GNU Linux-libre 4.19.304-gnu1
[releases.git] / include / linux / usb / gadget.h
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * <linux/usb/gadget.h>
4  *
5  * We call the USB code inside a Linux-based peripheral device a "gadget"
6  * driver, except for the hardware-specific bus glue.  One USB host can
7  * master many USB gadgets, but the gadgets are only slaved to one host.
8  *
9  *
10  * (C) Copyright 2002-2004 by David Brownell
11  * All Rights Reserved.
12  *
13  * This software is licensed under the GNU GPL version 2.
14  */
15
16 #ifndef __LINUX_USB_GADGET_H
17 #define __LINUX_USB_GADGET_H
18
19 #include <linux/device.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/slab.h>
24 #include <linux/scatterlist.h>
25 #include <linux/types.h>
26 #include <linux/workqueue.h>
27 #include <linux/usb/ch9.h>
28
29 #define UDC_TRACE_STR_MAX       512
30
31 struct usb_ep;
32
33 /**
34  * struct usb_request - describes one i/o request
35  * @buf: Buffer used for data.  Always provide this; some controllers
36  *      only use PIO, or don't use DMA for some endpoints.
37  * @dma: DMA address corresponding to 'buf'.  If you don't set this
38  *      field, and the usb controller needs one, it is responsible
39  *      for mapping and unmapping the buffer.
40  * @sg: a scatterlist for SG-capable controllers.
41  * @num_sgs: number of SG entries
42  * @num_mapped_sgs: number of SG entries mapped to DMA (internal)
43  * @length: Length of that data
44  * @stream_id: The stream id, when USB3.0 bulk streams are being used
45  * @no_interrupt: If true, hints that no completion irq is needed.
46  *      Helpful sometimes with deep request queues that are handled
47  *      directly by DMA controllers.
48  * @zero: If true, when writing data, makes the last packet be "short"
49  *     by adding a zero length packet as needed;
50  * @short_not_ok: When reading data, makes short packets be
51  *     treated as errors (queue stops advancing till cleanup).
52  * @dma_mapped: Indicates if request has been mapped to DMA (internal)
53  * @complete: Function called when request completes, so this request and
54  *      its buffer may be re-used.  The function will always be called with
55  *      interrupts disabled, and it must not sleep.
56  *      Reads terminate with a short packet, or when the buffer fills,
57  *      whichever comes first.  When writes terminate, some data bytes
58  *      will usually still be in flight (often in a hardware fifo).
59  *      Errors (for reads or writes) stop the queue from advancing
60  *      until the completion function returns, so that any transfers
61  *      invalidated by the error may first be dequeued.
62  * @context: For use by the completion callback
63  * @list: For use by the gadget driver.
64  * @status: Reports completion code, zero or a negative errno.
65  *      Normally, faults block the transfer queue from advancing until
66  *      the completion callback returns.
67  *      Code "-ESHUTDOWN" indicates completion caused by device disconnect,
68  *      or when the driver disabled the endpoint.
69  * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
70  *      transfers) this may be less than the requested length.  If the
71  *      short_not_ok flag is set, short reads are treated as errors
72  *      even when status otherwise indicates successful completion.
73  *      Note that for writes (IN transfers) some data bytes may still
74  *      reside in a device-side FIFO when the request is reported as
75  *      complete.
76  *
77  * These are allocated/freed through the endpoint they're used with.  The
78  * hardware's driver can add extra per-request data to the memory it returns,
79  * which often avoids separate memory allocations (potential failures),
80  * later when the request is queued.
81  *
82  * Request flags affect request handling, such as whether a zero length
83  * packet is written (the "zero" flag), whether a short read should be
84  * treated as an error (blocking request queue advance, the "short_not_ok"
85  * flag), or hinting that an interrupt is not required (the "no_interrupt"
86  * flag, for use with deep request queues).
87  *
88  * Bulk endpoints can use any size buffers, and can also be used for interrupt
89  * transfers. interrupt-only endpoints can be much less functional.
90  *
91  * NOTE:  this is analogous to 'struct urb' on the host side, except that
92  * it's thinner and promotes more pre-allocation.
93  */
94
95 struct usb_request {
96         void                    *buf;
97         unsigned                length;
98         dma_addr_t              dma;
99
100         struct scatterlist      *sg;
101         unsigned                num_sgs;
102         unsigned                num_mapped_sgs;
103
104         unsigned                stream_id:16;
105         unsigned                no_interrupt:1;
106         unsigned                zero:1;
107         unsigned                short_not_ok:1;
108         unsigned                dma_mapped:1;
109
110         void                    (*complete)(struct usb_ep *ep,
111                                         struct usb_request *req);
112         void                    *context;
113         struct list_head        list;
114
115         int                     status;
116         unsigned                actual;
117 };
118
119 /*-------------------------------------------------------------------------*/
120
121 /* endpoint-specific parts of the api to the usb controller hardware.
