GNU Linux-libre 6.9.2-gnu
[releases.git] / include / linux / mtd / rawnand.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *  Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
4  *                        Steven J. Hill <sjhill@realitydiluted.com>
5  *                        Thomas Gleixner <tglx@linutronix.de>
6  *
7  * Info:
8  *      Contains standard defines and IDs for NAND flash devices
9  *
10  * Changelog:
11  *      See git changelog.
12  */
13 #ifndef __LINUX_MTD_RAWNAND_H
14 #define __LINUX_MTD_RAWNAND_H
15
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/flashchip.h>
19 #include <linux/mtd/bbm.h>
20 #include <linux/mtd/jedec.h>
21 #include <linux/mtd/onfi.h>
22 #include <linux/mutex.h>
23 #include <linux/of.h>
24 #include <linux/types.h>
25
26 struct nand_chip;
27 struct gpio_desc;
28
29 /* The maximum number of NAND chips in an array */
30 #define NAND_MAX_CHIPS          8
31
32 /*
33  * Constants for hardware specific CLE/ALE/NCE function
34  *
35  * These are bits which can be or'ed to set/clear multiple
36  * bits in one go.
37  */
38 /* Select the chip by setting nCE to low */
39 #define NAND_NCE                0x01
40 /* Select the command latch by setting CLE to high */
41 #define NAND_CLE                0x02
42 /* Select the address latch by setting ALE to high */
43 #define NAND_ALE                0x04
44
45 #define NAND_CTRL_CLE           (NAND_NCE | NAND_CLE)
46 #define NAND_CTRL_ALE           (NAND_NCE | NAND_ALE)
47 #define NAND_CTRL_CHANGE        0x80
48
49 /*
50  * Standard NAND flash commands
51  */
52 #define NAND_CMD_READ0          0
53 #define NAND_CMD_READ1          1
54 #define NAND_CMD_RNDOUT         5
55 #define NAND_CMD_PAGEPROG       0x10
56 #define NAND_CMD_READOOB        0x50
57 #define NAND_CMD_ERASE1         0x60
58 #define NAND_CMD_STATUS         0x70
59 #define NAND_CMD_SEQIN          0x80
60 #define NAND_CMD_RNDIN          0x85
61 #define NAND_CMD_READID         0x90
62 #define NAND_CMD_ERASE2         0xd0
63 #define NAND_CMD_PARAM          0xec
64 #define NAND_CMD_GET_FEATURES   0xee
65 #define NAND_CMD_SET_FEATURES   0xef
66 #define NAND_CMD_RESET          0xff
67
68 /* Extended commands for large page devices */
69 #define NAND_CMD_READSTART      0x30
70 #define NAND_CMD_READCACHESEQ   0x31
71 #define NAND_CMD_READCACHEEND   0x3f
72 #define NAND_CMD_RNDOUTSTART    0xE0
73 #define NAND_CMD_CACHEDPROG     0x15
74
75 #define NAND_CMD_NONE           -1
76
77 /* Status bits */
78 #define NAND_STATUS_FAIL        0x01
79 #define NAND_STATUS_FAIL_N1     0x02
80 #define NAND_STATUS_TRUE_READY  0x20
81 #define NAND_STATUS_READY       0x40
82 #define NAND_STATUS_WP          0x80
83
84 #define NAND_DATA_IFACE_CHECK_ONLY      -1
85
86 /*
87  * Constants for Hardware ECC
88  */
89 /* Reset Hardware ECC for read */
90 #define NAND_ECC_READ           0
91 /* Reset Hardware ECC for write */
92 #define NAND_ECC_WRITE          1
93 /* Enable Hardware ECC before syndrome is read back from flash */
94 #define NAND_ECC_READSYN        2
95
96 /*
97  * Enable generic NAND 'page erased' check. This check is only done when
98  * ecc.correct() returns -EBADMSG.
99  * Set this flag if your implementation does not fix bitflips in erased
100  * pages and you want to rely on the default implementation.
101  */
102 #define NAND_ECC_GENERIC_ERASED_CHECK   BIT(0)
103
104 /*
105  * Option constants for bizarre disfunctionality and real
106  * features.
107  */
108
109 /* Buswidth is 16 bit */
110 #define NAND_BUSWIDTH_16        BIT(1)
111
112 /*
113  * When using software implementation of Hamming, we can specify which byte
114  * ordering should be used.
115  */
116 #define NAND_ECC_SOFT_HAMMING_SM_ORDER  BIT(2)
117
118 /* Chip has cache program function */
119 #define NAND_CACHEPRG           BIT(3)
120 /* Options valid for Samsung large page devices */
121 #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
122
123 /*
124  * Chip requires ready check on read (for auto-incremented sequential read).
125  * True only for small page devices; large page devices do not support
126  * autoincrement.
127  */
128 #define NAND_NEED_READRDY       BIT(8)
129
130 /* Chip does not allow subpage writes */
131 #define NAND_NO_SUBPAGE_WRITE   BIT(9)
132
133 /* Device is one of 'new' xD cards that expose fake nand command set */
134 #define NAND_BROKEN_XD          BIT(10)
135
136 /* Device behaves just like nand, but is readonly */
137 #define NAND_ROM                BIT(11)
138
139 /* Device supports subpage reads */
140 #define NAND_SUBPAGE_READ       BIT(12)
141 /* Macros to identify the above */
142 #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
143
144 /*
145  * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
146  * patterns.
147  */
148 #define NAND_NEED_SCRAMBLING    BIT(13)
149
150 /* Device needs 3rd row address cycle */
151 #define NAND_ROW_ADDR_3         BIT(14)
152
153 /* Non chip related options */
154 /* This option skips the bbt scan during initialization. */
155 #define NAND_SKIP_BBTSCAN       BIT(16)
156 /* Chip may not exist, so silence any errors in scan */
157 #define NAND_SCAN_SILENT_NODEV  BIT(18)
158
159 /*
160  * Autodetect nand buswidth with readid/onfi.
161  * This suppose the driver will configure the hardware in 8 bits mode
162  * when calling nand_scan_ident, and update its configuration
163  * before calling nand_scan_tail.
164  */
165 #define NAND_BUSWIDTH_AUTO      BIT(19)
166
167 /*
168  * This option could be defined by controller drivers to protect against
169  * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
170  */
171 #define NAND_USES_DMA           BIT(20)
172
173 /*
174  * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
175  * on the default ->cmdfunc() implementation, you may want to let the core
176  * handle the tCCS delay which is required when a column change (RNDIN or
177  * RNDOUT) is requested.
178  * If your controller already takes care of this delay, you don't need to set
179  * this flag.
180  */
181 #define NAND_WAIT_TCCS          BIT(21)
182
183 /*
184  * Whether the NAND chip is a boot medium. Drivers might use this information
185  * to select ECC algorithms supported by the boot ROM or similar restrictions.
186  */
187 #define NAND_IS_BOOT_MEDIUM     BIT(22)
188
189 /*
190  * Do not try to tweak the timings at runtime. This is needed when the
191  * controller initializes the timings on itself or when it relies on
192  * configuration done by the bootloader.
193  */
194 #define NAND_KEEP_TIMINGS       BIT(23)
195
196 /*
197  * There are different places where the manufacturer stores the factory bad
198  * block markers.
199  *
200  * Position within the block: Each of these pages needs to be checked for a
201  * bad block marking pattern.
202  */
203 #define NAND_BBM_FIRSTPAGE      BIT(24)
204 #define NAND_BBM_SECONDPAGE     BIT(25)
205 #define NAND_BBM_LASTPAGE       BIT(26)
206
207 /*
208  * Some controllers with pipelined ECC engines override the BBM marker with
209  * data or ECC bytes, thus making bad block detection through bad block marker
210  * impossible. Let's flag those chips so the core knows it shouldn't check the
211  * BBM and consider all blocks good.
