1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
3 * Copyright 2016-2023 HabanaLabs, Ltd.
14 * Defines that are asic-specific but constitutes as ABI between kernel driver
17 #define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START 0x8000 /* 32KB */
18 #define GAUDI_DRIVER_SRAM_RESERVED_SIZE_FROM_START 0x80 /* 128 bytes */
21 * 128 SOBs reserved for collective wait
22 * 16 SOBs reserved for sync stream
24 #define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT 144
27 * 64 monitors reserved for collective wait
28 * 8 monitors reserved for sync stream
30 #define GAUDI_FIRST_AVAILABLE_W_S_MONITOR 72
32 /* Max number of elements in timestamps registration buffers */
33 #define TS_MAX_ELEMENTS_NUM (1 << 20) /* 1MB */
36 * Goya queue Numbering
38 * The external queues (PCI DMA channels) MUST be before the internal queues
39 * and each group (PCI DMA channels and internal) must be contiguous inside
40 * itself but there can be a gap between the two groups (although not
45 GOYA_QUEUE_ID_DMA_0 = 0,
46 GOYA_QUEUE_ID_DMA_1 = 1,
47 GOYA_QUEUE_ID_DMA_2 = 2,
48 GOYA_QUEUE_ID_DMA_3 = 3,
49 GOYA_QUEUE_ID_DMA_4 = 4,
50 GOYA_QUEUE_ID_CPU_PQ = 5,
51 GOYA_QUEUE_ID_MME = 6, /* Internal queues start here */
52 GOYA_QUEUE_ID_TPC0 = 7,
53 GOYA_QUEUE_ID_TPC1 = 8,
54 GOYA_QUEUE_ID_TPC2 = 9,
55 GOYA_QUEUE_ID_TPC3 = 10,
56 GOYA_QUEUE_ID_TPC4 = 11,
57 GOYA_QUEUE_ID_TPC5 = 12,
58 GOYA_QUEUE_ID_TPC6 = 13,
59 GOYA_QUEUE_ID_TPC7 = 14,
64 * Gaudi queue Numbering
65 * External queues (PCI DMA channels) are DMA_0_*, DMA_1_* and DMA_5_*.
66 * Except one CPU queue, all the rest are internal queues.
70 GAUDI_QUEUE_ID_DMA_0_0 = 0, /* external */
71 GAUDI_QUEUE_ID_DMA_0_1 = 1, /* external */
72 GAUDI_QUEUE_ID_DMA_0_2 = 2, /* external */
73 GAUDI_QUEUE_ID_DMA_0_3 = 3, /* external */
74 GAUDI_QUEUE_ID_DMA_1_0 = 4, /* external */
75 GAUDI_QUEUE_ID_DMA_1_1 = 5, /* external */
76 GAUDI_QUEUE_ID_DMA_1_2 = 6, /* external */
77 GAUDI_QUEUE_ID_DMA_1_3 = 7, /* external */
78 GAUDI_QUEUE_ID_CPU_PQ = 8, /* CPU */
79 GAUDI_QUEUE_ID_DMA_2_0 = 9, /* internal */
80 GAUDI_QUEUE_ID_DMA_2_1 = 10, /* internal */
81 GAUDI_QUEUE_ID_DMA_2_2 = 11, /* internal */
82 GAUDI_QUEUE_ID_DMA_2_3 = 12, /* internal */
83 GAUDI_QUEUE_ID_DMA_3_0 = 13, /* internal */
84 GAUDI_QUEUE_ID_DMA_3_1 = 14, /* internal */
85 GAUDI_QUEUE_ID_DMA_3_2 = 15, /* internal */
86 GAUDI_QUEUE_ID_DMA_3_3 = 16, /* internal */
87 GAUDI_QUEUE_ID_DMA_4_0 = 17, /* internal */
88 GAUDI_QUEUE_ID_DMA_4_1 = 18, /* internal */
89 GAUDI_QUEUE_ID_DMA_4_2 = 19, /* internal */
90 GAUDI_QUEUE_ID_DMA_4_3 = 20, /* internal */
91 GAUDI_QUEUE_ID_DMA_5_0 = 21, /* internal */
92 GAUDI_QUEUE_ID_DMA_5_1 = 22, /* internal */
93 GAUDI_QUEUE_ID_DMA_5_2 = 23, /* internal */
94 GAUDI_QUEUE_ID_DMA_5_3 = 24, /* internal */
95 GAUDI_QUEUE_ID_DMA_6_0 = 25, /* internal */
96 GAUDI_QUEUE_ID_DMA_6_1 = 26, /* internal */
97 GAUDI_QUEUE_ID_DMA_6_2 = 27, /* internal */
98 GAUDI_QUEUE_ID_DMA_6_3 = 28, /* internal */
99 GAUDI_QUEUE_ID_DMA_7_0 = 29, /* internal */
100 GAUDI_QUEUE_ID_DMA_7_1 = 30, /* internal */
101 GAUDI_QUEUE_ID_DMA_7_2 = 31, /* internal */
102 GAUDI_QUEUE_ID_DMA_7_3 = 32, /* internal */
103 GAUDI_QUEUE_ID_MME_0_0 = 33, /* internal */
104 GAUDI_QUEUE_ID_MME_0_1 = 34, /* internal */
105 GAUDI_QUEUE_ID_MME_0_2 = 35, /* internal */
106 GAUDI_QUEUE_ID_MME_0_3 = 36, /* internal */
107 GAUDI_QUEUE_ID_MME_1_0 = 37, /* internal */
108 GAUDI_QUEUE_ID_MME_1_1 = 38, /* internal */
109 GAUDI_QUEUE_ID_MME_1_2 = 39, /* internal */
110 GAUDI_QUEUE_ID_MME_1_3 = 40, /* internal */
111 GAUDI_QUEUE_ID_TPC_0_0 = 41, /* internal */
112 GAUDI_QUEUE_ID_TPC_0_1 = 42, /* internal */
113 GAUDI_QUEUE_ID_TPC_0_2 = 43, /* internal */
114 GAUDI_QUEUE_ID_TPC_0_3 = 44, /* internal */
115 GAUDI_QUEUE_ID_TPC_1_0 = 45, /* internal */
116 GAUDI_QUEUE_ID_TPC_1_1 = 46, /* internal */
117 GAUDI_QUEUE_ID_TPC_1_2 = 47, /* internal */
118 GAUDI_QUEUE_ID_TPC_1_3 = 48, /* internal */
119 GAUDI_QUEUE_ID_TPC_2_0 = 49, /* internal */
120 GAUDI_QUEUE_ID_TPC_2_1 = 50, /* internal */
121 GAUDI_QUEUE_ID_TPC_2_2 = 51, /* internal */
122 GAUDI_QUEUE_ID_TPC_2_3 = 52, /* internal */
123 GAUDI_QUEUE_ID_TPC_3_0 = 53, /* internal */
124 GAUDI_QUEUE_ID_TPC_3_1 = 54, /* internal */
125 GAUDI_QUEUE_ID_TPC_3_2 = 55, /* internal */
126 GAUDI_QUEUE_ID_TPC_3_3 = 56, /* internal */
127 GAUDI_QUEUE_ID_TPC_4_0 = 57, /* internal */
128 GAUDI_QUEUE_ID_TPC_4_1 = 58, /* internal */
129 GAUDI_QUEUE_ID_TPC_4_2 = 59, /* internal */
130 GAUDI_QUEUE_ID_TPC_4_3 = 60, /* internal */
131 GAUDI_QUEUE_ID_TPC_5_0 = 61, /* internal */
132 GAUDI_QUEUE_ID_TPC_5_1 = 62, /* internal */
133 GAUDI_QUEUE_ID_TPC_5_2 = 63, /* internal */
134 GAUDI_QUEUE_ID_TPC_5_3 = 64, /* internal */
135 GAUDI_QUEUE_ID_TPC_6_0 = 65, /* internal */
136 GAUDI_QUEUE_ID_TPC_6_1 = 66, /* internal */
137 GAUDI_QUEUE_ID_TPC_6_2 = 67, /* internal */
138 GAUDI_QUEUE_ID_TPC_6_3 = 68, /* internal */
139 GAUDI_QUEUE_ID_TPC_7_0 = 69, /* internal */
140 GAUDI_QUEUE_ID_TPC_7_1 = 70, /* internal */
141 GAUDI_QUEUE_ID_TPC_7_2 = 71, /* internal */
142 GAUDI_QUEUE_ID_TPC_7_3 = 72, /* internal */
143 GAUDI_QUEUE_ID_NIC_0_0 = 73, /* internal */
144 GAUDI_QUEUE_ID_NIC_0_1 = 74, /* internal */
145 GAUDI_QUEUE_ID_NIC_0_2 = 75, /* internal */
146 GAUDI_QUEUE_ID_NIC_0_3 = 76, /* internal */
147 GAUDI_QUEUE_ID_NIC_1_0 = 77, /* internal */
148 GAUDI_QUEUE_ID_NIC_1_1 = 78, /* internal */
149 GAUDI_QUEUE_ID_NIC_1_2 = 79, /* internal */
150 GAUDI_QUEUE_ID_NIC_1_3 = 80, /* internal */
151 GAUDI_QUEUE_ID_NIC_2_0 = 81, /* internal */
152 GAUDI_QUEUE_ID_NIC_2_1 = 82, /* internal */
153 GAUDI_QUEUE_ID_NIC_2_2 = 83, /* internal */
154 GAUDI_QUEUE_ID_NIC_2_3 = 84, /* internal */
155 GAUDI_QUEUE_ID_NIC_3_0 = 85, /* internal */
156 GAUDI_QUEUE_ID_NIC_3_1 = 86, /* internal */
157 GAUDI_QUEUE_ID_NIC_3_2 = 87, /* internal */
158 GAUDI_QUEUE_ID_NIC_3_3 = 88, /* internal */
159 GAUDI_QUEUE_ID_NIC_4_0 = 89, /* internal */
160 GAUDI_QUEUE_ID_NIC_4_1 = 90, /* internal */
161 GAUDI_QUEUE_ID_NIC_4_2 = 91, /* internal */
162 GAUDI_QUEUE_ID_NIC_4_3 = 92, /* internal */
163 GAUDI_QUEUE_ID_NIC_5_0 = 93, /* internal */
164 GAUDI_QUEUE_ID_NIC_5_1 = 94, /* internal */
165 GAUDI_QUEUE_ID_NIC_5_2 = 95, /* internal */
166 GAUDI_QUEUE_ID_NIC_5_3 = 96, /* internal */
167 GAUDI_QUEUE_ID_NIC_6_0 = 97, /* internal */
168 GAUDI_QUEUE_ID_NIC_6_1 = 98, /* internal */
169 GAUDI_QUEUE_ID_NIC_6_2 = 99, /* internal */
170 GAUDI_QUEUE_ID_NIC_6_3 = 100, /* internal */
171 GAUDI_QUEUE_ID_NIC_7_0 = 101, /* internal */
172 GAUDI_QUEUE_ID_NIC_7_1 = 102, /* internal */
173 GAUDI_QUEUE_ID_NIC_7_2 = 103, /* internal */
174 GAUDI_QUEUE_ID_NIC_7_3 = 104, /* internal */
175 GAUDI_QUEUE_ID_NIC_8_0 = 105, /* internal */
176 GAUDI_QUEUE_ID_NIC_8_1 = 106, /* internal */
177 GAUDI_QUEUE_ID_NIC_8_2 = 107, /* internal */
178 GAUDI_QUEUE_ID_NIC_8_3 = 108, /* internal */
179 GAUDI_QUEUE_ID_NIC_9_0 = 109, /* internal */
180 GAUDI_QUEUE_ID_NIC_9_1 = 110, /* internal */
181 GAUDI_QUEUE_ID_NIC_9_2 = 111, /* internal */
182 GAUDI_QUEUE_ID_NIC_9_3 = 112, /* internal */
187 * In GAUDI2 we have two modes of operation in regard to queues:
188 * 1. Legacy mode, where each QMAN exposes 4 streams to the user
189 * 2. F/W mode, where we use F/W to schedule the JOBS to the different queues.
191 * When in legacy mode, the user sends the queue id per JOB according to
192 * enum gaudi2_queue_id below.