122  * unlike the urb model, (de)multiplexing layers are not required.
123  * (so this api could slash overhead if used on the host side...)
124  *
125  * note that device side usb controllers commonly differ in how many
126  * endpoints they support, as well as their capabilities.
127  */
128 struct usb_ep_ops {
129         int (*enable) (struct usb_ep *ep,
130                 const struct usb_endpoint_descriptor *desc);
131         int (*disable) (struct usb_ep *ep);
132         void (*dispose) (struct usb_ep *ep);
133
134         struct usb_request *(*alloc_request) (struct usb_ep *ep,
135                 gfp_t gfp_flags);
136         void (*free_request) (struct usb_ep *ep, struct usb_request *req);
137
138         int (*queue) (struct usb_ep *ep, struct usb_request *req,
139                 gfp_t gfp_flags);
140         int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
141
142         int (*set_halt) (struct usb_ep *ep, int value);
143         int (*set_wedge) (struct usb_ep *ep);
144
145         int (*fifo_status) (struct usb_ep *ep);
146         void (*fifo_flush) (struct usb_ep *ep);
147 };
148
149 /**
150  * struct usb_ep_caps - endpoint capabilities description
151  * @type_control:Endpoint supports control type (reserved for ep0).
152  * @type_iso:Endpoint supports isochronous transfers.
153  * @type_bulk:Endpoint supports bulk transfers.
154  * @type_int:Endpoint supports interrupt transfers.
155  * @dir_in:Endpoint supports IN direction.
156  * @dir_out:Endpoint supports OUT direction.
157  */
158 struct usb_ep_caps {
159         unsigned type_control:1;
160         unsigned type_iso:1;
161         unsigned type_bulk:1;
162         unsigned type_int:1;
163         unsigned dir_in:1;
164         unsigned dir_out:1;
165 };
166
167 #define USB_EP_CAPS_TYPE_CONTROL     0x01
168 #define USB_EP_CAPS_TYPE_ISO         0x02
169 #define USB_EP_CAPS_TYPE_BULK        0x04
170 #define USB_EP_CAPS_TYPE_INT         0x08
171 #define USB_EP_CAPS_TYPE_ALL \
172         (USB_EP_CAPS_TYPE_ISO | USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT)
173 #define USB_EP_CAPS_DIR_IN           0x01
174 #define USB_EP_CAPS_DIR_OUT          0x02
175 #define USB_EP_CAPS_DIR_ALL  (USB_EP_CAPS_DIR_IN | USB_EP_CAPS_DIR_OUT)
176
177 #define USB_EP_CAPS(_type, _dir) \
178         { \
179                 .type_control = !!(_type & USB_EP_CAPS_TYPE_CONTROL), \
180                 .type_iso = !!(_type & USB_EP_CAPS_TYPE_ISO), \
181                 .type_bulk = !!(_type & USB_EP_CAPS_TYPE_BULK), \
182                 .type_int = !!(_type & USB_EP_CAPS_TYPE_INT), \
183                 .dir_in = !!(_dir & USB_EP_CAPS_DIR_IN), \
184                 .dir_out = !!(_dir & USB_EP_CAPS_DIR_OUT), \
185         }
186
187 /**
188  * struct usb_ep - device side representation of USB endpoint
189  * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
190  * @ops: Function pointers used to access hardware-specific operations.
191  * @ep_list:the gadget's ep_list holds all of its endpoints
192  * @caps:The structure describing types and directions supported by endoint.
193  * @enabled: The current endpoint enabled/disabled state.
194  * @claimed: True if this endpoint is claimed by a function.
195  * @maxpacket:The maximum packet size used on this endpoint.  The initial
196  *      value can sometimes be reduced (hardware allowing), according to
197  *      the endpoint descriptor used to configure the endpoint.
198  * @maxpacket_limit:The maximum packet size value which can be handled by this
199  *      endpoint. It's set once by UDC driver when endpoint is initialized, and
200  *      should not be changed. Should not be confused with maxpacket.
201  * @max_streams: The maximum number of streams supported
202  *      by this EP (0 - 16, actual number is 2^n)
203  * @mult: multiplier, 'mult' value for SS Isoc EPs
204  * @maxburst: the maximum number of bursts supported by this EP (for usb3)
205  * @driver_data:for use by the gadget driver.