212  */
213 #define NAND_NO_BBM_QUIRK       BIT(27)
214
215 /* Cell info constants */
216 #define NAND_CI_CHIPNR_MSK      0x03
217 #define NAND_CI_CELLTYPE_MSK    0x0C
218 #define NAND_CI_CELLTYPE_SHIFT  2
219
220 /* Position within the OOB data of the page */
221 #define NAND_BBM_POS_SMALL              5
222 #define NAND_BBM_POS_LARGE              0
223
224 /**
225  * struct nand_parameters - NAND generic parameters from the parameter page
226  * @model: Model name
227  * @supports_set_get_features: The NAND chip supports setting/getting features
228  * @supports_read_cache: The NAND chip supports read cache operations
229  * @set_feature_list: Bitmap of features that can be set
230  * @get_feature_list: Bitmap of features that can be get
231  * @onfi: ONFI specific parameters
232  */
233 struct nand_parameters {
234         /* Generic parameters */
235         const char *model;
236         bool supports_set_get_features;
237         bool supports_read_cache;
238         DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
239         DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
240
241         /* ONFI parameters */
242         struct onfi_params *onfi;
243 };
244
245 /* The maximum expected count of bytes in the NAND ID sequence */
246 #define NAND_MAX_ID_LEN 8
247
248 /**
249  * struct nand_id - NAND id structure
250  * @data: buffer containing the id bytes.
251  * @len: ID length.
252  */
253 struct nand_id {
254         u8 data[NAND_MAX_ID_LEN];
255         int len;
256 };
257
258 /**
259  * struct nand_ecc_step_info - ECC step information of ECC engine
260  * @stepsize: data bytes per ECC step
261  * @strengths: array of supported strengths
262  * @nstrengths: number of supported strengths
263  */
264 struct nand_ecc_step_info {
265         int stepsize;
266         const int *strengths;
267         int nstrengths;
268 };
269
270 /**
271  * struct nand_ecc_caps - capability of ECC engine
272  * @stepinfos: array of ECC step information
273  * @nstepinfos: number of ECC step information
274  * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
275  */
276 struct nand_ecc_caps {
277         const struct nand_ecc_step_info *stepinfos;
278         int nstepinfos;
279         int (*calc_ecc_bytes)(int step_size, int strength);
280 };
281
282 /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
283 #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)       \
284 static const int __name##_strengths[] = { __VA_ARGS__ };        \
285 static const struct nand_ecc_step_info __name##_stepinfo = {    \
286         .stepsize = __step,                                     \
287         .strengths = __name##_strengths,                        \
288         .nstrengths = ARRAY_SIZE(__name##_strengths),           \
289 };                                                              \
290 static const struct nand_ecc_caps __name = {                    \
291         .stepinfos = &__name##_stepinfo,                        \
292         .nstepinfos = 1,                                        \
293         .calc_ecc_bytes = __calc,                               \
294 }
295
296 /**
297  * struct nand_ecc_ctrl - Control structure for ECC
298  * @engine_type: ECC engine type
299  * @placement:  OOB bytes placement
300  * @algo:       ECC algorithm
301  * @steps:      number of ECC steps per page
302  * @size:       data bytes per ECC step
303  * @bytes:      ECC bytes per step
304  * @strength:   max number of correctible bits per ECC step
305  * @total:      total number of ECC bytes per page
306  * @prepad:     padding information for syndrome based ECC generators
307  * @postpad:    padding information for syndrome based ECC generators
308  * @options:    ECC specific options (see NAND_ECC_XXX flags defined above)
309  * @calc_buf:   buffer for calculated ECC, size is oobsize.
310  * @code_buf:   buffer for ECC read from flash, size is oobsize.
311  * @hwctl:      function to control hardware ECC generator. Must only
312  *              be provided if an hardware ECC is available
313  * @calculate:  function for ECC calculation or readback from ECC hardware
314  * @correct:    function for ECC correction, matching to ECC generator (sw/hw).
315  *              Should return a positive number representing the number of
316  *              corrected bitflips, -EBADMSG if the number of bitflips exceed
317  *              ECC strength, or any other error code if the error is not
318  *              directly related to correction.
319  *              If -EBADMSG is returned the input buffers should be left
320  *              untouched.
321  * @read_page_raw:      function to read a raw page without ECC. This function
322  *                      should hide the specific layout used by the ECC
323  *                      controller and always return contiguous in-band and
324  *                      out-of-band data even if they're not stored
325  *                      contiguously on the NAND chip (e.g.
326  *                      NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
327  *                      out-of-band data).
328  * @write_page_raw:     function to write a raw page without ECC. This function
329  *                      should hide the specific layout used by the ECC
330  *                      controller and consider the passed data as contiguous
331  *                      in-band and out-of-band data. ECC controller is
332  *                      responsible for doing the appropriate transformations
333  *                      to adapt to its specific layout (e.g.
334  *                      NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
335  *                      out-of-band data).
336  * @read_page:  function to read a page according to the ECC generator
337  *              requirements; returns maximum number of bitflips corrected in
338  *              any single ECC step, -EIO hw error
339  * @read_subpage:       function to read parts of the page covered by ECC;
340  *                      returns same as read_page()
341  * @write_subpage:      function to write parts of the page covered by ECC.
342  * @write_page: function to write a page according to the ECC generator
343  *              requirements.
344  * @write_oob_raw:      function to write chip OOB data without ECC
345  * @read_oob_raw:       function to read chip OOB data without ECC
346  * @read_oob:   function to read chip OOB data
347  * @write_oob:  function to write chip OOB data
348  */
349 struct nand_ecc_ctrl {
350         enum nand_ecc_engine_type engine_type;
351         enum nand_ecc_placement placement;
352         enum nand_ecc_algo algo;
353         int steps;
354         int size;
355         int bytes;
356         int total;
357         int strength;
358         int prepad;
359         int postpad;
360         unsigned int options;
361         u8 *calc_buf;
362         u8 *code_buf;
363         void (*hwctl)(struct nand_chip *chip, int mode);
364         int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
365                          uint8_t *ecc_code);
366         int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
367                        uint8_t *calc_ecc);
368         int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
369                              int oob_required, int page);
370         int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
371                               int oob_required, int page);
372         int (*read_page)(struct nand_chip *chip, uint8_t *buf,
373                          int oob_required, int page);
374         int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
375                             uint32_t len, uint8_t *buf, int page);
376         int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
377                              uint32_t data_len, const uint8_t *data_buf,
378                              int oob_required, int page);
379         int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
380                           int oob_required, int page);
381         int (*write_oob_raw)(struct nand_chip *chip, int page);
382         int (*read_oob_raw)(struct nand_chip *chip, int page);
383         int (*read_oob)(struct nand_chip *chip, int page);
384         int (*write_oob)(struct nand_chip *chip, int page);
385 };
386
387 /**
388  * struct nand_sdr_timings - SDR NAND chip timings
389  *
390  * This struct defines the timing requirements of a SDR NAND chip.
391  * These information can be found in every NAND datasheets and the timings
392  * meaning are described in the ONFI specifications:
393  * https://media-www.micron.com/-/media/client/onfi/specs/onfi_3_1_spec.pdf
394  * (chapter 4.15 Timing Parameters)
395  *
396  * All these timings are expressed in picoseconds.