194 * When in F/W mode, the user sends a stream id per Command Submission. The
195 * stream id is a running number from 0 up to (N-1), where N is the number
196 * of streams the F/W exposes and is passed to the user in
197 * struct hl_info_hw_ip_info
200 enum gaudi2_queue_id {
201 GAUDI2_QUEUE_ID_PDMA_0_0 = 0,
202 GAUDI2_QUEUE_ID_PDMA_0_1 = 1,
203 GAUDI2_QUEUE_ID_PDMA_0_2 = 2,
204 GAUDI2_QUEUE_ID_PDMA_0_3 = 3,
205 GAUDI2_QUEUE_ID_PDMA_1_0 = 4,
206 GAUDI2_QUEUE_ID_PDMA_1_1 = 5,
207 GAUDI2_QUEUE_ID_PDMA_1_2 = 6,
208 GAUDI2_QUEUE_ID_PDMA_1_3 = 7,
209 GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0 = 8,
210 GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1 = 9,
211 GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2 = 10,
212 GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3 = 11,
213 GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0 = 12,
214 GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1 = 13,
215 GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2 = 14,
216 GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3 = 15,
217 GAUDI2_QUEUE_ID_DCORE0_MME_0_0 = 16,
218 GAUDI2_QUEUE_ID_DCORE0_MME_0_1 = 17,
219 GAUDI2_QUEUE_ID_DCORE0_MME_0_2 = 18,
220 GAUDI2_QUEUE_ID_DCORE0_MME_0_3 = 19,
221 GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 = 20,
222 GAUDI2_QUEUE_ID_DCORE0_TPC_0_1 = 21,
223 GAUDI2_QUEUE_ID_DCORE0_TPC_0_2 = 22,
224 GAUDI2_QUEUE_ID_DCORE0_TPC_0_3 = 23,
225 GAUDI2_QUEUE_ID_DCORE0_TPC_1_0 = 24,
226 GAUDI2_QUEUE_ID_DCORE0_TPC_1_1 = 25,
227 GAUDI2_QUEUE_ID_DCORE0_TPC_1_2 = 26,
228 GAUDI2_QUEUE_ID_DCORE0_TPC_1_3 = 27,
229 GAUDI2_QUEUE_ID_DCORE0_TPC_2_0 = 28,
230 GAUDI2_QUEUE_ID_DCORE0_TPC_2_1 = 29,
231 GAUDI2_QUEUE_ID_DCORE0_TPC_2_2 = 30,
232 GAUDI2_QUEUE_ID_DCORE0_TPC_2_3 = 31,
233 GAUDI2_QUEUE_ID_DCORE0_TPC_3_0 = 32,
234 GAUDI2_QUEUE_ID_DCORE0_TPC_3_1 = 33,
235 GAUDI2_QUEUE_ID_DCORE0_TPC_3_2 = 34,
236 GAUDI2_QUEUE_ID_DCORE0_TPC_3_3 = 35,
237 GAUDI2_QUEUE_ID_DCORE0_TPC_4_0 = 36,
238 GAUDI2_QUEUE_ID_DCORE0_TPC_4_1 = 37,
239 GAUDI2_QUEUE_ID_DCORE0_TPC_4_2 = 38,
240 GAUDI2_QUEUE_ID_DCORE0_TPC_4_3 = 39,
241 GAUDI2_QUEUE_ID_DCORE0_TPC_5_0 = 40,
242 GAUDI2_QUEUE_ID_DCORE0_TPC_5_1 = 41,
243 GAUDI2_QUEUE_ID_DCORE0_TPC_5_2 = 42,
244 GAUDI2_QUEUE_ID_DCORE0_TPC_5_3 = 43,
245 GAUDI2_QUEUE_ID_DCORE0_TPC_6_0 = 44,
246 GAUDI2_QUEUE_ID_DCORE0_TPC_6_1 = 45,
247 GAUDI2_QUEUE_ID_DCORE0_TPC_6_2 = 46,
248 GAUDI2_QUEUE_ID_DCORE0_TPC_6_3 = 47,
249 GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0 = 48,
250 GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1 = 49,
251 GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2 = 50,
252 GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3 = 51,
253 GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0 = 52,
254 GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1 = 53,
255 GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2 = 54,
256 GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3 = 55,
257 GAUDI2_QUEUE_ID_DCORE1_MME_0_0 = 56,
258 GAUDI2_QUEUE_ID_DCORE1_MME_0_1 = 57,
259 GAUDI2_QUEUE_ID_DCORE1_MME_0_2 = 58,
260 GAUDI2_QUEUE_ID_DCORE1_MME_0_3 = 59,
261 GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 = 60,
262 GAUDI2_QUEUE_ID_DCORE1_TPC_0_1 = 61,
263 GAUDI2_QUEUE_ID_DCORE1_TPC_0_2 = 62,
264 GAUDI2_QUEUE_ID_DCORE1_TPC_0_3 = 63,
265 GAUDI2_QUEUE_ID_DCORE1_TPC_1_0 = 64,
266 GAUDI2_QUEUE_ID_DCORE1_TPC_1_1 = 65,
267 GAUDI2_QUEUE_ID_DCORE1_TPC_1_2 = 66,
268 GAUDI2_QUEUE_ID_DCORE1_TPC_1_3 = 67,
269 GAUDI2_QUEUE_ID_DCORE1_TPC_2_0 = 68,
270 GAUDI2_QUEUE_ID_DCORE1_TPC_2_1 = 69,
271 GAUDI2_QUEUE_ID_DCORE1_TPC_2_2 = 70,
272 GAUDI2_QUEUE_ID_DCORE1_TPC_2_3 = 71,
273 GAUDI2_QUEUE_ID_DCORE1_TPC_3_0 = 72,
274 GAUDI2_QUEUE_ID_DCORE1_TPC_3_1 = 73,
275 GAUDI2_QUEUE_ID_DCORE1_TPC_3_2 = 74,
276 GAUDI2_QUEUE_ID_DCORE1_TPC_3_3 = 75,
277 GAUDI2_QUEUE_ID_DCORE1_TPC_4_0 = 76,
278 GAUDI2_QUEUE_ID_DCORE1_TPC_4_1 = 77,
279 GAUDI2_QUEUE_ID_DCORE1_TPC_4_2 = 78,
280 GAUDI2_QUEUE_ID_DCORE1_TPC_4_3 = 79,
281 GAUDI2_QUEUE_ID_DCORE1_TPC_5_0 = 80,
282 GAUDI2_QUEUE_ID_DCORE1_TPC_5_1 = 81,
283 GAUDI2_QUEUE_ID_DCORE1_TPC_5_2 = 82,
284 GAUDI2_QUEUE_ID_DCORE1_TPC_5_3 = 83,
285 GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0 = 84,
286 GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1 = 85,
287 GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2 = 86,
288 GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3 = 87,
289 GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0 = 88,
290 GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1 = 89,
291 GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2 = 90,
292 GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3 = 91,
293 GAUDI2_QUEUE_ID_DCORE2_MME_0_0 = 92,
294 GAUDI2_QUEUE_ID_DCORE2_MME_0_1 = 93,
295 GAUDI2_QUEUE_ID_DCORE2_MME_0_2 = 94,
296 GAUDI2_QUEUE_ID_DCORE2_MME_0_3 = 95,
297 GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 = 96,
298 GAUDI2_QUEUE_ID_DCORE2_TPC_0_1 = 97,
299 GAUDI2_QUEUE_ID_DCORE2_TPC_0_2 = 98,
300 GAUDI2_QUEUE_ID_DCORE2_TPC_0_3 = 99,
301 GAUDI2_QUEUE_ID_DCORE2_TPC_1_0 = 100,
302 GAUDI2_QUEUE_ID_DCORE2_TPC_1_1 = 101,
303 GAUDI2_QUEUE_ID_DCORE2_TPC_1_2 = 102,
304 GAUDI2_QUEUE_ID_DCORE2_TPC_1_3 = 103,
305 GAUDI2_QUEUE_ID_DCORE2_TPC_2_0 = 104,
306 GAUDI2_QUEUE_ID_DCORE2_TPC_2_1 = 105,
307 GAUDI2_QUEUE_ID_DCORE2_TPC_2_2 = 106,
308 GAUDI2_QUEUE_ID_DCORE2_TPC_2_3 = 107,
309 GAUDI2_QUEUE_ID_DCORE2_TPC_3_0 = 108,
310 GAUDI2_QUEUE_ID_DCORE2_TPC_3_1 = 109,
311 GAUDI2_QUEUE_ID_DCORE2_TPC_3_2 = 110,
312 GAUDI2_QUEUE_ID_DCORE2_TPC_3_3 = 111,
313 GAUDI2_QUEUE_ID_DCORE2_TPC_4_0 = 112,
314 GAUDI2_QUEUE_ID_DCORE2_TPC_4_1 = 113,
315 GAUDI2_QUEUE_ID_DCORE2_TPC_4_2 = 114,
316 GAUDI2_QUEUE_ID_DCORE2_TPC_4_3 = 115,
317 GAUDI2_QUEUE_ID_DCORE2_TPC_5_0 = 116,
318 GAUDI2_QUEUE_ID_DCORE2_TPC_5_1 = 117,
319 GAUDI2_QUEUE_ID_DCORE2_TPC_5_2 = 118,
320 GAUDI2_QUEUE_ID_DCORE2_TPC_5_3 = 119,
321 GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0 = 120,
322 GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1 = 121,
323 GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2 = 122,
324 GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3 = 123,
325 GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0 = 124,
326 GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1 = 125,
327 GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2 = 126,
328 GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3 = 127,
329 GAUDI2_QUEUE_ID_DCORE3_MME_0_0 = 128,
330 GAUDI2_QUEUE_ID_DCORE3_MME_0_1 = 129,
331 GAUDI2_QUEUE_ID_DCORE3_MME_0_2 = 130,
332 GAUDI2_QUEUE_ID_DCORE3_MME_0_3 = 131,
333 GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 = 132,
334 GAUDI2_QUEUE_ID_DCORE3_TPC_0_1 = 133,
335 GAUDI2_QUEUE_ID_DCORE3_TPC_0_2 = 134,
336 GAUDI2_QUEUE_ID_DCORE3_TPC_0_3 = 135,
337 GAUDI2_QUEUE_ID_DCORE3_TPC_1_0 = 136,
338 GAUDI2_QUEUE_ID_DCORE3_TPC_1_1 = 137,
339 GAUDI2_QUEUE_ID_DCORE3_TPC_1_2 = 138,
340 GAUDI2_QUEUE_ID_DCORE3_TPC_1_3 = 139,
341 GAUDI2_QUEUE_ID_DCORE3_TPC_2_0 = 140,
342 GAUDI2_QUEUE_ID_DCORE3_TPC_2_1 = 141,
343 GAUDI2_QUEUE_ID_DCORE3_TPC_2_2 = 142,
344 GAUDI2_QUEUE_ID_DCORE3_TPC_2_3 = 143,
345 GAUDI2_QUEUE_ID_DCORE3_TPC_3_0 = 144,
346 GAUDI2_QUEUE_ID_DCORE3_TPC_3_1 = 145,
347 GAUDI2_QUEUE_ID_DCORE3_TPC_3_2 = 146,
348 GAUDI2_QUEUE_ID_DCORE3_TPC_3_3 = 147,
349 GAUDI2_QUEUE_ID_DCORE3_TPC_4_0 = 148,
350 GAUDI2_QUEUE_ID_DCORE3_TPC_4_1 = 149,
351 GAUDI2_QUEUE_ID_DCORE3_TPC_4_2 = 150,
352 GAUDI2_QUEUE_ID_DCORE3_TPC_4_3 = 151,
353 GAUDI2_QUEUE_ID_DCORE3_TPC_5_0 = 152,
354 GAUDI2_QUEUE_ID_DCORE3_TPC_5_1 = 153,
355 GAUDI2_QUEUE_ID_DCORE3_TPC_5_2 = 154,
356 GAUDI2_QUEUE_ID_DCORE3_TPC_5_3 = 155,
357 GAUDI2_QUEUE_ID_NIC_0_0 = 156,
358 GAUDI2_QUEUE_ID_NIC_0_1 = 157,
359 GAUDI2_QUEUE_ID_NIC_0_2 = 158,