206  * @address: used to identify the endpoint when finding descriptor that
207  *      matches connection speed
208  * @desc: endpoint descriptor.  This pointer is set before the endpoint is
209  *      enabled and remains valid until the endpoint is disabled.
210  * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
211  *      descriptor that is used to configure the endpoint
212  *
213  * the bus controller driver lists all the general purpose endpoints in
214  * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
215  * and is accessed only in response to a driver setup() callback.
216  */
217
218 struct usb_ep {
219         void                    *driver_data;
220
221         const char              *name;
222         const struct usb_ep_ops *ops;
223         struct list_head        ep_list;
224         struct usb_ep_caps      caps;
225         bool                    claimed;
226         bool                    enabled;
227         unsigned                maxpacket:16;
228         unsigned                maxpacket_limit:16;
229         unsigned                max_streams:16;
230         unsigned                mult:2;
231         unsigned                maxburst:5;
232         u8                      address;
233         const struct usb_endpoint_descriptor    *desc;
234         const struct usb_ss_ep_comp_descriptor  *comp_desc;
235 };
236
237 /*-------------------------------------------------------------------------*/
238
239 #if IS_ENABLED(CONFIG_USB_GADGET)
240 void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit);
241 int usb_ep_enable(struct usb_ep *ep);
242 int usb_ep_disable(struct usb_ep *ep);
243 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags);
244 void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req);
245 int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags);
246 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
247 int usb_ep_set_halt(struct usb_ep *ep);
248 int usb_ep_clear_halt(struct usb_ep *ep);
249 int usb_ep_set_wedge(struct usb_ep *ep);
250 int usb_ep_fifo_status(struct usb_ep *ep);
251 void usb_ep_fifo_flush(struct usb_ep *ep);
252 #else
253 static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
254                 unsigned maxpacket_limit)
255 { }
256 static inline int usb_ep_enable(struct usb_ep *ep)
257 { return 0; }
258 static inline int usb_ep_disable(struct usb_ep *ep)
259 { return 0; }
260 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
261                 gfp_t gfp_flags)
262 { return NULL; }
263 static inline void usb_ep_free_request(struct usb_ep *ep,
264                 struct usb_request *req)
265 { }
266 static inline int usb_ep_queue(struct usb_ep *ep, struct usb_request *req,
267                 gfp_t gfp_flags)
268 { return 0; }
269 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
270 { return 0; }
271 static inline int usb_ep_set_halt(struct usb_ep *ep)
272 { return 0; }
273 static inline int usb_ep_clear_halt(struct usb_ep *ep)
274 { return 0; }
275 static inline int usb_ep_set_wedge(struct usb_ep *ep)
276 { return 0; }
277 static inline int usb_ep_fifo_status(struct usb_ep *ep)
278 { return 0; }
279 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
280 { }
281 #endif /* USB_GADGET */
282
283 /*-------------------------------------------------------------------------*/
284
285 struct usb_dcd_config_params {
286         __u8  bU1devExitLat;    /* U1 Device exit Latency */
287 #define USB_DEFAULT_U1_DEV_EXIT_LAT     0x01    /* Less then 1 microsec */
288         __le16 bU2DevExitLat;   /* U2 Device exit Latency */
289 #define USB_DEFAULT_U2_DEV_EXIT_LAT     0x1F4   /* Less then 500 microsec */
290 };
291
292
293 struct usb_gadget;
294 struct usb_gadget_driver;
295 struct usb_udc;
296
297 /* the rest of the api to the controller hardware: device operations,
298  * which don't involve endpoints (or i/o).
299  */
300 struct usb_gadget_ops {
301         int     (*get_frame)(struct usb_gadget *);
302         int     (*wakeup)(struct usb_gadget *);
303         int     (*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
304         int     (*vbus_session) (struct usb_gadget *, int is_active);
305         int     (*vbus_draw) (struct usb_gadget *, unsigned mA);
306         int     (*pullup) (struct usb_gadget *, int is_on);
307         int     (*ioctl)(struct usb_gadget *,
308                                 unsigned code, unsigned long param);
309         void    (*get_config_params)(struct usb_dcd_config_params *);
310         int     (*udc_start)(struct usb_gadget *,
311                         struct usb_gadget_driver *);
312         int     (*udc_stop)(struct usb_gadget *);
313         void    (*udc_set_speed)(struct usb_gadget *, enum usb_device_speed);
314         struct usb_ep *(*match_ep)(struct usb_gadget *,
315                         struct usb_endpoint_descriptor *,
316                         struct usb_ss_ep_comp_descriptor *);
317 };
318
319 /**
320  * struct usb_gadget - represents a usb slave device
321  * @work: (internal use) Workqueue to be used for sysfs_notify()
322  * @udc: struct usb_udc pointer for this gadget
323  * @ops: Function pointers used to access hardware-specific operations.