397  *
398  * @tBERS_max: Block erase time
399  * @tCCS_min: Change column setup time
400  * @tPROG_max: Page program time
401  * @tR_max: Page read time
402  * @tALH_min: ALE hold time
403  * @tADL_min: ALE to data loading time
404  * @tALS_min: ALE setup time
405  * @tAR_min: ALE to RE# delay
406  * @tCEA_max: CE# access time
407  * @tCEH_min: CE# high hold time
408  * @tCH_min:  CE# hold time
409  * @tCHZ_max: CE# high to output hi-Z
410  * @tCLH_min: CLE hold time
411  * @tCLR_min: CLE to RE# delay
412  * @tCLS_min: CLE setup time
413  * @tCOH_min: CE# high to output hold
414  * @tCS_min: CE# setup time
415  * @tDH_min: Data hold time
416  * @tDS_min: Data setup time
417  * @tFEAT_max: Busy time for Set Features and Get Features
418  * @tIR_min: Output hi-Z to RE# low
419  * @tITC_max: Interface and Timing Mode Change time
420  * @tRC_min: RE# cycle time
421  * @tREA_max: RE# access time
422  * @tREH_min: RE# high hold time
423  * @tRHOH_min: RE# high to output hold
424  * @tRHW_min: RE# high to WE# low
425  * @tRHZ_max: RE# high to output hi-Z
426  * @tRLOH_min: RE# low to output hold
427  * @tRP_min: RE# pulse width
428  * @tRR_min: Ready to RE# low (data only)
429  * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
430  *            rising edge of R/B#.
431  * @tWB_max: WE# high to SR[6] low
432  * @tWC_min: WE# cycle time
433  * @tWH_min: WE# high hold time
434  * @tWHR_min: WE# high to RE# low
435  * @tWP_min: WE# pulse width
436  * @tWW_min: WP# transition to WE# low
437  */
438 struct nand_sdr_timings {
439         u64 tBERS_max;
440         u32 tCCS_min;
441         u64 tPROG_max;
442         u64 tR_max;
443         u32 tALH_min;
444         u32 tADL_min;
445         u32 tALS_min;
446         u32 tAR_min;
447         u32 tCEA_max;
448         u32 tCEH_min;
449         u32 tCH_min;
450         u32 tCHZ_max;
451         u32 tCLH_min;
452         u32 tCLR_min;
453         u32 tCLS_min;
454         u32 tCOH_min;
455         u32 tCS_min;
456         u32 tDH_min;
457         u32 tDS_min;
458         u32 tFEAT_max;
459         u32 tIR_min;
460         u32 tITC_max;
461         u32 tRC_min;
462         u32 tREA_max;
463         u32 tREH_min;
464         u32 tRHOH_min;
465         u32 tRHW_min;
466         u32 tRHZ_max;
467         u32 tRLOH_min;
468         u32 tRP_min;
469         u32 tRR_min;
470         u64 tRST_max;
471         u32 tWB_max;
472         u32 tWC_min;
473         u32 tWH_min;
474         u32 tWHR_min;
475         u32 tWP_min;
476         u32 tWW_min;
477 };
478
479 /**
480  * struct nand_nvddr_timings - NV-DDR NAND chip timings
481  *
482  * This struct defines the timing requirements of a NV-DDR NAND data interface.
483  * These information can be found in every NAND datasheets and the timings
484  * meaning are described in the ONFI specifications:
485  * https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_1_gold.pdf
486  * (chapter 4.18.2 NV-DDR)
487  *
488  * All these timings are expressed in picoseconds.
489  *
490  * @tBERS_max: Block erase time
491  * @tCCS_min: Change column setup time
492  * @tPROG_max: Page program time
493  * @tR_max: Page read time
494  * @tAC_min: Access window of DQ[7:0] from CLK
495  * @tAC_max: Access window of DQ[7:0] from CLK
496  * @tADL_min: ALE to data loading time
497  * @tCAD_min: Command, Address, Data delay
498  * @tCAH_min: Command/Address DQ hold time
499  * @tCALH_min: W/R_n, CLE and ALE hold time
500  * @tCALS_min: W/R_n, CLE and ALE setup time
501  * @tCAS_min: Command/address DQ setup time
502  * @tCEH_min: CE# high hold time
503  * @tCH_min:  CE# hold time
504  * @tCK_min: Average clock cycle time
505  * @tCS_min: CE# setup time
506  * @tDH_min: Data hold time
507  * @tDQSCK_min: Start of the access window of DQS from CLK
508  * @tDQSCK_max: End of the access window of DQS from CLK
509  * @tDQSD_min: Min W/R_n low to DQS/DQ driven by device
510  * @tDQSD_max: Max W/R_n low to DQS/DQ driven by device
511  * @tDQSHZ_max: W/R_n high to DQS/DQ tri-state by device
512  * @tDQSQ_max: DQS-DQ skew, DQS to last DQ valid, per access
513  * @tDS_min: Data setup time
514  * @tDSC_min: DQS cycle time
515  * @tFEAT_max: Busy time for Set Features and Get Features
516  * @tITC_max: Interface and Timing Mode Change time
517  * @tQHS_max: Data hold skew factor
518  * @tRHW_min: Data output cycle to command, address, or data input cycle
519  * @tRR_min: Ready to RE# low (data only)
520  * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
521  *            rising edge of R/B#.
522  * @tWB_max: WE# high to SR[6] low
523  * @tWHR_min: WE# high to RE# low
524  * @tWRCK_min: W/R_n low to data output cycle
525  * @tWW_min: WP# transition to WE# low
526  */
527 struct nand_nvddr_timings {
528         u64 tBERS_max;
529         u32 tCCS_min;
530         u64 tPROG_max;
531         u64 tR_max;
532         u32 tAC_min;
533         u32 tAC_max;
534         u32 tADL_min;
535         u32 tCAD_min;
536         u32 tCAH_min;
537         u32 tCALH_min;
538         u32 tCALS_min;
539         u32 tCAS_min;
540         u32 tCEH_min;
541         u32 tCH_min;
542         u32 tCK_min;
543         u32 tCS_min;
544         u32 tDH_min;
545         u32 tDQSCK_min;
546         u32 tDQSCK_max;
547         u32 tDQSD_min;
548         u32 tDQSD_max;
549         u32 tDQSHZ_max;
550         u32 tDQSQ_max;
551         u32 tDS_min;
552         u32 tDSC_min;
553         u32 tFEAT_max;
554         u32 tITC_max;
555         u32 tQHS_max;
556         u32 tRHW_min;
557         u32 tRR_min;
558         u32 tRST_max;
559         u32 tWB_max;
560         u32 tWHR_min;
561         u32 tWRCK_min;
562         u32 tWW_min;
563 };
564
565 /*
566  * While timings related to the data interface itself are mostly different
567  * between SDR and NV-DDR, timings related to the internal chip behavior are
568  * common. IOW, the following entries which describe the internal delays have
569  * the same definition and are shared in both SDR and NV-DDR timing structures:
570  * - tADL_min
571  * - tBERS_max
572  * - tCCS_min
573  * - tFEAT_max
574  * - tPROG_max
575  * - tR_max
576  * - tRR_min
577  * - tRST_max
578  * - tWB_max
579  *
580  * The below macros return the value of a given timing, no matter the interface.
581  */
582 #define NAND_COMMON_TIMING_PS(conf, timing_name)                \
583         nand_interface_is_sdr(conf) ?                           \
584                 nand_get_sdr_timings(conf)->timing_name :       \
585                 nand_get_nvddr_timings(conf)->timing_name
586
587 #define NAND_COMMON_TIMING_MS(conf, timing_name) \
588         PSEC_TO_MSEC(NAND_COMMON_TIMING_PS((conf), timing_name))
589
590 #define NAND_COMMON_TIMING_NS(conf, timing_name) \
591         PSEC_TO_NSEC(NAND_COMMON_TIMING_PS((conf), timing_name))
592
593 /**
594  * enum nand_interface_type - NAND interface type
595  * @NAND_SDR_IFACE:     Single Data Rate interface
596  * @NAND_NVDDR_IFACE:   Double Data Rate interface
597  */
598 enum nand_interface_type {
599         NAND_SDR_IFACE,
600         NAND_NVDDR_IFACE,
601 };
602
603 /**
604  * struct nand_interface_config - NAND interface timing
605  * @type:        type of the timing
606  * @timings:     The timing information
607  * @timings.mode: Timing mode as defined in the specification
608  * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
609  * @timings.nvddr: Use it when @type is %NAND_NVDDR_IFACE.
