GNU Linux-libre 5.15.54-gnu
[releases.git] / include / linux / netdevice.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET         An implementation of the TCP/IP protocol suite for the LINUX
4  *              operating system.  INET is implemented using the  BSD Socket
5  *              interface as the means of communication with the user level.
6  *
7  *              Definitions for the Interfaces handler.
8  *
9  * Version:     @(#)dev.h       1.0.10  08/12/93
10  *
11  * Authors:     Ross Biro
12  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *              Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *              Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31
32 #include <linux/percpu.h>
33 #include <linux/rculist.h>
34 #include <linux/workqueue.h>
35 #include <linux/dynamic_queue_limits.h>
36
37 #include <net/net_namespace.h>
38 #ifdef CONFIG_DCB
39 #include <net/dcbnl.h>
40 #endif
41 #include <net/netprio_cgroup.h>
42 #include <net/xdp.h>
43
44 #include <linux/netdev_features.h>
45 #include <linux/neighbour.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <linux/hashtable.h>
50 #include <linux/rbtree.h>
51
52 struct netpoll_info;
53 struct device;
54 struct ethtool_ops;
55 struct phy_device;
56 struct dsa_port;
57 struct ip_tunnel_parm;
58 struct macsec_context;
59 struct macsec_ops;
60
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct udp_tunnel_nic_info;
70 struct udp_tunnel_nic;
71 struct bpf_prog;
72 struct xdp_buff;
73
74 void synchronize_net(void);
75 void netdev_set_default_ethtool_ops(struct net_device *dev,
76                                     const struct ethtool_ops *ops);
77
78 /* Backlog congestion levels */
79 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
80 #define NET_RX_DROP             1       /* packet dropped */
81
82 #define MAX_NEST_DEV 8
83
84 /*
85  * Transmit return codes: transmit return codes originate from three different
86  * namespaces:
87  *
88  * - qdisc return codes
89  * - driver transmit return codes
90  * - errno values
91  *
92  * Drivers are allowed to return any one of those in their hard_start_xmit()
93  * function. Real network devices commonly used with qdiscs should only return
94  * the driver transmit return codes though - when qdiscs are used, the actual
95  * transmission happens asynchronously, so the value is not propagated to
96  * higher layers. Virtual network devices transmit synchronously; in this case
97  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
98  * others are propagated to higher layers.
99  */
100
101 /* qdisc ->enqueue() return codes. */
102 #define NET_XMIT_SUCCESS        0x00
103 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
104 #define NET_XMIT_CN             0x02    /* congestion notification      */
105 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
106
107 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
108  * indicates that the device will soon be dropping packets, or already drops
109  * some packets of the same priority; prompting us to send less aggressively. */
110 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
111 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
112
113 /* Driver transmit return codes */
114 #define NETDEV_TX_MASK          0xf0
115
116 enum netdev_tx {
117         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
118         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
119         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
120 };
121 typedef enum netdev_tx netdev_tx_t;
122
123 /*
124  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
125  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
126  */
127 static inline bool dev_xmit_complete(int rc)
128 {
129         /*
130          * Positive cases with an skb consumed by a driver:
131          * - successful transmission (rc == NETDEV_TX_OK)
132          * - error while transmitting (rc < 0)
133          * - error while queueing to a different device (rc & NET_XMIT_MASK)
134          */
135         if (likely(rc < NET_XMIT_MASK))
136                 return true;
137
138         return false;
139 }
140
141 /*
142  *      Compute the worst-case header length according to the protocols
143  *      used.
144  */
145
146 #if defined(CONFIG_HYPERV_NET)
147 # define LL_MAX_HEADER 128
148 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
149 # if defined(CONFIG_MAC80211_MESH)
150 #  define LL_MAX_HEADER 128
151 # else
152 #  define LL_MAX_HEADER 96
153 # endif
154 #else
155 # define LL_MAX_HEADER 32
156 #endif
157
158 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
159     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
160 #define MAX_HEADER LL_MAX_HEADER
161 #else
162 #define MAX_HEADER (LL_MAX_HEADER + 48)
163 #endif
164
165 /*
166  *      Old network device statistics. Fields are native words
167  *      (unsigned long) so they can be read and written atomically.
168  */
169
170 struct net_device_stats {
171         unsigned long   rx_packets;
172         unsigned long   tx_packets;
173         unsigned long   rx_bytes;
174         unsigned long   tx_bytes;
175         unsigned long   rx_errors;
176         unsigned long   tx_errors;
177         unsigned long   rx_dropped;
178         unsigned long   tx_dropped;
179         unsigned long   multicast;
180         unsigned long   collisions;
181         unsigned long   rx_length_errors;
182         unsigned long   rx_over_errors;
183         unsigned long   rx_crc_errors;
184         unsigned long   rx_frame_errors;
185         unsigned long   rx_fifo_errors;
186         unsigned long   rx_missed_errors;
187         unsigned long   tx_aborted_errors;
188         unsigned long   tx_carrier_errors;
189         unsigned long   tx_fifo_errors;
190         unsigned long   tx_heartbeat_errors;
191         unsigned long   tx_window_errors;
192         unsigned long   rx_compressed;
193         unsigned long   tx_compressed;
194 };
195
196
197 #include <linux/cache.h>
198 #include <linux/skbuff.h>
199
200 #ifdef CONFIG_RPS
201 #include <linux/static_key.h>
202 extern struct static_key_false rps_needed;
203 extern struct static_key_false rfs_needed;
204 #endif
205
206 struct neighbour;
207 struct neigh_parms;
208 struct sk_buff;
209
210 struct netdev_hw_addr {
211         struct list_head        list;
212         struct rb_node          node;
213         unsigned char           addr[MAX_ADDR_LEN];
214         unsigned char           type;
215 #define NETDEV_HW_ADDR_T_LAN            1
216 #define NETDEV_HW_ADDR_T_SAN            2
217 #define NETDEV_HW_ADDR_T_UNICAST        3
218 #define NETDEV_HW_ADDR_T_MULTICAST      4
219         bool                    global_use;
220         int                     sync_cnt;
221         int                     refcount;
222         int                     synced;
223         struct rcu_head         rcu_head;
224 };
225
226 struct netdev_hw_addr_list {
227         struct list_head        list;
228         int                     count;
229
230         /* Auxiliary tree for faster lookup on addition and deletion */
231         struct rb_root          tree;
232 };
233
234 #define netdev_hw_addr_list_count(l) ((l)->count)
235 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
236 #define netdev_hw_addr_list_for_each(ha, l) \
237         list_for_each_entry(ha, &(l)->list, list)
238
239 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
240 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
241 #define netdev_for_each_uc_addr(ha, dev) \
242         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
243
244 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
245 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
246 #define netdev_for_each_mc_addr(ha, dev) \
247         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
248
249 struct hh_cache {
250         unsigned int    hh_len;
251         seqlock_t       hh_lock;
252
253         /* cached hardware header; allow for machine alignment needs.        */
254 #define HH_DATA_MOD     16
255 #define HH_DATA_OFF(__len) \
256         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
257 #define HH_DATA_ALIGN(__len) \
258         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
259         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
260 };
261
262 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
263  * Alternative is:
264  *   dev->hard_header_len ? (dev->hard_header_len +
265  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
266  *
267  * We could use other alignment values, but we must maintain the
268  * relationship HH alignment <= LL alignment.
269  */
270 #define LL_RESERVED_SPACE(dev) \
271         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
272 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
273         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
274
275 struct header_ops {
276         int     (*create) (struct sk_buff *skb, struct net_device *dev,
277                            unsigned short type, const void *daddr,
278                            const void *saddr, unsigned int len);
279         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
280         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
281         void    (*cache_update)(struct hh_cache *hh,
282                                 const struct net_device *dev,
283                                 const unsigned char *haddr);
284         bool    (*validate)(const char *ll_header, unsigned int len);
285         __be16  (*parse_protocol)(const struct sk_buff *skb);
286 };
287
288 /* These flag bits are private to the generic network queueing
289  * layer; they may not be explicitly referenced by any other
290  * code.
291  */
292
293 enum netdev_state_t {
294         __LINK_STATE_START,
295         __LINK_STATE_PRESENT,
296         __LINK_STATE_NOCARRIER,
297         __LINK_STATE_LINKWATCH_PENDING,
298         __LINK_STATE_DORMANT,
299         __LINK_STATE_TESTING,
300 };
301
302
303 struct gro_list {
304         struct list_head        list;
305         int                     count;
306 };
307
308 /*
309  * size of gro hash buckets, must less than bit number of
310  * napi_struct::gro_bitmask
311  */
312 #define GRO_HASH_BUCKETS        8
313
314 /*
315  * Structure for NAPI scheduling similar to tasklet but with weighting
316  */
317 struct napi_struct {
318         /* The poll_list must only be managed by the entity which
319          * changes the state of the NAPI_STATE_SCHED bit.  This means
320          * whoever atomically sets that bit can add this napi_struct
321          * to the per-CPU poll_list, and whoever clears that bit
322          * can remove from the list right before clearing the bit.
323          */
324         struct list_head        poll_list;
325
326         unsigned long           state;
327         int                     weight;
328         int                     defer_hard_irqs_count;
329         unsigned long           gro_bitmask;
330         int                     (*poll)(struct napi_struct *, int);
331 #ifdef CONFIG_NETPOLL
332         int                     poll_owner;
333 #endif
334         struct net_device       *dev;
335         struct gro_list         gro_hash[GRO_HASH_BUCKETS];
336         struct sk_buff          *skb;
337         struct list_head        rx_list; /* Pending GRO_NORMAL skbs */
338         int                     rx_count; /* length of rx_list */
339         struct hrtimer          timer;
340         struct list_head        dev_list;
341         struct hlist_node       napi_hash_node;
342         unsigned int            napi_id;
343         struct task_struct      *thread;
344 };
345
346 enum {
347         NAPI_STATE_SCHED,               /* Poll is scheduled */
348         NAPI_STATE_MISSED,              /* reschedule a napi */
349         NAPI_STATE_DISABLE,             /* Disable pending */
350         NAPI_STATE_NPSVC,               /* Netpoll - don't dequeue from poll_list */
351         NAPI_STATE_LISTED,              /* NAPI added to system lists */
352         NAPI_STATE_NO_BUSY_POLL,        /* Do not add in napi_hash, no busy polling */
353         NAPI_STATE_IN_BUSY_POLL,        /* sk_busy_loop() owns this NAPI */
354         NAPI_STATE_PREFER_BUSY_POLL,    /* prefer busy-polling over softirq processing*/
355         NAPI_STATE_THREADED,            /* The poll is performed inside its own thread*/
356         NAPI_STATE_SCHED_THREADED,      /* Napi is currently scheduled in threaded mode */
357 };
358
359 enum {
360         NAPIF_STATE_SCHED               = BIT(NAPI_STATE_SCHED),
361         NAPIF_STATE_MISSED              = BIT(NAPI_STATE_MISSED),
362         NAPIF_STATE_DISABLE             = BIT(NAPI_STATE_DISABLE),
363         NAPIF_STATE_NPSVC               = BIT(NAPI_STATE_NPSVC),
364         NAPIF_STATE_LISTED              = BIT(NAPI_STATE_LISTED),
365         NAPIF_STATE_NO_BUSY_POLL        = BIT(NAPI_STATE_NO_BUSY_POLL),
366         NAPIF_STATE_IN_BUSY_POLL        = BIT(NAPI_STATE_IN_BUSY_POLL),
367         NAPIF_STATE_PREFER_BUSY_POLL    = BIT(NAPI_STATE_PREFER_BUSY_POLL),
368         NAPIF_STATE_THREADED            = BIT(NAPI_STATE_THREADED),
369         NAPIF_STATE_SCHED_THREADED      = BIT(NAPI_STATE_SCHED_THREADED),
370 };
371
372 enum gro_result {
373         GRO_MERGED,
374         GRO_MERGED_FREE,
375         GRO_HELD,
376         GRO_NORMAL,
377         GRO_CONSUMED,
378 };
379 typedef enum gro_result gro_result_t;
380
381 /*
382  * enum rx_handler_result - Possible return values for rx_handlers.
383  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
384  * further.
385  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
386  * case skb->dev was changed by rx_handler.
387  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
388  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
389  *
390  * rx_handlers are functions called from inside __netif_receive_skb(), to do
391  * special processing of the skb, prior to delivery to protocol handlers.
392  *
393  * Currently, a net_device can only have a single rx_handler registered. Trying
394  * to register a second rx_handler will return -EBUSY.
395  *
396  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
397  * To unregister a rx_handler on a net_device, use
398  * netdev_rx_handler_unregister().
399  *
400  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
401  * do with the skb.
402  *
403  * If the rx_handler consumed the skb in some way, it should return
404  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
405  * the skb to be delivered in some other way.
406  *
407  * If the rx_handler changed skb->dev, to divert the skb to another
408  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
409  * new device will be called if it exists.
410  *
411  * If the rx_handler decides the skb should be ignored, it should return
412  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
413  * are registered on exact device (ptype->dev == skb->dev).
414  *
415  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
416  * delivered, it should return RX_HANDLER_PASS.
417  *
418  * A device without a registered rx_handler will behave as if rx_handler
419  * returned RX_HANDLER_PASS.
420  */
421
422 enum rx_handler_result {
423         RX_HANDLER_CONSUMED,
424         RX_HANDLER_ANOTHER,
425         RX_HANDLER_EXACT,
426         RX_HANDLER_PASS,
427 };
428 typedef enum rx_handler_result rx_handler_result_t;
429 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
430
431 void __napi_schedule(struct napi_struct *n);
432 void __napi_schedule_irqoff(struct napi_struct *n);
433
434 static inline bool napi_disable_pending(struct napi_struct *n)
435 {
436         return test_bit(NAPI_STATE_DISABLE, &n->state);
437 }
438
439 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
440 {
441         return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
442 }
443
444 bool napi_schedule_prep(struct napi_struct *n);
445
446 /**
447  *      napi_schedule - schedule NAPI poll
448  *      @n: NAPI context
449  *
450  * Schedule NAPI poll routine to be called if it is not already
451  * running.
452  */
453 static inline void napi_schedule(struct napi_struct *n)
454 {
455         if (napi_schedule_prep(n))
456                 __napi_schedule(n);
457 }
458
459 /**
460  *      napi_schedule_irqoff - schedule NAPI poll
461  *      @n: NAPI context
462  *
463  * Variant of napi_schedule(), assuming hard irqs are masked.
464  */
465 static inline void napi_schedule_irqoff(struct napi_struct *n)
466 {
467         if (napi_schedule_prep(n))
468                 __napi_schedule_irqoff(n);
469 }
470
471 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
472 static inline bool napi_reschedule(struct napi_struct *napi)
473 {
474         if (napi_schedule_prep(napi)) {
475                 __napi_schedule(napi);
476                 return true;
477         }
478         return false;
479 }
480
481 bool napi_complete_done(struct napi_struct *n, int work_done);
482 /**
483  *      napi_complete - NAPI processing complete
484  *      @n: NAPI context
485  *
486  * Mark NAPI processing as complete.
487  * Consider using napi_complete_done() instead.
488  * Return false if device should avoid rearming interrupts.
489  */
490 static inline bool napi_complete(struct napi_struct *n)
491 {
492         return napi_complete_done(n, 0);
493 }
494
495 int dev_set_threaded(struct net_device *dev, bool threaded);
496
497 /**
498  *      napi_disable - prevent NAPI from scheduling
499  *      @n: NAPI context
500  *
501  * Stop NAPI from being scheduled on this context.
502  * Waits till any outstanding processing completes.
503  */
504 void napi_disable(struct napi_struct *n);
505
506 void napi_enable(struct napi_struct *n);
507
508 /**
509  *      napi_synchronize - wait until NAPI is not running
510  *      @n: NAPI context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518         if (IS_ENABLED(CONFIG_SMP))
519                 while (test_bit(NAPI_STATE_SCHED, &n->state))
520                         msleep(1);
521         else
522                 barrier();
523 }
524
525 /**
526  *      napi_if_scheduled_mark_missed - if napi is running, set the
527  *      NAPIF_STATE_MISSED
528  *      @n: NAPI context
529  *
530  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
531  * NAPI is scheduled.
532  **/
533 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
534 {
535         unsigned long val, new;
536
537         do {
538                 val = READ_ONCE(n->state);
539                 if (val & NAPIF_STATE_DISABLE)
540                         return true;
541
542                 if (!(val & NAPIF_STATE_SCHED))
543                         return false;
544
545                 new = val | NAPIF_STATE_MISSED;
546         } while (cmpxchg(&n->state, val, new) != val);
547
548         return true;
549 }
550
551 enum netdev_queue_state_t {
552         __QUEUE_STATE_DRV_XOFF,
553         __QUEUE_STATE_STACK_XOFF,
554         __QUEUE_STATE_FROZEN,
555 };
556
557 #define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
558 #define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
559 #define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
560
561 #define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
562 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
563                                         QUEUE_STATE_FROZEN)
564 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
565                                         QUEUE_STATE_FROZEN)
566
567 /*
568  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
569  * netif_tx_* functions below are used to manipulate this flag.  The
570  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
571  * queue independently.  The netif_xmit_*stopped functions below are called
572  * to check if the queue has been stopped by the driver or stack (either
573  * of the XOFF bits are set in the state).  Drivers should not need to call
574  * netif_xmit*stopped functions, they should only be using netif_tx_*.
575  */
576
577 struct netdev_queue {
578 /*
579  * read-mostly part
580  */
581         struct net_device       *dev;
582         struct Qdisc __rcu      *qdisc;
583         struct Qdisc            *qdisc_sleeping;
584 #ifdef CONFIG_SYSFS
585         struct kobject          kobj;
586 #endif
587 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
588         int                     numa_node;
589 #endif
590         unsigned long           tx_maxrate;
591         /*
592          * Number of TX timeouts for this queue
593          * (/sys/class/net/DEV/Q/trans_timeout)
594          */
595         unsigned long           trans_timeout;
596
597         /* Subordinate device that the queue has been assigned to */
598         struct net_device       *sb_dev;
599 #ifdef CONFIG_XDP_SOCKETS
600         struct xsk_buff_pool    *pool;
601 #endif
602 /*
603  * write-mostly part
604  */
605         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
606         int                     xmit_lock_owner;
607         /*
608          * Time (in jiffies) of last Tx
609          */
610         unsigned long           trans_start;
611
612         unsigned long           state;
613
614 #ifdef CONFIG_BQL
615         struct dql              dql;
616 #endif
617 } ____cacheline_aligned_in_smp;
618
619 extern int sysctl_fb_tunnels_only_for_init_net;
620 extern int sysctl_devconf_inherit_init_net;
621
622 /*
623  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
624  *                                     == 1 : For initns only
625  *                                     == 2 : For none.
626  */
627 static inline bool net_has_fallback_tunnels(const struct net *net)
628 {
629         return !IS_ENABLED(CONFIG_SYSCTL) ||
630                !sysctl_fb_tunnels_only_for_init_net ||
631                (net == &init_net && sysctl_fb_tunnels_only_for_init_net == 1);
632 }
633
634 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
635 {
636 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
637         return q->numa_node;
638 #else
639         return NUMA_NO_NODE;
640 #endif
641 }
642
643 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
644 {
645 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
646         q->numa_node = node;
647 #endif
648 }
649
650 #ifdef CONFIG_RPS
651 /*
652  * This structure holds an RPS map which can be of variable length.  The
653  * map is an array of CPUs.
654  */
655 struct rps_map {
656         unsigned int len;
657         struct rcu_head rcu;
658         u16 cpus[];
659 };
660 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
661
662 /*
663  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
664  * tail pointer for that CPU's input queue at the time of last enqueue, and
665  * a hardware filter index.
666  */
667 struct rps_dev_flow {
668         u16 cpu;
669         u16 filter;
670         unsigned int last_qtail;
671 };
672 #define RPS_NO_FILTER 0xffff
673
674 /*
675  * The rps_dev_flow_table structure contains a table of flow mappings.
676  */
677 struct rps_dev_flow_table {
678         unsigned int mask;
679         struct rcu_head rcu;
680         struct rps_dev_flow flows[];
681 };
682 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
683     ((_num) * sizeof(struct rps_dev_flow)))
684
685 /*
686  * The rps_sock_flow_table contains mappings of flows to the last CPU
687  * on which they were processed by the application (set in recvmsg).
688  * Each entry is a 32bit value. Upper part is the high-order bits
689  * of flow hash, lower part is CPU number.
690  * rps_cpu_mask is used to partition the space, depending on number of
691  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
692  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
693  * meaning we use 32-6=26 bits for the hash.
694  */
695 struct rps_sock_flow_table {
696         u32     mask;
697
698         u32     ents[] ____cacheline_aligned_in_smp;
699 };
700 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
701
702 #define RPS_NO_CPU 0xffff
703
704 extern u32 rps_cpu_mask;
705 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
706
707 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
708                                         u32 hash)
709 {
710         if (table && hash) {
711                 unsigned int index = hash & table->mask;
712                 u32 val = hash & ~rps_cpu_mask;
713
714                 /* We only give a hint, preemption can change CPU under us */
715                 val |= raw_smp_processor_id();
716
717                 if (table->ents[index] != val)
718                         table->ents[index] = val;
719         }
720 }
721
722 #ifdef CONFIG_RFS_ACCEL
723 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
724                          u16 filter_id);
725 #endif
726 #endif /* CONFIG_RPS */
727
728 /* This structure contains an instance of an RX queue. */
729 struct netdev_rx_queue {
730         struct xdp_rxq_info             xdp_rxq;
731 #ifdef CONFIG_RPS
732         struct rps_map __rcu            *rps_map;
733         struct rps_dev_flow_table __rcu *rps_flow_table;
734 #endif
735         struct kobject                  kobj;
736         struct net_device               *dev;
737 #ifdef CONFIG_XDP_SOCKETS
738         struct xsk_buff_pool            *pool;
739 #endif
740 } ____cacheline_aligned_in_smp;
741
742 /*
743  * RX queue sysfs structures and functions.
744  */
745 struct rx_queue_attribute {
746         struct attribute attr;
747         ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
748         ssize_t (*store)(struct netdev_rx_queue *queue,
749                          const char *buf, size_t len);
750 };
751
752 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
753 enum xps_map_type {
754         XPS_CPUS = 0,
755         XPS_RXQS,
756         XPS_MAPS_MAX,
757 };
758
759 #ifdef CONFIG_XPS
760 /*
761  * This structure holds an XPS map which can be of variable length.  The
762  * map is an array of queues.