324  * @ep0: Endpoint zero, used when reading or writing responses to
325  *      driver setup() requests
326  * @ep_list: List of other endpoints supported by the device.
327  * @speed: Speed of current connection to USB host.
328  * @max_speed: Maximal speed the UDC can handle.  UDC must support this
329  *      and all slower speeds.
330  * @state: the state we are now (attached, suspended, configured, etc)
331  * @name: Identifies the controller hardware type.  Used in diagnostics
332  *      and sometimes configuration.
333  * @dev: Driver model state for this abstract device.
334  * @isoch_delay: value from Set Isoch Delay request. Only valid on SS/SSP
335  * @out_epnum: last used out ep number
336  * @in_epnum: last used in ep number
337  * @mA: last set mA value
338  * @otg_caps: OTG capabilities of this gadget.
339  * @sg_supported: true if we can handle scatter-gather
340  * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
341  *      gadget driver must provide a USB OTG descriptor.
342  * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
343  *      is in the Mini-AB jack, and HNP has been used to switch roles
344  *      so that the "A" device currently acts as A-Peripheral, not A-Host.
345  * @a_hnp_support: OTG device feature flag, indicating that the A-Host
346  *      supports HNP at this port.
347  * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
348  *      only supports HNP on a different root port.
349  * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
350  *      enabled HNP support.
351  * @hnp_polling_support: OTG device feature flag, indicating if the OTG device
352  *      in peripheral mode can support HNP polling.
353  * @host_request_flag: OTG device feature flag, indicating if A-Peripheral
354  *      or B-Peripheral wants to take host role.
355  * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
356  *      MaxPacketSize.
357  * @quirk_altset_not_supp: UDC controller doesn't support alt settings.
358  * @quirk_stall_not_supp: UDC controller doesn't support stalling.
359  * @quirk_zlp_not_supp: UDC controller doesn't support ZLP.
360  * @quirk_avoids_skb_reserve: udc/platform wants to avoid skb_reserve() in
361  *      u_ether.c to improve performance.
362  * @is_selfpowered: if the gadget is self-powered.
363  * @deactivated: True if gadget is deactivated - in deactivated state it cannot
364  *      be connected.
365  * @connected: True if gadget is connected.
366  * @lpm_capable: If the gadget max_speed is FULL or HIGH, this flag
367  *      indicates that it supports LPM as per the LPM ECN & errata.
368  *
369  * Gadgets have a mostly-portable "gadget driver" implementing device
370  * functions, handling all usb configurations and interfaces.  Gadget
371  * drivers talk to hardware-specific code indirectly, through ops vectors.
372  * That insulates the gadget driver from hardware details, and packages
373  * the hardware endpoints through generic i/o queues.  The "usb_gadget"
374  * and "usb_ep" interfaces provide that insulation from the hardware.
375  *
376  * Except for the driver data, all fields in this structure are
377  * read-only to the gadget driver.  That driver data is part of the
378  * "driver model" infrastructure in 2.6 (and later) kernels, and for
379  * earlier systems is grouped in a similar structure that's not known
380  * to the rest of the kernel.
381  *
382  * Values of the three OTG device feature flags are updated before the
383  * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
384  * driver suspend() calls.  They are valid only when is_otg, and when the
385  * device is acting as a B-Peripheral (so is_a_peripheral is false).