610  */
611 struct nand_interface_config {
612         enum nand_interface_type type;
613         struct nand_timings {
614                 unsigned int mode;
615                 union {
616                         struct nand_sdr_timings sdr;
617                         struct nand_nvddr_timings nvddr;
618                 };
619         } timings;
620 };
621
622 /**
623  * nand_interface_is_sdr - get the interface type
624  * @conf:       The data interface
625  */
626 static bool nand_interface_is_sdr(const struct nand_interface_config *conf)
627 {
628         return conf->type == NAND_SDR_IFACE;
629 }
630
631 /**
632  * nand_interface_is_nvddr - get the interface type
633  * @conf:       The data interface
634  */
635 static bool nand_interface_is_nvddr(const struct nand_interface_config *conf)
636 {
637         return conf->type == NAND_NVDDR_IFACE;
638 }
639
640 /**
641  * nand_get_sdr_timings - get SDR timing from data interface
642  * @conf:       The data interface
643  */
644 static inline const struct nand_sdr_timings *
645 nand_get_sdr_timings(const struct nand_interface_config *conf)
646 {
647         if (!nand_interface_is_sdr(conf))
648                 return ERR_PTR(-EINVAL);
649
650         return &conf->timings.sdr;
651 }
652
653 /**
654  * nand_get_nvddr_timings - get NV-DDR timing from data interface
655  * @conf:       The data interface
656  */
657 static inline const struct nand_nvddr_timings *
658 nand_get_nvddr_timings(const struct nand_interface_config *conf)
659 {
660         if (!nand_interface_is_nvddr(conf))
661                 return ERR_PTR(-EINVAL);
662
663         return &conf->timings.nvddr;
664 }
665
666 /**
667  * struct nand_op_cmd_instr - Definition of a command instruction
668  * @opcode: the command to issue in one cycle
669  */
670 struct nand_op_cmd_instr {
671         u8 opcode;
672 };
673
674 /**
675  * struct nand_op_addr_instr - Definition of an address instruction
676  * @naddrs: length of the @addrs array
677  * @addrs: array containing the address cycles to issue
678  */
679 struct nand_op_addr_instr {
680         unsigned int naddrs;
681         const u8 *addrs;
682 };
683
684 /**
685  * struct nand_op_data_instr - Definition of a data instruction
686  * @len: number of data bytes to move
687  * @buf: buffer to fill
688  * @buf.in: buffer to fill when reading from the NAND chip
689  * @buf.out: buffer to read from when writing to the NAND chip
690  * @force_8bit: force 8-bit access
691  *
692  * Please note that "in" and "out" are inverted from the ONFI specification
693  * and are from the controller perspective, so a "in" is a read from the NAND
694  * chip while a "out" is a write to the NAND chip.
695  */
696 struct nand_op_data_instr {
697         unsigned int len;
698         union {
699                 void *in;
700                 const void *out;
701         } buf;
702         bool force_8bit;
703 };
704
705 /**
706  * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
707  * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
708  */
709 struct nand_op_waitrdy_instr {
710         unsigned int timeout_ms;
711 };
712
713 /**
714  * enum nand_op_instr_type - Definition of all instruction types
715  * @NAND_OP_CMD_INSTR: command instruction
716  * @NAND_OP_ADDR_INSTR: address instruction
717  * @NAND_OP_DATA_IN_INSTR: data in instruction
718  * @NAND_OP_DATA_OUT_INSTR: data out instruction
719  * @NAND_OP_WAITRDY_INSTR: wait ready instruction
720  */
721 enum nand_op_instr_type {
722         NAND_OP_CMD_INSTR,
723         NAND_OP_ADDR_INSTR,
724         NAND_OP_DATA_IN_INSTR,
725         NAND_OP_DATA_OUT_INSTR,
726         NAND_OP_WAITRDY_INSTR,
727 };
728
729 /**
730  * struct nand_op_instr - Instruction object
731  * @type: the instruction type
732  * @ctx:  extra data associated to the instruction. You'll have to use the
733  *        appropriate element depending on @type
734  * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
735  * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
736  * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
737  *            or %NAND_OP_DATA_OUT_INSTR
738  * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
739  * @delay_ns: delay the controller should apply after the instruction has been
740  *            issued on the bus. Most modern controllers have internal timings
741  *            control logic, and in this case, the controller driver can ignore
742  *            this field.
743  */
744 struct nand_op_instr {
745         enum nand_op_instr_type type;
746         union {
747                 struct nand_op_cmd_instr cmd;
748                 struct nand_op_addr_instr addr;
749                 struct nand_op_data_instr data;
750                 struct nand_op_waitrdy_instr waitrdy;
751         } ctx;
752         unsigned int delay_ns;
753 };
754
755 /*
756  * Special handling must be done for the WAITRDY timeout parameter as it usually
757  * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
758  * tBERS (during an erase) which all of them are u64 values that cannot be
759  * divided by usual kernel macros and must be handled with the special
760  * DIV_ROUND_UP_ULL() macro.
761  *
762  * Cast to type of dividend is needed here to guarantee that the result won't
763  * be an unsigned long long when the dividend is an unsigned long (or smaller),
764  * which is what the compiler does when it sees ternary operator with 2
765  * different return types (picks the largest type to make sure there's no
766  * loss).
767  */
768 #define __DIVIDE(dividend, divisor) ({                                          \
769         (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ?      \
770                                DIV_ROUND_UP(dividend, divisor) :                \
771                                DIV_ROUND_UP_ULL(dividend, divisor));            \
772         })
773 #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
774 #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
775
776 #define NAND_OP_CMD(id, ns)                                             \
777         {                                                               \
778                 .type = NAND_OP_CMD_INSTR,                              \
779                 .ctx.cmd.opcode = id,                                   \
780                 .delay_ns = ns,                                         \
781         }
782
783 #define NAND_OP_ADDR(ncycles, cycles, ns)                               \
784         {                                                               \
785                 .type = NAND_OP_ADDR_INSTR,                             \
786                 .ctx.addr = {                                           \
787                         .naddrs = ncycles,                              \
788                         .addrs = cycles,                                \
789                 },                                                      \
790                 .delay_ns = ns,                                         \
791         }
792
793 #define NAND_OP_DATA_IN(l, b, ns)                                       \
794         {                                                               \
795                 .type = NAND_OP_DATA_IN_INSTR,                          \
796                 .ctx.data = {                                           \
797                         .len = l,                                       \
798                         .buf.in = b,                                    \
799                         .force_8bit = false,                            \
800                 },                                                      \
801                 .delay_ns = ns,                                         \
802         }
803
804 #define NAND_OP_DATA_OUT(l, b, ns)                                      \
805         {                                                               \
806                 .type = NAND_OP_DATA_OUT_INSTR,                         \
807                 .ctx.data = {                                           \
808                         .len = l,                                       \
809                         .buf.out = b,                                   \
810                         .force_8bit = false,                            \
811                 },                                                      \
812                 .delay_ns = ns,                                         \
813         }
814
815 #define NAND_OP_8BIT_DATA_IN(l, b, ns)                                  \
816         {                                                               \
817                 .type = NAND_OP_DATA_IN_INSTR,                          \
818                 .ctx.data = {                                           \
819                         .len = l,                                       \
820                         .buf.in = b,                                    \
821                         .force_8bit = true,                             \
822                 },                                                      \
823                 .delay_ns = ns,                                         \
824         }
825
826 #define NAND_OP_8BIT_DATA_OUT(l, b, ns)                                 \
827         {                                                               \
828                 .type = NAND_OP_DATA_OUT_INSTR,                         \
829                 .ctx.data = {                                           \
830                         .len = l,                                       \
831                         .buf.out = b,                                   \
832                         .force_8bit = true,                             \
833                 },                                                      \
834                 .delay_ns = ns,                                         \
835         }
836
837 #define NAND_OP_WAIT_RDY(tout_ms, ns)                                   \
838         {                                                               \
839                 .type = NAND_OP_WAITRDY_INSTR,                          \
840                 .ctx.waitrdy.timeout_ms = tout_ms,                      \
841                 .delay_ns = ns,                                         \
842         }
843
844 /**
845  * struct nand_subop - a sub operation
846  * @cs: the CS line to select for this NAND sub-operation
847  * @instrs: array of instructions
848  * @ninstrs: length of the @instrs array
849  * @first_instr_start_off: offset to start from for the first instruction
850  *                         of the sub-operation
851  * @last_instr_end_off: offset to end at (excluded) for the last instruction
852  *                      of the sub-operation
853  *
854  * Both @first_instr_start_off and @last_instr_end_off only apply to data or
855  * address instructions.