360 GAUDI2_QUEUE_ID_NIC_0_3 = 159,
361 GAUDI2_QUEUE_ID_NIC_1_0 = 160,
362 GAUDI2_QUEUE_ID_NIC_1_1 = 161,
363 GAUDI2_QUEUE_ID_NIC_1_2 = 162,
364 GAUDI2_QUEUE_ID_NIC_1_3 = 163,
365 GAUDI2_QUEUE_ID_NIC_2_0 = 164,
366 GAUDI2_QUEUE_ID_NIC_2_1 = 165,
367 GAUDI2_QUEUE_ID_NIC_2_2 = 166,
368 GAUDI2_QUEUE_ID_NIC_2_3 = 167,
369 GAUDI2_QUEUE_ID_NIC_3_0 = 168,
370 GAUDI2_QUEUE_ID_NIC_3_1 = 169,
371 GAUDI2_QUEUE_ID_NIC_3_2 = 170,
372 GAUDI2_QUEUE_ID_NIC_3_3 = 171,
373 GAUDI2_QUEUE_ID_NIC_4_0 = 172,
374 GAUDI2_QUEUE_ID_NIC_4_1 = 173,
375 GAUDI2_QUEUE_ID_NIC_4_2 = 174,
376 GAUDI2_QUEUE_ID_NIC_4_3 = 175,
377 GAUDI2_QUEUE_ID_NIC_5_0 = 176,
378 GAUDI2_QUEUE_ID_NIC_5_1 = 177,
379 GAUDI2_QUEUE_ID_NIC_5_2 = 178,
380 GAUDI2_QUEUE_ID_NIC_5_3 = 179,
381 GAUDI2_QUEUE_ID_NIC_6_0 = 180,
382 GAUDI2_QUEUE_ID_NIC_6_1 = 181,
383 GAUDI2_QUEUE_ID_NIC_6_2 = 182,
384 GAUDI2_QUEUE_ID_NIC_6_3 = 183,
385 GAUDI2_QUEUE_ID_NIC_7_0 = 184,
386 GAUDI2_QUEUE_ID_NIC_7_1 = 185,
387 GAUDI2_QUEUE_ID_NIC_7_2 = 186,
388 GAUDI2_QUEUE_ID_NIC_7_3 = 187,
389 GAUDI2_QUEUE_ID_NIC_8_0 = 188,
390 GAUDI2_QUEUE_ID_NIC_8_1 = 189,
391 GAUDI2_QUEUE_ID_NIC_8_2 = 190,
392 GAUDI2_QUEUE_ID_NIC_8_3 = 191,
393 GAUDI2_QUEUE_ID_NIC_9_0 = 192,
394 GAUDI2_QUEUE_ID_NIC_9_1 = 193,
395 GAUDI2_QUEUE_ID_NIC_9_2 = 194,
396 GAUDI2_QUEUE_ID_NIC_9_3 = 195,
397 GAUDI2_QUEUE_ID_NIC_10_0 = 196,
398 GAUDI2_QUEUE_ID_NIC_10_1 = 197,
399 GAUDI2_QUEUE_ID_NIC_10_2 = 198,
400 GAUDI2_QUEUE_ID_NIC_10_3 = 199,
401 GAUDI2_QUEUE_ID_NIC_11_0 = 200,
402 GAUDI2_QUEUE_ID_NIC_11_1 = 201,
403 GAUDI2_QUEUE_ID_NIC_11_2 = 202,
404 GAUDI2_QUEUE_ID_NIC_11_3 = 203,
405 GAUDI2_QUEUE_ID_NIC_12_0 = 204,
406 GAUDI2_QUEUE_ID_NIC_12_1 = 205,
407 GAUDI2_QUEUE_ID_NIC_12_2 = 206,
408 GAUDI2_QUEUE_ID_NIC_12_3 = 207,
409 GAUDI2_QUEUE_ID_NIC_13_0 = 208,
410 GAUDI2_QUEUE_ID_NIC_13_1 = 209,
411 GAUDI2_QUEUE_ID_NIC_13_2 = 210,
412 GAUDI2_QUEUE_ID_NIC_13_3 = 211,
413 GAUDI2_QUEUE_ID_NIC_14_0 = 212,
414 GAUDI2_QUEUE_ID_NIC_14_1 = 213,
415 GAUDI2_QUEUE_ID_NIC_14_2 = 214,
416 GAUDI2_QUEUE_ID_NIC_14_3 = 215,
417 GAUDI2_QUEUE_ID_NIC_15_0 = 216,
418 GAUDI2_QUEUE_ID_NIC_15_1 = 217,
419 GAUDI2_QUEUE_ID_NIC_15_2 = 218,
420 GAUDI2_QUEUE_ID_NIC_15_3 = 219,
421 GAUDI2_QUEUE_ID_NIC_16_0 = 220,
422 GAUDI2_QUEUE_ID_NIC_16_1 = 221,
423 GAUDI2_QUEUE_ID_NIC_16_2 = 222,
424 GAUDI2_QUEUE_ID_NIC_16_3 = 223,
425 GAUDI2_QUEUE_ID_NIC_17_0 = 224,
426 GAUDI2_QUEUE_ID_NIC_17_1 = 225,
427 GAUDI2_QUEUE_ID_NIC_17_2 = 226,
428 GAUDI2_QUEUE_ID_NIC_17_3 = 227,
429 GAUDI2_QUEUE_ID_NIC_18_0 = 228,
430 GAUDI2_QUEUE_ID_NIC_18_1 = 229,
431 GAUDI2_QUEUE_ID_NIC_18_2 = 230,
432 GAUDI2_QUEUE_ID_NIC_18_3 = 231,
433 GAUDI2_QUEUE_ID_NIC_19_0 = 232,
434 GAUDI2_QUEUE_ID_NIC_19_1 = 233,
435 GAUDI2_QUEUE_ID_NIC_19_2 = 234,
436 GAUDI2_QUEUE_ID_NIC_19_3 = 235,
437 GAUDI2_QUEUE_ID_NIC_20_0 = 236,
438 GAUDI2_QUEUE_ID_NIC_20_1 = 237,
439 GAUDI2_QUEUE_ID_NIC_20_2 = 238,
440 GAUDI2_QUEUE_ID_NIC_20_3 = 239,
441 GAUDI2_QUEUE_ID_NIC_21_0 = 240,
442 GAUDI2_QUEUE_ID_NIC_21_1 = 241,
443 GAUDI2_QUEUE_ID_NIC_21_2 = 242,
444 GAUDI2_QUEUE_ID_NIC_21_3 = 243,
445 GAUDI2_QUEUE_ID_NIC_22_0 = 244,
446 GAUDI2_QUEUE_ID_NIC_22_1 = 245,
447 GAUDI2_QUEUE_ID_NIC_22_2 = 246,
448 GAUDI2_QUEUE_ID_NIC_22_3 = 247,
449 GAUDI2_QUEUE_ID_NIC_23_0 = 248,
450 GAUDI2_QUEUE_ID_NIC_23_1 = 249,
451 GAUDI2_QUEUE_ID_NIC_23_2 = 250,
452 GAUDI2_QUEUE_ID_NIC_23_3 = 251,
453 GAUDI2_QUEUE_ID_ROT_0_0 = 252,
454 GAUDI2_QUEUE_ID_ROT_0_1 = 253,
455 GAUDI2_QUEUE_ID_ROT_0_2 = 254,
456 GAUDI2_QUEUE_ID_ROT_0_3 = 255,
457 GAUDI2_QUEUE_ID_ROT_1_0 = 256,
458 GAUDI2_QUEUE_ID_ROT_1_1 = 257,
459 GAUDI2_QUEUE_ID_ROT_1_2 = 258,
460 GAUDI2_QUEUE_ID_ROT_1_3 = 259,
461 GAUDI2_QUEUE_ID_CPU_PQ = 260,
468 * Used in the "busy_engines_mask" field in `struct hl_info_hw_idle'
471 enum goya_engine_id {
472 GOYA_ENGINE_ID_DMA_0 = 0,
473 GOYA_ENGINE_ID_DMA_1,
474 GOYA_ENGINE_ID_DMA_2,
475 GOYA_ENGINE_ID_DMA_3,
476 GOYA_ENGINE_ID_DMA_4,
477 GOYA_ENGINE_ID_MME_0,
478 GOYA_ENGINE_ID_TPC_0,
479 GOYA_ENGINE_ID_TPC_1,
480 GOYA_ENGINE_ID_TPC_2,
481 GOYA_ENGINE_ID_TPC_3,
482 GOYA_ENGINE_ID_TPC_4,
483 GOYA_ENGINE_ID_TPC_5,
484 GOYA_ENGINE_ID_TPC_6,
485 GOYA_ENGINE_ID_TPC_7,
489 enum gaudi_engine_id {
490 GAUDI_ENGINE_ID_DMA_0 = 0,
491 GAUDI_ENGINE_ID_DMA_1,
492 GAUDI_ENGINE_ID_DMA_2,
493 GAUDI_ENGINE_ID_DMA_3,
494 GAUDI_ENGINE_ID_DMA_4,
495 GAUDI_ENGINE_ID_DMA_5,
496 GAUDI_ENGINE_ID_DMA_6,
497 GAUDI_ENGINE_ID_DMA_7,
498 GAUDI_ENGINE_ID_MME_0,
499 GAUDI_ENGINE_ID_MME_1,
500 GAUDI_ENGINE_ID_MME_2,
501 GAUDI_ENGINE_ID_MME_3,
502 GAUDI_ENGINE_ID_TPC_0,
503 GAUDI_ENGINE_ID_TPC_1,
504 GAUDI_ENGINE_ID_TPC_2,
505 GAUDI_ENGINE_ID_TPC_3,
506 GAUDI_ENGINE_ID_TPC_4,
507 GAUDI_ENGINE_ID_TPC_5,
508 GAUDI_ENGINE_ID_TPC_6,
509 GAUDI_ENGINE_ID_TPC_7,
510 GAUDI_ENGINE_ID_NIC_0,
511 GAUDI_ENGINE_ID_NIC_1,
512 GAUDI_ENGINE_ID_NIC_2,
513 GAUDI_ENGINE_ID_NIC_3,
514 GAUDI_ENGINE_ID_NIC_4,
515 GAUDI_ENGINE_ID_NIC_5,
516 GAUDI_ENGINE_ID_NIC_6,
517 GAUDI_ENGINE_ID_NIC_7,
518 GAUDI_ENGINE_ID_NIC_8,
519 GAUDI_ENGINE_ID_NIC_9,
523 enum gaudi2_engine_id {
524 GAUDI2_DCORE0_ENGINE_ID_EDMA_0 = 0,
525 GAUDI2_DCORE0_ENGINE_ID_EDMA_1,
526 GAUDI2_DCORE0_ENGINE_ID_MME,
527 GAUDI2_DCORE0_ENGINE_ID_TPC_0,
528 GAUDI2_DCORE0_ENGINE_ID_TPC_1,
529 GAUDI2_DCORE0_ENGINE_ID_TPC_2,
530 GAUDI2_DCORE0_ENGINE_ID_TPC_3,
531 GAUDI2_DCORE0_ENGINE_ID_TPC_4,
532 GAUDI2_DCORE0_ENGINE_ID_TPC_5,
533 GAUDI2_DCORE0_ENGINE_ID_DEC_0,
534 GAUDI2_DCORE0_ENGINE_ID_DEC_1,
535 GAUDI2_DCORE1_ENGINE_ID_EDMA_0,
536 GAUDI2_DCORE1_ENGINE_ID_EDMA_1,
537 GAUDI2_DCORE1_ENGINE_ID_MME,
538 GAUDI2_DCORE1_ENGINE_ID_TPC_0,
539 GAUDI2_DCORE1_ENGINE_ID_TPC_1,
540 GAUDI2_DCORE1_ENGINE_ID_TPC_2,
541 GAUDI2_DCORE1_ENGINE_ID_TPC_3,
542 GAUDI2_DCORE1_ENGINE_ID_TPC_4,
543 GAUDI2_DCORE1_ENGINE_ID_TPC_5,
544 GAUDI2_DCORE1_ENGINE_ID_DEC_0,
545 GAUDI2_DCORE1_ENGINE_ID_DEC_1,
546 GAUDI2_DCORE2_ENGINE_ID_EDMA_0,
547 GAUDI2_DCORE2_ENGINE_ID_EDMA_1,
548 GAUDI2_DCORE2_ENGINE_ID_MME,
549 GAUDI2_DCORE2_ENGINE_ID_TPC_0,
550 GAUDI2_DCORE2_ENGINE_ID_TPC_1,
551 GAUDI2_DCORE2_ENGINE_ID_TPC_2,
552 GAUDI2_DCORE2_ENGINE_ID_TPC_3,
553 GAUDI2_DCORE2_ENGINE_ID_TPC_4,
554 GAUDI2_DCORE2_ENGINE_ID_TPC_5,
555 GAUDI2_DCORE2_ENGINE_ID_DEC_0,
556 GAUDI2_DCORE2_ENGINE_ID_DEC_1,
557 GAUDI2_DCORE3_ENGINE_ID_EDMA_0,
558 GAUDI2_DCORE3_ENGINE_ID_EDMA_1,
559 GAUDI2_DCORE3_ENGINE_ID_MME,
560 GAUDI2_DCORE3_ENGINE_ID_TPC_0,
561 GAUDI2_DCORE3_ENGINE_ID_TPC_1,
562 GAUDI2_DCORE3_ENGINE_ID_TPC_2,
563 GAUDI2_DCORE3_ENGINE_ID_TPC_3,
564 GAUDI2_DCORE3_ENGINE_ID_TPC_4,
565 GAUDI2_DCORE3_ENGINE_ID_TPC_5,
566 GAUDI2_DCORE3_ENGINE_ID_DEC_0,
567 GAUDI2_DCORE3_ENGINE_ID_DEC_1,
568 GAUDI2_DCORE0_ENGINE_ID_TPC_6,
569 GAUDI2_ENGINE_ID_PDMA_0,
570 GAUDI2_ENGINE_ID_PDMA_1,
571 GAUDI2_ENGINE_ID_ROT_0,
572 GAUDI2_ENGINE_ID_ROT_1,
573 GAUDI2_PCIE_ENGINE_ID_DEC_0,
574 GAUDI2_PCIE_ENGINE_ID_DEC_1,
575 GAUDI2_ENGINE_ID_NIC0_0,
576 GAUDI2_ENGINE_ID_NIC0_1,
577 GAUDI2_ENGINE_ID_NIC1_0,
578 GAUDI2_ENGINE_ID_NIC1_1,
579 GAUDI2_ENGINE_ID_NIC2_0,
580 GAUDI2_ENGINE_ID_NIC2_1,
581 GAUDI2_ENGINE_ID_NIC3_0,
582 GAUDI2_ENGINE_ID_NIC3_1,
583 GAUDI2_ENGINE_ID_NIC4_0,
584 GAUDI2_ENGINE_ID_NIC4_1,
585 GAUDI2_ENGINE_ID_NIC5_0,
586 GAUDI2_ENGINE_ID_NIC5_1,
587 GAUDI2_ENGINE_ID_NIC6_0,
588 GAUDI2_ENGINE_ID_NIC6_1,
589 GAUDI2_ENGINE_ID_NIC7_0,
590 GAUDI2_ENGINE_ID_NIC7_1,
591 GAUDI2_ENGINE_ID_NIC8_0,
592 GAUDI2_ENGINE_ID_NIC8_1,
593 GAUDI2_ENGINE_ID_NIC9_0,
594 GAUDI2_ENGINE_ID_NIC9_1,
595 GAUDI2_ENGINE_ID_NIC10_0,
596 GAUDI2_ENGINE_ID_NIC10_1,
597 GAUDI2_ENGINE_ID_NIC11_0,
598 GAUDI2_ENGINE_ID_NIC11_1,
599 GAUDI2_ENGINE_ID_PCIE,
600 GAUDI2_ENGINE_ID_PSOC,
601 GAUDI2_ENGINE_ID_ARC_FARM,
602 GAUDI2_ENGINE_ID_KDMA,
603 GAUDI2_ENGINE_ID_SIZE
607 * ASIC specific PLL index
609 * Used to retrieve in frequency info of different IPs via HL_INFO_PLL_FREQUENCY under
610 * DRM_IOCTL_HL_INFO IOCTL.