386  */
387 struct usb_gadget {
388         struct work_struct              work;
389         struct usb_udc                  *udc;
390         /* readonly to gadget driver */
391         const struct usb_gadget_ops     *ops;
392         struct usb_ep                   *ep0;
393         struct list_head                ep_list;        /* of usb_ep */
394         enum usb_device_speed           speed;
395         enum usb_device_speed           max_speed;
396         enum usb_device_state           state;
397         const char                      *name;
398         struct device                   dev;
399         unsigned                        isoch_delay;
400         unsigned                        out_epnum;
401         unsigned                        in_epnum;
402         unsigned                        mA;
403         struct usb_otg_caps             *otg_caps;
404
405         unsigned                        sg_supported:1;
406         unsigned                        is_otg:1;
407         unsigned                        is_a_peripheral:1;
408         unsigned                        b_hnp_enable:1;
409         unsigned                        a_hnp_support:1;
410         unsigned                        a_alt_hnp_support:1;
411         unsigned                        hnp_polling_support:1;
412         unsigned                        host_request_flag:1;
413         unsigned                        quirk_ep_out_aligned_size:1;
414         unsigned                        quirk_altset_not_supp:1;
415         unsigned                        quirk_stall_not_supp:1;
416         unsigned                        quirk_zlp_not_supp:1;
417         unsigned                        quirk_avoids_skb_reserve:1;
418         unsigned                        is_selfpowered:1;
419         unsigned                        deactivated:1;
420         unsigned                        connected:1;
421         unsigned                        lpm_capable:1;
422 };
423 #define work_to_gadget(w)       (container_of((w), struct usb_gadget, work))
424
425 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
426         { dev_set_drvdata(&gadget->dev, data); }
427 static inline void *get_gadget_data(struct usb_gadget *gadget)
428         { return dev_get_drvdata(&gadget->dev); }
429 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
430 {
431         return container_of(dev, struct usb_gadget, dev);
432 }
433
434 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
435 #define gadget_for_each_ep(tmp, gadget) \
436         list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
437
438 /**
439  * usb_ep_align - returns @len aligned to ep's maxpacketsize.
440  * @ep: the endpoint whose maxpacketsize is used to align @len
441  * @len: buffer size's length to align to @ep's maxpacketsize
442  *
443  * This helper is used to align buffer's size to an ep's maxpacketsize.
444  */
445 static inline size_t usb_ep_align(struct usb_ep *ep, size_t len)
446 {
447         int max_packet_size = (size_t)usb_endpoint_maxp(ep->desc) & 0x7ff;
448
449         return round_up(len, max_packet_size);
450 }
451
452 /**
453  * usb_ep_align_maybe - returns @len aligned to ep's maxpacketsize if gadget
454  *      requires quirk_ep_out_aligned_size, otherwise returns len.
455  * @g: controller to check for quirk
456  * @ep: the endpoint whose maxpacketsize is used to align @len
457  * @len: buffer size's length to align to @ep's maxpacketsize
458  *
459  * This helper is used in case it's required for any reason to check and maybe
460  * align buffer's size to an ep's maxpacketsize.
461  */
462 static inline size_t
463 usb_ep_align_maybe(struct usb_gadget *g, struct usb_ep *ep, size_t len)
464 {
465         return g->quirk_ep_out_aligned_size ? usb_ep_align(ep, len) : len;
466 }
467
468 /**
469  * gadget_is_altset_supported - return true iff the hardware supports
470  *      altsettings
471  * @g: controller to check for quirk
472  */
473 static inline int gadget_is_altset_supported(struct usb_gadget *g)
474 {
475         return !g->quirk_altset_not_supp;
476 }
477
478 /**
479  * gadget_is_stall_supported - return true iff the hardware supports stalling
480  * @g: controller to check for quirk
481  */
482 static inline int gadget_is_stall_supported(struct usb_gadget *g)
483 {
484         return !g->quirk_stall_not_supp;
485 }
486
487 /**
488  * gadget_is_zlp_supported - return true iff the hardware supports zlp
489  * @g: controller to check for quirk
490  */
491 static inline int gadget_is_zlp_supported(struct usb_gadget *g)
492 {
493         return !g->quirk_zlp_not_supp;
494 }
495
496 /**
497  * gadget_avoids_skb_reserve - return true iff the hardware would like to avoid
498  *      skb_reserve to improve performance.
499  * @g: controller to check for quirk
500  */
501 static inline int gadget_avoids_skb_reserve(struct usb_gadget *g)
502 {
503         return g->quirk_avoids_skb_reserve;
504 }
505
506 /**
507  * gadget_is_dualspeed - return true iff the hardware handles high speed
508  * @g: controller that might support both high and full speeds
509  */
510 static inline int gadget_is_dualspeed(struct usb_gadget *g)
511 {
512         return g->max_speed >= USB_SPEED_HIGH;
513 }
514
515 /**
516  * gadget_is_superspeed() - return true if the hardware handles superspeed
517  * @g: controller that might support superspeed
518  */
519 static inline int gadget_is_superspeed(struct usb_gadget *g)
520 {
521         return g->max_speed >= USB_SPEED_SUPER;
522 }
523
524 /**
525  * gadget_is_superspeed_plus() - return true if the hardware handles
526  *      superspeed plus
527  * @g: controller that might support superspeed plus
528  */
529 static inline int gadget_is_superspeed_plus(struct usb_gadget *g)
530 {
531         return g->max_speed >= USB_SPEED_SUPER_PLUS;
532 }
533
534 /**
535  * gadget_is_otg - return true iff the hardware is OTG-ready
536  * @g: controller that might have a Mini-AB connector
537  *
538  * This is a runtime test, since kernels with a USB-OTG stack sometimes
539  * run on boards which only have a Mini-B (or Mini-A) connector.