763  */
764 struct xps_map {
765         unsigned int len;
766         unsigned int alloc_len;
767         struct rcu_head rcu;
768         u16 queues[];
769 };
770 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
771 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
772        - sizeof(struct xps_map)) / sizeof(u16))
773
774 /*
775  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
776  *
777  * We keep track of the number of cpus/rxqs used when the struct is allocated,
778  * in nr_ids. This will help not accessing out-of-bound memory.
779  *
780  * We keep track of the number of traffic classes used when the struct is
781  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
782  * not crossing its upper bound, as the original dev->num_tc can be updated in
783  * the meantime.
784  */
785 struct xps_dev_maps {
786         struct rcu_head rcu;
787         unsigned int nr_ids;
788         s16 num_tc;
789         struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
790 };
791
792 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +      \
793         (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
794
795 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
796         (_rxqs * (_tcs) * sizeof(struct xps_map *)))
797
798 #endif /* CONFIG_XPS */
799
800 #define TC_MAX_QUEUE    16
801 #define TC_BITMASK      15
802 /* HW offloaded queuing disciplines txq count and offset maps */
803 struct netdev_tc_txq {
804         u16 count;
805         u16 offset;
806 };
807
808 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
809 /*
810  * This structure is to hold information about the device
811  * configured to run FCoE protocol stack.
812  */
813 struct netdev_fcoe_hbainfo {
814         char    manufacturer[64];
815         char    serial_number[64];
816         char    hardware_version[64];
817         char    driver_version[64];
818         char    optionrom_version[64];
819         char    firmware_version[64];
820         char    model[256];
821         char    model_description[256];
822 };
823 #endif
824
825 #define MAX_PHYS_ITEM_ID_LEN 32
826
827 /* This structure holds a unique identifier to identify some
828  * physical item (port for example) used by a netdevice.
829  */
830 struct netdev_phys_item_id {
831         unsigned char id[MAX_PHYS_ITEM_ID_LEN];
832         unsigned char id_len;
833 };
834
835 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
836                                             struct netdev_phys_item_id *b)
837 {
838         return a->id_len == b->id_len &&
839                memcmp(a->id, b->id, a->id_len) == 0;
840 }
841
842 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
843                                        struct sk_buff *skb,
844                                        struct net_device *sb_dev);
845
846 enum net_device_path_type {
847         DEV_PATH_ETHERNET = 0,
848         DEV_PATH_VLAN,
849         DEV_PATH_BRIDGE,
850         DEV_PATH_PPPOE,
851         DEV_PATH_DSA,
852 };
853
854 struct net_device_path {
855         enum net_device_path_type       type;
856         const struct net_device         *dev;
857         union {
858                 struct {
859                         u16             id;
860                         __be16          proto;
861                         u8              h_dest[ETH_ALEN];
862                 } encap;
863                 struct {
864                         enum {
865                                 DEV_PATH_BR_VLAN_KEEP,
866                                 DEV_PATH_BR_VLAN_TAG,
867                                 DEV_PATH_BR_VLAN_UNTAG,
868                                 DEV_PATH_BR_VLAN_UNTAG_HW,
869                         }               vlan_mode;
870                         u16             vlan_id;
871                         __be16          vlan_proto;
872                 } bridge;
873                 struct {
874                         int port;
875                         u16 proto;
876                 } dsa;
877         };
878 };
879
880 #define NET_DEVICE_PATH_STACK_MAX       5
881 #define NET_DEVICE_PATH_VLAN_MAX        2
882
883 struct net_device_path_stack {
884         int                     num_paths;
885         struct net_device_path  path[NET_DEVICE_PATH_STACK_MAX];
886 };
887
888 struct net_device_path_ctx {
889         const struct net_device *dev;
890         u8                      daddr[ETH_ALEN];
891
892         int                     num_vlans;
893         struct {
894                 u16             id;
895                 __be16          proto;
896         } vlan[NET_DEVICE_PATH_VLAN_MAX];
897 };
898
899 enum tc_setup_type {
900         TC_SETUP_QDISC_MQPRIO,
901         TC_SETUP_CLSU32,
902         TC_SETUP_CLSFLOWER,
903         TC_SETUP_CLSMATCHALL,
904         TC_SETUP_CLSBPF,
905         TC_SETUP_BLOCK,
906         TC_SETUP_QDISC_CBS,
907         TC_SETUP_QDISC_RED,
908         TC_SETUP_QDISC_PRIO,
909         TC_SETUP_QDISC_MQ,
910         TC_SETUP_QDISC_ETF,
911         TC_SETUP_ROOT_QDISC,
912         TC_SETUP_QDISC_GRED,
913         TC_SETUP_QDISC_TAPRIO,
914         TC_SETUP_FT,
915         TC_SETUP_QDISC_ETS,
916         TC_SETUP_QDISC_TBF,
917         TC_SETUP_QDISC_FIFO,
918         TC_SETUP_QDISC_HTB,
919 };
920
921 /* These structures hold the attributes of bpf state that are being passed
922  * to the netdevice through the bpf op.
923  */
924 enum bpf_netdev_command {
925         /* Set or clear a bpf program used in the earliest stages of packet
926          * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
927          * is responsible for calling bpf_prog_put on any old progs that are
928          * stored. In case of error, the callee need not release the new prog
929          * reference, but on success it takes ownership and must bpf_prog_put
930          * when it is no longer used.
931          */
932         XDP_SETUP_PROG,
933         XDP_SETUP_PROG_HW,
934         /* BPF program for offload callbacks, invoked at program load time. */
935         BPF_OFFLOAD_MAP_ALLOC,
936         BPF_OFFLOAD_MAP_FREE,
937         XDP_SETUP_XSK_POOL,
938 };
939
940 struct bpf_prog_offload_ops;
941 struct netlink_ext_ack;
942 struct xdp_umem;
943 struct xdp_dev_bulk_queue;
944 struct bpf_xdp_link;
945
946 enum bpf_xdp_mode {
947         XDP_MODE_SKB = 0,
948         XDP_MODE_DRV = 1,
949         XDP_MODE_HW = 2,
950         __MAX_XDP_MODE
951 };
952
953 struct bpf_xdp_entity {
954         struct bpf_prog *prog;
955         struct bpf_xdp_link *link;
956 };
957
958 struct netdev_bpf {
959         enum bpf_netdev_command command;
960         union {
961                 /* XDP_SETUP_PROG */
962                 struct {
963                         u32 flags;
964                         struct bpf_prog *prog;
965                         struct netlink_ext_ack *extack;
966                 };
967                 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
968                 struct {
969                         struct bpf_offloaded_map *offmap;
970                 };
971                 /* XDP_SETUP_XSK_POOL */
972                 struct {
973                         struct xsk_buff_pool *pool;
974                         u16 queue_id;
975                 } xsk;
976         };
977 };
978
979 /* Flags for ndo_xsk_wakeup. */
980 #define XDP_WAKEUP_RX (1 << 0)
981 #define XDP_WAKEUP_TX (1 << 1)
982
983 #ifdef CONFIG_XFRM_OFFLOAD
984 struct xfrmdev_ops {
985         int     (*xdo_dev_state_add) (struct xfrm_state *x);
986         void    (*xdo_dev_state_delete) (struct xfrm_state *x);
987         void    (*xdo_dev_state_free) (struct xfrm_state *x);
988         bool    (*xdo_dev_offload_ok) (struct sk_buff *skb,
989                                        struct xfrm_state *x);
990         void    (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
991 };
992 #endif
993
994 struct dev_ifalias {
995         struct rcu_head rcuhead;
996         char ifalias[];
997 };
998
999 struct devlink;
1000 struct tlsdev_ops;
1001
1002 struct netdev_name_node {
1003         struct hlist_node hlist;
1004         struct list_head list;
1005         struct net_device *dev;
1006         const char *name;
1007 };
1008
1009 int netdev_name_node_alt_create(struct net_device *dev, const char *name);
1010 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
1011
1012 struct netdev_net_notifier {
1013         struct list_head list;
1014         struct notifier_block *nb;
1015 };
1016
1017 /*
1018  * This structure defines the management hooks for network devices.
1019  * The following hooks can be defined; unless noted otherwise, they are
1020  * optional and can be filled with a null pointer.
1021  *
1022  * int (*ndo_init)(struct net_device *dev);
1023  *     This function is called once when a network device is registered.
1024  *     The network device can use this for any late stage initialization
1025  *     or semantic validation. It can fail with an error code which will
1026  *     be propagated back to register_netdev.
1027  *
1028  * void (*ndo_uninit)(struct net_device *dev);
1029  *     This function is called when device is unregistered or when registration
1030  *     fails. It is not called if init fails.
1031  *
1032  * int (*ndo_open)(struct net_device *dev);
1033  *     This function is called when a network device transitions to the up
1034  *     state.
1035  *
1036  * int (*ndo_stop)(struct net_device *dev);
1037  *     This function is called when a network device transitions to the down
1038  *     state.
1039  *
1040  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1041  *                               struct net_device *dev);
1042  *      Called when a packet needs to be transmitted.
1043  *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1044  *      the queue before that can happen; it's for obsolete devices and weird
1045  *      corner cases, but the stack really does a non-trivial amount
1046  *      of useless work if you return NETDEV_TX_BUSY.
1047  *      Required; cannot be NULL.
1048  *
1049  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1050  *                                         struct net_device *dev
1051  *                                         netdev_features_t features);
1052  *      Called by core transmit path to determine if device is capable of
1053  *      performing offload operations on a given packet. This is to give
1054  *      the device an opportunity to implement any restrictions that cannot
1055  *      be otherwise expressed by feature flags. The check is called with
1056  *      the set of features that the stack has calculated and it returns
1057  *      those the driver believes to be appropriate.
1058  *
1059  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1060  *                         struct net_device *sb_dev);
1061  *      Called to decide which queue to use when device supports multiple
1062  *      transmit queues.
1063  *
1064  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1065  *      This function is called to allow device receiver to make
1066  *      changes to configuration when multicast or promiscuous is enabled.
1067  *
1068  * void (*ndo_set_rx_mode)(struct net_device *dev);
1069  *      This function is called device changes address list filtering.
1070  *      If driver handles unicast address filtering, it should set
1071  *      IFF_UNICAST_FLT in its priv_flags.
1072  *
1073  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1074  *      This function  is called when the Media Access Control address
1075  *      needs to be changed. If this interface is not defined, the
1076  *      MAC address can not be changed.
1077  *
1078  * int (*ndo_validate_addr)(struct net_device *dev);
1079  *      Test if Media Access Control address is valid for the device.
1080  *
1081  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1082  *      Old-style ioctl entry point. This is used internally by the
1083  *      appletalk and ieee802154 subsystems but is no longer called by
1084  *      the device ioctl handler.
1085  *
1086  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1087  *      Used by the bonding driver for its device specific ioctls:
1088  *      SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1089  *      SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1090  *
1091  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1092  *      Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1093  *      SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1094  *
1095  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1096  *      Used to set network devices bus interface parameters. This interface
1097  *      is retained for legacy reasons; new devices should use the bus
1098  *      interface (PCI) for low level management.
1099  *
1100  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1101  *      Called when a user wants to change the Maximum Transfer Unit
1102  *      of a device.
1103  *
1104  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1105  *      Callback used when the transmitter has not made any progress
1106  *      for dev->watchdog ticks.
1107  *
1108  * void (*ndo_get_stats64)(struct net_device *dev,
1109  *                         struct rtnl_link_stats64 *storage);
1110  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1111  *      Called when a user wants to get the network device usage
1112  *      statistics. Drivers must do one of the following:
1113  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
1114  *         rtnl_link_stats64 structure passed by the caller.
1115  *      2. Define @ndo_get_stats to update a net_device_stats structure
1116  *         (which should normally be dev->stats) and return a pointer to
1117  *         it. The structure may be changed asynchronously only if each
1118  *         field is written atomically.
1119  *      3. Update dev->stats asynchronously and atomically, and define
1120  *         neither operation.
1121  *
1122  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1123  *      Return true if this device supports offload stats of this attr_id.
1124  *
1125  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1126  *      void *attr_data)
1127  *      Get statistics for offload operations by attr_id. Write it into the
1128  *      attr_data pointer.
1129  *
1130  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1131  *      If device supports VLAN filtering this function is called when a
1132  *      VLAN id is registered.
1133  *
1134  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1135  *      If device supports VLAN filtering this function is called when a
1136  *      VLAN id is unregistered.
1137  *
1138  * void (*ndo_poll_controller)(struct net_device *dev);
1139  *
1140  *      SR-IOV management functions.
1141  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1142  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1143  *                        u8 qos, __be16 proto);
1144  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1145  *                        int max_tx_rate);
1146  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1147  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1148  * int (*ndo_get_vf_config)(struct net_device *dev,
1149  *                          int vf, struct ifla_vf_info *ivf);
1150  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1151  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1152  *                        struct nlattr *port[]);
1153  *
1154  *      Enable or disable the VF ability to query its RSS Redirection Table and
1155  *      Hash Key. This is needed since on some devices VF share this information
1156  *      with PF and querying it may introduce a theoretical security risk.
1157  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1158  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1159  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1160  *                     void *type_data);
1161  *      Called to setup any 'tc' scheduler, classifier or action on @dev.
1162  *      This is always called from the stack with the rtnl lock held and netif
1163  *      tx queues stopped. This allows the netdevice to perform queue
1164  *      management safely.
1165  *
1166  *      Fiber Channel over Ethernet (FCoE) offload functions.
1167  * int (*ndo_fcoe_enable)(struct net_device *dev);
1168  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
1169  *      so the underlying device can perform whatever needed configuration or
1170  *      initialization to support acceleration of FCoE traffic.
1171  *
1172  * int (*ndo_fcoe_disable)(struct net_device *dev);
1173  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
1174  *      so the underlying device can perform whatever needed clean-ups to
1175  *      stop supporting acceleration of FCoE traffic.
1176  *
1177  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1178  *                           struct scatterlist *sgl, unsigned int sgc);
1179  *      Called when the FCoE Initiator wants to initialize an I/O that
1180  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1181  *      perform necessary setup and returns 1 to indicate the device is set up
1182  *      successfully to perform DDP on this I/O, otherwise this returns 0.
1183  *
1184  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1185  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
1186  *      indicated by the FC exchange id 'xid', so the underlying device can
1187  *      clean up and reuse resources for later DDP requests.
1188  *
1189  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1190  *                            struct scatterlist *sgl, unsigned int sgc);
1191  *      Called when the FCoE Target wants to initialize an I/O that
1192  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1193  *      perform necessary setup and returns 1 to indicate the device is set up
1194  *      successfully to perform DDP on this I/O, otherwise this returns 0.
1195  *
1196  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1197  *                             struct netdev_fcoe_hbainfo *hbainfo);
1198  *      Called when the FCoE Protocol stack wants information on the underlying
1199  *      device. This information is utilized by the FCoE protocol stack to
1200  *      register attributes with Fiber Channel management service as per the
1201  *      FC-GS Fabric Device Management Information(FDMI) specification.
1202  *
1203  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1204  *      Called when the underlying device wants to override default World Wide
1205  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1206  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1207  *      protocol stack to use.
1208  *
1209  *      RFS acceleration.
1210  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1211  *                          u16 rxq_index, u32 flow_id);
1212  *      Set hardware filter for RFS.  rxq_index is the target queue index;
1213  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1214  *      Return the filter ID on success, or a negative error code.
1215  *
1216  *      Slave management functions (for bridge, bonding, etc).
1217  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1218  *      Called to make another netdev an underling.
1219  *
1220  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1221  *      Called to release previously enslaved netdev.
1222  *
1223  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1224  *                                          struct sk_buff *skb,
1225  *                                          bool all_slaves);
1226  *      Get the xmit slave of master device. If all_slaves is true, function
1227  *      assume all the slaves can transmit.
1228  *
1229  *      Feature/offload setting functions.
1230  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1231  *              netdev_features_t features);
1232  *      Adjusts the requested feature flags according to device-specific
1233  *      constraints, and returns the resulting flags. Must not modify
1234  *      the device state.
1235  *
1236  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1237  *      Called to update device configuration to new features. Passed
1238  *      feature set might be less than what was returned by ndo_fix_features()).
1239  *      Must return >0 or -errno if it changed dev->features itself.
1240  *
1241  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1242  *                    struct net_device *dev,
1243  *                    const unsigned char *addr, u16 vid, u16 flags,
1244  *                    struct netlink_ext_ack *extack);
1245  *      Adds an FDB entry to dev for addr.
1246  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1247  *                    struct net_device *dev,
1248  *                    const unsigned char *addr, u16 vid)
1249  *      Deletes the FDB entry from dev coresponding to addr.
1250  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1251  *                     struct net_device *dev, struct net_device *filter_dev,
1252  *                     int *idx)
1253  *      Used to add FDB entries to dump requests. Implementers should add
1254  *      entries to skb and update idx with the number of entries.
1255  *
1256  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1257  *                           u16 flags, struct netlink_ext_ack *extack)
1258  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1259  *                           struct net_device *dev, u32 filter_mask,
1260  *                           int nlflags)
1261  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1262  *                           u16 flags);
1263  *
1264  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1265  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
1266  *      which do not represent real hardware may define this to allow their
1267  *      userspace components to manage their virtual carrier state. Devices
1268  *      that determine carrier state from physical hardware properties (eg
1269  *      network cables) or protocol-dependent mechanisms (eg
1270  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1271  *
1272  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1273  *                             struct netdev_phys_item_id *ppid);
1274  *      Called to get ID of physical port of this device. If driver does
1275  *      not implement this, it is assumed that the hw is not able to have
1276  *      multiple net devices on single physical port.
1277  *
1278  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1279  *                               struct netdev_phys_item_id *ppid)
1280  *      Called to get the parent ID of the physical port of this device.
1281  *
1282  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1283  *                               struct net_device *dev)
1284  *      Called by upper layer devices to accelerate switching or other
1285  *      station functionality into hardware. 'pdev is the lowerdev
1286  *      to use for the offload and 'dev' is the net device that will
1287  *      back the offload. Returns a pointer to the private structure
1288  *      the upper layer will maintain.
1289  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1290  *      Called by upper layer device to delete the station created
1291  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1292  *      the station and priv is the structure returned by the add
1293  *      operation.
1294  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1295  *                           int queue_index, u32 maxrate);
1296  *      Called when a user wants to set a max-rate limitation of specific
1297  *      TX queue.
1298  * int (*ndo_get_iflink)(const struct net_device *dev);
1299  *      Called to get the iflink value of this device.
1300  * void (*ndo_change_proto_down)(struct net_device *dev,
1301  *                               bool proto_down);
1302  *      This function is used to pass protocol port error state information
1303  *      to the switch driver. The switch driver can react to the proto_down
1304  *      by doing a phys down on the associated switch port.
1305  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1306  *      This function is used to get egress tunnel information for given skb.
1307  *      This is useful for retrieving outer tunnel header parameters while
1308  *      sampling packet.
1309  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1310  *      This function is used to specify the headroom that the skb must
1311  *      consider when allocation skb during packet reception. Setting
1312  *      appropriate rx headroom value allows avoiding skb head copy on
1313  *      forward. Setting a negative value resets the rx headroom to the
1314  *      default value.
1315  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1316  *      This function is used to set or query state related to XDP on the
1317  *      netdevice and manage BPF offload. See definition of
1318  *      enum bpf_netdev_command for details.
1319  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1320  *                      u32 flags);
1321  *      This function is used to submit @n XDP packets for transmit on a
1322  *      netdevice. Returns number of frames successfully transmitted, frames
1323  *      that got dropped are freed/returned via xdp_return_frame().
1324  *      Returns negative number, means general error invoking ndo, meaning
1325  *      no frames were xmit'ed and core-caller will free all frames.
1326  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1327  *                                              struct xdp_buff *xdp);
1328  *      Get the xmit slave of master device based on the xdp_buff.
1329  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1330  *      This function is used to wake up the softirq, ksoftirqd or kthread
1331  *      responsible for sending and/or receiving packets on a specific
1332  *      queue id bound to an AF_XDP socket. The flags field specifies if
1333  *      only RX, only Tx, or both should be woken up using the flags
1334  *      XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1335  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1336  *      Get devlink port instance associated with a given netdev.
1337  *      Called with a reference on the netdevice and devlink locks only,
1338  *      rtnl_lock is not held.
1339  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1340  *                       int cmd);
1341  *      Add, change, delete or get information on an IPv4 tunnel.
1342  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1343  *      If a device is paired with a peer device, return the peer instance.
1344  *      The caller must be under RCU read context.
