ext4_blocks_for_truncate(inode);
4097 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4098 if (IS_ERR(handle)) {
4099 ret = PTR_ERR(handle);
4100 ext4_std_error(sb, ret);
4104 ret = ext4_zero_partial_blocks(handle, inode, offset,
4109 first_block = (offset + sb->s_blocksize - 1) >>
4110 EXT4_BLOCK_SIZE_BITS(sb);
4111 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4113 /* If there are blocks to remove, do it */
4114 if (stop_block > first_block) {
4116 down_write(&EXT4_I(inode)->i_data_sem);
4117 ext4_discard_preallocations(inode, 0);
4119 ret = ext4_es_remove_extent(inode, first_block,
4120 stop_block - first_block);
4122 up_write(&EXT4_I(inode)->i_data_sem);
4126 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4127 ret = ext4_ext_remove_space(inode, first_block,
4130 ret = ext4_ind_remove_space(handle, inode, first_block,
4133 up_write(&EXT4_I(inode)->i_data_sem);
4135 ext4_fc_track_range(handle, inode, first_block, stop_block);
4137 ext4_handle_sync(handle);
4139 inode->i_mtime = inode->i_ctime = current_time(inode);
4140 ret2 = ext4_mark_inode_dirty(handle, inode);
4144 ext4_update_inode_fsync_trans(handle, inode, 1);
4146 ext4_journal_stop(handle);
4148 filemap_invalidate_unlock(mapping);
4150 inode_unlock(inode);
4154 int ext4_inode_attach_jinode(struct inode *inode)
4156 struct ext4_inode_info *ei = EXT4_I(inode);
4157 struct jbd2_inode *jinode;
4159 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4162 jinode = jbd2_alloc_inode(GFP_KERNEL);
4163 spin_lock(&inode->i_lock);
4166 spin_unlock(&inode->i_lock);
4169 ei->jinode = jinode;
4170 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4173 spin_unlock(&inode->i_lock);
4174 if (unlikely(jinode != NULL))
4175 jbd2_free_inode(jinode);
4182 * We block out ext4_get_block() block instantiations across the entire
4183 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4184 * simultaneously on behalf of the same inode.
4186 * As we work through the truncate and commit bits of it to the journal there
4187 * is one core, guiding principle: the file's tree must always be consistent on
4188 * disk. We must be able to restart the truncate after a crash.
4190 * The file's tree may be transiently inconsistent in memory (although it
4191 * probably isn't), but whenever we close off and commit a journal transaction,
4192 * the contents of (the filesystem + the journal) must be consistent and
4193 * restartable. It's pretty simple, really: bottom up, right to left (although
4194 * left-to-right works OK too).
4196 * Note that at recovery time, journal replay occurs *before* the restart of
4197 * truncate against the orphan inode list.
4199 * The committed inode has the new, desired i_size (which is the same as
4200 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4201 * that this inode's truncate did not complete and it will again call
4202 * ext4_truncate() to have another go. So there will be instantiated blocks
4203 * to the right of the truncation point in a crashed ext4 filesystem. But
4204 * that's fine - as long as they are linked from the inode, the post-crash
4205 * ext4_truncate() run will find them and release them.
4207 int ext4_truncate(struct inode *inode)
4209 struct ext4_inode_info *ei = EXT4_I(inode);
4210 unsigned int credits;
4213 struct address_space *mapping = inode->i_mapping;
4216 * There is a possibility that we're either freeing the inode
4217 * or it's a completely new inode. In those cases we might not
4218 * have i_rwsem locked because it's not necessary.
4220 if (!(inode->i_state & (I_NEW|I_FREEING)))
4221 WARN_ON(!inode_is_locked(inode));
4222 trace_ext4_truncate_enter(inode);
4224 if (!ext4_can_truncate(inode))
4227 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4228 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4230 if (ext4_has_inline_data(inode)) {
4233 err = ext4_inline_data_truncate(inode, &has_inline);
4234 if (err || has_inline)
4238 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4239 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4240 err = ext4_inode_attach_jinode(inode);
4245 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4246 credits = ext4_writepage_trans_blocks(inode);
4248 credits = ext4_blocks_for_truncate(inode);
4250 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4251 if (IS_ERR(handle)) {
4252 err = PTR_ERR(handle);
4256 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4257 ext4_block_truncate_page(handle, mapping, inode->i_size);
4260 * We add the inode to the orphan list, so that if this
4261 * truncate spans multiple transactions, and we crash, we will
4262 * resume the truncate when the filesystem recovers. It also
4263 * marks the inode dirty, to catch the new size.
4265 * Implication: the file must always be in a sane, consistent
4266 * truncatable state while each transaction commits.
4268 err = ext4_orphan_add(handle, inode);
4272 down_write(&EXT4_I(inode)->i_data_sem);
4274 ext4_discard_preallocations(inode, 0);
4276 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4277 err = ext4_ext_truncate(handle, inode);
4279 ext4_ind_truncate(handle, inode);
4281 up_write(&ei->i_data_sem);
4286 ext4_handle_sync(handle);
4290 * If this was a simple ftruncate() and the file will remain alive,
4291 * then we need to clear up the orphan record which we created above.
4292 * However, if this was a real unlink then we were called by
4293 * ext4_evict_inode(), and we allow that function to clean up the
4294 * orphan info for us.
4297 ext4_orphan_del(handle, inode);
4299 inode->i_mtime = inode->i_ctime = current_time(inode);
4300 err2 = ext4_mark_inode_dirty(handle, inode);
4301 if (unlikely(err2 && !err))
4303 ext4_journal_stop(handle);
4306 trace_ext4_truncate_exit(inode);
4310 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4312 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4313 return inode_peek_iversion_raw(inode);
4315 return inode_peek_iversion(inode);
4318 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4319 struct ext4_inode_info *ei)
4321 struct inode *inode = &(ei->vfs_inode);
4322 u64 i_blocks = READ_ONCE(inode->i_blocks);
4323 struct super_block *sb = inode->i_sb;
4325 if (i_blocks <= ~0U) {
4327 * i_blocks can be represented in a 32 bit variable
4328 * as multiple of 512 bytes
4330 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4331 raw_inode->i_blocks_high = 0;
4332 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4337 * This should never happen since sb->s_maxbytes should not have
4338 * allowed this, sb->s_maxbytes was set according to the huge_file
4339 * feature in ext4_fill_super().