540  */
541 static inline int gadget_is_otg(struct usb_gadget *g)
542 {
543 #ifdef CONFIG_USB_OTG
544         return g->is_otg;
545 #else
546         return 0;
547 #endif
548 }
549
550 /*-------------------------------------------------------------------------*/
551
552 #if IS_ENABLED(CONFIG_USB_GADGET)
553 int usb_gadget_frame_number(struct usb_gadget *gadget);
554 int usb_gadget_wakeup(struct usb_gadget *gadget);
555 int usb_gadget_set_selfpowered(struct usb_gadget *gadget);
556 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget);
557 int usb_gadget_vbus_connect(struct usb_gadget *gadget);
558 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA);
559 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget);
560 int usb_gadget_connect(struct usb_gadget *gadget);
561 int usb_gadget_disconnect(struct usb_gadget *gadget);
562 int usb_gadget_deactivate(struct usb_gadget *gadget);
563 int usb_gadget_activate(struct usb_gadget *gadget);
564 #else
565 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
566 { return 0; }
567 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
568 { return 0; }
569 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
570 { return 0; }
571 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
572 { return 0; }
573 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
574 { return 0; }
575 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
576 { return 0; }
577 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
578 { return 0; }
579 static inline int usb_gadget_connect(struct usb_gadget *gadget)
580 { return 0; }
581 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
582 { return 0; }
583 static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
584 { return 0; }
585 static inline int usb_gadget_activate(struct usb_gadget *gadget)
586 { return 0; }
587 #endif /* CONFIG_USB_GADGET */
588
589 /*-------------------------------------------------------------------------*/
590
591 /**
592  * struct usb_gadget_driver - driver for usb 'slave' devices
593  * @function: String describing the gadget's function
594  * @max_speed: Highest speed the driver handles.
595  * @setup: Invoked for ep0 control requests that aren't handled by
596  *      the hardware level driver. Most calls must be handled by
597  *      the gadget driver, including descriptor and configuration
598  *      management.  The 16 bit members of the setup data are in
599  *      USB byte order. Called in_interrupt; this may not sleep.  Driver
600  *      queues a response to ep0, or returns negative to stall.
601  * @disconnect: Invoked after all transfers have been stopped,
602  *      when the host is disconnected.  May be called in_interrupt; this
603  *      may not sleep.  Some devices can't detect disconnect, so this might
604  *      not be called except as part of controller shutdown.
605  * @bind: the driver's bind callback
606  * @unbind: Invoked when the driver is unbound from a gadget,
607  *      usually from rmmod (after a disconnect is reported).
608  *      Called in a context that permits sleeping.
609  * @suspend: Invoked on USB suspend.  May be called in_interrupt.
610  * @resume: Invoked on USB resume.  May be called in_interrupt.
611  * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
612  *      and should be called in_interrupt.
613  * @driver: Driver model state for this driver.
614  * @udc_name: A name of UDC this driver should be bound to. If udc_name is NULL,
615  *      this driver will be bound to any available UDC.
616  * @pending: UDC core private data used for deferred probe of this driver.
617  * @match_existing_only: If udc is not found, return an error and don't add this
618  *      gadget driver to list of pending driver
619  *
620  * Devices are disabled till a gadget driver successfully bind()s, which
621  * means the driver will handle setup() requests needed to enumerate (and
622  * meet "chapter 9" requirements) then do some useful work.
623  *
624  * If gadget->is_otg is true, the gadget driver must provide an OTG
625  * descriptor during enumeration, or else fail the bind() call.  In such
626  * cases, no USB traffic may flow until both bind() returns without
627  * having called usb_gadget_disconnect(), and the USB host stack has
628  * initialized.
629  *
630  * Drivers use hardware-specific knowledge to configure the usb hardware.
631  * endpoint addressing is only one of several hardware characteristics that
632  * are in descriptors the ep0 implementation returns from setup() calls.
633  *
634  * Except for ep0 implementation, most driver code shouldn't need change to
635  * run on top of different usb controllers.  It'll use endpoints set up by
636  * that ep0 implementation.
637  *
638  * The usb controller driver handles a few standard usb requests.  Those
639  * include set_address, and feature flags for devices, interfaces, and
640  * endpoints (the get_status, set_feature, and clear_feature requests).