1345  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1346  *     Get the forwarding path to reach the real device from the HW destination address
1347  */
1348 struct net_device_ops {
1349         int                     (*ndo_init)(struct net_device *dev);
1350         void                    (*ndo_uninit)(struct net_device *dev);
1351         int                     (*ndo_open)(struct net_device *dev);
1352         int                     (*ndo_stop)(struct net_device *dev);
1353         netdev_tx_t             (*ndo_start_xmit)(struct sk_buff *skb,
1354                                                   struct net_device *dev);
1355         netdev_features_t       (*ndo_features_check)(struct sk_buff *skb,
1356                                                       struct net_device *dev,
1357                                                       netdev_features_t features);
1358         u16                     (*ndo_select_queue)(struct net_device *dev,
1359                                                     struct sk_buff *skb,
1360                                                     struct net_device *sb_dev);
1361         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1362                                                        int flags);
1363         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1364         int                     (*ndo_set_mac_address)(struct net_device *dev,
1365                                                        void *addr);
1366         int                     (*ndo_validate_addr)(struct net_device *dev);
1367         int                     (*ndo_do_ioctl)(struct net_device *dev,
1368                                                 struct ifreq *ifr, int cmd);
1369         int                     (*ndo_eth_ioctl)(struct net_device *dev,
1370                                                  struct ifreq *ifr, int cmd);
1371         int                     (*ndo_siocbond)(struct net_device *dev,
1372                                                 struct ifreq *ifr, int cmd);
1373         int                     (*ndo_siocwandev)(struct net_device *dev,
1374                                                   struct if_settings *ifs);
1375         int                     (*ndo_siocdevprivate)(struct net_device *dev,
1376                                                       struct ifreq *ifr,
1377                                                       void __user *data, int cmd);
1378         int                     (*ndo_set_config)(struct net_device *dev,
1379                                                   struct ifmap *map);
1380         int                     (*ndo_change_mtu)(struct net_device *dev,
1381                                                   int new_mtu);
1382         int                     (*ndo_neigh_setup)(struct net_device *dev,
1383                                                    struct neigh_parms *);
1384         void                    (*ndo_tx_timeout) (struct net_device *dev,
1385                                                    unsigned int txqueue);
1386
1387         void                    (*ndo_get_stats64)(struct net_device *dev,
1388                                                    struct rtnl_link_stats64 *storage);
1389         bool                    (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1390         int                     (*ndo_get_offload_stats)(int attr_id,
1391                                                          const struct net_device *dev,
1392                                                          void *attr_data);
1393         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1394
1395         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1396                                                        __be16 proto, u16 vid);
1397         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1398                                                         __be16 proto, u16 vid);
1399 #ifdef CONFIG_NET_POLL_CONTROLLER
1400         void                    (*ndo_poll_controller)(struct net_device *dev);
1401         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1402                                                      struct netpoll_info *info);
1403         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1404 #endif
1405         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1406                                                   int queue, u8 *mac);
1407         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1408                                                    int queue, u16 vlan,
1409                                                    u8 qos, __be16 proto);
1410         int                     (*ndo_set_vf_rate)(struct net_device *dev,
1411                                                    int vf, int min_tx_rate,
1412                                                    int max_tx_rate);
1413         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1414                                                        int vf, bool setting);
1415         int                     (*ndo_set_vf_trust)(struct net_device *dev,
1416                                                     int vf, bool setting);
1417         int                     (*ndo_get_vf_config)(struct net_device *dev,
1418                                                      int vf,
1419                                                      struct ifla_vf_info *ivf);
1420         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1421                                                          int vf, int link_state);
1422         int                     (*ndo_get_vf_stats)(struct net_device *dev,
1423                                                     int vf,
1424                                                     struct ifla_vf_stats
1425                                                     *vf_stats);
1426         int                     (*ndo_set_vf_port)(struct net_device *dev,
1427                                                    int vf,
1428                                                    struct nlattr *port[]);
1429         int                     (*ndo_get_vf_port)(struct net_device *dev,
1430                                                    int vf, struct sk_buff *skb);
1431         int                     (*ndo_get_vf_guid)(struct net_device *dev,
1432                                                    int vf,
1433                                                    struct ifla_vf_guid *node_guid,
1434                                                    struct ifla_vf_guid *port_guid);
1435         int                     (*ndo_set_vf_guid)(struct net_device *dev,
1436                                                    int vf, u64 guid,
1437                                                    int guid_type);
1438         int                     (*ndo_set_vf_rss_query_en)(
1439                                                    struct net_device *dev,
1440                                                    int vf, bool setting);
1441         int                     (*ndo_setup_tc)(struct net_device *dev,
1442                                                 enum tc_setup_type type,
1443                                                 void *type_data);
1444 #if IS_ENABLED(CONFIG_FCOE)
1445         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1446         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1447         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1448                                                       u16 xid,
1449                                                       struct scatterlist *sgl,
1450                                                       unsigned int sgc);
1451         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1452                                                      u16 xid);
1453         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1454                                                        u16 xid,
1455                                                        struct scatterlist *sgl,
1456                                                        unsigned int sgc);
1457         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1458                                                         struct netdev_fcoe_hbainfo *hbainfo);
1459 #endif
1460
1461 #if IS_ENABLED(CONFIG_LIBFCOE)
1462 #define NETDEV_FCOE_WWNN 0
1463 #define NETDEV_FCOE_WWPN 1
1464         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1465                                                     u64 *wwn, int type);
1466 #endif
1467
1468 #ifdef CONFIG_RFS_ACCEL
1469         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1470                                                      const struct sk_buff *skb,
1471                                                      u16 rxq_index,
1472                                                      u32 flow_id);
1473 #endif
1474         int                     (*ndo_add_slave)(struct net_device *dev,
1475                                                  struct net_device *slave_dev,
1476                                                  struct netlink_ext_ack *extack);
1477         int                     (*ndo_del_slave)(struct net_device *dev,
1478                                                  struct net_device *slave_dev);
1479         struct net_device*      (*ndo_get_xmit_slave)(struct net_device *dev,
1480                                                       struct sk_buff *skb,
1481                                                       bool all_slaves);
1482         struct net_device*      (*ndo_sk_get_lower_dev)(struct net_device *dev,
1483                                                         struct sock *sk);
1484         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1485                                                     netdev_features_t features);
1486         int                     (*ndo_set_features)(struct net_device *dev,
1487                                                     netdev_features_t features);
1488         int                     (*ndo_neigh_construct)(struct net_device *dev,
1489                                                        struct neighbour *n);
1490         void                    (*ndo_neigh_destroy)(struct net_device *dev,
1491                                                      struct neighbour *n);
1492
1493         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1494                                                struct nlattr *tb[],
1495                                                struct net_device *dev,
1496                                                const unsigned char *addr,
1497                                                u16 vid,
1498                                                u16 flags,
1499                                                struct netlink_ext_ack *extack);
1500         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1501                                                struct nlattr *tb[],
1502                                                struct net_device *dev,
1503                                                const unsigned char *addr,
1504                                                u16 vid);
1505         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1506                                                 struct netlink_callback *cb,
1507                                                 struct net_device *dev,
1508                                                 struct net_device *filter_dev,
1509                                                 int *idx);
1510         int                     (*ndo_fdb_get)(struct sk_buff *skb,
1511                                                struct nlattr *tb[],
1512                                                struct net_device *dev,
1513                                                const unsigned char *addr,
1514                                                u16 vid, u32 portid, u32 seq,
1515                                                struct netlink_ext_ack *extack);
1516         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1517                                                       struct nlmsghdr *nlh,
1518                                                       u16 flags,
1519                                                       struct netlink_ext_ack *extack);
1520         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1521                                                       u32 pid, u32 seq,
1522                                                       struct net_device *dev,
1523                                                       u32 filter_mask,
1524                                                       int nlflags);
1525         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1526                                                       struct nlmsghdr *nlh,
1527                                                       u16 flags);
1528         int                     (*ndo_change_carrier)(struct net_device *dev,
1529                                                       bool new_carrier);
1530         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1531                                                         struct netdev_phys_item_id *ppid);
1532         int                     (*ndo_get_port_parent_id)(struct net_device *dev,
1533                                                           struct netdev_phys_item_id *ppid);
1534         int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1535                                                           char *name, size_t len);
1536         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1537                                                         struct net_device *dev);
1538         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1539                                                         void *priv);
1540
1541         int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1542                                                       int queue_index,
1543                                                       u32 maxrate);
1544         int                     (*ndo_get_iflink)(const struct net_device *dev);
1545         int                     (*ndo_change_proto_down)(struct net_device *dev,
1546                                                          bool proto_down);
1547         int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1548                                                        struct sk_buff *skb);
1549         void                    (*ndo_set_rx_headroom)(struct net_device *dev,
1550                                                        int needed_headroom);
1551         int                     (*ndo_bpf)(struct net_device *dev,
1552                                            struct netdev_bpf *bpf);
1553         int                     (*ndo_xdp_xmit)(struct net_device *dev, int n,
1554                                                 struct xdp_frame **xdp,
1555                                                 u32 flags);
1556         struct net_device *     (*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1557                                                           struct xdp_buff *xdp);
1558         int                     (*ndo_xsk_wakeup)(struct net_device *dev,
1559                                                   u32 queue_id, u32 flags);
1560         struct devlink_port *   (*ndo_get_devlink_port)(struct net_device *dev);
1561         int                     (*ndo_tunnel_ctl)(struct net_device *dev,
1562                                                   struct ip_tunnel_parm *p, int cmd);
1563         struct net_device *     (*ndo_get_peer_dev)(struct net_device *dev);
1564         int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1565                                                          struct net_device_path *path);
1566 };
1567
1568 /**
1569  * enum netdev_priv_flags - &struct net_device priv_flags
1570  *
1571  * These are the &struct net_device, they are only set internally
1572  * by drivers and used in the kernel. These flags are invisible to
1573  * userspace; this means that the order of these flags can change
1574  * during any kernel release.
1575  *
1576  * You should have a pretty good reason to be extending these flags.
1577  *
1578  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1579  * @IFF_EBRIDGE: Ethernet bridging device
1580  * @IFF_BONDING: bonding master or slave
1581  * @IFF_ISATAP: ISATAP interface (RFC4214)
1582  * @IFF_WAN_HDLC: WAN HDLC device
1583  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1584  *      release skb->dst
1585  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1586  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1587  * @IFF_MACVLAN_PORT: device used as macvlan port
1588  * @IFF_BRIDGE_PORT: device used as bridge port
1589  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1590  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1591  * @IFF_UNICAST_FLT: Supports unicast filtering
1592  * @IFF_TEAM_PORT: device used as team port
1593  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1594  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1595  *      change when it's running
1596  * @IFF_MACVLAN: Macvlan device
1597  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1598  *      underlying stacked devices
1599  * @IFF_L3MDEV_MASTER: device is an L3 master device
1600  * @IFF_NO_QUEUE: device can run without qdisc attached
1601  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1602  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1603  * @IFF_TEAM: device is a team device
1604  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1605  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1606  *      entity (i.e. the master device for bridged veth)
1607  * @IFF_MACSEC: device is a MACsec device
1608  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1609  * @IFF_FAILOVER: device is a failover master device
1610  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1611  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1612  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1613  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1614  *      skb_headlen(skb) == 0 (data starts from frag0)
1615  */
1616 enum netdev_priv_flags {
1617         IFF_802_1Q_VLAN                 = 1<<0,
1618         IFF_EBRIDGE                     = 1<<1,
1619         IFF_BONDING                     = 1<<2,
1620         IFF_ISATAP                      = 1<<3,
1621         IFF_WAN_HDLC                    = 1<<4,
1622         IFF_XMIT_DST_RELEASE            = 1<<5,
1623         IFF_DONT_BRIDGE                 = 1<<6,
1624         IFF_DISABLE_NETPOLL             = 1<<7,
1625         IFF_MACVLAN_PORT                = 1<<8,
1626         IFF_BRIDGE_PORT                 = 1<<9,
1627         IFF_OVS_DATAPATH                = 1<<10,
1628         IFF_TX_SKB_SHARING              = 1<<11,
1629         IFF_UNICAST_FLT                 = 1<<12,
1630         IFF_TEAM_PORT                   = 1<<13,
1631         IFF_SUPP_NOFCS                  = 1<<14,
1632         IFF_LIVE_ADDR_CHANGE            = 1<<15,
1633         IFF_MACVLAN                     = 1<<16,
1634         IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1635         IFF_L3MDEV_MASTER               = 1<<18,
1636         IFF_NO_QUEUE                    = 1<<19,
1637         IFF_OPENVSWITCH                 = 1<<20,
1638         IFF_L3MDEV_SLAVE                = 1<<21,
1639         IFF_TEAM                        = 1<<22,
1640         IFF_RXFH_CONFIGURED             = 1<<23,
1641         IFF_PHONY_HEADROOM              = 1<<24,
1642         IFF_MACSEC                      = 1<<25,
1643         IFF_NO_RX_HANDLER               = 1<<26,
1644         IFF_FAILOVER                    = 1<<27,
1645         IFF_FAILOVER_SLAVE              = 1<<28,
1646         IFF_L3MDEV_RX_HANDLER           = 1<<29,
1647         IFF_LIVE_RENAME_OK              = 1<<30,
1648         IFF_TX_SKB_NO_LINEAR            = BIT_ULL(31),
1649 };
1650
1651 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1652 #define IFF_EBRIDGE                     IFF_EBRIDGE
1653 #define IFF_BONDING                     IFF_BONDING
1654 #define IFF_ISATAP                      IFF_ISATAP
1655 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1656 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1657 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1658 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1659 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1660 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1661 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1662 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1663 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1664 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1665 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1666 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1667 #define IFF_MACVLAN                     IFF_MACVLAN
1668 #define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1669 #define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1670 #define IFF_NO_QUEUE                    IFF_NO_QUEUE
1671 #define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1672 #define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1673 #define IFF_TEAM                        IFF_TEAM
1674 #define IFF_RXFH_CONFIGURED             IFF_RXFH_CONFIGURED
1675 #define IFF_PHONY_HEADROOM              IFF_PHONY_HEADROOM
1676 #define IFF_MACSEC                      IFF_MACSEC
1677 #define IFF_NO_RX_HANDLER               IFF_NO_RX_HANDLER
1678 #define IFF_FAILOVER                    IFF_FAILOVER
1679 #define IFF_FAILOVER_SLAVE              IFF_FAILOVER_SLAVE
1680 #define IFF_L3MDEV_RX_HANDLER           IFF_L3MDEV_RX_HANDLER
1681 #define IFF_LIVE_RENAME_OK              IFF_LIVE_RENAME_OK
1682 #define IFF_TX_SKB_NO_LINEAR            IFF_TX_SKB_NO_LINEAR
1683
1684 /* Specifies the type of the struct net_device::ml_priv pointer */
1685 enum netdev_ml_priv_type {
1686         ML_PRIV_NONE,
1687         ML_PRIV_CAN,
1688 };
1689
1690 /**
1691  *      struct net_device - The DEVICE structure.
1692  *
1693  *      Actually, this whole structure is a big mistake.  It mixes I/O
1694  *      data with strictly "high-level" data, and it has to know about
1695  *      almost every data structure used in the INET module.
1696  *
1697  *      @name:  This is the first field of the "visible" part of this structure
1698  *              (i.e. as seen by users in the "Space.c" file).  It is the name
1699  *              of the interface.
1700  *
1701  *      @name_node:     Name hashlist node
1702  *      @ifalias:       SNMP alias
1703  *      @mem_end:       Shared memory end
1704  *      @mem_start:     Shared memory start
1705  *      @base_addr:     Device I/O address
1706  *      @irq:           Device IRQ number
1707  *
1708  *      @state:         Generic network queuing layer state, see netdev_state_t
1709  *      @dev_list:      The global list of network devices
1710  *      @napi_list:     List entry used for polling NAPI devices
1711  *      @unreg_list:    List entry  when we are unregistering the
1712  *                      device; see the function unregister_netdev
1713  *      @close_list:    List entry used when we are closing the device
1714  *      @ptype_all:     Device-specific packet handlers for all protocols
1715  *      @ptype_specific: Device-specific, protocol-specific packet handlers
1716  *
1717  *      @adj_list:      Directly linked devices, like slaves for bonding
1718  *      @features:      Currently active device features
1719  *      @hw_features:   User-changeable features
1720  *
1721  *      @wanted_features:       User-requested features
1722  *      @vlan_features:         Mask of features inheritable by VLAN devices
1723  *
1724  *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1725  *                              This field indicates what encapsulation
1726  *                              offloads the hardware is capable of doing,
1727  *                              and drivers will need to set them appropriately.
1728  *
1729  *      @mpls_features: Mask of features inheritable by MPLS
1730  *      @gso_partial_features: value(s) from NETIF_F_GSO\*
1731  *
1732  *      @ifindex:       interface index
1733  *      @group:         The group the device belongs to
1734  *
1735  *      @stats:         Statistics struct, which was left as a legacy, use
1736  *                      rtnl_link_stats64 instead
1737  *
1738  *      @rx_dropped:    Dropped packets by core network,
1739  *                      do not use this in drivers
1740  *      @tx_dropped:    Dropped packets by core network,
1741  *                      do not use this in drivers
1742  *      @rx_nohandler:  nohandler dropped packets by core network on
1743  *                      inactive devices, do not use this in drivers
1744  *      @carrier_up_count:      Number of times the carrier has been up
1745  *      @carrier_down_count:    Number of times the carrier has been down
1746  *
1747  *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1748  *                              instead of ioctl,
1749  *                              see <net/iw_handler.h> for details.
1750  *      @wireless_data: Instance data managed by the core of wireless extensions
1751  *
1752  *      @netdev_ops:    Includes several pointers to callbacks,
1753  *                      if one wants to override the ndo_*() functions
1754  *      @ethtool_ops:   Management operations
1755  *      @l3mdev_ops:    Layer 3 master device operations
1756  *      @ndisc_ops:     Includes callbacks for different IPv6 neighbour
1757  *                      discovery handling. Necessary for e.g. 6LoWPAN.
1758  *      @xfrmdev_ops:   Transformation offload operations
1759  *      @tlsdev_ops:    Transport Layer Security offload operations
1760  *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1761  *                      of Layer 2 headers.
1762  *
1763  *      @flags:         Interface flags (a la BSD)
1764  *      @priv_flags:    Like 'flags' but invisible to userspace,
1765  *                      see if.h for the definitions
1766  *      @gflags:        Global flags ( kept as legacy )
1767  *      @padded:        How much padding added by alloc_netdev()
1768  *      @operstate:     RFC2863 operstate
1769  *      @link_mode:     Mapping policy to operstate
1770  *      @if_port:       Selectable AUI, TP, ...
1771  *      @dma:           DMA channel
1772  *      @mtu:           Interface MTU value
1773  *      @min_mtu:       Interface Minimum MTU value
1774  *      @max_mtu:       Interface Maximum MTU value
1775  *      @type:          Interface hardware type
1776  *      @hard_header_len: Maximum hardware header length.
1777  *      @min_header_len:  Minimum hardware header length
1778  *
1779  *      @needed_headroom: Extra headroom the hardware may need, but not in all
1780  *                        cases can this be guaranteed
1781  *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1782  *                        cases can this be guaranteed. Some cases also use
1783  *                        LL_MAX_HEADER instead to allocate the skb
1784  *
1785  *      interface address info:
1786  *
1787  *      @perm_addr:             Permanent hw address
1788  *      @addr_assign_type:      Hw address assignment type
1789  *      @addr_len:              Hardware address length
1790  *      @upper_level:           Maximum depth level of upper devices.
1791  *      @lower_level:           Maximum depth level of lower devices.
1792  *      @neigh_priv_len:        Used in neigh_alloc()
1793  *      @dev_id:                Used to differentiate devices that share
1794  *                              the same link layer address
1795  *      @dev_port:              Used to differentiate devices that share
1796  *                              the same function
1797  *      @addr_list_lock:        XXX: need comments on this one
1798  *      @name_assign_type:      network interface name assignment type
1799  *      @uc_promisc:            Counter that indicates promiscuous mode
1800  *                              has been enabled due to the need to listen to
1801  *                              additional unicast addresses in a device that
1802  *                              does not implement ndo_set_rx_mode()
1803  *      @uc:                    unicast mac addresses
1804  *      @mc:                    multicast mac addresses
1805  *      @dev_addrs:             list of device hw addresses
1806  *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1807  *      @promiscuity:           Number of times the NIC is told to work in
1808  *                              promiscuous mode; if it becomes 0 the NIC will
1809  *                              exit promiscuous mode
1810  *      @allmulti:              Counter, enables or disables allmulticast mode
1811  *
1812  *      @vlan_info:     VLAN info
1813  *      @dsa_ptr:       dsa specific data
1814  *      @tipc_ptr:      TIPC specific data
1815  *      @atalk_ptr:     AppleTalk link
1816  *      @ip_ptr:        IPv4 specific data
1817  *      @dn_ptr:        DECnet specific data
1818  *      @ip6_ptr:       IPv6 specific data
1819  *      @ax25_ptr:      AX.25 specific data
1820  *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1821  *      @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1822  *                       device struct
1823  *      @mpls_ptr:      mpls_dev struct pointer
1824  *      @mctp_ptr:      MCTP specific data
1825  *
1826  *      @dev_addr:      Hw address (before bcast,
1827  *                      because most packets are unicast)
1828  *
1829  *      @_rx:                   Array of RX queues
1830  *      @num_rx_queues:         Number of RX queues
1831  *                              allocated at register_netdev() time
1832  *      @real_num_rx_queues:    Number of RX queues currently active in device
1833  *      @xdp_prog:              XDP sockets filter program pointer
1834  *      @gro_flush_timeout:     timeout for GRO layer in NAPI
1835  *      @napi_defer_hard_irqs:  If not zero, provides a counter that would
1836  *                              allow to avoid NIC hard IRQ, on busy queues.
1837  *
1838  *      @rx_handler:            handler for received packets
1839  *      @rx_handler_data:       XXX: need comments on this one
1840  *      @miniq_ingress:         ingress/clsact qdisc specific data for
1841  *                              ingress processing
1842  *      @ingress_queue:         XXX: need comments on this one
1843  *      @nf_hooks_ingress:      netfilter hooks executed for ingress packets
1844  *      @broadcast:             hw bcast address
1845  *
1846  *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1847  *                      indexed by RX queue number. Assigned by driver.
1848  *                      This must only be set if the ndo_rx_flow_steer
1849  *                      operation is defined
1850  *      @index_hlist:           Device index hash chain
1851  *
1852  *      @_tx:                   Array of TX queues
1853  *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1854  *      @real_num_tx_queues:    Number of TX queues currently active in device
1855  *      @qdisc:                 Root qdisc from userspace point of view
1856  *      @tx_queue_len:          Max frames per queue allowed
1857  *      @tx_global_lock:        XXX: need comments on this one
1858  *      @xdp_bulkq:             XDP device bulk queue
1859  *      @xps_maps:              all CPUs/RXQs maps for XPS device
1860  *
1861  *      @xps_maps:      XXX: need comments on this one
1862  *      @miniq_egress:          clsact qdisc specific data for
1863  *                              egress processing
1864  *      @qdisc_hash:            qdisc hash table
1865  *      @watchdog_timeo:        Represents the timeout that is used by
1866  *                              the watchdog (see dev_watchdog())
1867  *      @watchdog_timer:        List of timers
1868  *
1869  *      @proto_down_reason:     reason a netdev interface is held down
1870  *      @pcpu_refcnt:           Number of references to this device
1871  *      @dev_refcnt:            Number of references to this device
1872  *      @todo_list:             Delayed register/unregister
1873  *      @link_watch_list:       XXX: need comments on this one
1874  *
1875  *      @reg_state:             Register/unregister state machine
1876  *      @dismantle:             Device is going to be freed
1877  *      @rtnl_link_state:       This enum represents the phases of creating
1878  *                              a new link
1879  *
1880  *      @needs_free_netdev:     Should unregister perform free_netdev?
