GNU Linux-libre 5.10.217-gnu1
[releases.git] / include / linux / mtd / rawnand.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  *  Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
4  *                        Steven J. Hill <sjhill@realitydiluted.com>
5  *                        Thomas Gleixner <tglx@linutronix.de>
6  *
7  * Info:
8  *      Contains standard defines and IDs for NAND flash devices
9  *
10  * Changelog:
11  *      See git changelog.
12  */
13 #ifndef __LINUX_MTD_RAWNAND_H
14 #define __LINUX_MTD_RAWNAND_H
15
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/flashchip.h>
19 #include <linux/mtd/bbm.h>
20 #include <linux/mtd/jedec.h>
21 #include <linux/mtd/nand.h>
22 #include <linux/mtd/onfi.h>
23 #include <linux/mutex.h>
24 #include <linux/of.h>
25 #include <linux/types.h>
26
27 struct nand_chip;
28
29 /* The maximum number of NAND chips in an array */
30 #define NAND_MAX_CHIPS          8
31
32 /*
33  * Constants for hardware specific CLE/ALE/NCE function
34  *
35  * These are bits which can be or'ed to set/clear multiple
36  * bits in one go.
37  */
38 /* Select the chip by setting nCE to low */
39 #define NAND_NCE                0x01
40 /* Select the command latch by setting CLE to high */
41 #define NAND_CLE                0x02
42 /* Select the address latch by setting ALE to high */
43 #define NAND_ALE                0x04
44
45 #define NAND_CTRL_CLE           (NAND_NCE | NAND_CLE)
46 #define NAND_CTRL_ALE           (NAND_NCE | NAND_ALE)
47 #define NAND_CTRL_CHANGE        0x80
48
49 /*
50  * Standard NAND flash commands
51  */
52 #define NAND_CMD_READ0          0
53 #define NAND_CMD_READ1          1
54 #define NAND_CMD_RNDOUT         5
55 #define NAND_CMD_PAGEPROG       0x10
56 #define NAND_CMD_READOOB        0x50
57 #define NAND_CMD_ERASE1         0x60
58 #define NAND_CMD_STATUS         0x70
59 #define NAND_CMD_SEQIN          0x80
60 #define NAND_CMD_RNDIN          0x85
61 #define NAND_CMD_READID         0x90
62 #define NAND_CMD_ERASE2         0xd0
63 #define NAND_CMD_PARAM          0xec
64 #define NAND_CMD_GET_FEATURES   0xee
65 #define NAND_CMD_SET_FEATURES   0xef
66 #define NAND_CMD_RESET          0xff
67
68 /* Extended commands for large page devices */
69 #define NAND_CMD_READSTART      0x30
70 #define NAND_CMD_RNDOUTSTART    0xE0
71 #define NAND_CMD_CACHEDPROG     0x15
72
73 #define NAND_CMD_NONE           -1
74
75 /* Status bits */
76 #define NAND_STATUS_FAIL        0x01
77 #define NAND_STATUS_FAIL_N1     0x02
78 #define NAND_STATUS_TRUE_READY  0x20
79 #define NAND_STATUS_READY       0x40
80 #define NAND_STATUS_WP          0x80
81
82 #define NAND_DATA_IFACE_CHECK_ONLY      -1
83
84 /*
85  * Constants for Hardware ECC
86  */
87 /* Reset Hardware ECC for read */
88 #define NAND_ECC_READ           0
89 /* Reset Hardware ECC for write */
90 #define NAND_ECC_WRITE          1
91 /* Enable Hardware ECC before syndrome is read back from flash */
92 #define NAND_ECC_READSYN        2
93
94 /*
95  * Enable generic NAND 'page erased' check. This check is only done when
96  * ecc.correct() returns -EBADMSG.
97  * Set this flag if your implementation does not fix bitflips in erased
98  * pages and you want to rely on the default implementation.
99  */
100 #define NAND_ECC_GENERIC_ERASED_CHECK   BIT(0)
101
102 /*
103  * Option constants for bizarre disfunctionality and real
104  * features.
105  */
106
107 /* Buswidth is 16 bit */
108 #define NAND_BUSWIDTH_16        BIT(1)
109
110 /*
111  * When using software implementation of Hamming, we can specify which byte
112  * ordering should be used.
113  */
114 #define NAND_ECC_SOFT_HAMMING_SM_ORDER  BIT(2)
115
116 /* Chip has cache program function */
117 #define NAND_CACHEPRG           BIT(3)
118 /* Options valid for Samsung large page devices */
119 #define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG
120
121 /*
122  * Chip requires ready check on read (for auto-incremented sequential read).
