GNU Linux-libre 5.15.54-gnu
[releases.git] / include / linux / sched / mm.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_MM_H
3 #define _LINUX_SCHED_MM_H
4
5 #include <linux/kernel.h>
6 #include <linux/atomic.h>
7 #include <linux/sched.h>
8 #include <linux/mm_types.h>
9 #include <linux/gfp.h>
10 #include <linux/sync_core.h>
11
12 /*
13  * Routines for handling mm_structs
14  */
15 extern struct mm_struct *mm_alloc(void);
16
17 /**
18  * mmgrab() - Pin a &struct mm_struct.
19  * @mm: The &struct mm_struct to pin.
20  *
21  * Make sure that @mm will not get freed even after the owning task
22  * exits. This doesn't guarantee that the associated address space
23  * will still exist later on and mmget_not_zero() has to be used before
24  * accessing it.
25  *
26  * This is a preferred way to pin @mm for a longer/unbounded amount
27  * of time.
28  *
29  * Use mmdrop() to release the reference acquired by mmgrab().
30  *
31  * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
32  * of &mm_struct.mm_count vs &mm_struct.mm_users.
33  */
34 static inline void mmgrab(struct mm_struct *mm)
35 {
36         atomic_inc(&mm->mm_count);
37 }
38
39 extern void __mmdrop(struct mm_struct *mm);
40
41 static inline void mmdrop(struct mm_struct *mm)
42 {
43         /*
44          * The implicit full barrier implied by atomic_dec_and_test() is
45          * required by the membarrier system call before returning to
46          * user-space, after storing to rq->curr.
47          */
48         if (unlikely(atomic_dec_and_test(&mm->mm_count)))
49                 __mmdrop(mm);
50 }
51
52 /**
53  * mmget() - Pin the address space associated with a &struct mm_struct.
54  * @mm: The address space to pin.
55  *
56  * Make sure that the address space of the given &struct mm_struct doesn't
57  * go away. This does not protect against parts of the address space being
58  * modified or freed, however.
59  *
60  * Never use this function to pin this address space for an
61  * unbounded/indefinite amount of time.
62  *
63  * Use mmput() to release the reference acquired by mmget().
64  *
65  * See also <Documentation/vm/active_mm.rst> for an in-depth explanation
66  * of &mm_struct.mm_count vs &mm_struct.mm_users.
67  */
68 static inline void mmget(struct mm_struct *mm)
69 {
70         atomic_inc(&mm->mm_users);
71 }
72
73 static inline bool mmget_not_zero(struct mm_struct *mm)
74 {
75         return atomic_inc_not_zero(&mm->mm_users);
76 }
77
78 /* mmput gets rid of the mappings and all user-space */
79 extern void mmput(struct mm_struct *);
80 #ifdef CONFIG_MMU
81 /* same as above but performs the slow path from the async context. Can
82  * be called from the atomic context as well
83  */
84 void mmput_async(struct mm_struct *);
85 #endif
86
87 /* Grab a reference to a task's mm, if it is not already going away */
88 extern struct mm_struct *get_task_mm(struct task_struct *task);
89 /*
90  * Grab a reference to a task's mm, if it is not already going away
91  * and ptrace_may_access with the mode parameter passed to it
92  * succeeds.
93  */
94 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
95 /* Remove the current tasks stale references to the old mm_struct on exit() */
96 extern void exit_mm_release(struct task_struct *, struct mm_struct *);
97 /* Remove the current tasks stale references to the old mm_struct on exec() */
98 extern void exec_mm_release(struct task_struct *, struct mm_struct *);
99
100 #ifdef CONFIG_MEMCG
101 extern void mm_update_next_owner(struct mm_struct *mm);
102 #else
103 static inline void mm_update_next_owner(struct mm_struct *mm)
104 {
105 }
106 #endif /* CONFIG_MEMCG */
107
108 #ifdef CONFIG_MMU
109 #ifndef arch_get_mmap_end
110 #define arch_get_mmap_end(addr) (TASK_SIZE)
111 #endif
112
113 #ifndef arch_get_mmap_base
114 #define arch_get_mmap_base(addr, base) (base)
115 #endif
116
117 extern void arch_pick_mmap_layout(struct mm_struct *mm,
118                                   struct rlimit *rlim_stack);
119 extern unsigned long
120 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
121                        unsigned long, unsigned long);
122 extern unsigned long
123 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
124                           unsigned long len, unsigned long pgoff,
125                           unsigned long flags);
126 #else
127 static inline void arch_pick_mmap_layout(struct mm_struct *mm,
128                                          struct rlimit *rlim_stack) {}
129 #endif
130
131 static inline bool in_vfork(struct task_struct *tsk)
132 {
133         bool ret;
134
135         /*
136          * need RCU to access ->real_parent if CLONE_VM was used along with
137          * CLONE_PARENT.