1881  *      @priv_destructor:       Called from unregister
1882  *      @npinfo:                XXX: need comments on this one
1883  *      @nd_net:                Network namespace this network device is inside
1884  *
1885  *      @ml_priv:       Mid-layer private
1886  *      @ml_priv_type:  Mid-layer private type
1887  *      @lstats:        Loopback statistics
1888  *      @tstats:        Tunnel statistics
1889  *      @dstats:        Dummy statistics
1890  *      @vstats:        Virtual ethernet statistics
1891  *
1892  *      @garp_port:     GARP
1893  *      @mrp_port:      MRP
1894  *
1895  *      @dev:           Class/net/name entry
1896  *      @sysfs_groups:  Space for optional device, statistics and wireless
1897  *                      sysfs groups
1898  *
1899  *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1900  *      @rtnl_link_ops: Rtnl_link_ops
1901  *
1902  *      @gso_max_size:  Maximum size of generic segmentation offload
1903  *      @gso_max_segs:  Maximum number of segments that can be passed to the
1904  *                      NIC for GSO
1905  *
1906  *      @dcbnl_ops:     Data Center Bridging netlink ops
1907  *      @num_tc:        Number of traffic classes in the net device
1908  *      @tc_to_txq:     XXX: need comments on this one
1909  *      @prio_tc_map:   XXX: need comments on this one
1910  *
1911  *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1912  *
1913  *      @priomap:       XXX: need comments on this one
1914  *      @phydev:        Physical device may attach itself
1915  *                      for hardware timestamping
1916  *      @sfp_bus:       attached &struct sfp_bus structure.
1917  *
1918  *      @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1919  *      @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1920  *
1921  *      @proto_down:    protocol port state information can be sent to the
1922  *                      switch driver and used to set the phys state of the
1923  *                      switch port.
1924  *
1925  *      @wol_enabled:   Wake-on-LAN is enabled
1926  *
1927  *      @threaded:      napi threaded mode is enabled
1928  *
1929  *      @net_notifier_list:     List of per-net netdev notifier block
1930  *                              that follow this device when it is moved
1931  *                              to another network namespace.
1932  *
1933  *      @macsec_ops:    MACsec offloading ops
1934  *
1935  *      @udp_tunnel_nic_info:   static structure describing the UDP tunnel
1936  *                              offload capabilities of the device
1937  *      @udp_tunnel_nic:        UDP tunnel offload state
1938  *      @xdp_state:             stores info on attached XDP BPF programs
1939  *
1940  *      @nested_level:  Used as as a parameter of spin_lock_nested() of
1941  *                      dev->addr_list_lock.
1942  *      @unlink_list:   As netif_addr_lock() can be called recursively,
1943  *                      keep a list of interfaces to be deleted.
1944  *
1945  *      FIXME: cleanup struct net_device such that network protocol info
1946  *      moves out.
1947  */
1948
1949 struct net_device {
1950         char                    name[IFNAMSIZ];
1951         struct netdev_name_node *name_node;
1952         struct dev_ifalias      __rcu *ifalias;
1953         /*
1954          *      I/O specific fields
1955          *      FIXME: Merge these and struct ifmap into one
1956          */
1957         unsigned long           mem_end;
1958         unsigned long           mem_start;
1959         unsigned long           base_addr;
1960
1961         /*
1962          *      Some hardware also needs these fields (state,dev_list,
1963          *      napi_list,unreg_list,close_list) but they are not
1964          *      part of the usual set specified in Space.c.
1965          */
1966
1967         unsigned long           state;
1968
1969         struct list_head        dev_list;
1970         struct list_head        napi_list;
1971         struct list_head        unreg_list;
1972         struct list_head        close_list;
1973         struct list_head        ptype_all;
1974         struct list_head        ptype_specific;
1975
1976         struct {
1977                 struct list_head upper;
1978                 struct list_head lower;
1979         } adj_list;
1980
1981         /* Read-mostly cache-line for fast-path access */
1982         unsigned int            flags;
1983         unsigned int            priv_flags;
1984         const struct net_device_ops *netdev_ops;
1985         int                     ifindex;
1986         unsigned short          gflags;
1987         unsigned short          hard_header_len;
1988
1989         /* Note : dev->mtu is often read without holding a lock.
1990          * Writers usually hold RTNL.
1991          * It is recommended to use READ_ONCE() to annotate the reads,
1992          * and to use WRITE_ONCE() to annotate the writes.
1993          */
1994         unsigned int            mtu;
1995         unsigned short          needed_headroom;
1996         unsigned short          needed_tailroom;
1997
1998         netdev_features_t       features;
1999         netdev_features_t       hw_features;
2000         netdev_features_t       wanted_features;
2001         netdev_features_t       vlan_features;
2002         netdev_features_t       hw_enc_features;
2003         netdev_features_t       mpls_features;
2004         netdev_features_t       gso_partial_features;
2005
2006         unsigned int            min_mtu;
2007         unsigned int            max_mtu;
2008         unsigned short          type;
2009         unsigned char           min_header_len;
2010         unsigned char           name_assign_type;
2011
2012         int                     group;
2013
2014         struct net_device_stats stats; /* not used by modern drivers */
2015
2016         atomic_long_t           rx_dropped;
2017         atomic_long_t           tx_dropped;
2018         atomic_long_t           rx_nohandler;
2019
2020         /* Stats to monitor link on/off, flapping */
2021         atomic_t                carrier_up_count;
2022         atomic_t                carrier_down_count;
2023
2024 #ifdef CONFIG_WIRELESS_EXT
2025         const struct iw_handler_def *wireless_handlers;
2026         struct iw_public_data   *wireless_data;
2027 #endif
2028         const struct ethtool_ops *ethtool_ops;
2029 #ifdef CONFIG_NET_L3_MASTER_DEV
2030         const struct l3mdev_ops *l3mdev_ops;
2031 #endif
2032 #if IS_ENABLED(CONFIG_IPV6)
2033         const struct ndisc_ops *ndisc_ops;
2034 #endif
2035
2036 #ifdef CONFIG_XFRM_OFFLOAD
2037         const struct xfrmdev_ops *xfrmdev_ops;
2038 #endif
2039
2040 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2041         const struct tlsdev_ops *tlsdev_ops;
2042 #endif
2043
2044         const struct header_ops *header_ops;
2045
2046         unsigned char           operstate;
2047         unsigned char           link_mode;
2048
2049         unsigned char           if_port;
2050         unsigned char           dma;
2051
2052         /* Interface address info. */
2053         unsigned char           perm_addr[MAX_ADDR_LEN];
2054         unsigned char           addr_assign_type;
2055         unsigned char           addr_len;
2056         unsigned char           upper_level;
2057         unsigned char           lower_level;
2058
2059         unsigned short          neigh_priv_len;
2060         unsigned short          dev_id;
2061         unsigned short          dev_port;
2062         unsigned short          padded;
2063
2064         spinlock_t              addr_list_lock;
2065         int                     irq;
2066
2067         struct netdev_hw_addr_list      uc;
2068         struct netdev_hw_addr_list      mc;
2069         struct netdev_hw_addr_list      dev_addrs;
2070
2071 #ifdef CONFIG_SYSFS
2072         struct kset             *queues_kset;
2073 #endif
2074 #ifdef CONFIG_LOCKDEP
2075         struct list_head        unlink_list;
2076 #endif
2077         unsigned int            promiscuity;
2078         unsigned int            allmulti;
2079         bool                    uc_promisc;
2080 #ifdef CONFIG_LOCKDEP
2081         unsigned char           nested_level;
2082 #endif
2083
2084
2085         /* Protocol-specific pointers */
2086
2087 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2088         struct vlan_info __rcu  *vlan_info;
2089 #endif
2090 #if IS_ENABLED(CONFIG_NET_DSA)
2091         struct dsa_port         *dsa_ptr;
2092 #endif
2093 #if IS_ENABLED(CONFIG_TIPC)
2094         struct tipc_bearer __rcu *tipc_ptr;
2095 #endif
2096 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
2097         void                    *atalk_ptr;
2098 #endif
2099         struct in_device __rcu  *ip_ptr;
2100 #if IS_ENABLED(CONFIG_DECNET)
2101         struct dn_dev __rcu     *dn_ptr;
2102 #endif
2103         struct inet6_dev __rcu  *ip6_ptr;
2104 #if IS_ENABLED(CONFIG_AX25)
2105         void                    *ax25_ptr;
2106 #endif
2107         struct wireless_dev     *ieee80211_ptr;
2108         struct wpan_dev         *ieee802154_ptr;
2109 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2110         struct mpls_dev __rcu   *mpls_ptr;
2111 #endif
2112 #if IS_ENABLED(CONFIG_MCTP)
2113         struct mctp_dev __rcu   *mctp_ptr;
2114 #endif
2115
2116 /*
2117  * Cache lines mostly used on receive path (including eth_type_trans())
2118  */
2119         /* Interface address info used in eth_type_trans() */
2120         unsigned char           *dev_addr;
2121
2122         struct netdev_rx_queue  *_rx;
2123         unsigned int            num_rx_queues;
2124         unsigned int            real_num_rx_queues;
2125
2126         struct bpf_prog __rcu   *xdp_prog;
2127         unsigned long           gro_flush_timeout;
2128         int                     napi_defer_hard_irqs;
2129         rx_handler_func_t __rcu *rx_handler;
2130         void __rcu              *rx_handler_data;
2131
2132 #ifdef CONFIG_NET_CLS_ACT
2133         struct mini_Qdisc __rcu *miniq_ingress;
2134 #endif
2135         struct netdev_queue __rcu *ingress_queue;
2136 #ifdef CONFIG_NETFILTER_INGRESS
2137         struct nf_hook_entries __rcu *nf_hooks_ingress;
2138 #endif
2139
2140         unsigned char           broadcast[MAX_ADDR_LEN];
2141 #ifdef CONFIG_RFS_ACCEL
2142         struct cpu_rmap         *rx_cpu_rmap;
2143 #endif
2144         struct hlist_node       index_hlist;
2145
2146 /*
2147  * Cache lines mostly used on transmit path
2148  */
2149         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
2150         unsigned int            num_tx_queues;
2151         unsigned int            real_num_tx_queues;
2152         struct Qdisc __rcu      *qdisc;
2153         unsigned int            tx_queue_len;
2154         spinlock_t              tx_global_lock;
2155
2156         struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2157
2158 #ifdef CONFIG_XPS
2159         struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2160 #endif
2161 #ifdef CONFIG_NET_CLS_ACT
2162         struct mini_Qdisc __rcu *miniq_egress;
2163 #endif
2164
2165 #ifdef CONFIG_NET_SCHED
2166         DECLARE_HASHTABLE       (qdisc_hash, 4);
2167 #endif
2168         /* These may be needed for future network-power-down code. */
2169         struct timer_list       watchdog_timer;
2170         int                     watchdog_timeo;
2171
2172         u32                     proto_down_reason;
2173
2174         struct list_head        todo_list;
2175
2176 #ifdef CONFIG_PCPU_DEV_REFCNT
2177         int __percpu            *pcpu_refcnt;
2178 #else
2179         refcount_t              dev_refcnt;
2180 #endif
2181
2182         struct list_head        link_watch_list;
2183
2184         enum { NETREG_UNINITIALIZED=0,
2185                NETREG_REGISTERED,       /* completed register_netdevice */
2186                NETREG_UNREGISTERING,    /* called unregister_netdevice */
2187                NETREG_UNREGISTERED,     /* completed unregister todo */
2188                NETREG_RELEASED,         /* called free_netdev */
2189                NETREG_DUMMY,            /* dummy device for NAPI poll */
2190         } reg_state:8;
2191
2192         bool dismantle;
2193
2194         enum {
2195                 RTNL_LINK_INITIALIZED,
2196                 RTNL_LINK_INITIALIZING,
2197         } rtnl_link_state:16;
2198
2199         bool needs_free_netdev;
2200         void (*priv_destructor)(struct net_device *dev);
2201
2202 #ifdef CONFIG_NETPOLL
2203         struct netpoll_info __rcu       *npinfo;
2204 #endif
2205
2206         possible_net_t                  nd_net;
2207
2208         /* mid-layer private */
2209         void                            *ml_priv;
2210         enum netdev_ml_priv_type        ml_priv_type;
2211
2212         union {
2213                 struct pcpu_lstats __percpu             *lstats;
2214                 struct pcpu_sw_netstats __percpu        *tstats;
2215                 struct pcpu_dstats __percpu             *dstats;
2216         };
2217
2218 #if IS_ENABLED(CONFIG_GARP)
2219         struct garp_port __rcu  *garp_port;
2220 #endif
2221 #if IS_ENABLED(CONFIG_MRP)
2222         struct mrp_port __rcu   *mrp_port;
2223 #endif
2224
2225         struct device           dev;
2226         const struct attribute_group *sysfs_groups[4];
2227         const struct attribute_group *sysfs_rx_queue_group;
2228
2229         const struct rtnl_link_ops *rtnl_link_ops;
2230
2231         /* for setting kernel sock attribute on TCP connection setup */
2232 #define GSO_MAX_SIZE            65536
2233         unsigned int            gso_max_size;
2234 #define GSO_MAX_SEGS            65535
2235         u16                     gso_max_segs;
2236
2237 #ifdef CONFIG_DCB
2238         const struct dcbnl_rtnl_ops *dcbnl_ops;
2239 #endif
2240         s16                     num_tc;
2241         struct netdev_tc_txq    tc_to_txq[TC_MAX_QUEUE];
2242         u8                      prio_tc_map[TC_BITMASK + 1];
2243
2244 #if IS_ENABLED(CONFIG_FCOE)
2245         unsigned int            fcoe_ddp_xid;
2246 #endif
2247 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2248         struct netprio_map __rcu *priomap;
2249 #endif
2250         struct phy_device       *phydev;
2251         struct sfp_bus          *sfp_bus;
2252         struct lock_class_key   *qdisc_tx_busylock;
2253         struct lock_class_key   *qdisc_running_key;
2254         bool                    proto_down;
2255         unsigned                wol_enabled:1;
2256         unsigned                threaded:1;
2257
2258         struct list_head        net_notifier_list;
2259
2260 #if IS_ENABLED(CONFIG_MACSEC)
2261         /* MACsec management functions */
2262         const struct macsec_ops *macsec_ops;
2263 #endif
2264         const struct udp_tunnel_nic_info        *udp_tunnel_nic_info;
2265         struct udp_tunnel_nic   *udp_tunnel_nic;
2266
2267         /* protected by rtnl_lock */
2268         struct bpf_xdp_entity   xdp_state[__MAX_XDP_MODE];
2269 };
2270 #define to_net_dev(d) container_of(d, struct net_device, dev)
2271
2272 static inline bool netif_elide_gro(const struct net_device *dev)
2273 {
2274         if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2275                 return true;
2276         return false;
2277 }
2278
2279 #define NETDEV_ALIGN            32
2280
2281 static inline
2282 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2283 {
2284         return dev->prio_tc_map[prio & TC_BITMASK];
2285 }
2286
2287 static inline
2288 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2289 {
2290         if (tc >= dev->num_tc)
2291                 return -EINVAL;
2292
2293         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2294         return 0;
2295 }
2296
2297 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2298 void netdev_reset_tc(struct net_device *dev);
2299 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2300 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2301
2302 static inline
2303 int netdev_get_num_tc(struct net_device *dev)
2304 {
2305         return dev->num_tc;
2306 }
2307
2308 static inline void net_prefetch(void *p)
2309 {
2310         prefetch(p);
2311 #if L1_CACHE_BYTES < 128
2312         prefetch((u8 *)p + L1_CACHE_BYTES);
2313 #endif
2314 }
2315
2316 static inline void net_prefetchw(void *p)
2317 {
2318         prefetchw(p);
2319 #if L1_CACHE_BYTES < 128
2320         prefetchw((u8 *)p + L1_CACHE_BYTES);
2321 #endif
2322 }
2323
2324 void netdev_unbind_sb_channel(struct net_device *dev,
2325                               struct net_device *sb_dev);
2326 int netdev_bind_sb_channel_queue(struct net_device *dev,
2327                                  struct net_device *sb_dev,
2328                                  u8 tc, u16 count, u16 offset);
2329 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2330 static inline int netdev_get_sb_channel(struct net_device *dev)
2331 {
2332         return max_t(int, -dev->num_tc, 0);
2333 }
2334
2335 static inline
2336 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2337                                          unsigned int index)
2338 {
2339         return &dev->_tx[index];
2340 }
2341
2342 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2343                                                     const struct sk_buff *skb)
2344 {
2345         return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2346 }
2347
2348 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2349                                             void (*f)(struct net_device *,
2350                                                       struct netdev_queue *,
2351                                                       void *),
2352                                             void *arg)
2353 {
2354         unsigned int i;
2355
2356         for (i = 0; i < dev->num_tx_queues; i++)
2357                 f(dev, &dev->_tx[i], arg);
2358 }
2359
2360 #define netdev_lockdep_set_classes(dev)                         \
2361 {                                                               \
2362         static struct lock_class_key qdisc_tx_busylock_key;     \
2363         static struct lock_class_key qdisc_running_key;         \
2364         static struct lock_class_key qdisc_xmit_lock_key;       \
2365         static struct lock_class_key dev_addr_list_lock_key;    \
2366         unsigned int i;                                         \
2367                                                                 \
2368         (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;      \
2369         (dev)->qdisc_running_key = &qdisc_running_key;          \
2370         lockdep_set_class(&(dev)->addr_list_lock,               \
2371                           &dev_addr_list_lock_key);             \
2372         for (i = 0; i < (dev)->num_tx_queues; i++)              \
2373                 lockdep_set_class(&(dev)->_tx[i]._xmit_lock,    \
2374                                   &qdisc_xmit_lock_key);        \
2375 }
2376
2377 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2378                      struct net_device *sb_dev);
2379 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2380                                          struct sk_buff *skb,
2381                                          struct net_device *sb_dev);
2382
2383 /* returns the headroom that the master device needs to take in account
2384  * when forwarding to this dev
2385  */
2386 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2387 {
2388         return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2389 }
2390
2391 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2392 {
2393         if (dev->netdev_ops->ndo_set_rx_headroom)
2394                 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2395 }
2396
2397 /* set the device rx headroom to the dev's default */
2398 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2399 {
2400         netdev_set_rx_headroom(dev, -1);
2401 }
2402
2403 static inline void *netdev_get_ml_priv(struct net_device *dev,
2404                                        enum netdev_ml_priv_type type)
2405 {
2406         if (dev->ml_priv_type != type)
2407                 return NULL;
2408
2409         return dev->ml_priv;
2410 }
2411
2412 static inline void netdev_set_ml_priv(struct net_device *dev,
2413                                       void *ml_priv,
2414                                       enum netdev_ml_priv_type type)
2415 {
2416         WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2417              "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2418              dev->ml_priv_type, type);
2419         WARN(!dev->ml_priv_type && dev->ml_priv,
2420              "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2421
2422         dev->ml_priv = ml_priv;
2423         dev->ml_priv_type = type;
2424 }
2425
2426 /*
2427  * Net namespace inlines
2428  */
2429 static inline
2430 struct net *dev_net(const struct net_device *dev)
2431 {
2432         return read_pnet(&dev->nd_net);
2433 }
2434
2435 static inline
2436 void dev_net_set(struct net_device *dev, struct net *net)
2437 {
2438         write_pnet(&dev->nd_net, net);
2439 }
2440
2441 /**
2442  *      netdev_priv - access network device private data
2443  *      @dev: network device
2444  *
2445  * Get network device private data
2446  */
2447 static inline void *netdev_priv(const struct net_device *dev)
2448 {
2449         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2450 }
2451
2452 /* Set the sysfs physical device reference for the network logical device
2453  * if set prior to registration will cause a symlink during initialization.
2454  */
2455 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
2456
2457 /* Set the sysfs device type for the network logical device to allow
2458  * fine-grained identification of different network device types. For
2459  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2460  */
2461 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
2462
2463 /* Default NAPI poll() weight
2464  * Device drivers are strongly advised to not use bigger value
2465  */
2466 #define NAPI_POLL_WEIGHT 64
2467
2468 /**
2469  *      netif_napi_add - initialize a NAPI context
2470  *      @dev:  network device
2471  *      @napi: NAPI context
2472  *      @poll: polling function
2473  *      @weight: default weight
2474  *
2475  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2476  * *any* of the other NAPI-related functions.
2477  */
2478 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2479                     int (*poll)(struct napi_struct *, int), int weight);
2480
2481 /**
2482  *      netif_tx_napi_add - initialize a NAPI context
2483  *      @dev:  network device
2484  *      @napi: NAPI context
2485  *      @poll: polling function
2486  *      @weight: default weight
2487  *
2488  * This variant of netif_napi_add() should be used from drivers using NAPI
2489  * to exclusively poll a TX queue.
2490  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2491  */
2492 static inline void netif_tx_napi_add(struct net_device *dev,
2493                                      struct napi_struct *napi,
2494                                      int (*poll)(struct napi_struct *, int),
2495                                      int weight)
2496 {
2497         set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2498         netif_napi_add(dev, napi, poll, weight);
2499 }
2500
2501 /**
2502  *  __netif_napi_del - remove a NAPI context
2503  *  @napi: NAPI context
2504  *
2505  * Warning: caller must observe RCU grace period before freeing memory
2506  * containing @napi. Drivers might want to call this helper to combine
2507  * all the needed RCU grace periods into a single one.