611 * The enums need to be used as an index in struct hl_pll_frequency_info.
614 enum hl_goya_pll_index {
625 enum hl_gaudi_pll_index {
626 HL_GAUDI_CPU_PLL = 0,
639 enum hl_gaudi2_pll_index {
640 HL_GAUDI2_CPU_PLL = 0,
656 * enum hl_goya_dma_direction - Direction of DMA operation inside a LIN_DMA packet that is
657 * submitted to the GOYA's DMA QMAN. This attribute is not relevant
658 * to the H/W but the kernel driver use it to parse the packet's
659 * addresses and patch/validate them.
660 * @HL_DMA_HOST_TO_DRAM: DMA operation from Host memory to GOYA's DDR.
661 * @HL_DMA_HOST_TO_SRAM: DMA operation from Host memory to GOYA's SRAM.
662 * @HL_DMA_DRAM_TO_SRAM: DMA operation from GOYA's DDR to GOYA's SRAM.
663 * @HL_DMA_SRAM_TO_DRAM: DMA operation from GOYA's SRAM to GOYA's DDR.
664 * @HL_DMA_SRAM_TO_HOST: DMA operation from GOYA's SRAM to Host memory.
665 * @HL_DMA_DRAM_TO_HOST: DMA operation from GOYA's DDR to Host memory.
666 * @HL_DMA_DRAM_TO_DRAM: DMA operation from GOYA's DDR to GOYA's DDR.
667 * @HL_DMA_SRAM_TO_SRAM: DMA operation from GOYA's SRAM to GOYA's SRAM.
668 * @HL_DMA_ENUM_MAX: number of values in enum
670 enum hl_goya_dma_direction {
683 * enum hl_device_status - Device status information.
684 * @HL_DEVICE_STATUS_OPERATIONAL: Device is operational.
685 * @HL_DEVICE_STATUS_IN_RESET: Device is currently during reset.
686 * @HL_DEVICE_STATUS_MALFUNCTION: Device is unusable.
687 * @HL_DEVICE_STATUS_NEEDS_RESET: Device needs reset because auto reset was disabled.
688 * @HL_DEVICE_STATUS_IN_DEVICE_CREATION: Device is operational but its creation is still in
690 * @HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: Device is currently during reset that was
691 * triggered because the user released the device
692 * @HL_DEVICE_STATUS_LAST: Last status.
694 enum hl_device_status {
695 HL_DEVICE_STATUS_OPERATIONAL,
696 HL_DEVICE_STATUS_IN_RESET,
697 HL_DEVICE_STATUS_MALFUNCTION,
698 HL_DEVICE_STATUS_NEEDS_RESET,
699 HL_DEVICE_STATUS_IN_DEVICE_CREATION,
700 HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE,
701 HL_DEVICE_STATUS_LAST = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE
704 enum hl_server_type {
705 HL_SERVER_TYPE_UNKNOWN = 0,
706 HL_SERVER_GAUDI_HLS1 = 1,
707 HL_SERVER_GAUDI_HLS1H = 2,
708 HL_SERVER_GAUDI_TYPE1 = 3,
709 HL_SERVER_GAUDI_TYPE2 = 4,
710 HL_SERVER_GAUDI2_HLS2 = 5,
711 HL_SERVER_GAUDI2_TYPE1 = 7
715 * Notifier event values - for the notification mechanism and the HL_INFO_GET_EVENTS command
717 * HL_NOTIFIER_EVENT_TPC_ASSERT - Indicates TPC assert event
718 * HL_NOTIFIER_EVENT_UNDEFINED_OPCODE - Indicates undefined operation code
719 * HL_NOTIFIER_EVENT_DEVICE_RESET - Indicates device requires a reset
720 * HL_NOTIFIER_EVENT_CS_TIMEOUT - Indicates CS timeout error
721 * HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE - Indicates device is unavailable
722 * HL_NOTIFIER_EVENT_USER_ENGINE_ERR - Indicates device engine in error state
723 * HL_NOTIFIER_EVENT_GENERAL_HW_ERR - Indicates device HW error
724 * HL_NOTIFIER_EVENT_RAZWI - Indicates razwi happened
725 * HL_NOTIFIER_EVENT_PAGE_FAULT - Indicates page fault happened
726 * HL_NOTIFIER_EVENT_CRITICAL_HW_ERR - Indicates a HW error that requires SW abort and
728 * HL_NOTIFIER_EVENT_CRITICAL_FW_ERR - Indicates a FW error that requires SW abort and
731 #define HL_NOTIFIER_EVENT_TPC_ASSERT (1ULL << 0)
732 #define HL_NOTIFIER_EVENT_UNDEFINED_OPCODE (1ULL << 1)
733 #define HL_NOTIFIER_EVENT_DEVICE_RESET (1ULL << 2)
734 #define HL_NOTIFIER_EVENT_CS_TIMEOUT (1ULL << 3)
735 #define HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE (1ULL << 4)
736 #define HL_NOTIFIER_EVENT_USER_ENGINE_ERR (1ULL << 5)
737 #define HL_NOTIFIER_EVENT_GENERAL_HW_ERR (1ULL << 6)
738 #define HL_NOTIFIER_EVENT_RAZWI (1ULL << 7)
739 #define HL_NOTIFIER_EVENT_PAGE_FAULT (1ULL << 8)
740 #define HL_NOTIFIER_EVENT_CRITICL_HW_ERR (1ULL << 9)
741 #define HL_NOTIFIER_EVENT_CRITICL_FW_ERR (1ULL << 10)
743 /* Opcode for management ioctl
745 * HW_IP_INFO - Receive information about different IP blocks in the
747 * HL_INFO_HW_EVENTS - Receive an array describing how many times each event
748 * occurred since the last hard reset.
749 * HL_INFO_DRAM_USAGE - Retrieve the dram usage inside the device and of the
750 * specific context. This is relevant only for devices
751 * where the dram is managed by the kernel driver
752 * HL_INFO_HW_IDLE - Retrieve information about the idle status of each
754 * HL_INFO_DEVICE_STATUS - Retrieve the device's status. This opcode doesn't
755 * require an open context.
756 * HL_INFO_DEVICE_UTILIZATION - Retrieve the total utilization of the device
757 * over the last period specified by the user.
758 * The period can be between 100ms to 1s, in
759 * resolution of 100ms. The return value is a
760 * percentage of the utilization rate.
761 * HL_INFO_HW_EVENTS_AGGREGATE - Receive an array describing how many times each
762 * event occurred since the driver was loaded.
763 * HL_INFO_CLK_RATE - Retrieve the current and maximum clock rate
764 * of the device in MHz. The maximum clock rate is
765 * configurable via sysfs parameter
766 * HL_INFO_RESET_COUNT - Retrieve the counts of the soft and hard reset
767 * operations performed on the device since the last
768 * time the driver was loaded.
769 * HL_INFO_TIME_SYNC - Retrieve the device's time alongside the host's time
770 * for synchronization.
771 * HL_INFO_CS_COUNTERS - Retrieve command submission counters
772 * HL_INFO_PCI_COUNTERS - Retrieve PCI counters
773 * HL_INFO_CLK_THROTTLE_REASON - Retrieve clock throttling reason
774 * HL_INFO_SYNC_MANAGER - Retrieve sync manager info per dcore
775 * HL_INFO_TOTAL_ENERGY - Retrieve total energy consumption
776 * HL_INFO_PLL_FREQUENCY - Retrieve PLL frequency
777 * HL_INFO_POWER - Retrieve power information
778 * HL_INFO_OPEN_STATS - Retrieve info regarding recent device open calls
779 * HL_INFO_DRAM_REPLACED_ROWS - Retrieve DRAM replaced rows info
780 * HL_INFO_DRAM_PENDING_ROWS - Retrieve DRAM pending rows num
781 * HL_INFO_LAST_ERR_OPEN_DEV_TIME - Retrieve timestamp of the last time the device was opened
782 * and CS timeout or razwi error occurred.
783 * HL_INFO_CS_TIMEOUT_EVENT - Retrieve CS timeout timestamp and its related CS sequence number.
784 * HL_INFO_RAZWI_EVENT - Retrieve parameters of razwi:
785 * Timestamp of razwi.
786 * The address which accessing it caused the razwi.
788 * Razwi cause, was it a page fault or MMU access error.
789 * May return 0 even though no new data is available, in that case
790 * timestamp will be 0.
791 * HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES - Retrieve valid page sizes for device memory allocation
792 * HL_INFO_SECURED_ATTESTATION - Retrieve attestation report of the boot.
793 * HL_INFO_REGISTER_EVENTFD - Register eventfd for event notifications.
794 * HL_INFO_UNREGISTER_EVENTFD - Unregister eventfd
795 * HL_INFO_GET_EVENTS - Retrieve the last occurred events
796 * HL_INFO_UNDEFINED_OPCODE_EVENT - Retrieve last undefined opcode error information.
797 * May return 0 even though no new data is available, in that case
798 * timestamp will be 0.
799 * HL_INFO_ENGINE_STATUS - Retrieve the status of all the h/w engines in the asic.
800 * HL_INFO_PAGE_FAULT_EVENT - Retrieve parameters of captured page fault.
801 * May return 0 even though no new data is available, in that case
802 * timestamp will be 0.
803 * HL_INFO_USER_MAPPINGS - Retrieve user mappings, captured after page fault event.
804 * HL_INFO_FW_GENERIC_REQ - Send generic request to FW.
805 * HL_INFO_HW_ERR_EVENT - Retrieve information on the reported HW error.
806 * May return 0 even though no new data is available, in that case
807 * timestamp will be 0.
808 * HL_INFO_FW_ERR_EVENT - Retrieve information on the reported FW error.
809 * May return 0 even though no new data is available, in that case
810 * timestamp will be 0.
811 * HL_INFO_USER_ENGINE_ERR_EVENT - Retrieve the last engine id that reported an error.