4341 if (!ext4_has_feature_huge_file(sb))
4342 return -EFSCORRUPTED;
4344 if (i_blocks <= 0xffffffffffffULL) {
4346 * i_blocks can be represented in a 48 bit variable
4347 * as multiple of 512 bytes
4349 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4350 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4351 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4353 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4354 /* i_block is stored in file system block size */
4355 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4356 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4357 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4362 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4364 struct ext4_inode_info *ei = EXT4_I(inode);
4371 err = ext4_inode_blocks_set(raw_inode, ei);
4373 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4374 i_uid = i_uid_read(inode);
4375 i_gid = i_gid_read(inode);
4376 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4377 if (!(test_opt(inode->i_sb, NO_UID32))) {
4378 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4379 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4381 * Fix up interoperability with old kernels. Otherwise,
4382 * old inodes get re-used with the upper 16 bits of the
4385 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4386 raw_inode->i_uid_high = 0;
4387 raw_inode->i_gid_high = 0;
4389 raw_inode->i_uid_high =
4390 cpu_to_le16(high_16_bits(i_uid));
4391 raw_inode->i_gid_high =
4392 cpu_to_le16(high_16_bits(i_gid));
4395 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4396 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4397 raw_inode->i_uid_high = 0;
4398 raw_inode->i_gid_high = 0;
4400 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4402 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4403 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4404 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4405 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4407 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4408 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4409 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4410 raw_inode->i_file_acl_high =
4411 cpu_to_le16(ei->i_file_acl >> 32);
4412 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4413 ext4_isize_set(raw_inode, ei->i_disksize);
4415 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4416 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4417 if (old_valid_dev(inode->i_rdev)) {
4418 raw_inode->i_block[0] =
4419 cpu_to_le32(old_encode_dev(inode->i_rdev));
4420 raw_inode->i_block[1] = 0;
4422 raw_inode->i_block[0] = 0;
4423 raw_inode->i_block[1] =
4424 cpu_to_le32(new_encode_dev(inode->i_rdev));
4425 raw_inode->i_block[2] = 0;
4427 } else if (!ext4_has_inline_data(inode)) {
4428 for (block = 0; block < EXT4_N_BLOCKS; block++)
4429 raw_inode->i_block[block] = ei->i_data[block];
4432 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4433 u64 ivers = ext4_inode_peek_iversion(inode);
4435 raw_inode->i_disk_version = cpu_to_le32(ivers);
4436 if (ei->i_extra_isize) {
4437 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4438 raw_inode->i_version_hi =
4439 cpu_to_le32(ivers >> 32);
4440 raw_inode->i_extra_isize =
4441 cpu_to_le16(ei->i_extra_isize);
4445 if (i_projid != EXT4_DEF_PROJID &&
4446 !ext4_has_feature_project(inode->i_sb))
4447 err = err ?: -EFSCORRUPTED;
4449 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4450 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4451 raw_inode->i_projid = cpu_to_le32(i_projid);
4453 ext4_inode_csum_set(inode, raw_inode, ei);
4458 * ext4_get_inode_loc returns with an extra refcount against the inode's
4459 * underlying buffer_head on success. If we pass 'inode' and it does not
4460 * have in-inode xattr, we have all inode data in memory that is needed
4461 * to recreate the on-disk version of this inode.
4463 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4464 struct inode *inode, struct ext4_iloc *iloc,
4465 ext4_fsblk_t *ret_block)
4467 struct ext4_group_desc *gdp;
4468 struct buffer_head *bh;
4470 struct blk_plug plug;
4471 int inodes_per_block, inode_offset;
4474 if (ino < EXT4_ROOT_INO ||
4475 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4476 return -EFSCORRUPTED;
4478 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4479 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4484 * Figure out the offset within the block group inode table
4486 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4487 inode_offset = ((ino - 1) %
4488 EXT4_INODES_PER_GROUP(sb));
4489 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4491 block = ext4_inode_table(sb, gdp);
4492 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4493 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4494 ext4_error(sb, "Invalid inode table block %llu in "
4495 "block_group %u", block, iloc->block_group);
4496 return -EFSCORRUPTED;
4498 block += (inode_offset / inodes_per_block);
4500 bh = sb_getblk(sb, block);
4503 if (ext4_buffer_uptodate(bh))
4507 if (ext4_buffer_uptodate(bh)) {
4508 /* Someone brought it uptodate while we waited */
4514 * If we have all information of the inode in memory and this
4515 * is the only valid inode in the block, we need not read the
4518 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4519 struct buffer_head *bitmap_bh;
4522 start = inode_offset & ~(inodes_per_block - 1);
4524 /* Is the inode bitmap in cache? */
4525 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4526 if (unlikely(!bitmap_bh))
4530 * If the inode bitmap isn't in cache then the
4531 * optimisation may end up performing two reads instead
4532 * of one, so skip it.
4534 if (!buffer_uptodate(bitmap_bh)) {
4538 for (i = start; i < start + inodes_per_block; i++) {
4539 if (i == inode_offset)
4541 if (ext4_test_bit(i, bitmap_bh->b_data))
4545 if (i == start + inodes_per_block) {
4546 struct ext4_inode *raw_inode =
4547 (struct ext4_inode *) (bh->b_data + iloc->offset);
4549 /* all other inodes are free, so skip I/O */
4550 memset(bh->b_data, 0, bh->b_size);
4551 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4552 ext4_fill_raw_inode(inode, raw_inode);
4553 set_buffer_uptodate(bh);
4561 * If we need to do any I/O, try to pre-readahead extra
4562 * blocks from the inode table.
4564 blk_start_plug(&plug);
4565 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4566 ext4_fsblk_t b, end, table;
4568 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4570 table = ext4_inode_table(sb, gdp);
4571 /* s_inode_readahead_blks is always a power of 2 */
4572 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4576 num = EXT4_INODES_PER_GROUP(sb);
4577 if (ext4_has_group_desc_csum(sb))
4578 num -= ext4_itable_unused_count(sb, gdp);
4579 table += num / inodes_per_block;
4583 ext4_sb_breadahead_unmovable(sb, b++);
4587 * There are other valid inodes in the buffer, this inode
4588 * has in-inode xattrs, or we don't have this inode in memory.
4589 * Read the block from disk.