856  *
857  * When an operation cannot be handled as is by the NAND controller, it will
858  * be split by the parser into sub-operations which will be passed to the
859  * controller driver.
860  */
861 struct nand_subop {
862         unsigned int cs;
863         const struct nand_op_instr *instrs;
864         unsigned int ninstrs;
865         unsigned int first_instr_start_off;
866         unsigned int last_instr_end_off;
867 };
868
869 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
870                                            unsigned int op_id);
871 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
872                                          unsigned int op_id);
873 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
874                                            unsigned int op_id);
875 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
876                                      unsigned int op_id);
877
878 /**
879  * struct nand_op_parser_addr_constraints - Constraints for address instructions
880  * @maxcycles: maximum number of address cycles the controller can issue in a
881  *             single step
882  */
883 struct nand_op_parser_addr_constraints {
884         unsigned int maxcycles;
885 };
886
887 /**
888  * struct nand_op_parser_data_constraints - Constraints for data instructions
889  * @maxlen: maximum data length that the controller can handle in a single step
890  */
891 struct nand_op_parser_data_constraints {
892         unsigned int maxlen;
893 };
894
895 /**
896  * struct nand_op_parser_pattern_elem - One element of a pattern
897  * @type: the instructuction type
898  * @optional: whether this element of the pattern is optional or mandatory
899  * @ctx: address or data constraint
900  * @ctx.addr: address constraint (number of cycles)
901  * @ctx.data: data constraint (data length)
902  */
903 struct nand_op_parser_pattern_elem {
904         enum nand_op_instr_type type;
905         bool optional;
906         union {
907                 struct nand_op_parser_addr_constraints addr;
908                 struct nand_op_parser_data_constraints data;
909         } ctx;
910 };
911
912 #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt)                       \
913         {                                                       \
914                 .type = NAND_OP_CMD_INSTR,                      \
915                 .optional = _opt,                               \
916         }
917
918 #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles)          \
919         {                                                       \
920                 .type = NAND_OP_ADDR_INSTR,                     \
921                 .optional = _opt,                               \
922                 .ctx.addr.maxcycles = _maxcycles,               \
923         }
924
925 #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen)          \
926         {                                                       \
927                 .type = NAND_OP_DATA_IN_INSTR,                  \
928                 .optional = _opt,                               \
929                 .ctx.data.maxlen = _maxlen,                     \
930         }
931
932 #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen)         \
933         {                                                       \
934                 .type = NAND_OP_DATA_OUT_INSTR,                 \
935                 .optional = _opt,                               \
936                 .ctx.data.maxlen = _maxlen,                     \
937         }
938
939 #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt)                   \
940         {                                                       \
941                 .type = NAND_OP_WAITRDY_INSTR,                  \
942                 .optional = _opt,                               \
943         }
944
945 /**
946  * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
947  * @elems: array of pattern elements
948  * @nelems: number of pattern elements in @elems array
949  * @exec: the function that will issue a sub-operation
950  *
951  * A pattern is a list of elements, each element reprensenting one instruction
952  * with its constraints. The pattern itself is used by the core to match NAND
953  * chip operation with NAND controller operations.
954  * Once a match between a NAND controller operation pattern and a NAND chip
955  * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
956  * hook is called so that the controller driver can issue the operation on the
957  * bus.
958  *
959  * Controller drivers should declare as many patterns as they support and pass
960  * this list of patterns (created with the help of the following macro) to
961  * the nand_op_parser_exec_op() helper.
962  */
963 struct nand_op_parser_pattern {
964         const struct nand_op_parser_pattern_elem *elems;
965         unsigned int nelems;
966         int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
967 };
968
969 #define NAND_OP_PARSER_PATTERN(_exec, ...)                                                      \
970         {                                                                                       \
971                 .exec = _exec,                                                                  \
972                 .elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ },          \
973                 .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) /      \
974                           sizeof(struct nand_op_parser_pattern_elem),                           \
975         }
976
977 /**
978  * struct nand_op_parser - NAND controller operation parser descriptor
979  * @patterns: array of supported patterns
980  * @npatterns: length of the @patterns array
981  *
982  * The parser descriptor is just an array of supported patterns which will be
983  * iterated by nand_op_parser_exec_op() everytime it tries to execute an
984  * NAND operation (or tries to determine if a specific operation is supported).
985  *
986  * It is worth mentioning that patterns will be tested in their declaration
987  * order, and the first match will be taken, so it's important to order patterns
988  * appropriately so that simple/inefficient patterns are placed at the end of
989  * the list. Usually, this is where you put single instruction patterns.
990  */
991 struct nand_op_parser {
992         const struct nand_op_parser_pattern *patterns;
993         unsigned int npatterns;
994 };
995
996 #define NAND_OP_PARSER(...)                                                                     \
997         {                                                                                       \
998                 .patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ },            \
999                 .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) /        \
1000                              sizeof(struct nand_op_parser_pattern),                             \
1001         }
1002
1003 /**
1004  * struct nand_operation - NAND operation descriptor
1005  * @cs: the CS line to select for this NAND operation
1006  * @deassert_wp: set to true when the operation requires the WP pin to be
1007  *               de-asserted (ERASE, PROG, ...)
1008  * @instrs: array of instructions to execute
1009  * @ninstrs: length of the @instrs array
1010  *
1011  * The actual operation structure that will be passed to chip->exec_op().
1012  */
1013 struct nand_operation {
1014         unsigned int cs;
1015         bool deassert_wp;
1016         const struct nand_op_instr *instrs;
1017         unsigned int ninstrs;
1018 };
1019
1020 #define NAND_OPERATION(_cs, _instrs)                            \
1021         {                                                       \
1022                 .cs = _cs,                                      \
1023                 .instrs = _instrs,                              \
1024                 .ninstrs = ARRAY_SIZE(_instrs),                 \
1025         }
1026
1027 #define NAND_DESTRUCTIVE_OPERATION(_cs, _instrs)                \
1028         {                                                       \
1029                 .cs = _cs,                                      \
1030                 .deassert_wp = true,                            \
1031                 .instrs = _instrs,                              \
1032                 .ninstrs = ARRAY_SIZE(_instrs),                 \
1033         }
1034
1035 int nand_op_parser_exec_op(struct nand_chip *chip,
1036                            const struct nand_op_parser *parser,
1037                            const struct nand_operation *op, bool check_only);
1038
1039 static inline void nand_op_trace(const char *prefix,
1040                                  const struct nand_op_instr *instr)
1041 {
1042 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
1043         switch (instr->type) {
1044         case NAND_OP_CMD_INSTR:
1045                 pr_debug("%sCMD      [0x%02x]\n", prefix,
1046                          instr->ctx.cmd.opcode);
1047                 break;
1048         case NAND_OP_ADDR_INSTR:
1049                 pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
1050                          instr->ctx.addr.naddrs,
1051                          instr->ctx.addr.naddrs < 64 ?