123  * True only for small page devices; large page devices do not support
124  * autoincrement.
125  */
126 #define NAND_NEED_READRDY       BIT(8)
127
128 /* Chip does not allow subpage writes */
129 #define NAND_NO_SUBPAGE_WRITE   BIT(9)
130
131 /* Device is one of 'new' xD cards that expose fake nand command set */
132 #define NAND_BROKEN_XD          BIT(10)
133
134 /* Device behaves just like nand, but is readonly */
135 #define NAND_ROM                BIT(11)
136
137 /* Device supports subpage reads */
138 #define NAND_SUBPAGE_READ       BIT(12)
139 /* Macros to identify the above */
140 #define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ))
141
142 /*
143  * Some MLC NANDs need data scrambling to limit bitflips caused by repeated
144  * patterns.
145  */
146 #define NAND_NEED_SCRAMBLING    BIT(13)
147
148 /* Device needs 3rd row address cycle */
149 #define NAND_ROW_ADDR_3         BIT(14)
150
151 /* Non chip related options */
152 /* This option skips the bbt scan during initialization. */
153 #define NAND_SKIP_BBTSCAN       BIT(16)
154 /* Chip may not exist, so silence any errors in scan */
155 #define NAND_SCAN_SILENT_NODEV  BIT(18)
156
157 /*
158  * Autodetect nand buswidth with readid/onfi.
159  * This suppose the driver will configure the hardware in 8 bits mode
160  * when calling nand_scan_ident, and update its configuration
161  * before calling nand_scan_tail.
162  */
163 #define NAND_BUSWIDTH_AUTO      BIT(19)
164
165 /*
166  * This option could be defined by controller drivers to protect against
167  * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers
168  */
169 #define NAND_USES_DMA           BIT(20)
170
171 /*
172  * In case your controller is implementing ->legacy.cmd_ctrl() and is relying
173  * on the default ->cmdfunc() implementation, you may want to let the core
174  * handle the tCCS delay which is required when a column change (RNDIN or
175  * RNDOUT) is requested.
176  * If your controller already takes care of this delay, you don't need to set
177  * this flag.
178  */
179 #define NAND_WAIT_TCCS          BIT(21)
180
181 /*
182  * Whether the NAND chip is a boot medium. Drivers might use this information
183  * to select ECC algorithms supported by the boot ROM or similar restrictions.
184  */
185 #define NAND_IS_BOOT_MEDIUM     BIT(22)
186
187 /*
188  * Do not try to tweak the timings at runtime. This is needed when the
189  * controller initializes the timings on itself or when it relies on
190  * configuration done by the bootloader.
191  */
192 #define NAND_KEEP_TIMINGS       BIT(23)
193
194 /*
195  * There are different places where the manufacturer stores the factory bad
196  * block markers.
197  *
198  * Position within the block: Each of these pages needs to be checked for a
199  * bad block marking pattern.
200  */
201 #define NAND_BBM_FIRSTPAGE      BIT(24)
202 #define NAND_BBM_SECONDPAGE     BIT(25)
203 #define NAND_BBM_LASTPAGE       BIT(26)
204
205 /*
206  * Some controllers with pipelined ECC engines override the BBM marker with
207  * data or ECC bytes, thus making bad block detection through bad block marker
208  * impossible. Let's flag those chips so the core knows it shouldn't check the
209  * BBM and consider all blocks good.
210  */
211 #define NAND_NO_BBM_QUIRK       BIT(27)
212
213 /* Cell info constants */
214 #define NAND_CI_CHIPNR_MSK      0x03
215 #define NAND_CI_CELLTYPE_MSK    0x0C
216 #define NAND_CI_CELLTYPE_SHIFT  2
217
218 /* Position within the OOB data of the page */
219 #define NAND_BBM_POS_SMALL              5
220 #define NAND_BBM_POS_LARGE              0
221
222 /**
223  * struct nand_parameters - NAND generic parameters from the parameter page
224  * @model: Model name
225  * @supports_set_get_features: The NAND chip supports setting/getting features
226  * @set_feature_list: Bitmap of features that can be set
227  * @get_feature_list: Bitmap of features that can be get
228  * @onfi: ONFI specific parameters
229  */
230 struct nand_parameters {
231         /* Generic parameters */
232         const char *model;
233         bool supports_set_get_features;
234         DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER);
235         DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER);
236
237         /* ONFI parameters */
238         struct onfi_params *onfi;
239 };
240
241 /* The maximum expected count of bytes in the NAND ID sequence */
242 #define NAND_MAX_ID_LEN 8
243
244 /**
245  * struct nand_id - NAND id structure
246  * @data: buffer containing the id bytes.