4591 trace_ext4_load_inode(sb, ino);
4592 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4593 blk_finish_plug(&plug);
4595 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4596 if (!buffer_uptodate(bh)) {
4607 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4608 struct ext4_iloc *iloc)
4610 ext4_fsblk_t err_blk = 0;
4613 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4617 ext4_error_inode_block(inode, err_blk, EIO,
4618 "unable to read itable block");
4623 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4625 ext4_fsblk_t err_blk = 0;
4628 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4632 ext4_error_inode_block(inode, err_blk, EIO,
4633 "unable to read itable block");
4639 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4640 struct ext4_iloc *iloc)
4642 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4645 static bool ext4_should_enable_dax(struct inode *inode)
4647 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4649 if (test_opt2(inode->i_sb, DAX_NEVER))
4651 if (!S_ISREG(inode->i_mode))
4653 if (ext4_should_journal_data(inode))
4655 if (ext4_has_inline_data(inode))
4657 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4659 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4661 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4663 if (test_opt(inode->i_sb, DAX_ALWAYS))
4666 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4669 void ext4_set_inode_flags(struct inode *inode, bool init)
4671 unsigned int flags = EXT4_I(inode)->i_flags;
4672 unsigned int new_fl = 0;
4674 WARN_ON_ONCE(IS_DAX(inode) && init);
4676 if (flags & EXT4_SYNC_FL)
4678 if (flags & EXT4_APPEND_FL)
4680 if (flags & EXT4_IMMUTABLE_FL)
4681 new_fl |= S_IMMUTABLE;
4682 if (flags & EXT4_NOATIME_FL)
4683 new_fl |= S_NOATIME;
4684 if (flags & EXT4_DIRSYNC_FL)
4685 new_fl |= S_DIRSYNC;
4687 /* Because of the way inode_set_flags() works we must preserve S_DAX
4688 * here if already set. */
4689 new_fl |= (inode->i_flags & S_DAX);
4690 if (init && ext4_should_enable_dax(inode))
4693 if (flags & EXT4_ENCRYPT_FL)
4694 new_fl |= S_ENCRYPTED;
4695 if (flags & EXT4_CASEFOLD_FL)
4696 new_fl |= S_CASEFOLD;
4697 if (flags & EXT4_VERITY_FL)
4699 inode_set_flags(inode, new_fl,
4700 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4701 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4704 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4705 struct ext4_inode_info *ei)
4708 struct inode *inode = &(ei->vfs_inode);
4709 struct super_block *sb = inode->i_sb;
4711 if (ext4_has_feature_huge_file(sb)) {
4712 /* we are using combined 48 bit field */
4713 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4714 le32_to_cpu(raw_inode->i_blocks_lo);
4715 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4716 /* i_blocks represent file system block size */
4717 return i_blocks << (inode->i_blkbits - 9);
4722 return le32_to_cpu(raw_inode->i_blocks_lo);
4726 static inline int ext4_iget_extra_inode(struct inode *inode,
4727 struct ext4_inode *raw_inode,
4728 struct ext4_inode_info *ei)
4730 __le32 *magic = (void *)raw_inode +
4731 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4733 if (EXT4_INODE_HAS_XATTR_SPACE(inode) &&
4734 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4737 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4738 err = ext4_find_inline_data_nolock(inode);
4739 if (!err && ext4_has_inline_data(inode))
4740 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4743 EXT4_I(inode)->i_inline_off = 0;
4747 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4749 if (!ext4_has_feature_project(inode->i_sb))
4751 *projid = EXT4_I(inode)->i_projid;
4756 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4757 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4760 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4762 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4763 inode_set_iversion_raw(inode, val);
4765 inode_set_iversion_queried(inode, val);
4768 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4771 if (flags & EXT4_IGET_EA_INODE) {
4772 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4773 return "missing EA_INODE flag";
4774 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4775 EXT4_I(inode)->i_file_acl)
4776 return "ea_inode with extended attributes";
4778 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4779 return "unexpected EA_INODE flag";
4781 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4782 return "unexpected bad inode w/o EXT4_IGET_BAD";
4786 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4787 ext4_iget_flags flags, const char *function,
4790 struct ext4_iloc iloc;
4791 struct ext4_inode *raw_inode;
4792 struct ext4_inode_info *ei;
4793 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4794 struct inode *inode;
4795 const char *err_str;
4796 journal_t *journal = EXT4_SB(sb)->s_journal;
4804 if ((!(flags & EXT4_IGET_SPECIAL) &&
4805 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4806 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4807 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4808 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4809 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4810 (ino < EXT4_ROOT_INO) ||
4811 (ino > le32_to_cpu(es->s_inodes_count))) {
4812 if (flags & EXT4_IGET_HANDLE)
4813 return ERR_PTR(-ESTALE);
4814 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4815 "inode #%lu: comm %s: iget: illegal inode #",
4816 ino, current->comm);
4817 return ERR_PTR(-EFSCORRUPTED);
4820 inode = iget_locked(sb, ino);
4822 return ERR_PTR(-ENOMEM);
4823 if (!(inode->i_state & I_NEW)) {
4824 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4825 ext4_error_inode(inode, function, line, 0, err_str);
4827 return ERR_PTR(-EFSCORRUPTED);
4835 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4838 raw_inode = ext4_raw_inode(&iloc);
4840 if ((flags & EXT4_IGET_HANDLE) &&
4841 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4846 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4847 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4848 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4849 EXT4_INODE_SIZE(inode->i_sb) ||
4850 (ei->i_extra_isize & 3)) {
4851 ext4_error_inode(inode, function, line, 0,
4852 "iget: bad extra_isize %u "
4855 EXT4_INODE_SIZE(inode->i_sb));
4856 ret = -EFSCORRUPTED;
4860 ei->i_extra_isize = 0;
4862 /* Precompute checksum seed for inode metadata */
4863 if (ext4_has_metadata_csum(sb)) {
4864 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4866 __le32 inum = cpu_to_le32(inode->i_ino);
4867 __le32 gen = raw_inode->i_generation;
4868 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4870 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4874 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4875 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4876 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4877 ext4_error_inode_err(inode, function, line, 0,
4878 EFSBADCRC, "iget: checksum invalid");
4883 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4884 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4885 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4886 if (ext4_has_feature_project(sb) &&
4887 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4888 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4889 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4891 i_projid = EXT4_DEF_PROJID;
4893 if (!(test_opt(inode->i_sb, NO_UID32))) {
4894 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4895 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4897 i_uid_write(inode, i_uid);
4898 i_gid_write(inode, i_gid);
4899 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4900 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4902 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4903 ei->i_inline_off = 0;
4904 ei->i_dir_start_lookup = 0;
4905 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4906 /* We now have enough fields to check if the inode was active or not.
4907 * This is needed because nfsd might try to access dead inodes
4908 * the test is that same one that e2fsck uses
4909 * NeilBrown 1999oct15
4911 if (inode->i_nlink == 0) {
4912 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4913 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4914 ino != EXT4_BOOT_LOADER_INO) {
4915 /* this inode is deleted or unallocated */
4916 if (flags & EXT4_IGET_SPECIAL) {
4917 ext4_error_inode(inode, function, line, 0,
4918 "iget: special inode unallocated");
4919 ret = -EFSCORRUPTED;
4924 /* The only unlinked inodes we let through here have
4925 * valid i_mode and are being read by the orphan
4926 * recovery code: that's fine, we're about to complete
4927 * the process of deleting those.
4928 * OR it is the EXT4_BOOT_LOADER_INO which is
4929 * not initialized on a new filesystem. */
4931 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4932 ext4_set_inode_flags(inode, true);
4933 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4934 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4935 if (ext4_has_feature_64bit(sb))
4937 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4938 inode->i_size = ext4_isize(sb, raw_inode);
4939 if ((size = i_size_read(inode)) < 0) {
4940 ext4_error_inode(inode, function, line, 0,
4941 "iget: bad i_size value: %lld", size);
4942 ret = -EFSCORRUPTED;
4946 * If dir_index is not enabled but there's dir with INDEX flag set,
4947 * we'd normally treat htree data as empty space. But with metadata
4948 * checksumming that corrupts checksums so forbid that.