1052                          instr->ctx.addr.naddrs : 64,
1053                          instr->ctx.addr.addrs);
1054                 break;
1055         case NAND_OP_DATA_IN_INSTR:
1056                 pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
1057                          instr->ctx.data.len,
1058                          instr->ctx.data.force_8bit ?
1059                          ", force 8-bit" : "");
1060                 break;
1061         case NAND_OP_DATA_OUT_INSTR:
1062                 pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
1063                          instr->ctx.data.len,
1064                          instr->ctx.data.force_8bit ?
1065                          ", force 8-bit" : "");
1066                 break;
1067         case NAND_OP_WAITRDY_INSTR:
1068                 pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
1069                          instr->ctx.waitrdy.timeout_ms);
1070                 break;
1071         }
1072 #endif
1073 }
1074
1075 /**
1076  * struct nand_controller_ops - Controller operations
1077  *
1078  * @attach_chip: this method is called after the NAND detection phase after
1079  *               flash ID and MTD fields such as erase size, page size and OOB
1080  *               size have been set up. ECC requirements are available if
1081  *               provided by the NAND chip or device tree. Typically used to
1082  *               choose the appropriate ECC configuration and allocate
1083  *               associated resources.
1084  *               This hook is optional.
1085  * @detach_chip: free all resources allocated/claimed in
1086  *               nand_controller_ops->attach_chip().
1087  *               This hook is optional.
1088  * @exec_op:     controller specific method to execute NAND operations.
1089  *               This method replaces chip->legacy.cmdfunc(),
1090  *               chip->legacy.{read,write}_{buf,byte,word}(),
1091  *               chip->legacy.dev_ready() and chip->legacy.waitfunc().
1092  * @setup_interface: setup the data interface and timing. If chipnr is set to
1093  *                   %NAND_DATA_IFACE_CHECK_ONLY this means the configuration
1094  *                   should not be applied but only checked.
1095  *                   This hook is optional.
1096  */
1097 struct nand_controller_ops {
1098         int (*attach_chip)(struct nand_chip *chip);
1099         void (*detach_chip)(struct nand_chip *chip);
1100         int (*exec_op)(struct nand_chip *chip,
1101                        const struct nand_operation *op,
1102                        bool check_only);
1103         int (*setup_interface)(struct nand_chip *chip, int chipnr,
1104                                const struct nand_interface_config *conf);
1105 };
1106
1107 /**
1108  * struct nand_controller - Structure used to describe a NAND controller
1109  *
1110  * @lock:               lock used to serialize accesses to the NAND controller
1111  * @ops:                NAND controller operations.
1112  * @supported_op:       NAND controller known-to-be-supported operations,
1113  *                      only writable by the core after initial checking.
1114  * @supported_op.data_only_read: The controller supports reading more data from
1115  *                      the bus without restarting an entire read operation nor
1116  *                      changing the column.
1117  * @supported_op.cont_read: The controller supports sequential cache reads.
1118  * @controller_wp:      the controller is in charge of handling the WP pin.
1119  */
1120 struct nand_controller {
1121         struct mutex lock;
1122         const struct nand_controller_ops *ops;
1123         struct {
1124                 unsigned int data_only_read: 1;
1125                 unsigned int cont_read: 1;
1126         } supported_op;
1127         bool controller_wp;
1128 };
1129
1130 static inline void nand_controller_init(struct nand_controller *nfc)
1131 {
1132         mutex_init(&nfc->lock);
1133 }
1134
1135 /**
1136  * struct nand_legacy - NAND chip legacy fields/hooks
1137  * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
1138  * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
1139  * @select_chip: select/deselect a specific target/die
1140  * @read_byte: read one byte from the chip
1141  * @write_byte: write a single byte to the chip on the low 8 I/O lines
1142  * @write_buf: write data from the buffer to the chip
1143  * @read_buf: read data from the chip into the buffer
1144  * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
1145  *            to write command and address
1146  * @cmdfunc: hardware specific function for writing commands to the chip.
1147  * @dev_ready: hardware specific function for accessing device ready/busy line.
1148  *             If set to NULL no access to ready/busy is available and the
1149  *             ready/busy information is read from the chip status register.
1150  * @waitfunc: hardware specific function for wait on ready.
1151  * @block_bad: check if a block is bad, using OOB markers
1152  * @block_markbad: mark a block bad
1153  * @set_features: set the NAND chip features
1154  * @get_features: get the NAND chip features
1155  * @chip_delay: chip dependent delay for transferring data from array to read
1156  *              regs (tR).
1157  * @dummy_controller: dummy controller implementation for drivers that can
1158  *                    only control a single chip
1159  *
1160  * If you look at this structure you're already wrong. These fields/hooks are
1161  * all deprecated.
1162  */
1163 struct nand_legacy {
1164         void __iomem *IO_ADDR_R;
1165         void __iomem *IO_ADDR_W;
1166         void (*select_chip)(struct nand_chip *chip, int cs);
1167         u8 (*read_byte)(struct nand_chip *chip);
1168         void (*write_byte)(struct nand_chip *chip, u8 byte);
1169         void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
1170         void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
1171         void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
1172         void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
1173                         int page_addr);
1174         int (*dev_ready)(struct nand_chip *chip);
1175         int (*waitfunc)(struct nand_chip *chip);
1176         int (*block_bad)(struct nand_chip *chip, loff_t ofs);
1177         int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
1178         int (*set_features)(struct nand_chip *chip, int feature_addr,
1179                             u8 *subfeature_para);
1180         int (*get_features)(struct nand_chip *chip, int feature_addr,
1181                             u8 *subfeature_para);
1182         int chip_delay;
1183         struct nand_controller dummy_controller;
1184 };
1185
1186 /**
1187  * struct nand_chip_ops - NAND chip operations
1188  * @suspend: Suspend operation
1189  * @resume: Resume operation
1190  * @lock_area: Lock operation
1191  * @unlock_area: Unlock operation
1192  * @setup_read_retry: Set the read-retry mode (mostly needed for MLC NANDs)
1193  * @choose_interface_config: Choose the best interface configuration
1194  */
1195 struct nand_chip_ops {
1196         int (*suspend)(struct nand_chip *chip);
1197         void (*resume)(struct nand_chip *chip);
1198         int (*lock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1199         int (*unlock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1200         int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
1201         int (*choose_interface_config)(struct nand_chip *chip,
1202                                        struct nand_interface_config *iface);
1203 };
1204
1205 /**
1206  * struct nand_manufacturer - NAND manufacturer structure
1207  * @desc: The manufacturer description
1208  * @priv: Private information for the manufacturer driver
1209  */
1210 struct nand_manufacturer {
1211         const struct nand_manufacturer_desc *desc;
1212         void *priv;
1213 };
1214
1215 /**
1216  * struct nand_secure_region - NAND secure region structure
1217  * @offset: Offset of the start of the secure region
1218  * @size: Size of the secure region
1219  */
1220 struct nand_secure_region {
1221         u64 offset;
1222         u64 size;
1223 };
1224
1225 /**
1226  * struct nand_chip - NAND Private Flash Chip Data
1227  * @base: Inherit from the generic NAND device
1228  * @id: Holds NAND ID
1229  * @parameters: Holds generic parameters under an easily readable form
1230  * @manufacturer: Manufacturer information
1231  * @ops: NAND chip operations
1232  * @legacy: All legacy fields/hooks. If you develop a new driver, don't even try
1233  *          to use any of these fields/hooks, and if you're modifying an
1234  *          existing driver that is using those fields/hooks, you should
1235  *          consider reworking the driver and avoid using them.