813 #define HL_INFO_HW_IP_INFO 0
814 #define HL_INFO_HW_EVENTS 1
815 #define HL_INFO_DRAM_USAGE 2
816 #define HL_INFO_HW_IDLE 3
817 #define HL_INFO_DEVICE_STATUS 4
818 #define HL_INFO_DEVICE_UTILIZATION 6
819 #define HL_INFO_HW_EVENTS_AGGREGATE 7
820 #define HL_INFO_CLK_RATE 8
821 #define HL_INFO_RESET_COUNT 9
822 #define HL_INFO_TIME_SYNC 10
823 #define HL_INFO_CS_COUNTERS 11
824 #define HL_INFO_PCI_COUNTERS 12
825 #define HL_INFO_CLK_THROTTLE_REASON 13
826 #define HL_INFO_SYNC_MANAGER 14
827 #define HL_INFO_TOTAL_ENERGY 15
828 #define HL_INFO_PLL_FREQUENCY 16
829 #define HL_INFO_POWER 17
830 #define HL_INFO_OPEN_STATS 18
831 #define HL_INFO_DRAM_REPLACED_ROWS 21
832 #define HL_INFO_DRAM_PENDING_ROWS 22
833 #define HL_INFO_LAST_ERR_OPEN_DEV_TIME 23
834 #define HL_INFO_CS_TIMEOUT_EVENT 24
835 #define HL_INFO_RAZWI_EVENT 25
836 #define HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES 26
837 #define HL_INFO_SECURED_ATTESTATION 27
838 #define HL_INFO_REGISTER_EVENTFD 28
839 #define HL_INFO_UNREGISTER_EVENTFD 29
840 #define HL_INFO_GET_EVENTS 30
841 #define HL_INFO_UNDEFINED_OPCODE_EVENT 31
842 #define HL_INFO_ENGINE_STATUS 32
843 #define HL_INFO_PAGE_FAULT_EVENT 33
844 #define HL_INFO_USER_MAPPINGS 34
845 #define HL_INFO_FW_GENERIC_REQ 35
846 #define HL_INFO_HW_ERR_EVENT 36
847 #define HL_INFO_FW_ERR_EVENT 37
848 #define HL_INFO_USER_ENGINE_ERR_EVENT 38
849 #define HL_INFO_DEV_SIGNED 40
851 #define HL_INFO_VERSION_MAX_LEN 128
852 #define HL_INFO_CARD_NAME_MAX_LEN 16
854 /* Maximum buffer size for retrieving engines status */
855 #define HL_ENGINES_DATA_MAX_SIZE SZ_1M
858 * struct hl_info_hw_ip_info - hardware information on various IPs in the ASIC
859 * @sram_base_address: The first SRAM physical base address that is free to be
861 * @dram_base_address: The first DRAM virtual or physical base address that is
862 * free to be used by the user.
863 * @dram_size: The DRAM size that is available to the user.
864 * @sram_size: The SRAM size that is available to the user.
865 * @num_of_events: The number of events that can be received from the f/w. This
866 * is needed so the user can what is the size of the h/w events
867 * array he needs to pass to the kernel when he wants to fetch
868 * the event counters.
869 * @device_id: PCI device ID of the ASIC.
870 * @module_id: Module ID of the ASIC for mezzanine cards in servers
872 * @decoder_enabled_mask: Bit-mask that represents which decoders are enabled.
873 * @first_available_interrupt_id: The first available interrupt ID for the user
874 * to be used when it works with user interrupts.
875 * Relevant for Gaudi2 and later.
876 * @server_type: Server type that the Gaudi ASIC is currently installed in.
877 * The value is according to enum hl_server_type
878 * @cpld_version: CPLD version on the board.
879 * @psoc_pci_pll_nr: PCI PLL NR value. Needed by the profiler in some ASICs.
880 * @psoc_pci_pll_nf: PCI PLL NF value. Needed by the profiler in some ASICs.
881 * @psoc_pci_pll_od: PCI PLL OD value. Needed by the profiler in some ASICs.
882 * @psoc_pci_pll_div_factor: PCI PLL DIV factor value. Needed by the profiler
884 * @tpc_enabled_mask: Bit-mask that represents which TPCs are enabled. Relevant
885 * for Goya/Gaudi only.
886 * @dram_enabled: Whether the DRAM is enabled.
887 * @security_enabled: Whether security is enabled on device.
888 * @mme_master_slave_mode: Indicate whether the MME is working in master/slave
889 * configuration. Relevant for Gaudi2 and later.
890 * @cpucp_version: The CPUCP f/w version.
891 * @card_name: The card name as passed by the f/w.
892 * @tpc_enabled_mask_ext: Bit-mask that represents which TPCs are enabled.
893 * Relevant for Gaudi2 and later.
894 * @dram_page_size: The DRAM physical page size.
895 * @edma_enabled_mask: Bit-mask that represents which EDMAs are enabled.
896 * Relevant for Gaudi2 and later.
897 * @number_of_user_interrupts: The number of interrupts that are available to the userspace
898 * application to use. Relevant for Gaudi2 and later.
899 * @device_mem_alloc_default_page_size: default page size used in device memory allocation.
900 * @revision_id: PCI revision ID of the ASIC.
901 * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host.
902 * @rotator_enabled_mask: Bit-mask that represents which rotators are enabled.
903 * Relevant for Gaudi3 and later.
904 * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use
905 * in order to raise events toward FW.
906 * @reserved_dram_size: DRAM size reserved for driver and firmware.
908 struct hl_info_hw_ip_info {
909 __u64 sram_base_address;
910 __u64 dram_base_address;
916 __u32 decoder_enabled_mask;
917 __u16 first_available_interrupt_id;
920 __u32 psoc_pci_pll_nr;
921 __u32 psoc_pci_pll_nf;
922 __u32 psoc_pci_pll_od;
923 __u32 psoc_pci_pll_div_factor;
924 __u8 tpc_enabled_mask;
926 __u8 security_enabled;
927 __u8 mme_master_slave_mode;
928 __u8 cpucp_version[HL_INFO_VERSION_MAX_LEN];
929 __u8 card_name[HL_INFO_CARD_NAME_MAX_LEN];
930 __u64 tpc_enabled_mask_ext;
931 __u64 dram_page_size;
932 __u32 edma_enabled_mask;
933 __u16 number_of_user_interrupts;
937 __u64 device_mem_alloc_default_page_size;
943 __u16 tpc_interrupt_id;
944 __u32 rotator_enabled_mask;
946 __u64 engine_core_interrupt_reg_addr;
947 __u64 reserved_dram_size;
950 struct hl_info_dram_usage {
955 #define HL_BUSY_ENGINES_MASK_EXT_SIZE 4
957 struct hl_info_hw_idle {
960 * Bitmask of busy engines.
961 * Bits definition is according to `enum <chip>_engine_id'.
963 __u32 busy_engines_mask;
966 * Extended Bitmask of busy engines.
967 * Bits definition is according to `enum <chip>_engine_id'.
969 __u64 busy_engines_mask_ext[HL_BUSY_ENGINES_MASK_EXT_SIZE];
972 struct hl_info_device_status {
977 struct hl_info_device_utilization {
982 struct hl_info_clk_rate {
983 __u32 cur_clk_rate_mhz;
984 __u32 max_clk_rate_mhz;
987 struct hl_info_reset_count {
988 __u32 hard_reset_cnt;
989 __u32 soft_reset_cnt;
992 struct hl_info_time_sync {
999 * struct hl_info_pci_counters - pci counters
1000 * @rx_throughput: PCI rx throughput KBps
1001 * @tx_throughput: PCI tx throughput KBps
1002 * @replay_cnt: PCI replay counter
1004 struct hl_info_pci_counters {
1005 __u64 rx_throughput;
1006 __u64 tx_throughput;
1010 enum hl_clk_throttling_type {
1011 HL_CLK_THROTTLE_TYPE_POWER,
1012 HL_CLK_THROTTLE_TYPE_THERMAL,
1013 HL_CLK_THROTTLE_TYPE_MAX
1016 /* clk_throttling_reason masks */
1017 #define HL_CLK_THROTTLE_POWER (1 << HL_CLK_THROTTLE_TYPE_POWER)
1018 #define HL_CLK_THROTTLE_THERMAL (1 << HL_CLK_THROTTLE_TYPE_THERMAL)
1021 * struct hl_info_clk_throttle - clock throttling reason
1022 * @clk_throttling_reason: each bit represents a clk throttling reason
1023 * @clk_throttling_timestamp_us: represents CPU timestamp in microseconds of the start-event
1024 * @clk_throttling_duration_ns: the clock throttle time in nanosec
1026 struct hl_info_clk_throttle {
1027 __u32 clk_throttling_reason;
1029 __u64 clk_throttling_timestamp_us[HL_CLK_THROTTLE_TYPE_MAX];
1030 __u64 clk_throttling_duration_ns[HL_CLK_THROTTLE_TYPE_MAX];
1034 * struct hl_info_energy - device energy information
1035 * @total_energy_consumption: total device energy consumption
1037 struct hl_info_energy {
1038 __u64 total_energy_consumption;
1041 #define HL_PLL_NUM_OUTPUTS 4
1043 struct hl_pll_frequency_info {
1044 __u16 output[HL_PLL_NUM_OUTPUTS];
1048 * struct hl_open_stats_info - device open statistics information
1049 * @open_counter: ever growing counter, increased on each successful dev open
1050 * @last_open_period_ms: duration (ms) device was open last time
1051 * @is_compute_ctx_active: Whether there is an active compute context executing
1052 * @compute_ctx_in_release: true if the current compute context is being released
1054 struct hl_open_stats_info {
1056 __u64 last_open_period_ms;
1057 __u8 is_compute_ctx_active;
1058 __u8 compute_ctx_in_release;
1063 * struct hl_power_info - power information
1064 * @power: power consumption
1066 struct hl_power_info {
1071 * struct hl_info_sync_manager - sync manager information
1072 * @first_available_sync_object: first available sob
1073 * @first_available_monitor: first available monitor
1074 * @first_available_cq: first available cq
1076 struct hl_info_sync_manager {
1077 __u32 first_available_sync_object;
1078 __u32 first_available_monitor;
1079 __u32 first_available_cq;
1084 * struct hl_info_cs_counters - command submission counters
1085 * @total_out_of_mem_drop_cnt: total dropped due to memory allocation issue
1086 * @ctx_out_of_mem_drop_cnt: context dropped due to memory allocation issue
1087 * @total_parsing_drop_cnt: total dropped due to error in packet parsing
1088 * @ctx_parsing_drop_cnt: context dropped due to error in packet parsing
1089 * @total_queue_full_drop_cnt: total dropped due to queue full
1090 * @ctx_queue_full_drop_cnt: context dropped due to queue full
1091 * @total_device_in_reset_drop_cnt: total dropped due to device in reset
1092 * @ctx_device_in_reset_drop_cnt: context dropped due to device in reset
1093 * @total_max_cs_in_flight_drop_cnt: total dropped due to maximum CS in-flight
1094 * @ctx_max_cs_in_flight_drop_cnt: context dropped due to maximum CS in-flight
1095 * @total_validation_drop_cnt: total dropped due to validation error
1096 * @ctx_validation_drop_cnt: context dropped due to validation error
1098 struct hl_info_cs_counters {
1099 __u64 total_out_of_mem_drop_cnt;
1100 __u64 ctx_out_of_mem_drop_cnt;
1101 __u64 total_parsing_drop_cnt;
1102 __u64 ctx_parsing_drop_cnt;
1103 __u64 total_queue_full_drop_cnt;
1104 __u64 ctx_queue_full_drop_cnt;
1105 __u64 total_device_in_reset_drop_cnt;
1106 __u64 ctx_device_in_reset_drop_cnt;
1107 __u64 total_max_cs_in_flight_drop_cnt;
1108 __u64 ctx_max_cs_in_flight_drop_cnt;
1109 __u64 total_validation_drop_cnt;
1110 __u64 ctx_validation_drop_cnt;
1114 * struct hl_info_last_err_open_dev_time - last error boot information.
1115 * @timestamp: timestamp of last time the device was opened and error occurred.
1117 struct hl_info_last_err_open_dev_time {
1122 * struct hl_info_cs_timeout_event - last CS timeout information.
1123 * @timestamp: timestamp when last CS timeout event occurred.
1124 * @seq: sequence number of last CS timeout event.
1126 struct hl_info_cs_timeout_event {
1131 #define HL_RAZWI_NA_ENG_ID U16_MAX
1132 #define HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR 128
1133 #define HL_RAZWI_READ BIT(0)
1134 #define HL_RAZWI_WRITE BIT(1)
1135 #define HL_RAZWI_LBW BIT(2)
1136 #define HL_RAZWI_HBW BIT(3)
1137 #define HL_RAZWI_RR BIT(4)
1138 #define HL_RAZWI_ADDR_DEC BIT(5)
1141 * struct hl_info_razwi_event - razwi information.
1142 * @timestamp: timestamp of razwi.
1143 * @addr: address which accessing it caused razwi.
1144 * @engine_id: engine id of the razwi initiator, if it was initiated by engine that does not
1145 * have engine id it will be set to HL_RAZWI_NA_ENG_ID. If there are several possible
1146 * engines which caused the razwi, it will hold all of them.