247  * @len: ID length.
248  */
249 struct nand_id {
250         u8 data[NAND_MAX_ID_LEN];
251         int len;
252 };
253
254 /**
255  * struct nand_ecc_step_info - ECC step information of ECC engine
256  * @stepsize: data bytes per ECC step
257  * @strengths: array of supported strengths
258  * @nstrengths: number of supported strengths
259  */
260 struct nand_ecc_step_info {
261         int stepsize;
262         const int *strengths;
263         int nstrengths;
264 };
265
266 /**
267  * struct nand_ecc_caps - capability of ECC engine
268  * @stepinfos: array of ECC step information
269  * @nstepinfos: number of ECC step information
270  * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step
271  */
272 struct nand_ecc_caps {
273         const struct nand_ecc_step_info *stepinfos;
274         int nstepinfos;
275         int (*calc_ecc_bytes)(int step_size, int strength);
276 };
277
278 /* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */
279 #define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...)       \
280 static const int __name##_strengths[] = { __VA_ARGS__ };        \
281 static const struct nand_ecc_step_info __name##_stepinfo = {    \
282         .stepsize = __step,                                     \
283         .strengths = __name##_strengths,                        \
284         .nstrengths = ARRAY_SIZE(__name##_strengths),           \
285 };                                                              \
286 static const struct nand_ecc_caps __name = {                    \
287         .stepinfos = &__name##_stepinfo,                        \
288         .nstepinfos = 1,                                        \
289         .calc_ecc_bytes = __calc,                               \
290 }
291
292 /**
293  * struct nand_ecc_ctrl - Control structure for ECC
294  * @engine_type: ECC engine type
295  * @placement:  OOB bytes placement
296  * @algo:       ECC algorithm
297  * @steps:      number of ECC steps per page
298  * @size:       data bytes per ECC step
299  * @bytes:      ECC bytes per step
300  * @strength:   max number of correctible bits per ECC step
301  * @total:      total number of ECC bytes per page
302  * @prepad:     padding information for syndrome based ECC generators
303  * @postpad:    padding information for syndrome based ECC generators
304  * @options:    ECC specific options (see NAND_ECC_XXX flags defined above)
305  * @priv:       pointer to private ECC control data
306  * @calc_buf:   buffer for calculated ECC, size is oobsize.
307  * @code_buf:   buffer for ECC read from flash, size is oobsize.
308  * @hwctl:      function to control hardware ECC generator. Must only
309  *              be provided if an hardware ECC is available
310  * @calculate:  function for ECC calculation or readback from ECC hardware
311  * @correct:    function for ECC correction, matching to ECC generator (sw/hw).
312  *              Should return a positive number representing the number of
313  *              corrected bitflips, -EBADMSG if the number of bitflips exceed
314  *              ECC strength, or any other error code if the error is not
315  *              directly related to correction.
316  *              If -EBADMSG is returned the input buffers should be left
317  *              untouched.
318  * @read_page_raw:      function to read a raw page without ECC. This function
319  *                      should hide the specific layout used by the ECC
320  *                      controller and always return contiguous in-band and
321  *                      out-of-band data even if they're not stored
322  *                      contiguously on the NAND chip (e.g.
323  *                      NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
324  *                      out-of-band data).
325  * @write_page_raw:     function to write a raw page without ECC. This function
326  *                      should hide the specific layout used by the ECC
327  *                      controller and consider the passed data as contiguous
328  *                      in-band and out-of-band data. ECC controller is
329  *                      responsible for doing the appropriate transformations
330  *                      to adapt to its specific layout (e.g.
331  *                      NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and
332  *                      out-of-band data).
333  * @read_page:  function to read a page according to the ECC generator
334  *              requirements; returns maximum number of bitflips corrected in
335  *              any single ECC step, -EIO hw error
336  * @read_subpage:       function to read parts of the page covered by ECC;
337  *                      returns same as read_page()
338  * @write_subpage:      function to write parts of the page covered by ECC.
339  * @write_page: function to write a page according to the ECC generator
340  *              requirements.