4950 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4951 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4952 ext4_error_inode(inode, function, line, 0,
4953 "iget: Dir with htree data on filesystem without dir_index feature.");
4954 ret = -EFSCORRUPTED;
4957 ei->i_disksize = inode->i_size;
4959 ei->i_reserved_quota = 0;
4961 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4962 ei->i_block_group = iloc.block_group;
4963 ei->i_last_alloc_group = ~0;
4965 * NOTE! The in-memory inode i_data array is in little-endian order
4966 * even on big-endian machines: we do NOT byteswap the block numbers!
4968 for (block = 0; block < EXT4_N_BLOCKS; block++)
4969 ei->i_data[block] = raw_inode->i_block[block];
4970 INIT_LIST_HEAD(&ei->i_orphan);
4971 ext4_fc_init_inode(&ei->vfs_inode);
4974 * Set transaction id's of transactions that have to be committed
4975 * to finish f[data]sync. We set them to currently running transaction
4976 * as we cannot be sure that the inode or some of its metadata isn't
4977 * part of the transaction - the inode could have been reclaimed and
4978 * now it is reread from disk.
4981 transaction_t *transaction;
4984 read_lock(&journal->j_state_lock);
4985 if (journal->j_running_transaction)
4986 transaction = journal->j_running_transaction;
4988 transaction = journal->j_committing_transaction;
4990 tid = transaction->t_tid;
4992 tid = journal->j_commit_sequence;
4993 read_unlock(&journal->j_state_lock);
4994 ei->i_sync_tid = tid;
4995 ei->i_datasync_tid = tid;
4998 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4999 if (ei->i_extra_isize == 0) {
5000 /* The extra space is currently unused. Use it. */
5001 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5002 ei->i_extra_isize = sizeof(struct ext4_inode) -
5003 EXT4_GOOD_OLD_INODE_SIZE;
5005 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5011 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5012 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5013 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5014 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5016 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5017 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5019 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5020 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5022 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5024 ext4_inode_set_iversion_queried(inode, ivers);
5028 if (ei->i_file_acl &&
5029 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5030 ext4_error_inode(inode, function, line, 0,
5031 "iget: bad extended attribute block %llu",
5033 ret = -EFSCORRUPTED;
5035 } else if (!ext4_has_inline_data(inode)) {
5036 /* validate the block references in the inode */
5037 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5038 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5039 (S_ISLNK(inode->i_mode) &&
5040 !ext4_inode_is_fast_symlink(inode)))) {
5041 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5042 ret = ext4_ext_check_inode(inode);
5044 ret = ext4_ind_check_inode(inode);
5050 if (S_ISREG(inode->i_mode)) {
5051 inode->i_op = &ext4_file_inode_operations;
5052 inode->i_fop = &ext4_file_operations;
5053 ext4_set_aops(inode);
5054 } else if (S_ISDIR(inode->i_mode)) {
5055 inode->i_op = &ext4_dir_inode_operations;
5056 inode->i_fop = &ext4_dir_operations;
5057 } else if (S_ISLNK(inode->i_mode)) {
5058 /* VFS does not allow setting these so must be corruption */
5059 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5060 ext4_error_inode(inode, function, line, 0,
5061 "iget: immutable or append flags "
5062 "not allowed on symlinks");
5063 ret = -EFSCORRUPTED;
5066 if (IS_ENCRYPTED(inode)) {
5067 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5068 } else if (ext4_inode_is_fast_symlink(inode)) {
5069 inode->i_link = (char *)ei->i_data;
5070 inode->i_op = &ext4_fast_symlink_inode_operations;
5071 nd_terminate_link(ei->i_data, inode->i_size,
5072 sizeof(ei->i_data) - 1);
5074 inode->i_op = &ext4_symlink_inode_operations;
5076 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5077 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5078 inode->i_op = &ext4_special_inode_operations;
5079 if (raw_inode->i_block[0])
5080 init_special_inode(inode, inode->i_mode,
5081 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5083 init_special_inode(inode, inode->i_mode,
5084 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5085 } else if (ino == EXT4_BOOT_LOADER_INO) {
5086 make_bad_inode(inode);
5088 ret = -EFSCORRUPTED;
5089 ext4_error_inode(inode, function, line, 0,
5090 "iget: bogus i_mode (%o)", inode->i_mode);
5093 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5094 ext4_error_inode(inode, function, line, 0,
5095 "casefold flag without casefold feature");
5096 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5097 ext4_error_inode(inode, function, line, 0, err_str);
5098 ret = -EFSCORRUPTED;
5103 unlock_new_inode(inode);
5109 return ERR_PTR(ret);
5112 static void __ext4_update_other_inode_time(struct super_block *sb,
5113 unsigned long orig_ino,
5115 struct ext4_inode *raw_inode)
5117 struct inode *inode;
5119 inode = find_inode_by_ino_rcu(sb, ino);
5123 if (!inode_is_dirtytime_only(inode))
5126 spin_lock(&inode->i_lock);
5127 if (inode_is_dirtytime_only(inode)) {
5128 struct ext4_inode_info *ei = EXT4_I(inode);
5130 inode->i_state &= ~I_DIRTY_TIME;
5131 spin_unlock(&inode->i_lock);
5133 spin_lock(&ei->i_raw_lock);
5134 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5135 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5136 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5137 ext4_inode_csum_set(inode, raw_inode, ei);
5138 spin_unlock(&ei->i_raw_lock);
5139 trace_ext4_other_inode_update_time(inode, orig_ino);
5142 spin_unlock(&inode->i_lock);
5146 * Opportunistically update the other time fields for other inodes in
5147 * the same inode table block.
5149 static void ext4_update_other_inodes_time(struct super_block *sb,
5150 unsigned long orig_ino, char *buf)
5153 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5154 int inode_size = EXT4_INODE_SIZE(sb);
5157 * Calculate the first inode in the inode table block. Inode
5158 * numbers are one-based. That is, the first inode in a block
5159 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5161 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5163 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5164 if (ino == orig_ino)
5166 __ext4_update_other_inode_time(sb, orig_ino, ino,
5167 (struct ext4_inode *)buf);
5173 * Post the struct inode info into an on-disk inode location in the
5174 * buffer-cache. This gobbles the caller's reference to the
5175 * buffer_head in the inode location struct.
5177 * The caller must have write access to iloc->bh.