1147 * @num_of_possible_engines: contains number of possible engine ids. In some asics, razwi indication
1148 * might be common for several engines and there is no way to get the
1149 * exact engine. In this way, engine_id array will be filled with all
1150 * possible engines caused this razwi. Also, there might be possibility
1151 * in gaudi, where we don't indication on specific engine, in that case
1152 * the value of this parameter will be zero.
1153 * @flags: bitmask for additional data: HL_RAZWI_READ - razwi caused by read operation
1154 * HL_RAZWI_WRITE - razwi caused by write operation
1155 * HL_RAZWI_LBW - razwi caused by lbw fabric transaction
1156 * HL_RAZWI_HBW - razwi caused by hbw fabric transaction
1157 * HL_RAZWI_RR - razwi caused by range register
1158 * HL_RAZWI_ADDR_DEC - razwi caused by address decode error
1159 * Note: this data is not supported by all asics, in that case the relevant bits will not
1162 struct hl_info_razwi_event {
1165 __u16 engine_id[HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR];
1166 __u16 num_of_possible_engines;
1171 #define MAX_QMAN_STREAMS_INFO 4
1172 #define OPCODE_INFO_MAX_ADDR_SIZE 8
1174 * struct hl_info_undefined_opcode_event - info about last undefined opcode error
1175 * @timestamp: timestamp of the undefined opcode error
1176 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
1177 * entries. In case all streams array entries are
1178 * filled with values, it means the execution was in Lower-CP.
1179 * @cq_addr: the address of the current handled command buffer
1180 * @cq_size: the size of the current handled command buffer
1181 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
1182 * should be equal to 1 in case of undefined opcode
1183 * in Upper-CP (specific stream) and equal to 4 incase
1184 * of undefined opcode in Lower-CP.
1185 * @engine_id: engine-id that the error occurred on
1186 * @stream_id: the stream id the error occurred on. In case the stream equals to
1187 * MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
1189 struct hl_info_undefined_opcode_event {
1191 __u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
1194 __u32 cb_addr_streams_len;
1200 * struct hl_info_hw_err_event - info about HW error
1201 * @timestamp: timestamp of error occurrence
1202 * @event_id: The async event ID (specific to each device type).
1203 * @pad: size padding for u64 granularity.
1205 struct hl_info_hw_err_event {
1211 /* FW error definition for event_type in struct hl_info_fw_err_event */
1212 enum hl_info_fw_err_type {
1213 HL_INFO_FW_HEARTBEAT_ERR,
1214 HL_INFO_FW_REPORTED_ERR,
1218 * struct hl_info_fw_err_event - info about FW error
1219 * @timestamp: time-stamp of error occurrence
1220 * @err_type: The type of event as defined in hl_info_fw_err_type.
1221 * @event_id: The async event ID (specific to each device type, applicable only when event type is
1222 * HL_INFO_FW_REPORTED_ERR).
1223 * @pad: size padding for u64 granularity.
1225 struct hl_info_fw_err_event {
1233 * struct hl_info_engine_err_event - engine error info
1234 * @timestamp: time-stamp of error occurrence
1235 * @engine_id: engine id who reported the error.
1236 * @error_count: Amount of errors reported.
1237 * @pad: size padding for u64 granularity.
1239 struct hl_info_engine_err_event {
1247 * struct hl_info_dev_memalloc_page_sizes - valid page sizes in device mem alloc information.
1248 * @page_order_bitmask: bitmap in which a set bit represents the order of the supported page size
1249 * (e.g. 0x2100000 means that 1MB and 32MB pages are supported).
1251 struct hl_info_dev_memalloc_page_sizes {
1252 __u64 page_order_bitmask;
1255 #define SEC_PCR_DATA_BUF_SZ 256
1256 #define SEC_PCR_QUOTE_BUF_SZ 510 /* (512 - 2) 2 bytes used for size */
1257 #define SEC_SIGNATURE_BUF_SZ 255 /* (256 - 1) 1 byte used for size */
1258 #define SEC_PUB_DATA_BUF_SZ 510 /* (512 - 2) 2 bytes used for size */
1259 #define SEC_CERTIFICATE_BUF_SZ 2046 /* (2048 - 2) 2 bytes used for size */
1260 #define SEC_DEV_INFO_BUF_SZ 5120
1263 * struct hl_info_sec_attest - attestation report of the boot
1264 * @nonce: number only used once. random number provided by host. this also passed to the quote
1265 * command as a qualifying data.
1266 * @pcr_quote_len: length of the attestation quote data (bytes)
1267 * @pub_data_len: length of the public data (bytes)
1268 * @certificate_len: length of the certificate (bytes)
1269 * @pcr_num_reg: number of PCR registers in the pcr_data array
1270 * @pcr_reg_len: length of each PCR register in the pcr_data array (bytes)
1271 * @quote_sig_len: length of the attestation report signature (bytes)
1272 * @pcr_data: raw values of the PCR registers
1273 * @pcr_quote: attestation report data structure
1274 * @quote_sig: signature structure of the attestation report
1275 * @public_data: public key for the signed attestation
1276 * (outPublic + name + qualifiedName)
1277 * @certificate: certificate for the attestation signing key
1279 struct hl_info_sec_attest {
1281 __u16 pcr_quote_len;
1283 __u16 certificate_len;
1287 __u8 pcr_data[SEC_PCR_DATA_BUF_SZ];
1288 __u8 pcr_quote[SEC_PCR_QUOTE_BUF_SZ];
1289 __u8 quote_sig[SEC_SIGNATURE_BUF_SZ];
1290 __u8 public_data[SEC_PUB_DATA_BUF_SZ];
1291 __u8 certificate[SEC_CERTIFICATE_BUF_SZ];
1296 * struct hl_info_signed - device information signed by a secured device.
1297 * @nonce: number only used once. random number provided by host. this also passed to the quote
1298 * command as a qualifying data.
1299 * @pub_data_len: length of the public data (bytes)
1300 * @certificate_len: length of the certificate (bytes)
1301 * @info_sig_len: length of the attestation signature (bytes)
1302 * @public_data: public key info signed info data (outPublic + name + qualifiedName)
1303 * @certificate: certificate for the signing key
1304 * @info_sig: signature of the info + nonce data.
1305 * @dev_info_len: length of device info (bytes)
1306 * @dev_info: device info as byte array.
1308 struct hl_info_signed {
1311 __u16 certificate_len;
1313 __u8 public_data[SEC_PUB_DATA_BUF_SZ];
1314 __u8 certificate[SEC_CERTIFICATE_BUF_SZ];
1315 __u8 info_sig[SEC_SIGNATURE_BUF_SZ];
1317 __u8 dev_info[SEC_DEV_INFO_BUF_SZ];
1322 * struct hl_page_fault_info - page fault information.
1323 * @timestamp: timestamp of page fault.
1324 * @addr: address which accessing it caused page fault.
1325 * @engine_id: engine id which caused the page fault, supported only in gaudi3.
1327 struct hl_page_fault_info {
1335 * struct hl_user_mapping - user mapping information.
1336 * @dev_va: device virtual address.
1337 * @size: virtual address mapping size.
1339 struct hl_user_mapping {
1352 * struct hl_info_args - Main structure to retrieve device related information.
1353 * @return_pointer: User space address of the relevant structure related to HL_INFO_* operation
1355 * @return_size: Size of the structure used in @return_pointer, just like "size" in "snprintf", it
1356 * limits how many bytes the kernel can write. For hw_events array, the size should be
1357 * hl_info_hw_ip_info.num_of_events * sizeof(__u32).
1358 * @op: Defines which type of information to be retrieved. Refer HL_INFO_* for details.
1359 * @dcore_id: DCORE id for which the information is relevant (for Gaudi refer to enum gaudi_dcores).
1360 * @ctx_id: Context ID of the user. Currently not in use.
1361 * @period_ms: Period value, in milliseconds, for utilization rate in range 100ms - 1000ms in 100 ms
1362 * resolution. Currently not in use.
1363 * @pll_index: Index as defined in hl_<asic type>_pll_index enumeration.
1364 * @eventfd: event file descriptor for event notifications.
1365 * @user_buffer_actual_size: Actual data size which was copied to user allocated buffer by the
1366 * driver. It is possible for the user to allocate buffer larger than
1367 * needed, hence updating this variable so user will know the exact amount
1368 * of bytes copied by the kernel to the buffer.
1369 * @sec_attest_nonce: Nonce number used for attestation report.
1370 * @array_size: Number of array members copied to user buffer.
1371 * Relevant for HL_INFO_USER_MAPPINGS info ioctl.
1372 * @fw_sub_opcode: generic requests sub opcodes.
1373 * @pad: Padding to 64 bit.
1375 struct hl_info_args {
1376 __u64 return_pointer;
1386 __u32 user_buffer_actual_size;
1387 __u32 sec_attest_nonce;
1389 __u32 fw_sub_opcode;
1395 /* Opcode to create a new command buffer */
1396 #define HL_CB_OP_CREATE 0
1397 /* Opcode to destroy previously created command buffer */
1398 #define HL_CB_OP_DESTROY 1
1399 /* Opcode to retrieve information about a command buffer */
1400 #define HL_CB_OP_INFO 2
1402 /* 2MB minus 32 bytes for 2xMSG_PROT */
1403 #define HL_MAX_CB_SIZE (0x200000 - 32)
1405 /* Indicates whether the command buffer should be mapped to the device's MMU */
1406 #define HL_CB_FLAGS_MAP 0x1
1408 /* Used with HL_CB_OP_INFO opcode to get the device va address for kernel mapped CB */
1409 #define HL_CB_FLAGS_GET_DEVICE_VA 0x2
1412 /* Handle of CB or 0 if we want to create one */
1417 /* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that
1418 * will be allocated, regardless of this parameter's value, is PAGE_SIZE
1422 /* Context ID - Currently not in use */
1434 /* Information about CB */
1436 /* Usage count of CB */
1441 /* CB mapped address to device MMU */
1449 struct hl_cb_out out;
1452 /* HL_CS_CHUNK_FLAGS_ values
1454 * HL_CS_CHUNK_FLAGS_USER_ALLOC_CB:
1455 * Indicates if the CB was allocated and mapped by userspace
1456 * (relevant to Gaudi2 and later). User allocated CB is a command buffer,
1457 * allocated by the user, via malloc (or similar). After allocating the
1458 * CB, the user invokes - “memory ioctl” to map the user memory into a
1459 * device virtual address. The user provides this address via the
1460 * cb_handle field. The interface provides the ability to create a
1461 * large CBs, Which aren’t limited to “HL_MAX_CB_SIZE”. Therefore, it
1462 * increases the PCI-DMA queues throughput. This CB allocation method
1463 * also reduces the use of Linux DMA-able memory pool. Which are limited
1464 * and used by other Linux sub-systems.
1466 #define HL_CS_CHUNK_FLAGS_USER_ALLOC_CB 0x1
1469 * This structure size must always be fixed to 64-bytes for backward
1472 struct hl_cs_chunk {
1475 * For external queue, this represents a Handle of CB on the
1477 * For internal queue in Goya, this represents an SRAM or
1478 * a DRAM address of the internal CB. In Gaudi, this might also
1479 * represent a mapped host address of the CB.
1482 * For H/W queue, this represents either a Handle of CB on the
1483 * Host, or an SRAM, a DRAM, or a mapped host address of the CB.
1485 * A mapped host address is in the device address space, after
1486 * a host address was mapped by the device MMU.
1490 /* Relevant only when HL_CS_FLAGS_WAIT or
1491 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1492 * This holds address of array of u64 values that contain
1493 * signal CS sequence numbers. The wait described by
1494 * this job will listen on all those signals
1495 * (wait event per signal)
1497 __u64 signal_seq_arr;
1500 * Relevant only when HL_CS_FLAGS_WAIT or
1501 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1502 * along with HL_CS_FLAGS_ENCAP_SIGNALS.
1503 * This is the CS sequence which has the encapsulated signals.
1505 __u64 encaps_signal_seq;
1508 /* Index of queue to put the CB on */
1513 * Size of command buffer with valid packets
1514 * Can be smaller then actual CB size
1518 /* Relevant only when HL_CS_FLAGS_WAIT or
1519 * HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1520 * Number of entries in signal_seq_arr
1522 __u32 num_signal_seq_arr;
1524 /* Relevant only when HL_CS_FLAGS_WAIT or
1525 * HL_CS_FLAGS_COLLECTIVE_WAIT is set along
1526 * with HL_CS_FLAGS_ENCAP_SIGNALS
1527 * This set the signals range that the user want to wait for
1528 * out of the whole reserved signals range.
1529 * e.g if the signals range is 20, and user don't want
1530 * to wait for signal 8, so he set this offset to 7, then
1531 * he call the API again with 9 and so on till 20.