2508  */
2509 void __netif_napi_del(struct napi_struct *napi);
2510
2511 /**
2512  *  netif_napi_del - remove a NAPI context
2513  *  @napi: NAPI context
2514  *
2515  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2516  */
2517 static inline void netif_napi_del(struct napi_struct *napi)
2518 {
2519         __netif_napi_del(napi);
2520         synchronize_net();
2521 }
2522
2523 struct napi_gro_cb {
2524         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2525         void    *frag0;
2526
2527         /* Length of frag0. */
2528         unsigned int frag0_len;
2529
2530         /* This indicates where we are processing relative to skb->data. */
2531         int     data_offset;
2532
2533         /* This is non-zero if the packet cannot be merged with the new skb. */
2534         u16     flush;
2535
2536         /* Save the IP ID here and check when we get to the transport layer */
2537         u16     flush_id;
2538
2539         /* Number of segments aggregated. */
2540         u16     count;
2541
2542         /* Start offset for remote checksum offload */
2543         u16     gro_remcsum_start;
2544
2545         /* jiffies when first packet was created/queued */
2546         unsigned long age;
2547
2548         /* Used in ipv6_gro_receive() and foo-over-udp */
2549         u16     proto;
2550
2551         /* This is non-zero if the packet may be of the same flow. */
2552         u8      same_flow:1;
2553
2554         /* Used in tunnel GRO receive */
2555         u8      encap_mark:1;
2556
2557         /* GRO checksum is valid */
2558         u8      csum_valid:1;
2559
2560         /* Number of checksums via CHECKSUM_UNNECESSARY */
2561         u8      csum_cnt:3;
2562
2563         /* Free the skb? */
2564         u8      free:2;
2565 #define NAPI_GRO_FREE             1
2566 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2567
2568         /* Used in foo-over-udp, set in udp[46]_gro_receive */
2569         u8      is_ipv6:1;
2570
2571         /* Used in GRE, set in fou/gue_gro_receive */
2572         u8      is_fou:1;
2573
2574         /* Used to determine if flush_id can be ignored */
2575         u8      is_atomic:1;
2576
2577         /* Number of gro_receive callbacks this packet already went through */
2578         u8 recursion_counter:4;
2579
2580         /* GRO is done by frag_list pointer chaining. */
2581         u8      is_flist:1;
2582
2583         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2584         __wsum  csum;
2585
2586         /* used in skb_gro_receive() slow path */
2587         struct sk_buff *last;
2588 };
2589
2590 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2591
2592 #define GRO_RECURSION_LIMIT 15
2593 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2594 {
2595         return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2596 }
2597
2598 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2599 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2600                                                struct list_head *head,
2601                                                struct sk_buff *skb)
2602 {
2603         if (unlikely(gro_recursion_inc_test(skb))) {
2604                 NAPI_GRO_CB(skb)->flush |= 1;
2605                 return NULL;
2606         }
2607
2608         return cb(head, skb);
2609 }
2610
2611 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2612                                             struct sk_buff *);
2613 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2614                                                   struct sock *sk,
2615                                                   struct list_head *head,
2616                                                   struct sk_buff *skb)
2617 {
2618         if (unlikely(gro_recursion_inc_test(skb))) {
2619                 NAPI_GRO_CB(skb)->flush |= 1;
2620                 return NULL;
2621         }
2622
2623         return cb(sk, head, skb);
2624 }
2625
2626 struct packet_type {
2627         __be16                  type;   /* This is really htons(ether_type). */
2628         bool                    ignore_outgoing;
2629         struct net_device       *dev;   /* NULL is wildcarded here           */
2630         int                     (*func) (struct sk_buff *,
2631                                          struct net_device *,
2632                                          struct packet_type *,
2633                                          struct net_device *);
2634         void                    (*list_func) (struct list_head *,
2635                                               struct packet_type *,
2636                                               struct net_device *);
2637         bool                    (*id_match)(struct packet_type *ptype,
2638                                             struct sock *sk);
2639         struct net              *af_packet_net;
2640         void                    *af_packet_priv;
2641         struct list_head        list;
2642 };
2643
2644 struct offload_callbacks {
2645         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2646                                                 netdev_features_t features);
2647         struct sk_buff          *(*gro_receive)(struct list_head *head,
2648                                                 struct sk_buff *skb);
2649         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2650 };
2651
2652 struct packet_offload {
2653         __be16                   type;  /* This is really htons(ether_type). */
2654         u16                      priority;
2655         struct offload_callbacks callbacks;
2656         struct list_head         list;
2657 };
2658
2659 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2660 struct pcpu_sw_netstats {
2661         u64     rx_packets;
2662         u64     rx_bytes;
2663         u64     tx_packets;
2664         u64     tx_bytes;
2665         struct u64_stats_sync   syncp;
2666 } __aligned(4 * sizeof(u64));
2667
2668 struct pcpu_lstats {
2669         u64_stats_t packets;
2670         u64_stats_t bytes;
2671         struct u64_stats_sync syncp;
2672 } __aligned(2 * sizeof(u64));
2673
2674 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2675
2676 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2677 {
2678         struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2679
2680         u64_stats_update_begin(&tstats->syncp);
2681         tstats->rx_bytes += len;
2682         tstats->rx_packets++;
2683         u64_stats_update_end(&tstats->syncp);
2684 }
2685
2686 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2687                                           unsigned int packets,
2688                                           unsigned int len)
2689 {
2690         struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2691
2692         u64_stats_update_begin(&tstats->syncp);
2693         tstats->tx_bytes += len;
2694         tstats->tx_packets += packets;
2695         u64_stats_update_end(&tstats->syncp);
2696 }
2697
2698 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2699 {
2700         struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2701
2702         u64_stats_update_begin(&lstats->syncp);
2703         u64_stats_add(&lstats->bytes, len);
2704         u64_stats_inc(&lstats->packets);
2705         u64_stats_update_end(&lstats->syncp);
2706 }
2707
2708 #define __netdev_alloc_pcpu_stats(type, gfp)                            \
2709 ({                                                                      \
2710         typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2711         if (pcpu_stats) {                                               \
2712                 int __cpu;                                              \
2713                 for_each_possible_cpu(__cpu) {                          \
2714                         typeof(type) *stat;                             \
2715                         stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2716                         u64_stats_init(&stat->syncp);                   \
2717                 }                                                       \
2718         }                                                               \
2719         pcpu_stats;                                                     \
2720 })
2721
2722 #define netdev_alloc_pcpu_stats(type)                                   \
2723         __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2724
2725 #define devm_netdev_alloc_pcpu_stats(dev, type)                         \
2726 ({                                                                      \
2727         typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2728         if (pcpu_stats) {                                               \
2729                 int __cpu;                                              \
2730                 for_each_possible_cpu(__cpu) {                          \
2731                         typeof(type) *stat;                             \
2732                         stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2733                         u64_stats_init(&stat->syncp);                   \
2734                 }                                                       \
2735         }                                                               \
2736         pcpu_stats;                                                     \
2737 })
2738
2739 enum netdev_lag_tx_type {
2740         NETDEV_LAG_TX_TYPE_UNKNOWN,
2741         NETDEV_LAG_TX_TYPE_RANDOM,
2742         NETDEV_LAG_TX_TYPE_BROADCAST,
2743         NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2744         NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2745         NETDEV_LAG_TX_TYPE_HASH,
2746 };
2747
2748 enum netdev_lag_hash {
2749         NETDEV_LAG_HASH_NONE,
2750         NETDEV_LAG_HASH_L2,
2751         NETDEV_LAG_HASH_L34,
2752         NETDEV_LAG_HASH_L23,
2753         NETDEV_LAG_HASH_E23,
2754         NETDEV_LAG_HASH_E34,
2755         NETDEV_LAG_HASH_VLAN_SRCMAC,
2756         NETDEV_LAG_HASH_UNKNOWN,
2757 };
2758
2759 struct netdev_lag_upper_info {
2760         enum netdev_lag_tx_type tx_type;
2761         enum netdev_lag_hash hash_type;
2762 };
2763
2764 struct netdev_lag_lower_state_info {
2765         u8 link_up : 1,
2766            tx_enabled : 1;
2767 };
2768
2769 #include <linux/notifier.h>
2770
2771 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2772  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2773  * adding new types.
2774  */
2775 enum netdev_cmd {
2776         NETDEV_UP       = 1,    /* For now you can't veto a device up/down */
2777         NETDEV_DOWN,
2778         NETDEV_REBOOT,          /* Tell a protocol stack a network interface
2779                                    detected a hardware crash and restarted
2780                                    - we can use this eg to kick tcp sessions
2781                                    once done */
2782         NETDEV_CHANGE,          /* Notify device state change */
2783         NETDEV_REGISTER,
2784         NETDEV_UNREGISTER,
2785         NETDEV_CHANGEMTU,       /* notify after mtu change happened */
2786         NETDEV_CHANGEADDR,      /* notify after the address change */
2787         NETDEV_PRE_CHANGEADDR,  /* notify before the address change */
2788         NETDEV_GOING_DOWN,
2789         NETDEV_CHANGENAME,
2790         NETDEV_FEAT_CHANGE,
2791         NETDEV_BONDING_FAILOVER,
2792         NETDEV_PRE_UP,
2793         NETDEV_PRE_TYPE_CHANGE,
2794         NETDEV_POST_TYPE_CHANGE,
2795         NETDEV_POST_INIT,
2796         NETDEV_RELEASE,
2797         NETDEV_NOTIFY_PEERS,
2798         NETDEV_JOIN,
2799         NETDEV_CHANGEUPPER,
2800         NETDEV_RESEND_IGMP,
2801         NETDEV_PRECHANGEMTU,    /* notify before mtu change happened */
2802         NETDEV_CHANGEINFODATA,
2803         NETDEV_BONDING_INFO,
2804         NETDEV_PRECHANGEUPPER,
2805         NETDEV_CHANGELOWERSTATE,
2806         NETDEV_UDP_TUNNEL_PUSH_INFO,
2807         NETDEV_UDP_TUNNEL_DROP_INFO,
2808         NETDEV_CHANGE_TX_QUEUE_LEN,
2809         NETDEV_CVLAN_FILTER_PUSH_INFO,
2810         NETDEV_CVLAN_FILTER_DROP_INFO,
2811         NETDEV_SVLAN_FILTER_PUSH_INFO,
2812         NETDEV_SVLAN_FILTER_DROP_INFO,
2813 };
2814 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2815
2816 int register_netdevice_notifier(struct notifier_block *nb);
2817 int unregister_netdevice_notifier(struct notifier_block *nb);
2818 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2819 int unregister_netdevice_notifier_net(struct net *net,
2820                                       struct notifier_block *nb);
2821 int register_netdevice_notifier_dev_net(struct net_device *dev,
2822                                         struct notifier_block *nb,
2823                                         struct netdev_net_notifier *nn);
2824 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2825                                           struct notifier_block *nb,
2826                                           struct netdev_net_notifier *nn);
2827
2828 struct netdev_notifier_info {
2829         struct net_device       *dev;
2830         struct netlink_ext_ack  *extack;
2831 };
2832
2833 struct netdev_notifier_info_ext {
2834         struct netdev_notifier_info info; /* must be first */
2835         union {
2836                 u32 mtu;
2837         } ext;
2838 };
2839
2840 struct netdev_notifier_change_info {
2841         struct netdev_notifier_info info; /* must be first */
2842         unsigned int flags_changed;
2843 };
2844
2845 struct netdev_notifier_changeupper_info {
2846         struct netdev_notifier_info info; /* must be first */
2847         struct net_device *upper_dev; /* new upper dev */
2848         bool master; /* is upper dev master */
2849         bool linking; /* is the notification for link or unlink */
2850         void *upper_info; /* upper dev info */
2851 };
2852
2853 struct netdev_notifier_changelowerstate_info {
2854         struct netdev_notifier_info info; /* must be first */
2855         void *lower_state_info; /* is lower dev state */
2856 };
2857
2858 struct netdev_notifier_pre_changeaddr_info {
2859         struct netdev_notifier_info info; /* must be first */
2860         const unsigned char *dev_addr;
2861 };
2862
2863 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2864                                              struct net_device *dev)
2865 {
2866         info->dev = dev;
2867         info->extack = NULL;
2868 }
2869
2870 static inline struct net_device *
2871 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2872 {
2873         return info->dev;
2874 }
2875
2876 static inline struct netlink_ext_ack *
2877 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2878 {
2879         return info->extack;
2880 }
2881
2882 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2883
2884
2885 extern rwlock_t                         dev_base_lock;          /* Device list lock */
2886
2887 #define for_each_netdev(net, d)         \
2888                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2889 #define for_each_netdev_reverse(net, d) \
2890                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2891 #define for_each_netdev_rcu(net, d)             \
2892                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2893 #define for_each_netdev_safe(net, d, n) \
2894                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2895 #define for_each_netdev_continue(net, d)                \
2896                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2897 #define for_each_netdev_continue_reverse(net, d)                \
2898                 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2899                                                      dev_list)
2900 #define for_each_netdev_continue_rcu(net, d)            \
2901         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2902 #define for_each_netdev_in_bond_rcu(bond, slave)        \
2903                 for_each_netdev_rcu(&init_net, slave)   \
2904                         if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2905 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2906
2907 static inline struct net_device *next_net_device(struct net_device *dev)
2908 {
2909         struct list_head *lh;
2910         struct net *net;
2911
2912         net = dev_net(dev);
2913         lh = dev->dev_list.next;
2914         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2915 }
2916
2917 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2918 {
2919         struct list_head *lh;
2920         struct net *net;
2921
2922         net = dev_net(dev);
2923         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2924         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2925 }
2926
2927 static inline struct net_device *first_net_device(struct net *net)
2928 {
2929         return list_empty(&net->dev_base_head) ? NULL :
2930                 net_device_entry(net->dev_base_head.next);
2931 }
2932
2933 static inline struct net_device *first_net_device_rcu(struct net *net)
2934 {
2935         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2936
2937         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2938 }
2939
2940 int netdev_boot_setup_check(struct net_device *dev);
2941 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2942                                        const char *hwaddr);
2943 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2944 void dev_add_pack(struct packet_type *pt);
2945 void dev_remove_pack(struct packet_type *pt);
2946 void __dev_remove_pack(struct packet_type *pt);
2947 void dev_add_offload(struct packet_offload *po);
2948 void dev_remove_offload(struct packet_offload *po);
2949
2950 int dev_get_iflink(const struct net_device *dev);
2951 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2952 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2953                           struct net_device_path_stack *stack);
2954 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2955                                       unsigned short mask);
2956 struct net_device *dev_get_by_name(struct net *net, const char *name);
2957 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2958 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2959 int dev_alloc_name(struct net_device *dev, const char *name);
2960 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2961 void dev_close(struct net_device *dev);
2962 void dev_close_many(struct list_head *head, bool unlink);
2963 void dev_disable_lro(struct net_device *dev);
2964 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2965 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2966                      struct net_device *sb_dev);
2967 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2968                        struct net_device *sb_dev);
2969
2970 int dev_queue_xmit(struct sk_buff *skb);
2971 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2972 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2973
2974 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
2975 {
2976         int ret;
2977
2978         ret = __dev_direct_xmit(skb, queue_id);
2979         if (!dev_xmit_complete(ret))
2980                 kfree_skb(skb);
2981         return ret;
2982 }
2983
2984 int register_netdevice(struct net_device *dev);
2985 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2986 void unregister_netdevice_many(struct list_head *head);
2987 static inline void unregister_netdevice(struct net_device *dev)
2988 {
2989         unregister_netdevice_queue(dev, NULL);
2990 }
2991
2992 int netdev_refcnt_read(const struct net_device *dev);
2993 void free_netdev(struct net_device *dev);
2994 void netdev_freemem(struct net_device *dev);
2995 int init_dummy_netdev(struct net_device *dev);
2996
2997 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2998                                          struct sk_buff *skb,
2999                                          bool all_slaves);
3000 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3001                                             struct sock *sk);
3002 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3003 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3004 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3005 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3006 int netdev_get_name(struct net *net, char *name, int ifindex);
3007 int dev_restart(struct net_device *dev);
3008 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
3009 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
3010
3011 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
3012 {
3013         return NAPI_GRO_CB(skb)->data_offset;
3014 }
3015
3016 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
3017 {
3018         return skb->len - NAPI_GRO_CB(skb)->data_offset;
3019 }
3020
3021 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
3022 {
3023         NAPI_GRO_CB(skb)->data_offset += len;
3024 }
3025
3026 static inline void *skb_gro_header_fast(struct sk_buff *skb,
3027                                         unsigned int offset)
3028 {
3029         return NAPI_GRO_CB(skb)->frag0 + offset;
3030 }
3031
3032 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
3033 {
3034         return NAPI_GRO_CB(skb)->frag0_len < hlen;
3035 }
3036
3037 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
3038 {
3039         NAPI_GRO_CB(skb)->frag0 = NULL;
3040         NAPI_GRO_CB(skb)->frag0_len = 0;
3041 }
3042
3043 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
3044                                         unsigned int offset)
3045 {
3046         if (!pskb_may_pull(skb, hlen))
3047                 return NULL;
3048
3049         skb_gro_frag0_invalidate(skb);
3050         return skb->data + offset;
3051 }
3052
3053 static inline void *skb_gro_network_header(struct sk_buff *skb)
3054 {
3055         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
3056                skb_network_offset(skb);
3057 }
3058
3059 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
3060                                         const void *start, unsigned int len)
3061 {
3062         if (NAPI_GRO_CB(skb)->csum_valid)
3063                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
3064                                                   csum_partial(start, len, 0));
3065 }
3066
3067 /* GRO checksum functions. These are logical equivalents of the normal
3068  * checksum functions (in skbuff.h) except that they operate on the GRO
3069  * offsets and fields in sk_buff.
3070  */
3071
3072 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
3073
3074 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
3075 {
3076         return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
3077 }
3078
3079 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
3080                                                       bool zero_okay,
3081                                                       __sum16 check)
3082 {
3083         return ((skb->ip_summed != CHECKSUM_PARTIAL ||
3084                 skb_checksum_start_offset(skb) <
3085                  skb_gro_offset(skb)) &&
3086                 !skb_at_gro_remcsum_start(skb) &&
3087                 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3088                 (!zero_okay || check));
3089 }
3090
3091 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
3092                                                            __wsum psum)
3093 {
3094         if (NAPI_GRO_CB(skb)->csum_valid &&
3095             !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
3096                 return 0;
3097
3098         NAPI_GRO_CB(skb)->csum = psum;
3099
3100         return __skb_gro_checksum_complete(skb);
3101 }
3102
3103 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
3104 {
3105         if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
3106                 /* Consume a checksum from CHECKSUM_UNNECESSARY */
3107                 NAPI_GRO_CB(skb)->csum_cnt--;
3108         } else {
3109                 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
3110                  * verified a new top level checksum or an encapsulated one
3111                  * during GRO. This saves work if we fallback to normal path.
3112                  */
3113                 __skb_incr_checksum_unnecessary(skb);
3114         }
3115 }
3116
3117 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
3118                                     compute_pseudo)                     \
3119 ({                                                                      \
3120         __sum16 __ret = 0;                                              \
3121         if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
3122                 __ret = __skb_gro_checksum_validate_complete(skb,       \
3123                                 compute_pseudo(skb, proto));            \
3124         if (!__ret)                                                     \
3125                 skb_gro_incr_csum_unnecessary(skb);                     \
3126         __ret;                                                          \
3127 })
3128
3129 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
3130         __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
3131
3132 #define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
3133                                              compute_pseudo)            \
3134         __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
3135
3136 #define skb_gro_checksum_simple_validate(skb)                           \
3137         __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
3138
3139 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
3140 {
3141         return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
3142                 !NAPI_GRO_CB(skb)->csum_valid);
3143 }
3144
3145 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
3146                                               __wsum pseudo)
3147 {
3148         NAPI_GRO_CB(skb)->csum = ~pseudo;
3149         NAPI_GRO_CB(skb)->csum_valid = 1;
3150 }
3151
3152 #define skb_gro_checksum_try_convert(skb, proto, compute_pseudo)        \
3153 do {                                                                    \
3154         if (__skb_gro_checksum_convert_check(skb))                      \
3155                 __skb_gro_checksum_convert(skb,                         \
3156                                            compute_pseudo(skb, proto)); \
3157 } while (0)
3158
3159 struct gro_remcsum {
3160         int offset;
3161         __wsum delta;
3162 };
3163
3164 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
3165 {
3166         grc->offset = 0;
3167         grc->delta = 0;
3168 }
3169
3170 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
3171                                             unsigned int off, size_t hdrlen,
3172                                             int start, int offset,
3173                                             struct gro_remcsum *grc,
3174                                             bool nopartial)
3175 {
3176         __wsum delta;
3177         size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
3178
3179         BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
3180
3181         if (!nopartial) {
3182                 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
3183                 return ptr;
3184         }
3185
3186         ptr = skb_gro_header_fast(skb, off);
3187         if (skb_gro_header_hard(skb, off + plen)) {
3188                 ptr = skb_gro_header_slow(skb, off + plen, off);
3189                 if (!ptr)
3190                         return NULL;
3191         }
3192
3193         delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
3194                                start, offset);
3195
3196         /* Adjust skb->csum since we changed the packet */
3197         NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
3198
3199         grc->offset = off + hdrlen + offset;
3200         grc->delta = delta;
3201
3202         return ptr;
3203 }
3204
3205 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
3206                                            struct gro_remcsum *grc)
3207 {
3208         void *ptr;
3209         size_t plen = grc->offset + sizeof(u16);
3210
3211         if (!grc->delta)
3212                 return;
3213
3214         ptr = skb_gro_header_fast(skb, grc->offset);
3215         if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
3216                 ptr = skb_gro_header_slow(skb, plen, grc->offset);
3217                 if (!ptr)
3218                         return;
3219         }
3220
3221         remcsum_unadjust((__sum16 *)ptr, grc->delta);
3222 }
3223
3224 #ifdef CONFIG_XFRM_OFFLOAD
3225 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3226 {
3227         if (PTR_ERR(pp) != -EINPROGRESS)
3228                 NAPI_GRO_CB(skb)->flush |= flush;
3229 }
3230 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3231                                                struct sk_buff *pp,
3232                                                int flush,
3233                                                struct gro_remcsum *grc)
3234 {
3235         if (PTR_ERR(pp) != -EINPROGRESS) {
3236                 NAPI_GRO_CB(skb)->flush |= flush;
3237                 skb_gro_remcsum_cleanup(skb, grc);
3238                 skb->remcsum_offload = 0;
3239         }
3240 }
3241 #else
3242 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3243 {
3244         NAPI_GRO_CB(skb)->flush |= flush;
3245 }
3246 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3247                                                struct sk_buff *pp,
3248                                                int flush,
3249                                                struct gro_remcsum *grc)
3250 {
3251         NAPI_GRO_CB(skb)->flush |= flush;
3252         skb_gro_remcsum_cleanup(skb, grc);
3253         skb->remcsum_offload = 0;
3254 }
3255 #endif
3256
3257 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3258                                   unsigned short type,
3259                                   const void *daddr, const void *saddr,
3260                                   unsigned int len)
3261 {
3262         if (!dev->header_ops || !dev->header_ops->create)
3263                 return 0;
3264
3265         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3266 }
3267
3268 static inline int dev_parse_header(const struct sk_buff *skb,
3269                                    unsigned char *haddr)
3270 {
3271         const struct net_device *dev = skb->dev;
3272
3273         if (!dev->header_ops || !dev->header_ops->parse)
3274                 return 0;
3275         return dev->header_ops->parse(skb, haddr);
3276 }
3277
3278 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3279 {
3280         const struct net_device *dev = skb->dev;
3281
3282         if (!dev->header_ops || !dev->header_ops->parse_protocol)
3283                 return 0;
3284         return dev->header_ops->parse_protocol(skb);
3285 }
3286
3287 /* ll_header must have at least hard_header_len allocated */
3288 static inline bool dev_validate_header(const struct net_device *dev,
3289                                        char *ll_header, int len)
3290 {
3291         if (likely(len >= dev->hard_header_len))
3292                 return true;
3293         if (len < dev->min_header_len)
3294                 return false;
3295
3296         if (capable(CAP_SYS_RAWIO)) {
3297                 memset(ll_header + len, 0, dev->hard_header_len - len);
3298                 return true;
3299         }
3300
3301         if (dev->header_ops && dev->header_ops->validate)
3302                 return dev->header_ops->validate(ll_header, len);
3303
3304         return false;
3305 }
3306
3307 static inline bool dev_has_header(const struct net_device *dev)
3308 {
3309         return dev->header_ops && dev->header_ops->create;
3310 }
3311
3312 #ifdef CONFIG_NET_FLOW_LIMIT
3313 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
3314 struct sd_flow_limit {
3315         u64                     count;
3316         unsigned int            num_buckets;
3317         unsigned int            history_head;
3318         u16                     history[FLOW_LIMIT_HISTORY];
3319         u8                      buckets[];
3320 };
3321
3322 extern int netdev_flow_limit_table_len;
3323 #endif /* CONFIG_NET_FLOW_LIMIT */
3324
3325 /*
3326  * Incoming packets are placed on per-CPU queues
3327  */
3328 struct softnet_data {
3329         struct list_head        poll_list;
3330         struct sk_buff_head     process_queue;
3331
3332         /* stats */
3333         unsigned int            processed;
3334         unsigned int            time_squeeze;
3335         unsigned int            received_rps;
3336 #ifdef CONFIG_RPS
3337         struct softnet_data     *rps_ipi_list;
3338 #endif
3339 #ifdef CONFIG_NET_FLOW_LIMIT
3340         struct sd_flow_limit __rcu *flow_limit;
3341 #endif
3342         struct Qdisc            *output_queue;
3343         struct Qdisc            **output_queue_tailp;
3344         struct sk_buff          *completion_queue;
3345 #ifdef CONFIG_XFRM_OFFLOAD
3346         struct sk_buff_head     xfrm_backlog;
3347 #endif
3348         /* written and read only by owning cpu: */
3349         struct {
3350                 u16 recursion;
3351                 u8  more;
3352         } xmit;
3353 #ifdef CONFIG_RPS
3354         /* input_queue_head should be written by cpu owning this struct,
3355          * and only read by other cpus. Worth using a cache line.