5179 static int ext4_do_update_inode(handle_t *handle,
5180 struct inode *inode,
5181 struct ext4_iloc *iloc)
5183 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5184 struct ext4_inode_info *ei = EXT4_I(inode);
5185 struct buffer_head *bh = iloc->bh;
5186 struct super_block *sb = inode->i_sb;
5188 int need_datasync = 0, set_large_file = 0;
5190 spin_lock(&ei->i_raw_lock);
5193 * For fields not tracked in the in-memory inode, initialise them
5194 * to zero for new inodes.
5196 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5197 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5199 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5201 if (ei->i_disksize > 0x7fffffffULL) {
5202 if (!ext4_has_feature_large_file(sb) ||
5203 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5207 err = ext4_fill_raw_inode(inode, raw_inode);
5208 spin_unlock(&ei->i_raw_lock);
5210 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5214 if (inode->i_sb->s_flags & SB_LAZYTIME)
5215 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5218 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5219 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5222 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5223 if (set_large_file) {
5224 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5225 err = ext4_journal_get_write_access(handle, sb,
5230 lock_buffer(EXT4_SB(sb)->s_sbh);
5231 ext4_set_feature_large_file(sb);
5232 ext4_superblock_csum_set(sb);
5233 unlock_buffer(EXT4_SB(sb)->s_sbh);
5234 ext4_handle_sync(handle);
5235 err = ext4_handle_dirty_metadata(handle, NULL,
5236 EXT4_SB(sb)->s_sbh);
5238 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5240 ext4_std_error(inode->i_sb, err);
5247 * ext4_write_inode()
5249 * We are called from a few places:
5251 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5252 * Here, there will be no transaction running. We wait for any running
5253 * transaction to commit.
5255 * - Within flush work (sys_sync(), kupdate and such).
5256 * We wait on commit, if told to.
5258 * - Within iput_final() -> write_inode_now()
5259 * We wait on commit, if told to.
5261 * In all cases it is actually safe for us to return without doing anything,
5262 * because the inode has been copied into a raw inode buffer in
5263 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5266 * Note that we are absolutely dependent upon all inode dirtiers doing the
5267 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5268 * which we are interested.
5270 * It would be a bug for them to not do this. The code:
5272 * mark_inode_dirty(inode)
5274 * inode->i_size = expr;
5276 * is in error because write_inode() could occur while `stuff()' is running,
5277 * and the new i_size will be lost. Plus the inode will no longer be on the
5278 * superblock's dirty inode list.
5280 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5284 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5285 sb_rdonly(inode->i_sb))
5288 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5291 if (EXT4_SB(inode->i_sb)->s_journal) {
5292 if (ext4_journal_current_handle()) {
5293 ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5299 * No need to force transaction in WB_SYNC_NONE mode. Also
5300 * ext4_sync_fs() will force the commit after everything is
5303 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5306 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5307 EXT4_I(inode)->i_sync_tid);
5309 struct ext4_iloc iloc;
5311 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5315 * sync(2) will flush the whole buffer cache. No need to do
5316 * it here separately for each inode.
5318 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5319 sync_dirty_buffer(iloc.bh);
5320 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5321 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5322 "IO error syncing inode");
5331 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5332 * buffers that are attached to a folio straddling i_size and are undergoing
5333 * commit. In that case we have to wait for commit to finish and try again.
5335 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5338 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5339 tid_t commit_tid = 0;
5342 offset = inode->i_size & (PAGE_SIZE - 1);
5344 * If the folio is fully truncated, we don't need to wait for any commit
5345 * (and we even should not as __ext4_journalled_invalidate_folio() may
5346 * strip all buffers from the folio but keep the folio dirty which can then
5347 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5348 * buffers). Also we don't need to wait for any commit if all buffers in
5349 * the folio remain valid. This is most beneficial for the common case of
5350 * blocksize == PAGESIZE.
5352 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5355 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5356 inode->i_size >> PAGE_SHIFT);
5359 ret = __ext4_journalled_invalidate_folio(folio, offset,
5360 folio_size(folio) - offset);
5361 folio_unlock(folio);
5366 read_lock(&journal->j_state_lock);
5367 if (journal->j_committing_transaction)
5368 commit_tid = journal->j_committing_transaction->t_tid;
5369 read_unlock(&journal->j_state_lock);
5371 jbd2_log_wait_commit(journal, commit_tid);
5378 * Called from notify_change.
5380 * We want to trap VFS attempts to truncate the file as soon as
5381 * possible. In particular, we want to make sure that when the VFS
5382 * shrinks i_size, we put the inode on the orphan list and modify
5383 * i_disksize immediately, so that during the subsequent flushing of
5384 * dirty pages and freeing of disk blocks, we can guarantee that any
5385 * commit will leave the blocks being flushed in an unused state on
5386 * disk. (On recovery, the inode will get truncated and the blocks will
5387 * be freed, so we have a strong guarantee that no future commit will
5388 * leave these blocks visible to the user.)
5390 * Another thing we have to assure is that if we are in ordered mode
5391 * and inode is still attached to the committing transaction, we must
5392 * we start writeout of all the dirty pages which are being truncated.
5393 * This way we are sure that all the data written in the previous
5394 * transaction are already on disk (truncate waits for pages under
5397 * Called with inode->i_rwsem down.
5399 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5402 struct inode *inode = d_inode(dentry);
5405 const unsigned int ia_valid = attr->ia_valid;
5406 bool inc_ivers = true;
5408 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5411 if (unlikely(IS_IMMUTABLE(inode)))
5414 if (unlikely(IS_APPEND(inode) &&
5415 (ia_valid & (ATTR_MODE | ATTR_UID |
5416 ATTR_GID | ATTR_TIMES_SET))))
5419 error = setattr_prepare(mnt_userns, dentry, attr);
5423 error = fscrypt_prepare_setattr(dentry, attr);
5427 error = fsverity_prepare_setattr(dentry, attr);
5431 if (is_quota_modification(mnt_userns, inode, attr)) {
5432 error = dquot_initialize(inode);
5437 if (i_uid_needs_update(mnt_userns, attr, inode) ||
5438 i_gid_needs_update(mnt_userns, attr, inode)) {
5441 /* (user+group)*(old+new) structure, inode write (sb,
5442 * inode block, ? - but truncate inode update has it) */
5443 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5444 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5445 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5446 if (IS_ERR(handle)) {
5447 error = PTR_ERR(handle);
5451 /* dquot_transfer() calls back ext4_get_inode_usage() which
5452 * counts xattr inode references.