1533 __u32 encaps_signal_offset;
1536 /* HL_CS_CHUNK_FLAGS_* */
1537 __u32 cs_chunk_flags;
1539 /* Relevant only when HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1540 * This holds the collective engine ID. The wait described by this job
1541 * will sync with this engine and with all NICs before completion.
1543 __u32 collective_engine_id;
1545 /* Align structure to 64 bytes */
1549 /* SIGNAL/WAIT/COLLECTIVE_WAIT flags are mutually exclusive */
1550 #define HL_CS_FLAGS_FORCE_RESTORE 0x1
1551 #define HL_CS_FLAGS_SIGNAL 0x2
1552 #define HL_CS_FLAGS_WAIT 0x4
1553 #define HL_CS_FLAGS_COLLECTIVE_WAIT 0x8
1555 #define HL_CS_FLAGS_TIMESTAMP 0x20
1556 #define HL_CS_FLAGS_STAGED_SUBMISSION 0x40
1557 #define HL_CS_FLAGS_STAGED_SUBMISSION_FIRST 0x80
1558 #define HL_CS_FLAGS_STAGED_SUBMISSION_LAST 0x100
1559 #define HL_CS_FLAGS_CUSTOM_TIMEOUT 0x200
1560 #define HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT 0x400
1563 * The encapsulated signals CS is merged into the existing CS ioctls.
1564 * In order to use this feature need to follow the below procedure:
1565 * 1. Reserve signals, set the CS type to HL_CS_FLAGS_RESERVE_SIGNALS_ONLY
1566 * the output of this API will be the SOB offset from CFG_BASE.
1567 * this address will be used to patch CB cmds to do the signaling for this
1568 * SOB by incrementing it's value.
1569 * for reverting the reservation use HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY
1570 * CS type, note that this might fail if out-of-sync happened to the SOB
1571 * value, in case other signaling request to the same SOB occurred between
1572 * reserve-unreserve calls.
1573 * 2. Use the staged CS to do the encapsulated signaling jobs.
1574 * use HL_CS_FLAGS_STAGED_SUBMISSION and HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1575 * along with HL_CS_FLAGS_ENCAP_SIGNALS flag, and set encaps_signal_offset
1576 * field. This offset allows app to wait on part of the reserved signals.
1577 * 3. Use WAIT/COLLECTIVE WAIT CS along with HL_CS_FLAGS_ENCAP_SIGNALS flag
1578 * to wait for the encapsulated signals.
1580 #define HL_CS_FLAGS_ENCAP_SIGNALS 0x800
1581 #define HL_CS_FLAGS_RESERVE_SIGNALS_ONLY 0x1000
1582 #define HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY 0x2000
1585 * The engine cores CS is merged into the existing CS ioctls.
1586 * Use it to control the engine cores mode.
1588 #define HL_CS_FLAGS_ENGINE_CORE_COMMAND 0x4000
1591 * The flush HBW PCI writes is merged into the existing CS ioctls.
1592 * Used to flush all HBW PCI writes.
1593 * This is a blocking operation and for this reason the user shall not use
1594 * the return sequence number (which will be invalid anyway)
1596 #define HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES 0x8000
1599 * The engines CS is merged into the existing CS ioctls.
1600 * Use it to control engines modes.
1602 #define HL_CS_FLAGS_ENGINES_COMMAND 0x10000
1604 #define HL_CS_STATUS_SUCCESS 0
1606 #define HL_MAX_JOBS_PER_CS 512
1609 * enum hl_engine_command - engine command
1611 * @HL_ENGINE_CORE_HALT: engine core halt
1612 * @HL_ENGINE_CORE_RUN: engine core run
1613 * @HL_ENGINE_STALL: user engine/s stall
1614 * @HL_ENGINE_RESUME: user engine/s resume
1616 enum hl_engine_command {
1617 HL_ENGINE_CORE_HALT = 1,
1618 HL_ENGINE_CORE_RUN = 2,
1619 HL_ENGINE_STALL = 3,
1620 HL_ENGINE_RESUME = 4,
1621 HL_ENGINE_COMMAND_MAX
1628 /* this holds address of array of hl_cs_chunk for restore phase */
1629 __u64 chunks_restore;
1631 /* holds address of array of hl_cs_chunk for execution phase */
1632 __u64 chunks_execute;
1635 /* Valid only when HL_CS_FLAGS_ENGINE_CORE_COMMAND is set */
1637 /* this holds address of array of uint32 for engine_cores */
1640 /* number of engine cores in engine_cores array */
1641 __u32 num_engine_cores;
1643 /* the core command to be sent towards engine cores */
1647 /* Valid only when HL_CS_FLAGS_ENGINES_COMMAND is set */
1649 /* this holds address of array of uint32 for engines */
1652 /* number of engines in engines array */
1655 /* the engine command to be sent towards engines */
1656 __u32 engine_command;
1662 * Sequence number of a staged submission CS
1663 * valid only if HL_CS_FLAGS_STAGED_SUBMISSION is set and
1664 * HL_CS_FLAGS_STAGED_SUBMISSION_FIRST is unset.
1669 * Encapsulated signals handle id
1670 * Valid for two flows:
1671 * 1. CS with encapsulated signals:
1672 * when HL_CS_FLAGS_STAGED_SUBMISSION and
1673 * HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1674 * and HL_CS_FLAGS_ENCAP_SIGNALS are set.
1675 * 2. unreserve signals:
1676 * valid when HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY is set.
1678 __u32 encaps_sig_handle_id;
1680 /* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1682 /* Encapsulated signals number */
1683 __u32 encaps_signals_count;
1685 /* Encapsulated signals queue index (stream) */
1686 __u32 encaps_signals_q_idx;
1690 /* Number of chunks in restore phase array. Maximum number is
1691 * HL_MAX_JOBS_PER_CS
1693 __u32 num_chunks_restore;
1695 /* Number of chunks in execution array. Maximum number is
1696 * HL_MAX_JOBS_PER_CS
1698 __u32 num_chunks_execute;
1700 /* timeout in seconds - valid only if HL_CS_FLAGS_CUSTOM_TIMEOUT
1708 /* Context ID - Currently not in use */
1716 * seq holds the sequence number of the CS to pass to wait
1717 * ioctl. All values are valid except for 0 and ULLONG_MAX
1721 /* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1723 /* This is the reserved signal handle id */
1726 /* This is the signals count */
1735 * SOB base address offset
1736 * Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY or HL_CS_FLAGS_SIGNAL is set
1738 __u32 sob_base_addr_offset;
1741 * Count of completed signals in SOB before current signal submission.
1742 * Valid only when (HL_CS_FLAGS_ENCAP_SIGNALS & HL_CS_FLAGS_STAGED_SUBMISSION)
1743 * or HL_CS_FLAGS_SIGNAL is set
1745 __u16 sob_count_before_submission;
1751 struct hl_cs_out out;
1754 #define HL_WAIT_CS_FLAGS_INTERRUPT 0x2
1755 #define HL_WAIT_CS_FLAGS_INTERRUPT_MASK 0xFFF00000
1756 #define HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT 0xFFF00000
1757 #define HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT 0xFFE00000
1758 #define HL_WAIT_CS_FLAGS_MULTI_CS 0x4
1759 #define HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ 0x10
1760 #define HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT 0x20
1762 #define HL_WAIT_MULTI_CS_LIST_MAX_LEN 32
1764 struct hl_wait_cs_in {
1768 * In case of wait_cs holds the CS sequence number.
1769 * In case of wait for multi CS hold a user pointer to
1770 * an array of CS sequence numbers
1773 /* Absolute timeout to wait for command submission
1781 /* User address for completion comparison.
1782 * upon interrupt, driver will compare the value pointed
1783 * by this address with the supplied target value.
1784 * in order not to perform any comparison, set address
1786 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1790 /* cq_counters_handle to a kernel mapped cb which contains
1792 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1794 __u64 cq_counters_handle;
1797 /* Target value for completion comparison */
1802 /* Context ID - Currently not in use */
1805 /* HL_WAIT_CS_FLAGS_*
1806 * If HL_WAIT_CS_FLAGS_INTERRUPT is set, this field should include
1807 * interrupt id according to HL_WAIT_CS_FLAGS_INTERRUPT_MASK
1809 * in order to wait for any CQ interrupt, set interrupt value to
1810 * HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT.
1812 * in order to wait for any decoder interrupt, set interrupt value to
1813 * HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT.
1819 /* Multi CS API info- valid entries in multi-CS array */
1824 /* Absolute timeout to wait for an interrupt in microseconds.
1825 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1827 __u64 interrupt_timeout_us;
1831 * cq counter offset inside the counters cb pointed by cq_counters_handle above.
1832 * upon interrupt, driver will compare the value pointed
1833 * by this address (cq_counters_handle + cq_counters_offset)
1834 * with the supplied target value.
1835 * relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1837 __u64 cq_counters_offset;
1840 * Timestamp_handle timestamps buffer handle.
1841 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1843 __u64 timestamp_handle;
1846 * Timestamp_offset is offset inside the timestamp buffer pointed by timestamp_handle above.
1847 * upon interrupt, if the cq reached the target value then driver will write
1848 * timestamp to this offset.
1849 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1851 __u64 timestamp_offset;
1854 #define HL_WAIT_CS_STATUS_COMPLETED 0
1855 #define HL_WAIT_CS_STATUS_BUSY 1
1856 #define HL_WAIT_CS_STATUS_TIMEDOUT 2
1857 #define HL_WAIT_CS_STATUS_ABORTED 3
1859 #define HL_WAIT_CS_STATUS_FLAG_GONE 0x1
1860 #define HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD 0x2
1862 struct hl_wait_cs_out {
1863 /* HL_WAIT_CS_STATUS_* */
1865 /* HL_WAIT_CS_STATUS_FLAG* */
1868 * valid only if HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD is set
1869 * for wait_cs: timestamp of CS completion
1870 * for wait_multi_cs: timestamp of FIRST CS completion
1872 __s64 timestamp_nsec;
1873 /* multi CS completion bitmap */
1874 __u32 cs_completion_map;
1878 union hl_wait_cs_args {
1879 struct hl_wait_cs_in in;
1880 struct hl_wait_cs_out out;
1883 /* Opcode to allocate device memory */
1884 #define HL_MEM_OP_ALLOC 0
1886 /* Opcode to free previously allocated device memory */
1887 #define HL_MEM_OP_FREE 1
1889 /* Opcode to map host and device memory */
1890 #define HL_MEM_OP_MAP 2
1892 /* Opcode to unmap previously mapped host and device memory */
1893 #define HL_MEM_OP_UNMAP 3
1895 /* Opcode to map a hw block */
1896 #define HL_MEM_OP_MAP_BLOCK 4
1898 /* Opcode to create DMA-BUF object for an existing device memory allocation
1899 * and to export an FD of that DMA-BUF back to the caller
1901 #define HL_MEM_OP_EXPORT_DMABUF_FD 5
1903 /* Opcode to create timestamps pool for user interrupts registration support
1904 * The memory will be allocated by the kernel driver, A timestamp buffer which the user
1905 * will get handle to it for mmap, and another internal buffer used by the
1906 * driver for registration management
1907 * The memory will be freed when the user closes the file descriptor(ctx close)
1909 #define HL_MEM_OP_TS_ALLOC 6
1912 #define HL_MEM_CONTIGUOUS 0x1
1913 #define HL_MEM_SHARED 0x2
1914 #define HL_MEM_USERPTR 0x4
1915 #define HL_MEM_FORCE_HINT 0x8
1916 #define HL_MEM_PREFETCH 0x40
1919 * structure hl_mem_in - structure that handle input args for memory IOCTL
1920 * @union arg: union of structures to be used based on the input operation
1921 * @op: specify the requested memory operation (one of the HL_MEM_OP_* definitions).
1922 * @flags: flags for the memory operation (one of the HL_MEM_* definitions).
1923 * For the HL_MEM_OP_EXPORT_DMABUF_FD opcode, this field holds the DMA-BUF file/FD flags.
1924 * @ctx_id: context ID - currently not in use.
1925 * @num_of_elements: number of timestamp elements used only with HL_MEM_OP_TS_ALLOC opcode.
1930 * structure for device memory allocation (used with the HL_MEM_OP_ALLOC op)
1931 * @mem_size: memory size to allocate
1932 * @page_size: page size to use on allocation. when the value is 0 the default page
1933 * size will be taken.
1941 * structure for free-ing device memory (used with the HL_MEM_OP_FREE op)
1942 * @handle: handle returned from HL_MEM_OP_ALLOC
1949 * structure for mapping device memory (used with the HL_MEM_OP_MAP op)
1950 * @hint_addr: requested virtual address of mapped memory.
1951 * the driver will try to map the requested region to this hint
1952 * address, as long as the address is valid and not already mapped.
1953 * the user should check the returned address of the IOCTL to make
1954 * sure he got the hint address.