138          *
139          * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
140          * imply CLONE_VM
141          *
142          * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
143          * ->real_parent is not necessarily the task doing vfork(), so in
144          * theory we can't rely on task_lock() if we want to dereference it.
145          *
146          * And in this case we can't trust the real_parent->mm == tsk->mm
147          * check, it can be false negative. But we do not care, if init or
148          * another oom-unkillable task does this it should blame itself.
149          */
150         rcu_read_lock();
151         ret = tsk->vfork_done &&
152                         rcu_dereference(tsk->real_parent)->mm == tsk->mm;
153         rcu_read_unlock();
154
155         return ret;
156 }
157
158 /*
159  * Applies per-task gfp context to the given allocation flags.
160  * PF_MEMALLOC_NOIO implies GFP_NOIO
161  * PF_MEMALLOC_NOFS implies GFP_NOFS
162  * PF_MEMALLOC_PIN  implies !GFP_MOVABLE
163  */
164 static inline gfp_t current_gfp_context(gfp_t flags)
165 {
166         unsigned int pflags = READ_ONCE(current->flags);
167
168         if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_PIN))) {
169                 /*
170                  * NOIO implies both NOIO and NOFS and it is a weaker context
171                  * so always make sure it makes precedence
172                  */
173                 if (pflags & PF_MEMALLOC_NOIO)
174                         flags &= ~(__GFP_IO | __GFP_FS);
175                 else if (pflags & PF_MEMALLOC_NOFS)
176                         flags &= ~__GFP_FS;
177
178                 if (pflags & PF_MEMALLOC_PIN)
179                         flags &= ~__GFP_MOVABLE;
180         }
181         return flags;
182 }
183
184 #ifdef CONFIG_LOCKDEP
185 extern void __fs_reclaim_acquire(unsigned long ip);
186 extern void __fs_reclaim_release(unsigned long ip);
187 extern void fs_reclaim_acquire(gfp_t gfp_mask);
188 extern void fs_reclaim_release(gfp_t gfp_mask);
189 #else
190 static inline void __fs_reclaim_acquire(unsigned long ip) { }
191 static inline void __fs_reclaim_release(unsigned long ip) { }
192 static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
193 static inline void fs_reclaim_release(gfp_t gfp_mask) { }
194 #endif
195
196 /**
197  * might_alloc - Mark possible allocation sites
198  * @gfp_mask: gfp_t flags that would be used to allocate
199  *
200  * Similar to might_sleep() and other annotations, this can be used in functions
201  * that might allocate, but often don't. Compiles to nothing without
202  * CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking.
203  */
204 static inline void might_alloc(gfp_t gfp_mask)
205 {
206         fs_reclaim_acquire(gfp_mask);
207         fs_reclaim_release(gfp_mask);
208
209         might_sleep_if(gfpflags_allow_blocking(gfp_mask));
210 }
211
212 /**
213  * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
214  *
215  * This functions marks the beginning of the GFP_NOIO allocation scope.
216  * All further allocations will implicitly drop __GFP_IO flag and so
217  * they are safe for the IO critical section from the allocation recursion
218  * point of view. Use memalloc_noio_restore to end the scope with flags
219  * returned by this function.
220  *
221  * This function is safe to be used from any context.
222  */
223 static inline unsigned int memalloc_noio_save(void)
224 {
225         unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
226         current->flags |= PF_MEMALLOC_NOIO;
227         return flags;
228 }
229
230 /**
231  * memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
232  * @flags: Flags to restore.
233  *
234  * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
235  * Always make sure that the given flags is the return value from the
236  * pairing memalloc_noio_save call.
237  */
238 static inline void memalloc_noio_restore(unsigned int flags)
239 {
240         current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
241 }
242
243 /**
244  * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
245  *
246  * This functions marks the beginning of the GFP_NOFS allocation scope.