641  *
642  * Accordingly, the driver's setup() callback must always implement all
643  * get_descriptor requests, returning at least a device descriptor and
644  * a configuration descriptor.  Drivers must make sure the endpoint
645  * descriptors match any hardware constraints. Some hardware also constrains
646  * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
647  *
648  * The driver's setup() callback must also implement set_configuration,
649  * and should also implement set_interface, get_configuration, and
650  * get_interface.  Setting a configuration (or interface) is where
651  * endpoints should be activated or (config 0) shut down.
652  *
653  * (Note that only the default control endpoint is supported.  Neither
654  * hosts nor devices generally support control traffic except to ep0.)
655  *
656  * Most devices will ignore USB suspend/resume operations, and so will
657  * not provide those callbacks.  However, some may need to change modes
658  * when the host is not longer directing those activities.  For example,
659  * local controls (buttons, dials, etc) may need to be re-enabled since
660  * the (remote) host can't do that any longer; or an error state might
661  * be cleared, to make the device behave identically whether or not
662  * power is maintained.
663  */
664 struct usb_gadget_driver {
665         char                    *function;
666         enum usb_device_speed   max_speed;
667         int                     (*bind)(struct usb_gadget *gadget,
668                                         struct usb_gadget_driver *driver);
669         void                    (*unbind)(struct usb_gadget *);
670         int                     (*setup)(struct usb_gadget *,
671                                         const struct usb_ctrlrequest *);
672         void                    (*disconnect)(struct usb_gadget *);
673         void                    (*suspend)(struct usb_gadget *);
674         void                    (*resume)(struct usb_gadget *);
675         void                    (*reset)(struct usb_gadget *);
676
677         /* FIXME support safe rmmod */
678         struct device_driver    driver;
679
680         char                    *udc_name;
681         struct list_head        pending;
682         unsigned                match_existing_only:1;
683 };
684
685
686
687 /*-------------------------------------------------------------------------*/
688
689 /* driver modules register and unregister, as usual.
690  * these calls must be made in a context that can sleep.
691  *
692  * these will usually be implemented directly by the hardware-dependent
693  * usb bus interface driver, which will only support a single driver.
694  */
695
696 /**
697  * usb_gadget_probe_driver - probe a gadget driver
698  * @driver: the driver being registered
699  * Context: can sleep
700  *
701  * Call this in your gadget driver's module initialization function,
702  * to tell the underlying usb controller driver about your driver.
703  * The @bind() function will be called to bind it to a gadget before this
704  * registration call returns.  It's expected that the @bind() function will
705  * be in init sections.
706  */
707 int usb_gadget_probe_driver(struct usb_gadget_driver *driver);
708
709 /**
710  * usb_gadget_unregister_driver - unregister a gadget driver
711  * @driver:the driver being unregistered
712  * Context: can sleep
713  *
714  * Call this in your gadget driver's module cleanup function,
715  * to tell the underlying usb controller that your driver is
716  * going away.  If the controller is connected to a USB host,
717  * it will first disconnect().  The driver is also requested
718  * to unbind() and clean up any device state, before this procedure
719  * finally returns.  It's expected that the unbind() functions
720  * will in in exit sections, so may not be linked in some kernels.
721  */
722 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
723
724 extern int usb_add_gadget_udc_release(struct device *parent,
725                 struct usb_gadget *gadget, void (*release)(struct device *dev));
726 extern int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
727 extern void usb_del_gadget_udc(struct usb_gadget *gadget);
728 extern char *usb_get_gadget_udc_name(void);
729
730 /*-------------------------------------------------------------------------*/
731
732 /* utility to simplify dealing with string descriptors */
733
734 /**
735  * struct usb_string - wraps a C string and its USB id
736  * @id:the (nonzero) ID for this string
737  * @s:the string, in UTF-8 encoding
738  *
739  * If you're using usb_gadget_get_string(), use this to wrap a string
740  * together with its ID.
741  */
742 struct usb_string {
743         u8                      id;
744         const char              *s;
745 };
746
747 /**
748  * struct usb_gadget_strings - a set of USB strings in a given language
749  * @language:identifies the strings' language (0x0409 for en-us)
750  * @strings:array of strings with their ids
751  *
752  * If you're using usb_gadget_get_string(), use this to wrap all the
753  * strings for a given language.