3356          */
3357         unsigned int            input_queue_head ____cacheline_aligned_in_smp;
3358
3359         /* Elements below can be accessed between CPUs for RPS/RFS */
3360         call_single_data_t      csd ____cacheline_aligned_in_smp;
3361         struct softnet_data     *rps_ipi_next;
3362         unsigned int            cpu;
3363         unsigned int            input_queue_tail;
3364 #endif
3365         unsigned int            dropped;
3366         struct sk_buff_head     input_pkt_queue;
3367         struct napi_struct      backlog;
3368
3369 };
3370
3371 static inline void input_queue_head_incr(struct softnet_data *sd)
3372 {
3373 #ifdef CONFIG_RPS
3374         sd->input_queue_head++;
3375 #endif
3376 }
3377
3378 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3379                                               unsigned int *qtail)
3380 {
3381 #ifdef CONFIG_RPS
3382         *qtail = ++sd->input_queue_tail;
3383 #endif
3384 }
3385
3386 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3387
3388 static inline int dev_recursion_level(void)
3389 {
3390         return this_cpu_read(softnet_data.xmit.recursion);
3391 }
3392
3393 #define XMIT_RECURSION_LIMIT    8
3394 static inline bool dev_xmit_recursion(void)
3395 {
3396         return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3397                         XMIT_RECURSION_LIMIT);
3398 }
3399
3400 static inline void dev_xmit_recursion_inc(void)
3401 {
3402         __this_cpu_inc(softnet_data.xmit.recursion);
3403 }
3404
3405 static inline void dev_xmit_recursion_dec(void)
3406 {
3407         __this_cpu_dec(softnet_data.xmit.recursion);
3408 }
3409
3410 void __netif_schedule(struct Qdisc *q);
3411 void netif_schedule_queue(struct netdev_queue *txq);
3412
3413 static inline void netif_tx_schedule_all(struct net_device *dev)
3414 {
3415         unsigned int i;
3416
3417         for (i = 0; i < dev->num_tx_queues; i++)
3418                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3419 }
3420
3421 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3422 {
3423         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3424 }
3425
3426 /**
3427  *      netif_start_queue - allow transmit
3428  *      @dev: network device
3429  *
3430  *      Allow upper layers to call the device hard_start_xmit routine.
3431  */
3432 static inline void netif_start_queue(struct net_device *dev)
3433 {
3434         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3435 }
3436
3437 static inline void netif_tx_start_all_queues(struct net_device *dev)
3438 {
3439         unsigned int i;
3440
3441         for (i = 0; i < dev->num_tx_queues; i++) {
3442                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3443                 netif_tx_start_queue(txq);
3444         }
3445 }
3446
3447 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3448
3449 /**
3450  *      netif_wake_queue - restart transmit
3451  *      @dev: network device
3452  *
3453  *      Allow upper layers to call the device hard_start_xmit routine.
3454  *      Used for flow control when transmit resources are available.
3455  */
3456 static inline void netif_wake_queue(struct net_device *dev)
3457 {
3458         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3459 }
3460
3461 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3462 {
3463         unsigned int i;
3464
3465         for (i = 0; i < dev->num_tx_queues; i++) {
3466                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3467                 netif_tx_wake_queue(txq);
3468         }
3469 }
3470
3471 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3472 {
3473         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3474 }
3475
3476 /**
3477  *      netif_stop_queue - stop transmitted packets
3478  *      @dev: network device
3479  *
3480  *      Stop upper layers calling the device hard_start_xmit routine.
3481  *      Used for flow control when transmit resources are unavailable.
3482  */
3483 static inline void netif_stop_queue(struct net_device *dev)
3484 {
3485         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3486 }
3487
3488 void netif_tx_stop_all_queues(struct net_device *dev);
3489
3490 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3491 {
3492         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3493 }
3494
3495 /**
3496  *      netif_queue_stopped - test if transmit queue is flowblocked
3497  *      @dev: network device
3498  *
3499  *      Test if transmit queue on device is currently unable to send.
3500  */
3501 static inline bool netif_queue_stopped(const struct net_device *dev)
3502 {
3503         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3504 }
3505
3506 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3507 {
3508         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3509 }
3510
3511 static inline bool
3512 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3513 {
3514         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3515 }
3516
3517 static inline bool
3518 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3519 {
3520         return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3521 }
3522
3523 /**
3524  *      netdev_queue_set_dql_min_limit - set dql minimum limit
3525  *      @dev_queue: pointer to transmit queue
3526  *      @min_limit: dql minimum limit
3527  *
3528  * Forces xmit_more() to return true until the minimum threshold
3529  * defined by @min_limit is reached (or until the tx queue is
3530  * empty). Warning: to be use with care, misuse will impact the
3531  * latency.
3532  */
3533 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3534                                                   unsigned int min_limit)
3535 {
3536 #ifdef CONFIG_BQL
3537         dev_queue->dql.min_limit = min_limit;
3538 #endif
3539 }
3540
3541 /**
3542  *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3543  *      @dev_queue: pointer to transmit queue
3544  *
3545  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3546  * to give appropriate hint to the CPU.
3547  */
3548 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3549 {
3550 #ifdef CONFIG_BQL
3551         prefetchw(&dev_queue->dql.num_queued);
3552 #endif
3553 }
3554
3555 /**
3556  *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3557  *      @dev_queue: pointer to transmit queue
3558  *
3559  * BQL enabled drivers might use this helper in their TX completion path,
3560  * to give appropriate hint to the CPU.
3561  */
3562 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3563 {
3564 #ifdef CONFIG_BQL
3565         prefetchw(&dev_queue->dql.limit);
3566 #endif
3567 }
3568
3569 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3570                                         unsigned int bytes)
3571 {
3572 #ifdef CONFIG_BQL
3573         dql_queued(&dev_queue->dql, bytes);
3574
3575         if (likely(dql_avail(&dev_queue->dql) >= 0))
3576                 return;
3577
3578         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3579
3580         /*
3581          * The XOFF flag must be set before checking the dql_avail below,
3582          * because in netdev_tx_completed_queue we update the dql_completed
3583          * before checking the XOFF flag.
3584          */
3585         smp_mb();
3586
3587         /* check again in case another CPU has just made room avail */
3588         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3589                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3590 #endif
3591 }
3592
3593 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3594  * that they should not test BQL status themselves.
3595  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3596  * skb of a batch.
3597  * Returns true if the doorbell must be used to kick the NIC.
3598  */
3599 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3600                                           unsigned int bytes,
3601                                           bool xmit_more)
3602 {
3603         if (xmit_more) {
3604 #ifdef CONFIG_BQL
3605                 dql_queued(&dev_queue->dql, bytes);
3606 #endif
3607                 return netif_tx_queue_stopped(dev_queue);
3608         }
3609         netdev_tx_sent_queue(dev_queue, bytes);
3610         return true;
3611 }
3612
3613 /**
3614  *      netdev_sent_queue - report the number of bytes queued to hardware
3615  *      @dev: network device
3616  *      @bytes: number of bytes queued to the hardware device queue
3617  *
3618  *      Report the number of bytes queued for sending/completion to the network
3619  *      device hardware queue. @bytes should be a good approximation and should
3620  *      exactly match netdev_completed_queue() @bytes
3621  */
3622 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3623 {
3624         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3625 }
3626
3627 static inline bool __netdev_sent_queue(struct net_device *dev,
3628                                        unsigned int bytes,
3629                                        bool xmit_more)
3630 {
3631         return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3632                                       xmit_more);
3633 }
3634
3635 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3636                                              unsigned int pkts, unsigned int bytes)
3637 {
3638 #ifdef CONFIG_BQL
3639         if (unlikely(!bytes))
3640                 return;
3641
3642         dql_completed(&dev_queue->dql, bytes);
3643
3644         /*
3645          * Without the memory barrier there is a small possiblity that
3646          * netdev_tx_sent_queue will miss the update and cause the queue to
3647          * be stopped forever
3648          */
3649         smp_mb();
3650
3651         if (unlikely(dql_avail(&dev_queue->dql) < 0))
3652                 return;
3653
3654         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3655                 netif_schedule_queue(dev_queue);
3656 #endif
3657 }
3658
3659 /**
3660  *      netdev_completed_queue - report bytes and packets completed by device
3661  *      @dev: network device
3662  *      @pkts: actual number of packets sent over the medium
3663  *      @bytes: actual number of bytes sent over the medium
3664  *
3665  *      Report the number of bytes and packets transmitted by the network device
3666  *      hardware queue over the physical medium, @bytes must exactly match the
3667  *      @bytes amount passed to netdev_sent_queue()
3668  */
3669 static inline void netdev_completed_queue(struct net_device *dev,
3670                                           unsigned int pkts, unsigned int bytes)
3671 {
3672         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3673 }
3674
3675 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3676 {
3677 #ifdef CONFIG_BQL
3678         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3679         dql_reset(&q->dql);
3680 #endif
3681 }
3682
3683 /**
3684  *      netdev_reset_queue - reset the packets and bytes count of a network device
3685  *      @dev_queue: network device
3686  *
3687  *      Reset the bytes and packet count of a network device and clear the
3688  *      software flow control OFF bit for this network device
3689  */
3690 static inline void netdev_reset_queue(struct net_device *dev_queue)
3691 {
3692         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3693 }
3694
3695 /**
3696  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
3697  *      @dev: network device
3698  *      @queue_index: given tx queue index
3699  *
3700  *      Returns 0 if given tx queue index >= number of device tx queues,
3701  *      otherwise returns the originally passed tx queue index.
3702  */
3703 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3704 {
3705         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3706                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3707                                      dev->name, queue_index,
3708                                      dev->real_num_tx_queues);
3709                 return 0;
3710         }
3711
3712         return queue_index;
3713 }
3714
3715 /**
3716  *      netif_running - test if up
3717  *      @dev: network device
3718  *
3719  *      Test if the device has been brought up.
3720  */
3721 static inline bool netif_running(const struct net_device *dev)
3722 {
3723         return test_bit(__LINK_STATE_START, &dev->state);
3724 }
3725
3726 /*
3727  * Routines to manage the subqueues on a device.  We only need start,
3728  * stop, and a check if it's stopped.  All other device management is
3729  * done at the overall netdevice level.
3730  * Also test the device if we're multiqueue.
3731  */
3732
3733 /**
3734  *      netif_start_subqueue - allow sending packets on subqueue
3735  *      @dev: network device
3736  *      @queue_index: sub queue index
3737  *
3738  * Start individual transmit queue of a device with multiple transmit queues.
3739  */
3740 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3741 {
3742         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3743
3744         netif_tx_start_queue(txq);
3745 }
3746
3747 /**
3748  *      netif_stop_subqueue - stop sending packets on subqueue
3749  *      @dev: network device
3750  *      @queue_index: sub queue index
3751  *
3752  * Stop individual transmit queue of a device with multiple transmit queues.
3753  */
3754 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3755 {
3756         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3757         netif_tx_stop_queue(txq);
3758 }
3759
3760 /**
3761  *      __netif_subqueue_stopped - test status of subqueue
3762  *      @dev: network device
3763  *      @queue_index: sub queue index
3764  *
3765  * Check individual transmit queue of a device with multiple transmit queues.
3766  */
3767 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3768                                             u16 queue_index)
3769 {
3770         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3771
3772         return netif_tx_queue_stopped(txq);
3773 }
3774
3775 /**
3776  *      netif_subqueue_stopped - test status of subqueue
3777  *      @dev: network device
3778  *      @skb: sub queue buffer pointer
3779  *
3780  * Check individual transmit queue of a device with multiple transmit queues.
3781  */
3782 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3783                                           struct sk_buff *skb)
3784 {
3785         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3786 }
3787
3788 /**
3789  *      netif_wake_subqueue - allow sending packets on subqueue
3790  *      @dev: network device
3791  *      @queue_index: sub queue index
3792  *
3793  * Resume individual transmit queue of a device with multiple transmit queues.
3794  */
3795 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3796 {
3797         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3798
3799         netif_tx_wake_queue(txq);
3800 }
3801
3802 #ifdef CONFIG_XPS
3803 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3804                         u16 index);
3805 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3806                           u16 index, enum xps_map_type type);
3807
3808 /**
3809  *      netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3810  *      @j: CPU/Rx queue index
3811  *      @mask: bitmask of all cpus/rx queues
3812  *      @nr_bits: number of bits in the bitmask
3813  *
3814  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3815  */
3816 static inline bool netif_attr_test_mask(unsigned long j,
3817                                         const unsigned long *mask,
3818                                         unsigned int nr_bits)
3819 {
3820         cpu_max_bits_warn(j, nr_bits);
3821         return test_bit(j, mask);
3822 }
3823
3824 /**
3825  *      netif_attr_test_online - Test for online CPU/Rx queue
3826  *      @j: CPU/Rx queue index
3827  *      @online_mask: bitmask for CPUs/Rx queues that are online
3828  *      @nr_bits: number of bits in the bitmask
3829  *
3830  * Returns true if a CPU/Rx queue is online.
3831  */
3832 static inline bool netif_attr_test_online(unsigned long j,
3833                                           const unsigned long *online_mask,
3834                                           unsigned int nr_bits)
3835 {
3836         cpu_max_bits_warn(j, nr_bits);
3837
3838         if (online_mask)
3839                 return test_bit(j, online_mask);
3840
3841         return (j < nr_bits);
3842 }
3843
3844 /**
3845  *      netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3846  *      @n: CPU/Rx queue index
3847  *      @srcp: the cpumask/Rx queue mask pointer
3848  *      @nr_bits: number of bits in the bitmask
3849  *
3850  * Returns >= nr_bits if no further CPUs/Rx queues set.
3851  */
3852 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3853                                                unsigned int nr_bits)
3854 {
3855         /* -1 is a legal arg here. */
3856         if (n != -1)
3857                 cpu_max_bits_warn(n, nr_bits);
3858
3859         if (srcp)
3860                 return find_next_bit(srcp, nr_bits, n + 1);
3861
3862         return n + 1;
3863 }
3864
3865 /**
3866  *      netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3867  *      @n: CPU/Rx queue index
3868  *      @src1p: the first CPUs/Rx queues mask pointer
3869  *      @src2p: the second CPUs/Rx queues mask pointer
3870  *      @nr_bits: number of bits in the bitmask
3871  *
3872  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3873  */
3874 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3875                                           const unsigned long *src2p,
3876                                           unsigned int nr_bits)
3877 {
3878         /* -1 is a legal arg here. */
3879         if (n != -1)
3880                 cpu_max_bits_warn(n, nr_bits);
3881
3882         if (src1p && src2p)
3883                 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3884         else if (src1p)
3885                 return find_next_bit(src1p, nr_bits, n + 1);
3886         else if (src2p)
3887                 return find_next_bit(src2p, nr_bits, n + 1);
3888
3889         return n + 1;
3890 }
3891 #else
3892 static inline int netif_set_xps_queue(struct net_device *dev,
3893                                       const struct cpumask *mask,
3894                                       u16 index)
3895 {
3896         return 0;
3897 }
3898
3899 static inline int __netif_set_xps_queue(struct net_device *dev,
3900                                         const unsigned long *mask,
3901                                         u16 index, enum xps_map_type type)
3902 {
3903         return 0;
3904 }
3905 #endif
3906
3907 /**
3908  *      netif_is_multiqueue - test if device has multiple transmit queues
3909  *      @dev: network device
3910  *
3911  * Check if device has multiple transmit queues
3912  */
3913 static inline bool netif_is_multiqueue(const struct net_device *dev)
3914 {
3915         return dev->num_tx_queues > 1;
3916 }
3917
3918 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3919
3920 #ifdef CONFIG_SYSFS
3921 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3922 #else
3923 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3924                                                 unsigned int rxqs)
3925 {
3926         dev->real_num_rx_queues = rxqs;
3927         return 0;
3928 }
3929 #endif
3930 int netif_set_real_num_queues(struct net_device *dev,
3931                               unsigned int txq, unsigned int rxq);
3932
3933 static inline struct netdev_rx_queue *
3934 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3935 {
3936         return dev->_rx + rxq;
3937 }
3938
3939 #ifdef CONFIG_SYSFS
3940 static inline unsigned int get_netdev_rx_queue_index(
3941                 struct netdev_rx_queue *queue)
3942 {
3943         struct net_device *dev = queue->dev;
3944         int index = queue - dev->_rx;
3945
3946         BUG_ON(index >= dev->num_rx_queues);
3947         return index;
3948 }
3949 #endif
3950
3951 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
3952 int netif_get_num_default_rss_queues(void);
3953
3954 enum skb_free_reason {
3955         SKB_REASON_CONSUMED,
3956         SKB_REASON_DROPPED,
3957 };
3958
3959 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3960 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3961
3962 /*
3963  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3964  * interrupt context or with hardware interrupts being disabled.
3965  * (in_hardirq() || irqs_disabled())
3966  *
3967  * We provide four helpers that can be used in following contexts :
3968  *
3969  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3970  *  replacing kfree_skb(skb)
3971  *
3972  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3973  *  Typically used in place of consume_skb(skb) in TX completion path
3974  *
3975  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3976  *  replacing kfree_skb(skb)
3977  *
3978  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3979  *  and consumed a packet. Used in place of consume_skb(skb)
3980  */
3981 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3982 {
3983         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3984 }
3985
3986 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3987 {
3988         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3989 }
3990
3991 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3992 {
3993         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3994 }
3995
3996 static inline void dev_consume_skb_any(struct sk_buff *skb)
3997 {
3998         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3999 }
4000
4001 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4002                              struct bpf_prog *xdp_prog);
4003 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
4004 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
4005 int netif_rx(struct sk_buff *skb);
4006 int netif_rx_ni(struct sk_buff *skb);
4007 int netif_rx_any_context(struct sk_buff *skb);
4008 int netif_receive_skb(struct sk_buff *skb);
4009 int netif_receive_skb_core(struct sk_buff *skb);
4010 void netif_receive_skb_list(struct list_head *head);
4011 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
4012 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
4013 struct sk_buff *napi_get_frags(struct napi_struct *napi);
4014 gro_result_t napi_gro_frags(struct napi_struct *napi);
4015 struct packet_offload *gro_find_receive_by_type(__be16 type);
4016 struct packet_offload *gro_find_complete_by_type(__be16 type);
4017
4018 static inline void napi_free_frags(struct napi_struct *napi)
4019 {
4020         kfree_skb(napi->skb);
4021         napi->skb = NULL;
4022 }
4023
4024 bool netdev_is_rx_handler_busy(struct net_device *dev);
4025 int netdev_rx_handler_register(struct net_device *dev,
4026                                rx_handler_func_t *rx_handler,
4027                                void *rx_handler_data);
4028 void netdev_rx_handler_unregister(struct net_device *dev);
4029
4030 bool dev_valid_name(const char *name);
4031 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
4032 {
4033         return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
4034 }
4035 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
4036 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
4037 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
4038                 void __user *data, bool *need_copyout);
4039 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
4040 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
4041 unsigned int dev_get_flags(const struct net_device *);
4042 int __dev_change_flags(struct net_device *dev, unsigned int flags,
4043                        struct netlink_ext_ack *extack);
4044 int dev_change_flags(struct net_device *dev, unsigned int flags,
4045                      struct netlink_ext_ack *extack);
4046 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
4047                         unsigned int gchanges);
4048 int dev_change_name(struct net_device *, const char *);
4049 int dev_set_alias(struct net_device *, const char *, size_t);
4050 int dev_get_alias(const struct net_device *, char *, size_t);
4051 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4052                                const char *pat, int new_ifindex);
4053 static inline
4054 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4055                              const char *pat)
4056 {
4057         return __dev_change_net_namespace(dev, net, pat, 0);
4058 }
4059 int __dev_set_mtu(struct net_device *, int);
4060 int dev_validate_mtu(struct net_device *dev, int mtu,
4061                      struct netlink_ext_ack *extack);
4062 int dev_set_mtu_ext(struct net_device *dev, int mtu,
4063                     struct netlink_ext_ack *extack);
4064 int dev_set_mtu(struct net_device *, int);
4065 int dev_change_tx_queue_len(struct net_device *, unsigned long);
4066 void dev_set_group(struct net_device *, int);
4067 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4068                               struct netlink_ext_ack *extack);
4069 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
4070                         struct netlink_ext_ack *extack);
4071 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
4072                              struct netlink_ext_ack *extack);
4073 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4074 int dev_change_carrier(struct net_device *, bool new_carrier);
4075 int dev_get_phys_port_id(struct net_device *dev,
4076                          struct netdev_phys_item_id *ppid);
4077 int dev_get_phys_port_name(struct net_device *dev,
4078                            char *name, size_t len);
4079 int dev_get_port_parent_id(struct net_device *dev,
4080                            struct netdev_phys_item_id *ppid, bool recurse);
4081 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4082 int dev_change_proto_down(struct net_device *dev, bool proto_down);
4083 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
4084 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
4085                                   u32 value);
4086 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4087 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4088                                     struct netdev_queue *txq, int *ret);
4089
4090 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
4091 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
4092                       int fd, int expected_fd, u32 flags);
4093 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4094 u8 dev_xdp_prog_count(struct net_device *dev);
4095 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4096
4097 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4098 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4099 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4100 bool is_skb_forwardable(const struct net_device *dev,
4101                         const struct sk_buff *skb);
4102
4103 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4104                                                  const struct sk_buff *skb,
4105                                                  const bool check_mtu)
4106 {
4107         const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4108         unsigned int len;
4109
4110         if (!(dev->flags & IFF_UP))
4111                 return false;
4112
4113         if (!check_mtu)
4114                 return true;
4115
4116         len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4117         if (skb->len <= len)
4118                 return true;
4119
4120         /* if TSO is enabled, we don't care about the length as the packet
4121          * could be forwarded without being segmented before
4122          */
4123         if (skb_is_gso(skb))
4124                 return true;
4125
4126         return false;
4127 }
4128
4129 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4130                                                struct sk_buff *skb,
4131                                                const bool check_mtu)
4132 {
4133         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4134             unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4135                 atomic_long_inc(&dev->rx_dropped);
4136                 kfree_skb(skb);
4137                 return NET_RX_DROP;
4138         }
4139
4140         skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4141         skb->priority = 0;
4142         return 0;
4143 }
4144
4145 bool dev_nit_active(struct net_device *dev);
4146 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4147
4148 extern int              netdev_budget;
4149 extern unsigned int     netdev_budget_usecs;
4150
4151 /* Called by rtnetlink.c:rtnl_unlock() */
4152 void netdev_run_todo(void);
4153
4154 /**
4155  *      dev_put - release reference to device
4156  *      @dev: network device
4157  *
4158  * Release reference to device to allow it to be freed.