5454 down_read(&EXT4_I(inode)->xattr_sem);
5455 error = dquot_transfer(mnt_userns, inode, attr);
5456 up_read(&EXT4_I(inode)->xattr_sem);
5459 ext4_journal_stop(handle);
5462 /* Update corresponding info in inode so that everything is in
5463 * one transaction */
5464 i_uid_update(mnt_userns, attr, inode);
5465 i_gid_update(mnt_userns, attr, inode);
5466 error = ext4_mark_inode_dirty(handle, inode);
5467 ext4_journal_stop(handle);
5468 if (unlikely(error)) {
5473 if (attr->ia_valid & ATTR_SIZE) {
5475 loff_t oldsize = inode->i_size;
5476 loff_t old_disksize;
5477 int shrink = (attr->ia_size < inode->i_size);
5479 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5480 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5482 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5486 if (!S_ISREG(inode->i_mode)) {
5490 if (attr->ia_size == inode->i_size)
5494 if (ext4_should_order_data(inode)) {
5495 error = ext4_begin_ordered_truncate(inode,
5501 * Blocks are going to be removed from the inode. Wait
5502 * for dio in flight.
5504 inode_dio_wait(inode);
5507 filemap_invalidate_lock(inode->i_mapping);
5509 rc = ext4_break_layouts(inode);
5511 filemap_invalidate_unlock(inode->i_mapping);
5515 if (attr->ia_size != inode->i_size) {
5516 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5517 if (IS_ERR(handle)) {
5518 error = PTR_ERR(handle);
5521 if (ext4_handle_valid(handle) && shrink) {
5522 error = ext4_orphan_add(handle, inode);
5526 * Update c/mtime on truncate up, ext4_truncate() will
5527 * update c/mtime in shrink case below
5530 inode->i_mtime = current_time(inode);
5531 inode->i_ctime = inode->i_mtime;
5535 ext4_fc_track_range(handle, inode,
5536 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5537 inode->i_sb->s_blocksize_bits,
5538 EXT_MAX_BLOCKS - 1);
5540 ext4_fc_track_range(
5542 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5543 inode->i_sb->s_blocksize_bits,
5544 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5545 inode->i_sb->s_blocksize_bits);
5547 down_write(&EXT4_I(inode)->i_data_sem);
5548 old_disksize = EXT4_I(inode)->i_disksize;
5549 EXT4_I(inode)->i_disksize = attr->ia_size;
5550 rc = ext4_mark_inode_dirty(handle, inode);
5554 * We have to update i_size under i_data_sem together
5555 * with i_disksize to avoid races with writeback code
5556 * running ext4_wb_update_i_disksize().
5559 i_size_write(inode, attr->ia_size);
5561 EXT4_I(inode)->i_disksize = old_disksize;
5562 up_write(&EXT4_I(inode)->i_data_sem);
5563 ext4_journal_stop(handle);
5567 pagecache_isize_extended(inode, oldsize,
5569 } else if (ext4_should_journal_data(inode)) {
5570 ext4_wait_for_tail_page_commit(inode);
5575 * Truncate pagecache after we've waited for commit
5576 * in data=journal mode to make pages freeable.
5578 truncate_pagecache(inode, inode->i_size);
5580 * Call ext4_truncate() even if i_size didn't change to
5581 * truncate possible preallocated blocks.
5583 if (attr->ia_size <= oldsize) {
5584 rc = ext4_truncate(inode);
5589 filemap_invalidate_unlock(inode->i_mapping);
5594 inode_inc_iversion(inode);
5595 setattr_copy(mnt_userns, inode, attr);
5596 mark_inode_dirty(inode);
5600 * If the call to ext4_truncate failed to get a transaction handle at
5601 * all, we need to clean up the in-core orphan list manually.
5603 if (orphan && inode->i_nlink)
5604 ext4_orphan_del(NULL, inode);
5606 if (!error && (ia_valid & ATTR_MODE))
5607 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5611 ext4_std_error(inode->i_sb, error);
5617 u32 ext4_dio_alignment(struct inode *inode)
5619 if (fsverity_active(inode))
5621 if (ext4_should_journal_data(inode))
5623 if (ext4_has_inline_data(inode))
5625 if (IS_ENCRYPTED(inode)) {
5626 if (!fscrypt_dio_supported(inode))
5628 return i_blocksize(inode);
5630 return 1; /* use the iomap defaults */
5633 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5634 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5636 struct inode *inode = d_inode(path->dentry);
5637 struct ext4_inode *raw_inode;
5638 struct ext4_inode_info *ei = EXT4_I(inode);
5641 if ((request_mask & STATX_BTIME) &&
5642 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5643 stat->result_mask |= STATX_BTIME;
5644 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5645 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5649 * Return the DIO alignment restrictions if requested. We only return
5650 * this information when requested, since on encrypted files it might
5651 * take a fair bit of work to get if the file wasn't opened recently.
5653 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5654 u32 dio_align = ext4_dio_alignment(inode);
5656 stat->result_mask |= STATX_DIOALIGN;
5657 if (dio_align == 1) {
5658 struct block_device *bdev = inode->i_sb->s_bdev;
5660 /* iomap defaults */
5661 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5662 stat->dio_offset_align = bdev_logical_block_size(bdev);
5664 stat->dio_mem_align = dio_align;
5665 stat->dio_offset_align = dio_align;
5669 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5670 if (flags & EXT4_APPEND_FL)
5671 stat->attributes |= STATX_ATTR_APPEND;
5672 if (flags & EXT4_COMPR_FL)
5673 stat->attributes |= STATX_ATTR_COMPRESSED;
5674 if (flags & EXT4_ENCRYPT_FL)
5675 stat->attributes |= STATX_ATTR_ENCRYPTED;
5676 if (flags & EXT4_IMMUTABLE_FL)
5677 stat->attributes |= STATX_ATTR_IMMUTABLE;
5678 if (flags & EXT4_NODUMP_FL)
5679 stat->attributes |= STATX_ATTR_NODUMP;
5680 if (flags & EXT4_VERITY_FL)
5681 stat->attributes |= STATX_ATTR_VERITY;
5683 stat->attributes_mask |= (STATX_ATTR_APPEND |
5684 STATX_ATTR_COMPRESSED |
5685 STATX_ATTR_ENCRYPTED |
5686 STATX_ATTR_IMMUTABLE |
5690 generic_fillattr(mnt_userns, inode, stat);
5694 int ext4_file_getattr(struct user_namespace *mnt_userns,
5695 const struct path *path, struct kstat *stat,
5696 u32 request_mask, unsigned int query_flags)
5698 struct inode *inode = d_inode(path->dentry);
5699 u64 delalloc_blocks;
5701 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5704 * If there is inline data in the inode, the inode will normally not
5705 * have data blocks allocated (it may have an external xattr block).
5706 * Report at least one sector for such files, so tools like tar, rsync,
5707 * others don't incorrectly think the file is completely sparse.
5709 if (unlikely(ext4_has_inline_data(inode)))
5710 stat->blocks += (stat->size + 511) >> 9;
5713 * We can't update i_blocks if the block allocation is delayed
5714 * otherwise in the case of system crash before the real block
5715 * allocation is done, we will have i_blocks inconsistent with
5716 * on-disk file blocks.