247  * All further allocations will implicitly drop __GFP_FS flag and so
248  * they are safe for the FS critical section from the allocation recursion
249  * point of view. Use memalloc_nofs_restore to end the scope with flags
250  * returned by this function.
251  *
252  * This function is safe to be used from any context.
253  */
254 static inline unsigned int memalloc_nofs_save(void)
255 {
256         unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
257         current->flags |= PF_MEMALLOC_NOFS;
258         return flags;
259 }
260
261 /**
262  * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
263  * @flags: Flags to restore.
264  *
265  * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
266  * Always make sure that the given flags is the return value from the
267  * pairing memalloc_nofs_save call.
268  */
269 static inline void memalloc_nofs_restore(unsigned int flags)
270 {
271         current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
272 }
273
274 static inline unsigned int memalloc_noreclaim_save(void)
275 {
276         unsigned int flags = current->flags & PF_MEMALLOC;
277         current->flags |= PF_MEMALLOC;
278         return flags;
279 }
280
281 static inline void memalloc_noreclaim_restore(unsigned int flags)
282 {
283         current->flags = (current->flags & ~PF_MEMALLOC) | flags;
284 }
285
286 static inline unsigned int memalloc_pin_save(void)
287 {
288         unsigned int flags = current->flags & PF_MEMALLOC_PIN;
289
290         current->flags |= PF_MEMALLOC_PIN;
291         return flags;
292 }
293
294 static inline void memalloc_pin_restore(unsigned int flags)
295 {
296         current->flags = (current->flags & ~PF_MEMALLOC_PIN) | flags;
297 }
298
299 #ifdef CONFIG_MEMCG
300 DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg);
301 /**
302  * set_active_memcg - Starts the remote memcg charging scope.
303  * @memcg: memcg to charge.
304  *
305  * This function marks the beginning of the remote memcg charging scope. All the
306  * __GFP_ACCOUNT allocations till the end of the scope will be charged to the
307  * given memcg.
308  *
309  * NOTE: This function can nest. Users must save the return value and
310  * reset the previous value after their own charging scope is over.
311  */
312 static inline struct mem_cgroup *
313 set_active_memcg(struct mem_cgroup *memcg)
314 {
315         struct mem_cgroup *old;
316
317         if (!in_task()) {
318                 old = this_cpu_read(int_active_memcg);
319                 this_cpu_write(int_active_memcg, memcg);
320         } else {
321                 old = current->active_memcg;
322                 current->active_memcg = memcg;
323         }
324
325         return old;
326 }
327 #else
328 static inline struct mem_cgroup *
329 set_active_memcg(struct mem_cgroup *memcg)
330 {
331         return NULL;
332 }
333 #endif
334
335 #ifdef CONFIG_MEMBARRIER
336 enum {
337         MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY                = (1U << 0),
338         MEMBARRIER_STATE_PRIVATE_EXPEDITED                      = (1U << 1),
339         MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY                 = (1U << 2),
340         MEMBARRIER_STATE_GLOBAL_EXPEDITED                       = (1U << 3),
341         MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY      = (1U << 4),
342         MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE            = (1U << 5),
343         MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY           = (1U << 6),
344         MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ                 = (1U << 7),
345 };
346
347 enum {
348         MEMBARRIER_FLAG_SYNC_CORE       = (1U << 0),
349         MEMBARRIER_FLAG_RSEQ            = (1U << 1),
350 };
351
352 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
353 #include <asm/membarrier.h>
354 #endif
355
356 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
357 {
358         if (current->mm != mm)
359                 return;
360         if (likely(!(atomic_read(&mm->membarrier_state) &
361                      MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
362                 return;
363         sync_core_before_usermode();
364 }
365
366 extern void membarrier_exec_mmap(struct mm_struct *mm);
367
368 extern void membarrier_update_current_mm(struct mm_struct *next_mm);
369
370 #else
371 #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
372 static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
373                                              struct mm_struct *next,
374                                              struct task_struct *tsk)
375 {
376 }
377 #endif
378 static inline void membarrier_exec_mmap(struct mm_struct *mm)
379 {
380 }
381 static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
382 {
383 }
384 static inline void membarrier_update_current_mm(struct mm_struct *next_mm)
385 {
386 }
387 #endif
388
389 #endif /* _LINUX_SCHED_MM_H */