754  */
755 struct usb_gadget_strings {
756         u16                     language;       /* 0x0409 for en-us */
757         struct usb_string       *strings;
758 };
759
760 struct usb_gadget_string_container {
761         struct list_head        list;
762         u8                      *stash[0];
763 };
764
765 /* put descriptor for string with that id into buf (buflen >= 256) */
766 int usb_gadget_get_string(const struct usb_gadget_strings *table, int id, u8 *buf);
767
768 /*-------------------------------------------------------------------------*/
769
770 /* utility to simplify managing config descriptors */
771
772 /* write vector of descriptors into buffer */
773 int usb_descriptor_fillbuf(void *, unsigned,
774                 const struct usb_descriptor_header **);
775
776 /* build config descriptor from single descriptor vector */
777 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
778         void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
779
780 /* copy a NULL-terminated vector of descriptors */
781 struct usb_descriptor_header **usb_copy_descriptors(
782                 struct usb_descriptor_header **);
783
784 /**
785  * usb_free_descriptors - free descriptors returned by usb_copy_descriptors()
786  * @v: vector of descriptors
787  */
788 static inline void usb_free_descriptors(struct usb_descriptor_header **v)
789 {
790         kfree(v);
791 }
792
793 struct usb_function;
794 int usb_assign_descriptors(struct usb_function *f,
795                 struct usb_descriptor_header **fs,
796                 struct usb_descriptor_header **hs,
797                 struct usb_descriptor_header **ss,
798                 struct usb_descriptor_header **ssp);
799 void usb_free_all_descriptors(struct usb_function *f);
800
801 struct usb_descriptor_header *usb_otg_descriptor_alloc(
802                                 struct usb_gadget *gadget);
803 int usb_otg_descriptor_init(struct usb_gadget *gadget,
804                 struct usb_descriptor_header *otg_desc);
805 /*-------------------------------------------------------------------------*/
806
807 /* utility to simplify map/unmap of usb_requests to/from DMA */
808
809 #ifdef  CONFIG_HAS_DMA
810 extern int usb_gadget_map_request_by_dev(struct device *dev,
811                 struct usb_request *req, int is_in);
812 extern int usb_gadget_map_request(struct usb_gadget *gadget,
813                 struct usb_request *req, int is_in);
814
815 extern void usb_gadget_unmap_request_by_dev(struct device *dev,
816                 struct usb_request *req, int is_in);
817 extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
818                 struct usb_request *req, int is_in);
819 #else /* !CONFIG_HAS_DMA */
820 static inline int usb_gadget_map_request_by_dev(struct device *dev,
821                 struct usb_request *req, int is_in) { return -ENOSYS; }
822 static inline int usb_gadget_map_request(struct usb_gadget *gadget,
823                 struct usb_request *req, int is_in) { return -ENOSYS; }
824
825 static inline void usb_gadget_unmap_request_by_dev(struct device *dev,
826                 struct usb_request *req, int is_in) { }
827 static inline void usb_gadget_unmap_request(struct usb_gadget *gadget,
828                 struct usb_request *req, int is_in) { }
829 #endif /* !CONFIG_HAS_DMA */
830
831 /*-------------------------------------------------------------------------*/
832
833 /* utility to set gadget state properly */
834
835 extern void usb_gadget_set_state(struct usb_gadget *gadget,
836                 enum usb_device_state state);
837
838 /*-------------------------------------------------------------------------*/
839
840 /* utility to tell udc core that the bus reset occurs */
841 extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
842                 struct usb_gadget_driver *driver);
843
844 /*-------------------------------------------------------------------------*/
845
846 /* utility to give requests back to the gadget layer */
847
848 extern void usb_gadget_giveback_request(struct usb_ep *ep,
849                 struct usb_request *req);
850
851 /*-------------------------------------------------------------------------*/
852
853 /* utility to find endpoint by name */
854
855 extern struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g,
856                 const char *name);
857
858 /*-------------------------------------------------------------------------*/
859
860 /* utility to check if endpoint caps match descriptor needs */
861
862 extern int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
863                 struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
864                 struct usb_ss_ep_comp_descriptor *ep_comp);
865
866 /*-------------------------------------------------------------------------*/
867
868 /* utility to update vbus status for udc core, it may be scheduled */
869 extern void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status);
870
871 /*-------------------------------------------------------------------------*/
872
873 /* utility wrapping a simple endpoint selection policy */
874
875 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
876                         struct usb_endpoint_descriptor *);
877
878
879 extern struct usb_ep *usb_ep_autoconfig_ss(struct usb_gadget *,
880                         struct usb_endpoint_descriptor *,
881                         struct usb_ss_ep_comp_descriptor *);
882
883 extern void usb_ep_autoconfig_release(struct usb_ep *);
884
885 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
886
887 #endif /* __LINUX_USB_GADGET_H */