341  * @write_oob_raw:      function to write chip OOB data without ECC
342  * @read_oob_raw:       function to read chip OOB data without ECC
343  * @read_oob:   function to read chip OOB data
344  * @write_oob:  function to write chip OOB data
345  */
346 struct nand_ecc_ctrl {
347         enum nand_ecc_engine_type engine_type;
348         enum nand_ecc_placement placement;
349         enum nand_ecc_algo algo;
350         int steps;
351         int size;
352         int bytes;
353         int total;
354         int strength;
355         int prepad;
356         int postpad;
357         unsigned int options;
358         void *priv;
359         u8 *calc_buf;
360         u8 *code_buf;
361         void (*hwctl)(struct nand_chip *chip, int mode);
362         int (*calculate)(struct nand_chip *chip, const uint8_t *dat,
363                          uint8_t *ecc_code);
364         int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc,
365                        uint8_t *calc_ecc);
366         int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf,
367                              int oob_required, int page);
368         int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf,
369                               int oob_required, int page);
370         int (*read_page)(struct nand_chip *chip, uint8_t *buf,
371                          int oob_required, int page);
372         int (*read_subpage)(struct nand_chip *chip, uint32_t offs,
373                             uint32_t len, uint8_t *buf, int page);
374         int (*write_subpage)(struct nand_chip *chip, uint32_t offset,
375                              uint32_t data_len, const uint8_t *data_buf,
376                              int oob_required, int page);
377         int (*write_page)(struct nand_chip *chip, const uint8_t *buf,
378                           int oob_required, int page);
379         int (*write_oob_raw)(struct nand_chip *chip, int page);
380         int (*read_oob_raw)(struct nand_chip *chip, int page);
381         int (*read_oob)(struct nand_chip *chip, int page);
382         int (*write_oob)(struct nand_chip *chip, int page);
383 };
384
385 /**
386  * struct nand_sdr_timings - SDR NAND chip timings
387  *
388  * This struct defines the timing requirements of a SDR NAND chip.
389  * These information can be found in every NAND datasheets and the timings
390  * meaning are described in the ONFI specifications:
391  * www.onfi.org/~/media/ONFI/specs/onfi_3_1_spec.pdf (chapter 4.15 Timing
392  * Parameters)
393  *
394  * All these timings are expressed in picoseconds.
395  *
396  * @tBERS_max: Block erase time
397  * @tCCS_min: Change column setup time
398  * @tPROG_max: Page program time
399  * @tR_max: Page read time
400  * @tALH_min: ALE hold time
401  * @tADL_min: ALE to data loading time
402  * @tALS_min: ALE setup time
403  * @tAR_min: ALE to RE# delay
404  * @tCEA_max: CE# access time
405  * @tCEH_min: CE# high hold time
406  * @tCH_min:  CE# hold time
407  * @tCHZ_max: CE# high to output hi-Z
408  * @tCLH_min: CLE hold time
409  * @tCLR_min: CLE to RE# delay
410  * @tCLS_min: CLE setup time
411  * @tCOH_min: CE# high to output hold
412  * @tCS_min: CE# setup time
413  * @tDH_min: Data hold time
414  * @tDS_min: Data setup time
415  * @tFEAT_max: Busy time for Set Features and Get Features
416  * @tIR_min: Output hi-Z to RE# low
417  * @tITC_max: Interface and Timing Mode Change time
418  * @tRC_min: RE# cycle time
419  * @tREA_max: RE# access time
420  * @tREH_min: RE# high hold time
421  * @tRHOH_min: RE# high to output hold
422  * @tRHW_min: RE# high to WE# low
423  * @tRHZ_max: RE# high to output hi-Z
424  * @tRLOH_min: RE# low to output hold
425  * @tRP_min: RE# pulse width
426  * @tRR_min: Ready to RE# low (data only)
427  * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
428  *            rising edge of R/B#.
429  * @tWB_max: WE# high to SR[6] low
430  * @tWC_min: WE# cycle time
431  * @tWH_min: WE# high hold time
432  * @tWHR_min: WE# high to RE# low
433  * @tWP_min: WE# pulse width
434  * @tWW_min: WP# transition to WE# low
435  */
436 struct nand_sdr_timings {
437         u64 tBERS_max;
438         u32 tCCS_min;
439         u64 tPROG_max;
440         u64 tR_max;
441         u32 tALH_min;
442         u32 tADL_min;
443         u32 tALS_min;
444         u32 tAR_min;
445         u32 tCEA_max;
446         u32 tCEH_min;
447         u32 tCH_min;
448         u32 tCHZ_max;
449         u32 tCLH_min;
450         u32 tCLR_min;
451         u32 tCLS_min;
452         u32 tCOH_min;
453         u32 tCS_min;
454         u32 tDH_min;
455         u32 tDS_min;
456         u32 tFEAT_max;
457         u32 tIR_min;
458         u32 tITC_max;
459         u32 tRC_min;
460         u32 tREA_max;
461         u32 tREH_min;
462         u32 tRHOH_min;
463         u32 tRHW_min;
464         u32 tRHZ_max;
465         u32 tRLOH_min;
466         u32 tRP_min;
467         u32 tRR_min;
468         u64 tRST_max;
469         u32 tWB_max;
470         u32 tWC_min;
471         u32 tWH_min;
472         u32 tWHR_min;
473         u32 tWP_min;
474         u32 tWW_min;
475 };
476
477 /**
478  * struct nand_nvddr_timings - NV-DDR NAND chip timings
479  *
480  * This struct defines the timing requirements of a NV-DDR NAND data interface.