1236  * @options: Various chip options. They can partly be set to inform nand_scan
1237  *           about special functionality. See the defines for further
1238  *           explanation.
1239  * @current_interface_config: The currently used NAND interface configuration
1240  * @best_interface_config: The best NAND interface configuration which fits both
1241  *                         the NAND chip and NAND controller constraints. If
1242  *                         unset, the default reset interface configuration must
1243  *                         be used.
1244  * @bbt_erase_shift: Number of address bits in a bbt entry
1245  * @bbt_options: Bad block table specific options. All options used here must
1246  *               come from bbm.h. By default, these options will be copied to
1247  *               the appropriate nand_bbt_descr's.
1248  * @badblockpos: Bad block marker position in the oob area
1249  * @badblockbits: Minimum number of set bits in a good block's bad block marker
1250  *                position; i.e., BBM = 11110111b is good when badblockbits = 7
1251  * @bbt_td: Bad block table descriptor for flash lookup
1252  * @bbt_md: Bad block table mirror descriptor
1253  * @badblock_pattern: Bad block scan pattern used for initial bad block scan
1254  * @bbt: Bad block table pointer
1255  * @page_shift: Number of address bits in a page (column address bits)
1256  * @phys_erase_shift: Number of address bits in a physical eraseblock
1257  * @chip_shift: Number of address bits in one chip
1258  * @pagemask: Page number mask = number of (pages / chip) - 1
1259  * @subpagesize: Holds the subpagesize
1260  * @data_buf: Buffer for data, size is (page size + oobsize)
1261  * @oob_poi: pointer on the OOB area covered by data_buf
1262  * @pagecache: Structure containing page cache related fields
1263  * @pagecache.bitflips: Number of bitflips of the cached page
1264  * @pagecache.page: Page number currently in the cache. -1 means no page is
1265  *                  currently cached
1266  * @buf_align: Minimum buffer alignment required by a platform
1267  * @lock: Lock protecting the suspended field. Also used to serialize accesses
1268  *        to the NAND device
1269  * @suspended: Set to 1 when the device is suspended, 0 when it's not
1270  * @resume_wq: wait queue to sleep if rawnand is in suspended state.
1271  * @cur_cs: Currently selected target. -1 means no target selected, otherwise we
1272  *          should always have cur_cs >= 0 && cur_cs < nanddev_ntargets().
1273  *          NAND Controller drivers should not modify this value, but they're
1274  *          allowed to read it.
1275  * @read_retries: The number of read retry modes supported
1276  * @secure_regions: Structure containing the secure regions info
1277  * @nr_secure_regions: Number of secure regions
1278  * @cont_read: Sequential page read internals
1279  * @cont_read.ongoing: Whether a continuous read is ongoing or not
1280  * @cont_read.first_page: Start of the continuous read operation
1281  * @cont_read.pause_page: End of the current sequential cache read operation
1282  * @cont_read.last_page: End of the continuous read operation
1283  * @controller: The hardware controller structure which is shared among multiple
1284  *              independent devices
1285  * @ecc: The ECC controller structure
1286  * @priv: Chip private data
1287  */
1288 struct nand_chip {
1289         struct nand_device base;
1290         struct nand_id id;
1291         struct nand_parameters parameters;
1292         struct nand_manufacturer manufacturer;
1293         struct nand_chip_ops ops;
1294         struct nand_legacy legacy;
1295         unsigned int options;
1296
1297         /* Data interface */
1298         const struct nand_interface_config *current_interface_config;
1299         struct nand_interface_config *best_interface_config;
1300
1301         /* Bad block information */
1302         unsigned int bbt_erase_shift;
1303         unsigned int bbt_options;
1304         unsigned int badblockpos;
1305         unsigned int badblockbits;
1306         struct nand_bbt_descr *bbt_td;
1307         struct nand_bbt_descr *bbt_md;
1308         struct nand_bbt_descr *badblock_pattern;
1309         u8 *bbt;
1310
1311         /* Device internal layout */
1312         unsigned int page_shift;
1313         unsigned int phys_erase_shift;
1314         unsigned int chip_shift;
1315         unsigned int pagemask;
1316         unsigned int subpagesize;
1317
1318         /* Buffers */
1319         u8 *data_buf;
1320         u8 *oob_poi;
1321         struct {
1322                 unsigned int bitflips;
1323                 int page;
1324         } pagecache;
1325         unsigned long buf_align;
1326
1327         /* Internals */
1328         struct mutex lock;
1329         unsigned int suspended : 1;
1330         wait_queue_head_t resume_wq;
1331         int cur_cs;
1332         int read_retries;
1333         struct nand_secure_region *secure_regions;
1334         u8 nr_secure_regions;
1335         struct {
1336                 bool ongoing;
1337                 unsigned int first_page;
1338                 unsigned int pause_page;
1339                 unsigned int last_page;
1340         } cont_read;
1341
1342         /* Externals */
1343         struct nand_controller *controller;
1344         struct nand_ecc_ctrl ecc;
1345         void *priv;
1346 };
1347
1348 static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1349 {
1350         return container_of(mtd, struct nand_chip, base.mtd);
1351 }
1352
1353 static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1354 {
1355         return &chip->base.mtd;
1356 }
1357
1358 static inline void *nand_get_controller_data(struct nand_chip *chip)
1359 {
1360         return chip->priv;
1361 }
1362
1363 static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1364 {
1365         chip->priv = priv;
1366 }
1367
1368 static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1369                                               void *priv)
1370 {
1371         chip->manufacturer.priv = priv;
1372 }
1373
1374 static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1375 {
1376         return chip->manufacturer.priv;
1377 }
1378
1379 static inline void nand_set_flash_node(struct nand_chip *chip,
1380                                        struct device_node *np)
1381 {
1382         mtd_set_of_node(nand_to_mtd(chip), np);
1383 }
1384
1385 static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1386 {
1387         return mtd_get_of_node(nand_to_mtd(chip));
1388 }
1389
1390 /**
1391  * nand_get_interface_config - Retrieve the current interface configuration
1392  *                             of a NAND chip
1393  * @chip: The NAND chip
1394  */
1395 static inline const struct nand_interface_config *
1396 nand_get_interface_config(struct nand_chip *chip)
1397 {
1398         return chip->current_interface_config;
1399 }
1400
1401 /*
1402  * A helper for defining older NAND chips where the second ID byte fully
1403  * defined the chip, including the geometry (chip size, eraseblock size, page
1404  * size). All these chips have 512 bytes NAND page size.
1405  */
1406 #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts)          \
1407         { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1408           .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1409
1410 /*
1411  * A helper for defining newer chips which report their page size and
1412  * eraseblock size via the extended ID bytes.
1413  *
1414  * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1415  * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1416  * device ID now only represented a particular total chip size (and voltage,
1417  * buswidth), and the page size, eraseblock size, and OOB size could vary while
1418  * using the same device ID.
1419  */
1420 #define EXTENDED_ID_NAND(nm, devid, chipsz, opts)                      \
1421         { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1422           .options = (opts) }
1423
1424 #define NAND_ECC_INFO(_strength, _step) \
1425                         { .strength_ds = (_strength), .step_ds = (_step) }
1426 #define NAND_ECC_STRENGTH(type)         ((type)->ecc.strength_ds)
1427 #define NAND_ECC_STEP(type)             ((type)->ecc.step_ds)
1428
1429 /**
1430  * struct nand_flash_dev - NAND Flash Device ID Structure
1431  * @name: a human-readable name of the NAND chip
1432  * @dev_id: the device ID (the second byte of the full chip ID array)
1433  * @mfr_id: manufacturer ID part of the full chip ID array (refers the same
1434  *          memory address as ``id[0]``)
1435  * @dev_id: device ID part of the full chip ID array (refers the same memory
1436  *          address as ``id[1]``)
1437  * @id: full device ID array
1438  * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1439  *            well as the eraseblock size) is determined from the extended NAND
1440  *            chip ID array)
1441  * @chipsize: total chip size in MiB
1442  * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1443  * @options: stores various chip bit options
1444  * @id_len: The valid length of the @id.