5717 * We always keep i_blocks updated together with real
5718 * allocation. But to not confuse with user, stat
5719 * will return the blocks that include the delayed allocation
5720 * blocks for this file.
5722 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5723 EXT4_I(inode)->i_reserved_data_blocks);
5724 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5728 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5731 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5732 return ext4_ind_trans_blocks(inode, lblocks);
5733 return ext4_ext_index_trans_blocks(inode, pextents);
5737 * Account for index blocks, block groups bitmaps and block group
5738 * descriptor blocks if modify datablocks and index blocks
5739 * worse case, the indexs blocks spread over different block groups
5741 * If datablocks are discontiguous, they are possible to spread over
5742 * different block groups too. If they are contiguous, with flexbg,
5743 * they could still across block group boundary.
5745 * Also account for superblock, inode, quota and xattr blocks
5747 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5750 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5756 * How many index blocks need to touch to map @lblocks logical blocks
5757 * to @pextents physical extents?
5759 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5764 * Now let's see how many group bitmaps and group descriptors need
5767 groups = idxblocks + pextents;
5769 if (groups > ngroups)
5771 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5772 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5774 /* bitmaps and block group descriptor blocks */
5775 ret += groups + gdpblocks;
5777 /* Blocks for super block, inode, quota and xattr blocks */
5778 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5784 * Calculate the total number of credits to reserve to fit
5785 * the modification of a single pages into a single transaction,
5786 * which may include multiple chunks of block allocations.
5788 * This could be called via ext4_write_begin()
5790 * We need to consider the worse case, when
5791 * one new block per extent.
5793 int ext4_writepage_trans_blocks(struct inode *inode)
5795 int bpp = ext4_journal_blocks_per_page(inode);
5798 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5800 /* Account for data blocks for journalled mode */
5801 if (ext4_should_journal_data(inode))
5807 * Calculate the journal credits for a chunk of data modification.
5809 * This is called from DIO, fallocate or whoever calling
5810 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5812 * journal buffers for data blocks are not included here, as DIO
5813 * and fallocate do no need to journal data buffers.
5815 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5817 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5821 * The caller must have previously called ext4_reserve_inode_write().
5822 * Give this, we know that the caller already has write access to iloc->bh.
5824 int ext4_mark_iloc_dirty(handle_t *handle,
5825 struct inode *inode, struct ext4_iloc *iloc)
5829 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5833 ext4_fc_track_inode(handle, inode);
5835 /* the do_update_inode consumes one bh->b_count */
5838 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5839 err = ext4_do_update_inode(handle, inode, iloc);
5845 * On success, We end up with an outstanding reference count against
5846 * iloc->bh. This _must_ be cleaned up later.
5850 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5851 struct ext4_iloc *iloc)
5855 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5858 err = ext4_get_inode_loc(inode, iloc);
5860 BUFFER_TRACE(iloc->bh, "get_write_access");
5861 err = ext4_journal_get_write_access(handle, inode->i_sb,
5862 iloc->bh, EXT4_JTR_NONE);
5868 ext4_std_error(inode->i_sb, err);
5872 static int __ext4_expand_extra_isize(struct inode *inode,
5873 unsigned int new_extra_isize,
5874 struct ext4_iloc *iloc,
5875 handle_t *handle, int *no_expand)
5877 struct ext4_inode *raw_inode;
5878 struct ext4_xattr_ibody_header *header;
5879 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5880 struct ext4_inode_info *ei = EXT4_I(inode);
5883 /* this was checked at iget time, but double check for good measure */
5884 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5885 (ei->i_extra_isize & 3)) {
5886 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5888 EXT4_INODE_SIZE(inode->i_sb));
5889 return -EFSCORRUPTED;
5891 if ((new_extra_isize < ei->i_extra_isize) ||
5892 (new_extra_isize < 4) ||
5893 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5894 return -EINVAL; /* Should never happen */
5896 raw_inode = ext4_raw_inode(iloc);
5898 header = IHDR(inode, raw_inode);
5900 /* No extended attributes present */
5901 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5902 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5903 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5904 EXT4_I(inode)->i_extra_isize, 0,
5905 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5906 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5911 * We may need to allocate external xattr block so we need quotas
5912 * initialized. Here we can be called with various locks held so we
5913 * cannot affort to initialize quotas ourselves. So just bail.
5915 if (dquot_initialize_needed(inode))
5918 /* try to expand with EAs present */
5919 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5923 * Inode size expansion failed; don't try again
5932 * Expand an inode by new_extra_isize bytes.
5933 * Returns 0 on success or negative error number on failure.
5935 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5936 unsigned int new_extra_isize,
5937 struct ext4_iloc iloc,
5943 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5947 * In nojournal mode, we can immediately attempt to expand
5948 * the inode. When journaled, we first need to obtain extra
5949 * buffer credits since we may write into the EA block
5950 * with this same handle. If journal_extend fails, then it will
5951 * only result in a minor loss of functionality for that inode.
5952 * If this is felt to be critical, then e2fsck should be run to
5953 * force a large enough s_min_extra_isize.
5955 if (ext4_journal_extend(handle,
5956 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5959 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5962 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5963 handle, &no_expand);
5964 ext4_write_unlock_xattr(inode, &no_expand);
5969 int ext4_expand_extra_isize(struct inode *inode,
5970 unsigned int new_extra_isize,
5971 struct ext4_iloc *iloc)
5977 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5982 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5983 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5984 if (IS_ERR(handle)) {
5985 error = PTR_ERR(handle);
5990 ext4_write_lock_xattr(inode, &no_expand);
5992 BUFFER_TRACE(iloc->bh, "get_write_access");
5993 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
6000 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6001 handle, &no_expand);
6003 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6008 ext4_write_unlock_xattr(inode, &no_expand);
6009 ext4_journal_stop(handle);
6014 * What we do here is to mark the in-core inode as clean with respect to inode
6015 * dirtiness (it may still be data-dirty).
6016 * This means that the in-core inode may be reaped by prune_icache
6017 * without having to perform any I/O. This is a very good thing,
6018 * because *any* task may call prune_icache - even ones which
6019 * have a transaction open against a different journal.
6021 * Is this cheating? Not really. Sure, we haven't written the
6022 * inode out, but prune_icache isn't a user-visible syncing function.
6023 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6024 * we start and wait on commits.
6026 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6027 const char *func, unsigned int line)
6029 struct ext4_iloc iloc;
6030 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6034 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6035 err = ext4_reserve_inode_write(handle, inode, &iloc);
6039 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6040 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6043 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6046 ext4_error_inode_err(inode, func, line, 0, err,
6047 "mark_inode_dirty error");
6052 * ext4_dirty_inode() is called from __mark_inode_dirty()
6054 * We're really interested in the case where a file is being extended.
6055 * i_size has been changed by generic_commit_write() and we thus need
6056 * to include the updated inode in the current transaction.