4159  */
4160 static inline void dev_put(struct net_device *dev)
4161 {
4162         if (dev) {
4163 #ifdef CONFIG_PCPU_DEV_REFCNT
4164                 this_cpu_dec(*dev->pcpu_refcnt);
4165 #else
4166                 refcount_dec(&dev->dev_refcnt);
4167 #endif
4168         }
4169 }
4170
4171 /**
4172  *      dev_hold - get reference to device
4173  *      @dev: network device
4174  *
4175  * Hold reference to device to keep it from being freed.
4176  */
4177 static inline void dev_hold(struct net_device *dev)
4178 {
4179         if (dev) {
4180 #ifdef CONFIG_PCPU_DEV_REFCNT
4181                 this_cpu_inc(*dev->pcpu_refcnt);
4182 #else
4183                 refcount_inc(&dev->dev_refcnt);
4184 #endif
4185         }
4186 }
4187
4188 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4189  * and _off may be called from IRQ context, but it is caller
4190  * who is responsible for serialization of these calls.
4191  *
4192  * The name carrier is inappropriate, these functions should really be
4193  * called netif_lowerlayer_*() because they represent the state of any
4194  * kind of lower layer not just hardware media.
4195  */
4196
4197 void linkwatch_init_dev(struct net_device *dev);
4198 void linkwatch_fire_event(struct net_device *dev);
4199 void linkwatch_forget_dev(struct net_device *dev);
4200
4201 /**
4202  *      netif_carrier_ok - test if carrier present
4203  *      @dev: network device
4204  *
4205  * Check if carrier is present on device
4206  */
4207 static inline bool netif_carrier_ok(const struct net_device *dev)
4208 {
4209         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4210 }
4211
4212 unsigned long dev_trans_start(struct net_device *dev);
4213
4214 void __netdev_watchdog_up(struct net_device *dev);
4215
4216 void netif_carrier_on(struct net_device *dev);
4217 void netif_carrier_off(struct net_device *dev);
4218 void netif_carrier_event(struct net_device *dev);
4219
4220 /**
4221  *      netif_dormant_on - mark device as dormant.
4222  *      @dev: network device
4223  *
4224  * Mark device as dormant (as per RFC2863).
4225  *
4226  * The dormant state indicates that the relevant interface is not
4227  * actually in a condition to pass packets (i.e., it is not 'up') but is
4228  * in a "pending" state, waiting for some external event.  For "on-
4229  * demand" interfaces, this new state identifies the situation where the
4230  * interface is waiting for events to place it in the up state.
4231  */
4232 static inline void netif_dormant_on(struct net_device *dev)
4233 {
4234         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4235                 linkwatch_fire_event(dev);
4236 }
4237
4238 /**
4239  *      netif_dormant_off - set device as not dormant.
4240  *      @dev: network device
4241  *
4242  * Device is not in dormant state.
4243  */
4244 static inline void netif_dormant_off(struct net_device *dev)
4245 {
4246         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4247                 linkwatch_fire_event(dev);
4248 }
4249
4250 /**
4251  *      netif_dormant - test if device is dormant
4252  *      @dev: network device
4253  *
4254  * Check if device is dormant.
4255  */
4256 static inline bool netif_dormant(const struct net_device *dev)
4257 {
4258         return test_bit(__LINK_STATE_DORMANT, &dev->state);
4259 }
4260
4261
4262 /**
4263  *      netif_testing_on - mark device as under test.
4264  *      @dev: network device
4265  *
4266  * Mark device as under test (as per RFC2863).
4267  *
4268  * The testing state indicates that some test(s) must be performed on
4269  * the interface. After completion, of the test, the interface state
4270  * will change to up, dormant, or down, as appropriate.
4271  */
4272 static inline void netif_testing_on(struct net_device *dev)
4273 {
4274         if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4275                 linkwatch_fire_event(dev);
4276 }
4277
4278 /**
4279  *      netif_testing_off - set device as not under test.
4280  *      @dev: network device
4281  *
4282  * Device is not in testing state.
4283  */
4284 static inline void netif_testing_off(struct net_device *dev)
4285 {
4286         if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4287                 linkwatch_fire_event(dev);
4288 }
4289
4290 /**
4291  *      netif_testing - test if device is under test
4292  *      @dev: network device
4293  *
4294  * Check if device is under test
4295  */
4296 static inline bool netif_testing(const struct net_device *dev)
4297 {
4298         return test_bit(__LINK_STATE_TESTING, &dev->state);
4299 }
4300
4301
4302 /**
4303  *      netif_oper_up - test if device is operational
4304  *      @dev: network device
4305  *
4306  * Check if carrier is operational
4307  */
4308 static inline bool netif_oper_up(const struct net_device *dev)
4309 {
4310         return (dev->operstate == IF_OPER_UP ||
4311                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4312 }
4313
4314 /**
4315  *      netif_device_present - is device available or removed
4316  *      @dev: network device
4317  *
4318  * Check if device has not been removed from system.
4319  */
4320 static inline bool netif_device_present(const struct net_device *dev)
4321 {
4322         return test_bit(__LINK_STATE_PRESENT, &dev->state);
4323 }
4324
4325 void netif_device_detach(struct net_device *dev);
4326
4327 void netif_device_attach(struct net_device *dev);
4328
4329 /*
4330  * Network interface message level settings
4331  */
4332
4333 enum {
4334         NETIF_MSG_DRV_BIT,
4335         NETIF_MSG_PROBE_BIT,
4336         NETIF_MSG_LINK_BIT,
4337         NETIF_MSG_TIMER_BIT,
4338         NETIF_MSG_IFDOWN_BIT,
4339         NETIF_MSG_IFUP_BIT,
4340         NETIF_MSG_RX_ERR_BIT,
4341         NETIF_MSG_TX_ERR_BIT,
4342         NETIF_MSG_TX_QUEUED_BIT,
4343         NETIF_MSG_INTR_BIT,
4344         NETIF_MSG_TX_DONE_BIT,
4345         NETIF_MSG_RX_STATUS_BIT,
4346         NETIF_MSG_PKTDATA_BIT,
4347         NETIF_MSG_HW_BIT,
4348         NETIF_MSG_WOL_BIT,
4349
4350         /* When you add a new bit above, update netif_msg_class_names array
4351          * in net/ethtool/common.c
4352          */
4353         NETIF_MSG_CLASS_COUNT,
4354 };
4355 /* Both ethtool_ops interface and internal driver implementation use u32 */
4356 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4357
4358 #define __NETIF_MSG_BIT(bit)    ((u32)1 << (bit))
4359 #define __NETIF_MSG(name)       __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4360
4361 #define NETIF_MSG_DRV           __NETIF_MSG(DRV)
4362 #define NETIF_MSG_PROBE         __NETIF_MSG(PROBE)
4363 #define NETIF_MSG_LINK          __NETIF_MSG(LINK)
4364 #define NETIF_MSG_TIMER         __NETIF_MSG(TIMER)
4365 #define NETIF_MSG_IFDOWN        __NETIF_MSG(IFDOWN)
4366 #define NETIF_MSG_IFUP          __NETIF_MSG(IFUP)
4367 #define NETIF_MSG_RX_ERR        __NETIF_MSG(RX_ERR)
4368 #define NETIF_MSG_TX_ERR        __NETIF_MSG(TX_ERR)
4369 #define NETIF_MSG_TX_QUEUED     __NETIF_MSG(TX_QUEUED)
4370 #define NETIF_MSG_INTR          __NETIF_MSG(INTR)
4371 #define NETIF_MSG_TX_DONE       __NETIF_MSG(TX_DONE)
4372 #define NETIF_MSG_RX_STATUS     __NETIF_MSG(RX_STATUS)
4373 #define NETIF_MSG_PKTDATA       __NETIF_MSG(PKTDATA)
4374 #define NETIF_MSG_HW            __NETIF_MSG(HW)
4375 #define NETIF_MSG_WOL           __NETIF_MSG(WOL)
4376
4377 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
4378 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
4379 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
4380 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
4381 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
4382 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
4383 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
4384 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
4385 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4386 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
4387 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
4388 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4389 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
4390 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
4391 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
4392
4393 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4394 {
4395         /* use default */
4396         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4397                 return default_msg_enable_bits;
4398         if (debug_value == 0)   /* no output */
4399                 return 0;
4400         /* set low N bits */
4401         return (1U << debug_value) - 1;
4402 }
4403
4404 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4405 {
4406         spin_lock(&txq->_xmit_lock);
4407         /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4408         WRITE_ONCE(txq->xmit_lock_owner, cpu);
4409 }
4410
4411 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4412 {
4413         __acquire(&txq->_xmit_lock);
4414         return true;
4415 }
4416
4417 static inline void __netif_tx_release(struct netdev_queue *txq)
4418 {
4419         __release(&txq->_xmit_lock);
4420 }
4421
4422 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4423 {
4424         spin_lock_bh(&txq->_xmit_lock);
4425         /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4426         WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4427 }
4428
4429 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4430 {
4431         bool ok = spin_trylock(&txq->_xmit_lock);
4432
4433         if (likely(ok)) {
4434                 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4435                 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4436         }
4437         return ok;
4438 }
4439
4440 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4441 {
4442         /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4443         WRITE_ONCE(txq->xmit_lock_owner, -1);
4444         spin_unlock(&txq->_xmit_lock);
4445 }
4446
4447 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4448 {
4449         /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4450         WRITE_ONCE(txq->xmit_lock_owner, -1);
4451         spin_unlock_bh(&txq->_xmit_lock);
4452 }
4453
4454 static inline void txq_trans_update(struct netdev_queue *txq)
4455 {
4456         if (txq->xmit_lock_owner != -1)
4457                 txq->trans_start = jiffies;
4458 }
4459
4460 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4461 static inline void netif_trans_update(struct net_device *dev)
4462 {
4463         struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4464
4465         if (txq->trans_start != jiffies)
4466                 txq->trans_start = jiffies;
4467 }
4468
4469 /**
4470  *      netif_tx_lock - grab network device transmit lock
4471  *      @dev: network device
4472  *
4473  * Get network device transmit lock
4474  */
4475 static inline void netif_tx_lock(struct net_device *dev)
4476 {
4477         unsigned int i;
4478         int cpu;
4479
4480         spin_lock(&dev->tx_global_lock);
4481         cpu = smp_processor_id();
4482         for (i = 0; i < dev->num_tx_queues; i++) {
4483                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4484
4485                 /* We are the only thread of execution doing a
4486                  * freeze, but we have to grab the _xmit_lock in
4487                  * order to synchronize with threads which are in
4488                  * the ->hard_start_xmit() handler and already
4489                  * checked the frozen bit.
4490                  */
4491                 __netif_tx_lock(txq, cpu);
4492                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4493                 __netif_tx_unlock(txq);
4494         }
4495 }
4496
4497 static inline void netif_tx_lock_bh(struct net_device *dev)
4498 {
4499         local_bh_disable();
4500         netif_tx_lock(dev);
4501 }
4502
4503 static inline void netif_tx_unlock(struct net_device *dev)
4504 {
4505         unsigned int i;
4506
4507         for (i = 0; i < dev->num_tx_queues; i++) {
4508                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4509
4510                 /* No need to grab the _xmit_lock here.  If the
4511                  * queue is not stopped for another reason, we
4512                  * force a schedule.
4513                  */
4514                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4515                 netif_schedule_queue(txq);
4516         }
4517         spin_unlock(&dev->tx_global_lock);
4518 }
4519
4520 static inline void netif_tx_unlock_bh(struct net_device *dev)
4521 {
4522         netif_tx_unlock(dev);
4523         local_bh_enable();
4524 }
4525
4526 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
4527         if ((dev->features & NETIF_F_LLTX) == 0) {      \
4528                 __netif_tx_lock(txq, cpu);              \
4529         } else {                                        \
4530                 __netif_tx_acquire(txq);                \
4531         }                                               \
4532 }
4533
4534 #define HARD_TX_TRYLOCK(dev, txq)                       \
4535         (((dev->features & NETIF_F_LLTX) == 0) ?        \
4536                 __netif_tx_trylock(txq) :               \
4537                 __netif_tx_acquire(txq))
4538
4539 #define HARD_TX_UNLOCK(dev, txq) {                      \
4540         if ((dev->features & NETIF_F_LLTX) == 0) {      \
4541                 __netif_tx_unlock(txq);                 \
4542         } else {                                        \
4543                 __netif_tx_release(txq);                \
4544         }                                               \
4545 }
4546
4547 static inline void netif_tx_disable(struct net_device *dev)
4548 {
4549         unsigned int i;
4550         int cpu;
4551
4552         local_bh_disable();
4553         cpu = smp_processor_id();
4554         spin_lock(&dev->tx_global_lock);
4555         for (i = 0; i < dev->num_tx_queues; i++) {
4556                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4557
4558                 __netif_tx_lock(txq, cpu);
4559                 netif_tx_stop_queue(txq);
4560                 __netif_tx_unlock(txq);
4561         }
4562         spin_unlock(&dev->tx_global_lock);
4563         local_bh_enable();
4564 }
4565
4566 static inline void netif_addr_lock(struct net_device *dev)
4567 {
4568         unsigned char nest_level = 0;
4569
4570 #ifdef CONFIG_LOCKDEP
4571         nest_level = dev->nested_level;
4572 #endif
4573         spin_lock_nested(&dev->addr_list_lock, nest_level);
4574 }
4575
4576 static inline void netif_addr_lock_bh(struct net_device *dev)
4577 {
4578         unsigned char nest_level = 0;
4579
4580 #ifdef CONFIG_LOCKDEP
4581         nest_level = dev->nested_level;
4582 #endif
4583         local_bh_disable();
4584         spin_lock_nested(&dev->addr_list_lock, nest_level);
4585 }
4586
4587 static inline void netif_addr_unlock(struct net_device *dev)
4588 {
4589         spin_unlock(&dev->addr_list_lock);
4590 }
4591
4592 static inline void netif_addr_unlock_bh(struct net_device *dev)
4593 {
4594         spin_unlock_bh(&dev->addr_list_lock);
4595 }
4596
4597 /*
4598  * dev_addrs walker. Should be used only for read access. Call with
4599  * rcu_read_lock held.
4600  */
4601 #define for_each_dev_addr(dev, ha) \
4602                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4603
4604 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4605
4606 void ether_setup(struct net_device *dev);
4607
4608 /* Support for loadable net-drivers */
4609 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4610                                     unsigned char name_assign_type,
4611                                     void (*setup)(struct net_device *),
4612                                     unsigned int txqs, unsigned int rxqs);
4613 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4614         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4615
4616 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4617         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4618                          count)
4619
4620 int register_netdev(struct net_device *dev);
4621 void unregister_netdev(struct net_device *dev);
4622
4623 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4624
4625 /* General hardware address lists handling functions */
4626 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4627                    struct netdev_hw_addr_list *from_list, int addr_len);
4628 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4629                       struct netdev_hw_addr_list *from_list, int addr_len);
4630 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4631                        struct net_device *dev,
4632                        int (*sync)(struct net_device *, const unsigned char *),
4633                        int (*unsync)(struct net_device *,
4634                                      const unsigned char *));
4635 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4636                            struct net_device *dev,
4637                            int (*sync)(struct net_device *,
4638                                        const unsigned char *, int),
4639                            int (*unsync)(struct net_device *,
4640                                          const unsigned char *, int));
4641 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4642                               struct net_device *dev,
4643                               int (*unsync)(struct net_device *,
4644                                             const unsigned char *, int));
4645 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4646                           struct net_device *dev,
4647                           int (*unsync)(struct net_device *,
4648                                         const unsigned char *));
4649 void __hw_addr_init(struct netdev_hw_addr_list *list);
4650
4651 /* Functions used for device addresses handling */
4652 static inline void
4653 __dev_addr_set(struct net_device *dev, const u8 *addr, size_t len)
4654 {
4655         memcpy(dev->dev_addr, addr, len);
4656 }
4657
4658 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4659 {
4660         __dev_addr_set(dev, addr, dev->addr_len);
4661 }
4662
4663 static inline void
4664 dev_addr_mod(struct net_device *dev, unsigned int offset,
4665              const u8 *addr, size_t len)
4666 {
4667         memcpy(&dev->dev_addr[offset], addr, len);
4668 }
4669
4670 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4671                  unsigned char addr_type);
4672 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4673                  unsigned char addr_type);
4674 void dev_addr_flush(struct net_device *dev);
4675 int dev_addr_init(struct net_device *dev);
4676
4677 /* Functions used for unicast addresses handling */
4678 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4679 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4680 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4681 int dev_uc_sync(struct net_device *to, struct net_device *from);
4682 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4683 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4684 void dev_uc_flush(struct net_device *dev);
4685 void dev_uc_init(struct net_device *dev);
4686
4687 /**
4688  *  __dev_uc_sync - Synchonize device's unicast list
4689  *  @dev:  device to sync
4690  *  @sync: function to call if address should be added
4691  *  @unsync: function to call if address should be removed
4692  *
4693  *  Add newly added addresses to the interface, and release
4694  *  addresses that have been deleted.
4695  */
4696 static inline int __dev_uc_sync(struct net_device *dev,
4697                                 int (*sync)(struct net_device *,
4698                                             const unsigned char *),
4699                                 int (*unsync)(struct net_device *,
4700                                               const unsigned char *))
4701 {
4702         return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4703 }
4704
4705 /**
4706  *  __dev_uc_unsync - Remove synchronized addresses from device
4707  *  @dev:  device to sync
4708  *  @unsync: function to call if address should be removed
4709  *
4710  *  Remove all addresses that were added to the device by dev_uc_sync().
4711  */
4712 static inline void __dev_uc_unsync(struct net_device *dev,
4713                                    int (*unsync)(struct net_device *,
4714                                                  const unsigned char *))
4715 {
4716         __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4717 }
4718
4719 /* Functions used for multicast addresses handling */
4720 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4721 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4722 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4723 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4724 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4725 int dev_mc_sync(struct net_device *to, struct net_device *from);
4726 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4727 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4728 void dev_mc_flush(struct net_device *dev);
4729 void dev_mc_init(struct net_device *dev);
4730
4731 /**
4732  *  __dev_mc_sync - Synchonize device's multicast list
4733  *  @dev:  device to sync
4734  *  @sync: function to call if address should be added
4735  *  @unsync: function to call if address should be removed
4736  *
4737  *  Add newly added addresses to the interface, and release
4738  *  addresses that have been deleted.
4739  */
4740 static inline int __dev_mc_sync(struct net_device *dev,
4741                                 int (*sync)(struct net_device *,
4742                                             const unsigned char *),
4743                                 int (*unsync)(struct net_device *,
4744                                               const unsigned char *))
4745 {
4746         return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4747 }
4748
4749 /**
4750  *  __dev_mc_unsync - Remove synchronized addresses from device
4751  *  @dev:  device to sync
4752  *  @unsync: function to call if address should be removed
4753  *
4754  *  Remove all addresses that were added to the device by dev_mc_sync().