1955 * passing 0 here means that the driver will choose the address itself.
1956 * @handle: handle returned from HL_MEM_OP_ALLOC.
1964 * structure for mapping host memory (used with the HL_MEM_OP_MAP op)
1965 * @host_virt_addr: address of allocated host memory.
1966 * @hint_addr: requested virtual address of mapped memory.
1967 * the driver will try to map the requested region to this hint
1968 * address, as long as the address is valid and not already mapped.
1969 * the user should check the returned address of the IOCTL to make
1970 * sure he got the hint address.
1971 * passing 0 here means that the driver will choose the address itself.
1972 * @size: size of allocated host memory.
1975 __u64 host_virt_addr;
1981 * structure for mapping hw block (used with the HL_MEM_OP_MAP_BLOCK op)
1982 * @block_addr:HW block address to map, a handle and size will be returned
1983 * to the user and will be used to mmap the relevant block.
1984 * only addresses from configuration space are allowed.
1991 * structure for unmapping host memory (used with the HL_MEM_OP_UNMAP op)
1992 * @device_virt_addr: virtual address returned from HL_MEM_OP_MAP
1995 __u64 device_virt_addr;
1999 * structure for exporting DMABUF object (used with
2000 * the HL_MEM_OP_EXPORT_DMABUF_FD op)
2001 * @addr: for Gaudi1, the driver expects a physical address
2002 * inside the device's DRAM. this is because in Gaudi1
2003 * we don't have MMU that covers the device's DRAM.
2004 * for all other ASICs, the driver expects a device
2005 * virtual address that represents the start address of
2006 * a mapped DRAM memory area inside the device.
2007 * the address must be the same as was received from the
2008 * driver during a previous HL_MEM_OP_MAP operation.
2009 * @mem_size: size of memory to export.
2010 * @offset: for Gaudi1, this value must be 0. For all other ASICs,
2011 * the driver expects an offset inside of the memory area
2012 * describe by addr. the offset represents the start
2013 * address of that the exported dma-buf object describes.
2025 __u32 num_of_elements;
2031 * Used for HL_MEM_OP_MAP as the virtual address that was
2032 * assigned in the device VA space.
2033 * A value of 0 means the requested operation failed.
2035 __u64 device_virt_addr;
2038 * Used in HL_MEM_OP_ALLOC
2039 * This is the assigned handle for the allocated memory
2045 * Used in HL_MEM_OP_MAP_BLOCK.
2046 * This is the assigned handle for the mapped block
2051 * Used in HL_MEM_OP_MAP_BLOCK
2052 * This is the size of the mapped block
2059 /* Returned in HL_MEM_OP_EXPORT_DMABUF_FD. Represents the
2060 * DMA-BUF object that was created to describe a memory
2061 * allocation on the device's memory space. The FD should be
2062 * passed to the importer driver
2069 struct hl_mem_in in;
2070 struct hl_mem_out out;
2073 #define HL_DEBUG_MAX_AUX_VALUES 10
2075 struct hl_debug_params_etr {
2076 /* Address in memory to allocate buffer */
2077 __u64 buffer_address;
2079 /* Size of buffer to allocate */
2082 /* Sink operation mode: SW fifo, HW fifo, Circular buffer */
2087 struct hl_debug_params_etf {
2088 /* Address in memory to allocate buffer */
2089 __u64 buffer_address;
2091 /* Size of buffer to allocate */
2094 /* Sink operation mode: SW fifo, HW fifo, Circular buffer */
2099 struct hl_debug_params_stm {
2100 /* Two bit masks for HW event and Stimulus Port */
2104 /* Trace source ID */
2107 /* Frequency for the timestamp register */
2111 struct hl_debug_params_bmon {
2112 /* Two address ranges that the user can request to filter */
2119 /* Capture window configuration */
2123 /* Trace source ID */
2126 /* Control register */
2129 /* Two more address ranges that the user can request to filter */
2137 struct hl_debug_params_spmu {
2138 /* Event types selection */
2139 __u64 event_types[HL_DEBUG_MAX_AUX_VALUES];
2141 /* Number of event types selection */
2142 __u32 event_types_num;
2144 /* TRC configuration register values */
2146 __u32 trc_ctrl_host_val;
2147 __u32 trc_en_host_val;
2150 /* Opcode for ETR component */
2151 #define HL_DEBUG_OP_ETR 0
2152 /* Opcode for ETF component */
2153 #define HL_DEBUG_OP_ETF 1
2154 /* Opcode for STM component */
2155 #define HL_DEBUG_OP_STM 2
2156 /* Opcode for FUNNEL component */
2157 #define HL_DEBUG_OP_FUNNEL 3
2158 /* Opcode for BMON component */
2159 #define HL_DEBUG_OP_BMON 4
2160 /* Opcode for SPMU component */
2161 #define HL_DEBUG_OP_SPMU 5
2162 /* Opcode for timestamp (deprecated) */
2163 #define HL_DEBUG_OP_TIMESTAMP 6
2164 /* Opcode for setting the device into or out of debug mode. The enable
2165 * variable should be 1 for enabling debug mode and 0 for disabling it
2167 #define HL_DEBUG_OP_SET_MODE 7
2169 struct hl_debug_args {
2171 * Pointer to user input structure.
2172 * This field is relevant to specific opcodes.
2175 /* Pointer to user output structure */
2177 /* Size of user input structure */
2179 /* Size of user output structure */
2184 * Register index in the component, taken from the debug_regs_index enum
2185 * in the various ASIC header files
2188 /* Enable/disable */
2190 /* Context ID - Currently not in use */
2194 #define HL_IOCTL_INFO 0x00
2195 #define HL_IOCTL_CB 0x01
2196 #define HL_IOCTL_CS 0x02
2197 #define HL_IOCTL_WAIT_CS 0x03
2198 #define HL_IOCTL_MEMORY 0x04
2199 #define HL_IOCTL_DEBUG 0x05
2202 * Various information operations such as:
2203 * - H/W IP information
2204 * - Current dram usage
2206 * The user calls this IOCTL with an opcode that describes the required
2207 * information. The user should supply a pointer to a user-allocated memory
2208 * chunk, which will be filled by the driver with the requested information.
2210 * The user supplies the maximum amount of size to copy into the user's memory,
2211 * in order to prevent data corruption in case of differences between the
2212 * definitions of structures in kernel and userspace, e.g. in case of old
2213 * userspace and new kernel driver
2215 #define DRM_IOCTL_HL_INFO DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_INFO, struct hl_info_args)
2219 * - Request a Command Buffer
2220 * - Destroy a Command Buffer
2222 * The command buffers are memory blocks that reside in DMA-able address
2223 * space and are physically contiguous so they can be accessed by the device
2224 * directly. They are allocated using the coherent DMA API.
2226 * When creating a new CB, the IOCTL returns a handle of it, and the user-space
2227 * process needs to use that handle to mmap the buffer so it can access them.
2229 * In some instances, the device must access the command buffer through the
2230 * device's MMU, and thus its memory should be mapped. In these cases, user can
2231 * indicate the driver that such a mapping is required.
2232 * The resulting device virtual address will be used internally by the driver,
2233 * and won't be returned to user.
2236 #define DRM_IOCTL_HL_CB DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_CB, union hl_cb_args)
2239 * Command Submission
2241 * To submit work to the device, the user need to call this IOCTL with a set
2242 * of JOBS. That set of JOBS constitutes a CS object.
2243 * Each JOB will be enqueued on a specific queue, according to the user's input.
2244 * There can be more then one JOB per queue.
2246 * The CS IOCTL will receive two sets of JOBS. One set is for "restore" phase
2247 * and a second set is for "execution" phase.
2248 * The JOBS on the "restore" phase are enqueued only after context-switch
2249 * (or if its the first CS for this context). The user can also order the
2250 * driver to run the "restore" phase explicitly
2253 * There are two types of queues - external and internal. External queues
2254 * are DMA queues which transfer data from/to the Host. All other queues are
2255 * internal. The driver will get completion notifications from the device only
2256 * on JOBS which are enqueued in the external queues.
2259 * There is a single type of queue for all types of engines, either DMA engines
2260 * for transfers from/to the host or inside the device, or compute engines.
2261 * The driver will get completion notifications from the device for all queues.
2263 * For jobs on external queues, the user needs to create command buffers
2264 * through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on
2265 * internal queues, the user needs to prepare a "command buffer" with packets
2266 * on either the device SRAM/DRAM or the host, and give the device address of
2267 * that buffer to the CS ioctl.
2268 * For jobs on H/W queues both options of command buffers are valid.
2270 * This IOCTL is asynchronous in regard to the actual execution of the CS. This
2271 * means it returns immediately after ALL the JOBS were enqueued on their
2272 * relevant queues. Therefore, the user mustn't assume the CS has been completed
2273 * or has even started to execute.
2275 * Upon successful enqueue, the IOCTL returns a sequence number which the user
2276 * can use with the "Wait for CS" IOCTL to check whether the handle's CS
2277 * non-internal JOBS have been completed. Note that if the CS has internal JOBS
2278 * which can execute AFTER the external JOBS have finished, the driver might
2279 * report that the CS has finished executing BEFORE the internal JOBS have
2280 * actually finished executing.
2282 * Even though the sequence number increments per CS, the user can NOT
2283 * automatically assume that if CS with sequence number N finished, then CS
2284 * with sequence number N-1 also finished. The user can make this assumption if
2285 * and only if CS N and CS N-1 are exactly the same (same CBs for the same
2288 #define DRM_IOCTL_HL_CS DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_CS, union hl_cs_args)
2291 * Wait for Command Submission
2293 * The user can call this IOCTL with a handle it received from the CS IOCTL
2294 * to wait until the handle's CS has finished executing. The user will wait
2295 * inside the kernel until the CS has finished or until the user-requested
2296 * timeout has expired.
2298 * If the timeout value is 0, the driver won't sleep at all. It will check
2299 * the status of the CS and return immediately
2301 * The return value of the IOCTL is a standard Linux error code. The possible
2304 * EINTR - Kernel waiting has been interrupted, e.g. due to OS signal
2305 * that the user process received
2306 * ETIMEDOUT - The CS has caused a timeout on the device
2307 * EIO - The CS was aborted (usually because the device was reset)
2308 * ENODEV - The device wants to do hard-reset (so user need to close FD)
2310 * The driver also returns a custom define in case the IOCTL call returned 0.
2311 * The define can be one of the following:
2313 * HL_WAIT_CS_STATUS_COMPLETED - The CS has been completed successfully (0)
2314 * HL_WAIT_CS_STATUS_BUSY - The CS is still executing (0)
2315 * HL_WAIT_CS_STATUS_TIMEDOUT - The CS has caused a timeout on the device
2317 * HL_WAIT_CS_STATUS_ABORTED - The CS was aborted, usually because the
2318 * device was reset (EIO)
2320 #define DRM_IOCTL_HL_WAIT_CS DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_WAIT_CS, union hl_wait_cs_args)
2324 * - Map host memory to device MMU
2325 * - Unmap host memory from device MMU
2327 * This IOCTL allows the user to map host memory to the device MMU
2329 * For host memory, the IOCTL doesn't allocate memory. The user is supposed
2330 * to allocate the memory in user-space (malloc/new). The driver pins the
2331 * physical pages (up to the allowed limit by the OS), assigns a virtual
2332 * address in the device VA space and initializes the device MMU.
2334 * There is an option for the user to specify the requested virtual address.
2337 #define DRM_IOCTL_HL_MEMORY DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_MEMORY, union hl_mem_args)
2341 * - Enable/disable the ETR/ETF/FUNNEL/STM/BMON/SPMU debug traces
2343 * This IOCTL allows the user to get debug traces from the chip.
2345 * Before the user can send configuration requests of the various
2346 * debug/profile engines, it needs to set the device into debug mode.
2347 * This is because the debug/profile infrastructure is shared component in the
2348 * device and we can't allow multiple users to access it at the same time.
2350 * Once a user set the device into debug mode, the driver won't allow other
2351 * users to "work" with the device, i.e. open a FD. If there are multiple users
2352 * opened on the device, the driver won't allow any user to debug the device.
2354 * For each configuration request, the user needs to provide the register index
2355 * and essential data such as buffer address and size.
2357 * Once the user has finished using the debug/profile engines, he should
2358 * set the device into non-debug mode, i.e. disable debug mode.
2360 * The driver can decide to "kick out" the user if he abuses this interface.
2363 #define DRM_IOCTL_HL_DEBUG DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_DEBUG, struct hl_debug_args)
2365 #define HL_COMMAND_START (DRM_COMMAND_BASE + HL_IOCTL_INFO)
2366 #define HL_COMMAND_END (DRM_COMMAND_BASE + HL_IOCTL_DEBUG + 1)
2368 #endif /* HABANALABS_H_ */