6058 * Also, dquot_alloc_block() will always dirty the inode when blocks
6059 * are allocated to the file.
6061 * If the inode is marked synchronous, we don't honour that here - doing
6062 * so would cause a commit on atime updates, which we don't bother doing.
6063 * We handle synchronous inodes at the highest possible level.
6065 void ext4_dirty_inode(struct inode *inode, int flags)
6069 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6072 ext4_mark_inode_dirty(handle, inode);
6073 ext4_journal_stop(handle);
6076 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6081 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6084 * We have to be very careful here: changing a data block's
6085 * journaling status dynamically is dangerous. If we write a
6086 * data block to the journal, change the status and then delete
6087 * that block, we risk forgetting to revoke the old log record
6088 * from the journal and so a subsequent replay can corrupt data.
6089 * So, first we make sure that the journal is empty and that
6090 * nobody is changing anything.
6093 journal = EXT4_JOURNAL(inode);
6096 if (is_journal_aborted(journal))
6099 /* Wait for all existing dio workers */
6100 inode_dio_wait(inode);
6103 * Before flushing the journal and switching inode's aops, we have
6104 * to flush all dirty data the inode has. There can be outstanding
6105 * delayed allocations, there can be unwritten extents created by
6106 * fallocate or buffered writes in dioread_nolock mode covered by
6107 * dirty data which can be converted only after flushing the dirty
6108 * data (and journalled aops don't know how to handle these cases).
6111 filemap_invalidate_lock(inode->i_mapping);
6112 err = filemap_write_and_wait(inode->i_mapping);
6114 filemap_invalidate_unlock(inode->i_mapping);
6119 percpu_down_write(&sbi->s_writepages_rwsem);
6120 jbd2_journal_lock_updates(journal);
6123 * OK, there are no updates running now, and all cached data is
6124 * synced to disk. We are now in a completely consistent state
6125 * which doesn't have anything in the journal, and we know that
6126 * no filesystem updates are running, so it is safe to modify
6127 * the inode's in-core data-journaling state flag now.
6131 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6133 err = jbd2_journal_flush(journal, 0);
6135 jbd2_journal_unlock_updates(journal);
6136 percpu_up_write(&sbi->s_writepages_rwsem);
6139 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6141 ext4_set_aops(inode);
6143 jbd2_journal_unlock_updates(journal);
6144 percpu_up_write(&sbi->s_writepages_rwsem);
6147 filemap_invalidate_unlock(inode->i_mapping);
6149 /* Finally we can mark the inode as dirty. */
6151 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6153 return PTR_ERR(handle);
6155 ext4_fc_mark_ineligible(inode->i_sb,
6156 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6157 err = ext4_mark_inode_dirty(handle, inode);
6158 ext4_handle_sync(handle);
6159 ext4_journal_stop(handle);
6160 ext4_std_error(inode->i_sb, err);
6165 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6166 struct buffer_head *bh)
6168 return !buffer_mapped(bh);
6171 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6173 struct vm_area_struct *vma = vmf->vma;
6174 struct page *page = vmf->page;
6179 struct file *file = vma->vm_file;
6180 struct inode *inode = file_inode(file);
6181 struct address_space *mapping = inode->i_mapping;
6183 get_block_t *get_block;
6186 if (unlikely(IS_IMMUTABLE(inode)))
6187 return VM_FAULT_SIGBUS;
6189 sb_start_pagefault(inode->i_sb);
6190 file_update_time(vma->vm_file);
6192 filemap_invalidate_lock_shared(mapping);
6194 err = ext4_convert_inline_data(inode);
6199 * On data journalling we skip straight to the transaction handle:
6200 * there's no delalloc; page truncated will be checked later; the
6201 * early return w/ all buffers mapped (calculates size/len) can't
6202 * be used; and there's no dioread_nolock, so only ext4_get_block.
6204 if (ext4_should_journal_data(inode))
6207 /* Delalloc case is easy... */
6208 if (test_opt(inode->i_sb, DELALLOC) &&
6209 !ext4_nonda_switch(inode->i_sb)) {
6211 err = block_page_mkwrite(vma, vmf,
6212 ext4_da_get_block_prep);
6213 } while (err == -ENOSPC &&
6214 ext4_should_retry_alloc(inode->i_sb, &retries));
6219 size = i_size_read(inode);
6220 /* Page got truncated from under us? */
6221 if (page->mapping != mapping || page_offset(page) > size) {
6223 ret = VM_FAULT_NOPAGE;
6227 if (page->index == size >> PAGE_SHIFT)
6228 len = size & ~PAGE_MASK;
6232 * Return if we have all the buffers mapped. This avoids the need to do
6233 * journal_start/journal_stop which can block and take a long time
6235 * This cannot be done for data journalling, as we have to add the
6236 * inode to the transaction's list to writeprotect pages on commit.
6238 if (page_has_buffers(page)) {
6239 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6241 ext4_bh_unmapped)) {
6242 /* Wait so that we don't change page under IO */
6243 wait_for_stable_page(page);
6244 ret = VM_FAULT_LOCKED;
6249 /* OK, we need to fill the hole... */
6250 if (ext4_should_dioread_nolock(inode))
6251 get_block = ext4_get_block_unwritten;
6253 get_block = ext4_get_block;
6255 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6256 ext4_writepage_trans_blocks(inode));
6257 if (IS_ERR(handle)) {
6258 ret = VM_FAULT_SIGBUS;
6262 * Data journalling can't use block_page_mkwrite() because it
6263 * will set_buffer_dirty() before do_journal_get_write_access()
6264 * thus might hit warning messages for dirty metadata buffers.
6266 if (!ext4_should_journal_data(inode)) {
6267 err = block_page_mkwrite(vma, vmf, get_block);
6270 size = i_size_read(inode);
6271 /* Page got truncated from under us? */
6272 if (page->mapping != mapping || page_offset(page) > size) {
6273 ret = VM_FAULT_NOPAGE;
6277 if (page->index == size >> PAGE_SHIFT)
6278 len = size & ~PAGE_MASK;
6282 err = __block_write_begin(page, 0, len, ext4_get_block);
6284 ret = VM_FAULT_SIGBUS;
6285 if (ext4_walk_page_buffers(handle, inode,
6286 page_buffers(page), 0, len, NULL,
6287 do_journal_get_write_access))
6289 if (ext4_walk_page_buffers(handle, inode,
6290 page_buffers(page), 0, len, NULL,
6293 if (ext4_jbd2_inode_add_write(handle, inode,
6294 page_offset(page), len))
6296 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6301 ext4_journal_stop(handle);
6302 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6305 ret = block_page_mkwrite_return(err);
6307 filemap_invalidate_unlock_shared(mapping);
6308 sb_end_pagefault(inode->i_sb);
6312 ext4_journal_stop(handle);