4755  */
4756 static inline void __dev_mc_unsync(struct net_device *dev,
4757                                    int (*unsync)(struct net_device *,
4758                                                  const unsigned char *))
4759 {
4760         __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4761 }
4762
4763 /* Functions used for secondary unicast and multicast support */
4764 void dev_set_rx_mode(struct net_device *dev);
4765 void __dev_set_rx_mode(struct net_device *dev);
4766 int dev_set_promiscuity(struct net_device *dev, int inc);
4767 int dev_set_allmulti(struct net_device *dev, int inc);
4768 void netdev_state_change(struct net_device *dev);
4769 void __netdev_notify_peers(struct net_device *dev);
4770 void netdev_notify_peers(struct net_device *dev);
4771 void netdev_features_change(struct net_device *dev);
4772 /* Load a device via the kmod */
4773 void dev_load(struct net *net, const char *name);
4774 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4775                                         struct rtnl_link_stats64 *storage);
4776 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4777                              const struct net_device_stats *netdev_stats);
4778 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4779                            const struct pcpu_sw_netstats __percpu *netstats);
4780 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4781
4782 extern int              netdev_max_backlog;
4783 extern int              netdev_tstamp_prequeue;
4784 extern int              netdev_unregister_timeout_secs;
4785 extern int              weight_p;
4786 extern int              dev_weight_rx_bias;
4787 extern int              dev_weight_tx_bias;
4788 extern int              dev_rx_weight;
4789 extern int              dev_tx_weight;
4790 extern int              gro_normal_batch;
4791
4792 enum {
4793         NESTED_SYNC_IMM_BIT,
4794         NESTED_SYNC_TODO_BIT,
4795 };
4796
4797 #define __NESTED_SYNC_BIT(bit)  ((u32)1 << (bit))
4798 #define __NESTED_SYNC(name)     __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4799
4800 #define NESTED_SYNC_IMM         __NESTED_SYNC(IMM)
4801 #define NESTED_SYNC_TODO        __NESTED_SYNC(TODO)
4802
4803 struct netdev_nested_priv {
4804         unsigned char flags;
4805         void *data;
4806 };
4807
4808 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4809 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4810                                                      struct list_head **iter);
4811 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4812                                                      struct list_head **iter);
4813
4814 #ifdef CONFIG_LOCKDEP
4815 static LIST_HEAD(net_unlink_list);
4816
4817 static inline void net_unlink_todo(struct net_device *dev)
4818 {
4819         if (list_empty(&dev->unlink_list))
4820                 list_add_tail(&dev->unlink_list, &net_unlink_list);
4821 }
4822 #endif
4823
4824 /* iterate through upper list, must be called under RCU read lock */
4825 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4826         for (iter = &(dev)->adj_list.upper, \
4827              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4828              updev; \
4829              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4830
4831 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4832                                   int (*fn)(struct net_device *upper_dev,
4833                                             struct netdev_nested_priv *priv),
4834                                   struct netdev_nested_priv *priv);
4835
4836 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4837                                   struct net_device *upper_dev);
4838
4839 bool netdev_has_any_upper_dev(struct net_device *dev);
4840
4841 void *netdev_lower_get_next_private(struct net_device *dev,
4842                                     struct list_head **iter);
4843 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4844                                         struct list_head **iter);
4845
4846 #define netdev_for_each_lower_private(dev, priv, iter) \
4847         for (iter = (dev)->adj_list.lower.next, \
4848              priv = netdev_lower_get_next_private(dev, &(iter)); \
4849              priv; \
4850              priv = netdev_lower_get_next_private(dev, &(iter)))
4851
4852 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4853         for (iter = &(dev)->adj_list.lower, \
4854              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4855              priv; \
4856              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4857
4858 void *netdev_lower_get_next(struct net_device *dev,
4859                                 struct list_head **iter);
4860
4861 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4862         for (iter = (dev)->adj_list.lower.next, \
4863              ldev = netdev_lower_get_next(dev, &(iter)); \
4864              ldev; \
4865              ldev = netdev_lower_get_next(dev, &(iter)))
4866
4867 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4868                                              struct list_head **iter);
4869 int netdev_walk_all_lower_dev(struct net_device *dev,
4870                               int (*fn)(struct net_device *lower_dev,
4871                                         struct netdev_nested_priv *priv),
4872                               struct netdev_nested_priv *priv);
4873 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4874                                   int (*fn)(struct net_device *lower_dev,
4875                                             struct netdev_nested_priv *priv),
4876                                   struct netdev_nested_priv *priv);
4877
4878 void *netdev_adjacent_get_private(struct list_head *adj_list);
4879 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4880 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4881 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4882 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4883                           struct netlink_ext_ack *extack);
4884 int netdev_master_upper_dev_link(struct net_device *dev,
4885                                  struct net_device *upper_dev,
4886                                  void *upper_priv, void *upper_info,
4887                                  struct netlink_ext_ack *extack);
4888 void netdev_upper_dev_unlink(struct net_device *dev,
4889                              struct net_device *upper_dev);
4890 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4891                                    struct net_device *new_dev,
4892                                    struct net_device *dev,
4893                                    struct netlink_ext_ack *extack);
4894 void netdev_adjacent_change_commit(struct net_device *old_dev,
4895                                    struct net_device *new_dev,
4896                                    struct net_device *dev);
4897 void netdev_adjacent_change_abort(struct net_device *old_dev,
4898                                   struct net_device *new_dev,
4899                                   struct net_device *dev);
4900 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4901 void *netdev_lower_dev_get_private(struct net_device *dev,
4902                                    struct net_device *lower_dev);
4903 void netdev_lower_state_changed(struct net_device *lower_dev,
4904                                 void *lower_state_info);
4905
4906 /* RSS keys are 40 or 52 bytes long */
4907 #define NETDEV_RSS_KEY_LEN 52
4908 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4909 void netdev_rss_key_fill(void *buffer, size_t len);
4910
4911 int skb_checksum_help(struct sk_buff *skb);
4912 int skb_crc32c_csum_help(struct sk_buff *skb);
4913 int skb_csum_hwoffload_help(struct sk_buff *skb,
4914                             const netdev_features_t features);
4915
4916 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4917                                   netdev_features_t features, bool tx_path);
4918 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4919                                     netdev_features_t features);
4920
4921 struct netdev_bonding_info {
4922         ifslave slave;
4923         ifbond  master;
4924 };
4925
4926 struct netdev_notifier_bonding_info {
4927         struct netdev_notifier_info info; /* must be first */
4928         struct netdev_bonding_info  bonding_info;
4929 };
4930
4931 void netdev_bonding_info_change(struct net_device *dev,
4932                                 struct netdev_bonding_info *bonding_info);
4933
4934 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4935 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4936 #else
4937 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4938                                   const void *data)
4939 {
4940 }
4941 #endif
4942
4943 static inline
4944 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4945 {
4946         return __skb_gso_segment(skb, features, true);
4947 }
4948 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4949
4950 static inline bool can_checksum_protocol(netdev_features_t features,
4951                                          __be16 protocol)
4952 {
4953         if (protocol == htons(ETH_P_FCOE))
4954                 return !!(features & NETIF_F_FCOE_CRC);
4955
4956         /* Assume this is an IP checksum (not SCTP CRC) */
4957
4958         if (features & NETIF_F_HW_CSUM) {
4959                 /* Can checksum everything */
4960                 return true;
4961         }
4962
4963         switch (protocol) {
4964         case htons(ETH_P_IP):
4965                 return !!(features & NETIF_F_IP_CSUM);
4966         case htons(ETH_P_IPV6):
4967                 return !!(features & NETIF_F_IPV6_CSUM);
4968         default:
4969                 return false;
4970         }
4971 }
4972
4973 #ifdef CONFIG_BUG
4974 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4975 #else
4976 static inline void netdev_rx_csum_fault(struct net_device *dev,
4977                                         struct sk_buff *skb)
4978 {
4979 }
4980 #endif
4981 /* rx skb timestamps */
4982 void net_enable_timestamp(void);
4983 void net_disable_timestamp(void);
4984
4985 #ifdef CONFIG_PROC_FS
4986 int __init dev_proc_init(void);
4987 #else
4988 #define dev_proc_init() 0
4989 #endif
4990
4991 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4992                                               struct sk_buff *skb, struct net_device *dev,
4993                                               bool more)
4994 {
4995         __this_cpu_write(softnet_data.xmit.more, more);
4996         return ops->ndo_start_xmit(skb, dev);
4997 }
4998
4999 static inline bool netdev_xmit_more(void)
5000 {
5001         return __this_cpu_read(softnet_data.xmit.more);
5002 }
5003
5004 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
5005                                             struct netdev_queue *txq, bool more)
5006 {
5007         const struct net_device_ops *ops = dev->netdev_ops;
5008         netdev_tx_t rc;
5009
5010         rc = __netdev_start_xmit(ops, skb, dev, more);
5011         if (rc == NETDEV_TX_OK)
5012                 txq_trans_update(txq);
5013
5014         return rc;
5015 }
5016
5017 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
5018                                 const void *ns);
5019 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
5020                                  const void *ns);
5021
5022 extern const struct kobj_ns_type_operations net_ns_type_operations;
5023
5024 const char *netdev_drivername(const struct net_device *dev);
5025
5026 void linkwatch_run_queue(void);
5027
5028 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5029                                                           netdev_features_t f2)
5030 {
5031         if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5032                 if (f1 & NETIF_F_HW_CSUM)
5033                         f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5034                 else
5035                         f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5036         }
5037
5038         return f1 & f2;
5039 }
5040
5041 static inline netdev_features_t netdev_get_wanted_features(
5042         struct net_device *dev)
5043 {
5044         return (dev->features & ~dev->hw_features) | dev->wanted_features;
5045 }
5046 netdev_features_t netdev_increment_features(netdev_features_t all,
5047         netdev_features_t one, netdev_features_t mask);
5048
5049 /* Allow TSO being used on stacked device :
5050  * Performing the GSO segmentation before last device
5051  * is a performance improvement.
5052  */
5053 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5054                                                         netdev_features_t mask)
5055 {
5056         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5057 }
5058
5059 int __netdev_update_features(struct net_device *dev);
5060 void netdev_update_features(struct net_device *dev);
5061 void netdev_change_features(struct net_device *dev);
5062
5063 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5064                                         struct net_device *dev);
5065
5066 netdev_features_t passthru_features_check(struct sk_buff *skb,
5067                                           struct net_device *dev,
5068                                           netdev_features_t features);
5069 netdev_features_t netif_skb_features(struct sk_buff *skb);
5070
5071 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5072 {
5073         netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5074
5075         /* check flags correspondence */
5076         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5077         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5078         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5079         BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5080         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5081         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5082         BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5083         BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5084         BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5085         BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5086         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5087         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5088         BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5089         BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5090         BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5091         BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5092         BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5093         BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5094         BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5095
5096         return (features & feature) == feature;
5097 }
5098
5099 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5100 {
5101         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5102                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5103 }
5104
5105 static inline bool netif_needs_gso(struct sk_buff *skb,
5106                                    netdev_features_t features)
5107 {
5108         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5109                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5110                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5111 }
5112
5113 static inline void netif_set_gso_max_size(struct net_device *dev,
5114                                           unsigned int size)
5115 {
5116         dev->gso_max_size = size;
5117 }
5118
5119 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
5120                                         int pulled_hlen, u16 mac_offset,
5121                                         int mac_len)
5122 {
5123         skb->protocol = protocol;
5124         skb->encapsulation = 1;
5125         skb_push(skb, pulled_hlen);
5126         skb_reset_transport_header(skb);
5127         skb->mac_header = mac_offset;
5128         skb->network_header = skb->mac_header + mac_len;
5129         skb->mac_len = mac_len;
5130 }
5131
5132 static inline bool netif_is_macsec(const struct net_device *dev)
5133 {
5134         return dev->priv_flags & IFF_MACSEC;
5135 }
5136
5137 static inline bool netif_is_macvlan(const struct net_device *dev)
5138 {
5139         return dev->priv_flags & IFF_MACVLAN;
5140 }
5141
5142 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5143 {
5144         return dev->priv_flags & IFF_MACVLAN_PORT;
5145 }
5146
5147 static inline bool netif_is_bond_master(const struct net_device *dev)
5148 {
5149         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5150 }
5151
5152 static inline bool netif_is_bond_slave(const struct net_device *dev)
5153 {
5154         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5155 }
5156
5157 static inline bool netif_supports_nofcs(struct net_device *dev)
5158 {
5159         return dev->priv_flags & IFF_SUPP_NOFCS;
5160 }
5161
5162 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5163 {
5164         return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5165 }
5166
5167 static inline bool netif_is_l3_master(const struct net_device *dev)
5168 {
5169         return dev->priv_flags & IFF_L3MDEV_MASTER;
5170 }
5171
5172 static inline bool netif_is_l3_slave(const struct net_device *dev)
5173 {
5174         return dev->priv_flags & IFF_L3MDEV_SLAVE;
5175 }
5176
5177 static inline bool netif_is_bridge_master(const struct net_device *dev)
5178 {
5179         return dev->priv_flags & IFF_EBRIDGE;
5180 }
5181
5182 static inline bool netif_is_bridge_port(const struct net_device *dev)
5183 {
5184         return dev->priv_flags & IFF_BRIDGE_PORT;
5185 }
5186
5187 static inline bool netif_is_ovs_master(const struct net_device *dev)
5188 {
5189         return dev->priv_flags & IFF_OPENVSWITCH;
5190 }
5191
5192 static inline bool netif_is_ovs_port(const struct net_device *dev)
5193 {
5194         return dev->priv_flags & IFF_OVS_DATAPATH;
5195 }
5196
5197 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5198 {
5199         return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5200 }
5201
5202 static inline bool netif_is_team_master(const struct net_device *dev)
5203 {
5204         return dev->priv_flags & IFF_TEAM;
5205 }
5206
5207 static inline bool netif_is_team_port(const struct net_device *dev)
5208 {
5209         return dev->priv_flags & IFF_TEAM_PORT;
5210 }
5211
5212 static inline bool netif_is_lag_master(const struct net_device *dev)
5213 {
5214         return netif_is_bond_master(dev) || netif_is_team_master(dev);
5215 }
5216
5217 static inline bool netif_is_lag_port(const struct net_device *dev)
5218 {
5219         return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5220 }
5221
5222 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5223 {
5224         return dev->priv_flags & IFF_RXFH_CONFIGURED;
5225 }
5226
5227 static inline bool netif_is_failover(const struct net_device *dev)
5228 {
5229         return dev->priv_flags & IFF_FAILOVER;
5230 }
5231
5232 static inline bool netif_is_failover_slave(const struct net_device *dev)
5233 {
5234         return dev->priv_flags & IFF_FAILOVER_SLAVE;
5235 }
5236
5237 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5238 static inline void netif_keep_dst(struct net_device *dev)
5239 {
5240         dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5241 }
5242
5243 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
5244 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5245 {
5246         /* TODO: reserve and use an additional IFF bit, if we get more users */
5247         return dev->priv_flags & IFF_MACSEC;
5248 }
5249
5250 extern struct pernet_operations __net_initdata loopback_net_ops;
5251
5252 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5253
5254 /* netdev_printk helpers, similar to dev_printk */
5255
5256 static inline const char *netdev_name(const struct net_device *dev)
5257 {
5258         if (!dev->name[0] || strchr(dev->name, '%'))
5259                 return "(unnamed net_device)";
5260         return dev->name;
5261 }
5262
5263 static inline bool netdev_unregistering(const struct net_device *dev)
5264 {
5265         return dev->reg_state == NETREG_UNREGISTERING;
5266 }
5267
5268 static inline const char *netdev_reg_state(const struct net_device *dev)
5269 {
5270         switch (dev->reg_state) {
5271         case NETREG_UNINITIALIZED: return " (uninitialized)";
5272         case NETREG_REGISTERED: return "";
5273         case NETREG_UNREGISTERING: return " (unregistering)";
5274         case NETREG_UNREGISTERED: return " (unregistered)";
5275         case NETREG_RELEASED: return " (released)";
5276         case NETREG_DUMMY: return " (dummy)";
5277         }
5278
5279         WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5280         return " (unknown)";
5281 }
5282
5283 __printf(3, 4) __cold
5284 void netdev_printk(const char *level, const struct net_device *dev,
5285                    const char *format, ...);
5286 __printf(2, 3) __cold
5287 void netdev_emerg(const struct net_device *dev, const char *format, ...);
5288 __printf(2, 3) __cold
5289 void netdev_alert(const struct net_device *dev, const char *format, ...);
5290 __printf(2, 3) __cold
5291 void netdev_crit(const struct net_device *dev, const char *format, ...);
5292 __printf(2, 3) __cold
5293 void netdev_err(const struct net_device *dev, const char *format, ...);
5294 __printf(2, 3) __cold
5295 void netdev_warn(const struct net_device *dev, const char *format, ...);
5296 __printf(2, 3) __cold
5297 void netdev_notice(const struct net_device *dev, const char *format, ...);
5298 __printf(2, 3) __cold
5299 void netdev_info(const struct net_device *dev, const char *format, ...);
5300
5301 #define netdev_level_once(level, dev, fmt, ...)                 \
5302 do {                                                            \
5303         static bool __print_once __read_mostly;                 \
5304                                                                 \
5305         if (!__print_once) {                                    \
5306                 __print_once = true;                            \
5307                 netdev_printk(level, dev, fmt, ##__VA_ARGS__);  \
5308         }                                                       \
5309 } while (0)
5310
5311 #define netdev_emerg_once(dev, fmt, ...) \
5312         netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
5313 #define netdev_alert_once(dev, fmt, ...) \
5314         netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
5315 #define netdev_crit_once(dev, fmt, ...) \
5316         netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
5317 #define netdev_err_once(dev, fmt, ...) \
5318         netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
5319 #define netdev_warn_once(dev, fmt, ...) \
5320         netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
5321 #define netdev_notice_once(dev, fmt, ...) \
5322         netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
5323 #define netdev_info_once(dev, fmt, ...) \
5324         netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
5325
5326 #define MODULE_ALIAS_NETDEV(device) \
5327         MODULE_ALIAS("netdev-" device)
5328
5329 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5330         (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5331 #define netdev_dbg(__dev, format, args...)                      \
5332 do {                                                            \
5333         dynamic_netdev_dbg(__dev, format, ##args);              \
5334 } while (0)
5335 #elif defined(DEBUG)
5336 #define netdev_dbg(__dev, format, args...)                      \
5337         netdev_printk(KERN_DEBUG, __dev, format, ##args)
5338 #else
5339 #define netdev_dbg(__dev, format, args...)                      \
5340 ({                                                              \
5341         if (0)                                                  \
5342                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
5343 })
5344 #endif
5345
5346 #if defined(VERBOSE_DEBUG)
5347 #define netdev_vdbg     netdev_dbg
5348 #else
5349
5350 #define netdev_vdbg(dev, format, args...)                       \
5351 ({                                                              \
5352         if (0)                                                  \
5353                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
5354         0;                                                      \
5355 })
5356 #endif
5357
5358 /*
5359  * netdev_WARN() acts like dev_printk(), but with the key difference
5360  * of using a WARN/WARN_ON to get the message out, including the
5361  * file/line information and a backtrace.
5362  */
5363 #define netdev_WARN(dev, format, args...)                       \
5364         WARN(1, "netdevice: %s%s: " format, netdev_name(dev),   \
5365              netdev_reg_state(dev), ##args)
5366
5367 #define netdev_WARN_ONCE(dev, format, args...)                          \
5368         WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),      \
5369                   netdev_reg_state(dev), ##args)
5370
5371 /* netif printk helpers, similar to netdev_printk */
5372
5373 #define netif_printk(priv, type, level, dev, fmt, args...)      \
5374 do {                                                            \
5375         if (netif_msg_##type(priv))                             \
5376                 netdev_printk(level, (dev), fmt, ##args);       \
5377 } while (0)
5378
5379 #define netif_level(level, priv, type, dev, fmt, args...)       \
5380 do {                                                            \
5381         if (netif_msg_##type(priv))                             \
5382                 netdev_##level(dev, fmt, ##args);               \
5383 } while (0)
5384
5385 #define netif_emerg(priv, type, dev, fmt, args...)              \
5386         netif_level(emerg, priv, type, dev, fmt, ##args)
5387 #define netif_alert(priv, type, dev, fmt, args...)              \
5388         netif_level(alert, priv, type, dev, fmt, ##args)
5389 #define netif_crit(priv, type, dev, fmt, args...)               \
5390         netif_level(crit, priv, type, dev, fmt, ##args)
5391 #define netif_err(priv, type, dev, fmt, args...)                \
5392         netif_level(err, priv, type, dev, fmt, ##args)
5393 #define netif_warn(priv, type, dev, fmt, args...)               \
5394         netif_level(warn, priv, type, dev, fmt, ##args)
5395 #define netif_notice(priv, type, dev, fmt, args...)             \
5396         netif_level(notice, priv, type, dev, fmt, ##args)
5397 #define netif_info(priv, type, dev, fmt, args...)               \
5398         netif_level(info, priv, type, dev, fmt, ##args)
5399
5400 #if defined(CONFIG_DYNAMIC_DEBUG) || \
5401         (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5402 #define netif_dbg(priv, type, netdev, format, args...)          \
5403 do {                                                            \
5404         if (netif_msg_##type(priv))                             \
5405                 dynamic_netdev_dbg(netdev, format, ##args);     \
5406 } while (0)
5407 #elif defined(DEBUG)
5408 #define netif_dbg(priv, type, dev, format, args...)             \
5409         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5410 #else
5411 #define netif_dbg(priv, type, dev, format, args...)                     \
5412 ({                                                                      \
5413         if (0)                                                          \
5414                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5415         0;                                                              \
5416 })
5417 #endif
5418
5419 /* if @cond then downgrade to debug, else print at @level */
5420 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
5421         do {                                                              \
5422                 if (cond)                                                 \
5423                         netif_dbg(priv, type, netdev, fmt, ##args);       \
5424                 else                                                      \
5425                         netif_ ## level(priv, type, netdev, fmt, ##args); \
5426         } while (0)
5427
5428 #if defined(VERBOSE_DEBUG)
5429 #define netif_vdbg      netif_dbg
5430 #else
5431 #define netif_vdbg(priv, type, dev, format, args...)            \
5432 ({                                                              \
5433         if (0)                                                  \
5434                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5435         0;                                                      \
5436 })
5437 #endif
5438
5439 /*
5440  *      The list of packet types we will receive (as opposed to discard)
5441  *      and the routines to invoke.
5442  *
5443  *      Why 16. Because with 16 the only overlap we get on a hash of the
5444  *      low nibble of the protocol value is RARP/SNAP/X.25.
5445  *
5446  *              0800    IP
5447  *              0001    802.3
5448  *              0002    AX.25
5449  *              0004    802.2
5450  *              8035    RARP
5451  *              0005    SNAP
5452  *              0805    X.25
5453  *              0806    ARP
5454  *              8137    IPX
5455  *              0009    Localtalk
5456  *              86DD    IPv6
5457  */
5458 #define PTYPE_HASH_SIZE (16)
5459 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5460
5461 extern struct list_head ptype_all __read_mostly;
5462 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5463
5464 extern struct net_device *blackhole_netdev;
5465
5466 #endif  /* _LINUX_NETDEVICE_H */