1445  * @oobsize: OOB size
1446  * @ecc: ECC correctability and step information from the datasheet.
1447  * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1448  *                   @ecc_strength_ds in nand_chip{}.
1449  * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1450  *               @ecc_step_ds in nand_chip{}, also from the datasheet.
1451  *               For example, the "4bit ECC for each 512Byte" can be set with
1452  *               NAND_ECC_INFO(4, 512).
1453  */
1454 struct nand_flash_dev {
1455         char *name;
1456         union {
1457                 struct {
1458                         uint8_t mfr_id;
1459                         uint8_t dev_id;
1460                 };
1461                 uint8_t id[NAND_MAX_ID_LEN];
1462         };
1463         unsigned int pagesize;
1464         unsigned int chipsize;
1465         unsigned int erasesize;
1466         unsigned int options;
1467         uint16_t id_len;
1468         uint16_t oobsize;
1469         struct {
1470                 uint16_t strength_ds;
1471                 uint16_t step_ds;
1472         } ecc;
1473 };
1474
1475 int nand_create_bbt(struct nand_chip *chip);
1476
1477 /*
1478  * Check if it is a SLC nand.
1479  * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1480  * We do not distinguish the MLC and TLC now.
1481  */
1482 static inline bool nand_is_slc(struct nand_chip *chip)
1483 {
1484         WARN(nanddev_bits_per_cell(&chip->base) == 0,
1485              "chip->bits_per_cell is used uninitialized\n");
1486         return nanddev_bits_per_cell(&chip->base) == 1;
1487 }
1488
1489 /**
1490  * nand_opcode_8bits - Check if the opcode's address should be sent only on the
1491  *      lower 8 bits
1492  * @command: opcode to check
1493  */
1494 static inline int nand_opcode_8bits(unsigned int command)
1495 {
1496         switch (command) {
1497         case NAND_CMD_READID:
1498         case NAND_CMD_PARAM:
1499         case NAND_CMD_GET_FEATURES:
1500         case NAND_CMD_SET_FEATURES:
1501                 return 1;
1502         default:
1503                 break;
1504         }
1505         return 0;
1506 }
1507
1508 int rawnand_sw_hamming_init(struct nand_chip *chip);
1509 int rawnand_sw_hamming_calculate(struct nand_chip *chip,
1510                                  const unsigned char *buf,
1511                                  unsigned char *code);
1512 int rawnand_sw_hamming_correct(struct nand_chip *chip,
1513                                unsigned char *buf,
1514                                unsigned char *read_ecc,
1515                                unsigned char *calc_ecc);
1516 void rawnand_sw_hamming_cleanup(struct nand_chip *chip);
1517 int rawnand_sw_bch_init(struct nand_chip *chip);
1518 int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
1519                            unsigned char *read_ecc, unsigned char *calc_ecc);
1520 void rawnand_sw_bch_cleanup(struct nand_chip *chip);
1521
1522 int nand_check_erased_ecc_chunk(void *data, int datalen,
1523                                 void *ecc, int ecclen,
1524                                 void *extraoob, int extraooblen,
1525                                 int threshold);
1526
1527 int nand_ecc_choose_conf(struct nand_chip *chip,
1528                          const struct nand_ecc_caps *caps, int oobavail);
1529
1530 /* Default write_oob implementation */
1531 int nand_write_oob_std(struct nand_chip *chip, int page);
1532
1533 /* Default read_oob implementation */
1534 int nand_read_oob_std(struct nand_chip *chip, int page);
1535
1536 /* Stub used by drivers that do not support GET/SET FEATURES operations */
1537 int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
1538                                   u8 *subfeature_param);
1539
1540 /* read_page_raw implementations */
1541 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
1542                        int page);
1543 int nand_monolithic_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1544                                   int oob_required, int page);
1545
1546 /* write_page_raw implementations */
1547 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1548                         int oob_required, int page);
1549 int nand_monolithic_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1550                                    int oob_required, int page);
1551
1552 /* Reset and initialize a NAND device */
1553 int nand_reset(struct nand_chip *chip, int chipnr);
1554
1555 /* NAND operation helpers */
1556 int nand_reset_op(struct nand_chip *chip);
1557 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1558                    unsigned int len);
1559 int nand_status_op(struct nand_chip *chip, u8 *status);
1560 int nand_exit_status_op(struct nand_chip *chip);
1561 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1562 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1563                       unsigned int offset_in_page, void *buf, unsigned int len);
1564 int nand_change_read_column_op(struct nand_chip *chip,
1565                                unsigned int offset_in_page, void *buf,
1566                                unsigned int len, bool force_8bit);
1567 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1568                      unsigned int offset_in_page, void *buf, unsigned int len);
1569 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1570                             unsigned int offset_in_page, const void *buf,
1571                             unsigned int len);
1572 int nand_prog_page_end_op(struct nand_chip *chip);
1573 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1574                       unsigned int offset_in_page, const void *buf,
1575                       unsigned int len);
1576 int nand_change_write_column_op(struct nand_chip *chip,
1577                                 unsigned int offset_in_page, const void *buf,
1578                                 unsigned int len, bool force_8bit);
1579 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1580                       bool force_8bit, bool check_only);
1581 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1582                        unsigned int len, bool force_8bit);
1583 int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
1584                                    int oob_required, int page);
1585
1586 /* Scan and identify a NAND device */
1587 int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
1588                        struct nand_flash_dev *ids);
1589
1590 static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
1591 {
1592         return nand_scan_with_ids(chip, max_chips, NULL);
1593 }
1594
1595 /* Internal helper for board drivers which need to override command function */
1596 void nand_wait_ready(struct nand_chip *chip);
1597
1598 /*
1599  * Free resources held by the NAND device, must be called on error after a
1600  * sucessful nand_scan().
1601  */
1602 void nand_cleanup(struct nand_chip *chip);
1603
1604 /*
1605  * External helper for controller drivers that have to implement the WAITRDY
1606  * instruction and have no physical pin to check it.
1607  */
1608 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1609 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
1610                       unsigned long timeout_ms);
1611
1612 /* Select/deselect a NAND target. */
1613 void nand_select_target(struct nand_chip *chip, unsigned int cs);
1614 void nand_deselect_target(struct nand_chip *chip);
1615
1616 /* Bitops */
1617 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
1618                        unsigned int src_off, unsigned int nbits);
1619
1620 /**
1621  * nand_get_data_buf() - Get the internal page buffer
1622  * @chip: NAND chip object
1623  *
1624  * Returns the pre-allocated page buffer after invalidating the cache. This
1625  * function should be used by drivers that do not want to allocate their own
1626  * bounce buffer and still need such a buffer for specific operations (most
1627  * commonly when reading OOB data only).
1628  *
1629  * Be careful to never call this function in the write/write_oob path, because
1630  * the core may have placed the data to be written out in this buffer.
1631  *
1632  * Return: pointer to the page cache buffer
1633  */
1634 static inline void *nand_get_data_buf(struct nand_chip *chip)
1635 {
1636         chip->pagecache.page = -1;
1637
1638         return chip->data_buf;
1639 }
1640
1641 /* Parse the gpio-cs property */
1642 int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
1643                              unsigned int *ncs_array);
1644
1645 #endif /* __LINUX_MTD_RAWNAND_H */