481  * These information can be found in every NAND datasheets and the timings
482  * meaning are described in the ONFI specifications:
483  * https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_1_gold.pdf
484  * (chapter 4.18.2 NV-DDR)
485  *
486  * All these timings are expressed in picoseconds.
487  *
488  * @tBERS_max: Block erase time
489  * @tCCS_min: Change column setup time
490  * @tPROG_max: Page program time
491  * @tR_max: Page read time
492  * @tAC_min: Access window of DQ[7:0] from CLK
493  * @tAC_max: Access window of DQ[7:0] from CLK
494  * @tADL_min: ALE to data loading time
495  * @tCAD_min: Command, Address, Data delay
496  * @tCAH_min: Command/Address DQ hold time
497  * @tCALH_min: W/R_n, CLE and ALE hold time
498  * @tCALS_min: W/R_n, CLE and ALE setup time
499  * @tCAS_min: Command/address DQ setup time
500  * @tCEH_min: CE# high hold time
501  * @tCH_min:  CE# hold time
502  * @tCK_min: Average clock cycle time
503  * @tCS_min: CE# setup time
504  * @tDH_min: Data hold time
505  * @tDQSCK_min: Start of the access window of DQS from CLK
506  * @tDQSCK_max: End of the access window of DQS from CLK
507  * @tDQSD_min: Min W/R_n low to DQS/DQ driven by device
508  * @tDQSD_max: Max W/R_n low to DQS/DQ driven by device
509  * @tDQSHZ_max: W/R_n high to DQS/DQ tri-state by device
510  * @tDQSQ_max: DQS-DQ skew, DQS to last DQ valid, per access
511  * @tDS_min: Data setup time
512  * @tDSC_min: DQS cycle time
513  * @tFEAT_max: Busy time for Set Features and Get Features
514  * @tITC_max: Interface and Timing Mode Change time
515  * @tQHS_max: Data hold skew factor
516  * @tRHW_min: Data output cycle to command, address, or data input cycle
517  * @tRR_min: Ready to RE# low (data only)
518  * @tRST_max: Device reset time, measured from the falling edge of R/B# to the
519  *            rising edge of R/B#.
520  * @tWB_max: WE# high to SR[6] low
521  * @tWHR_min: WE# high to RE# low
522  * @tWRCK_min: W/R_n low to data output cycle
523  * @tWW_min: WP# transition to WE# low
524  */
525 struct nand_nvddr_timings {
526         u64 tBERS_max;
527         u32 tCCS_min;
528         u64 tPROG_max;
529         u64 tR_max;
530         u32 tAC_min;
531         u32 tAC_max;
532         u32 tADL_min;
533         u32 tCAD_min;
534         u32 tCAH_min;
535         u32 tCALH_min;
536         u32 tCALS_min;
537         u32 tCAS_min;
538         u32 tCEH_min;
539         u32 tCH_min;
540         u32 tCK_min;
541         u32 tCS_min;
542         u32 tDH_min;
543         u32 tDQSCK_min;
544         u32 tDQSCK_max;
545         u32 tDQSD_min;
546         u32 tDQSD_max;
547         u32 tDQSHZ_max;
548         u32 tDQSQ_max;
549         u32 tDS_min;
550         u32 tDSC_min;
551         u32 tFEAT_max;
552         u32 tITC_max;
553         u32 tQHS_max;
554         u32 tRHW_min;
555         u32 tRR_min;
556         u32 tRST_max;
557         u32 tWB_max;
558         u32 tWHR_min;
559         u32 tWRCK_min;
560         u32 tWW_min;
561 };
562
563 /**
564  * enum nand_interface_type - NAND interface type
565  * @NAND_SDR_IFACE:     Single Data Rate interface
566  * @NAND_NVDDR_IFACE:   Double Data Rate interface
567  */
568 enum nand_interface_type {
569         NAND_SDR_IFACE,
570         NAND_NVDDR_IFACE,
571 };
572
573 /**
574  * struct nand_interface_config - NAND interface timing
575  * @type:        type of the timing
576  * @timings:     The timing information
577  * @timings.mode: Timing mode as defined in the specification
578  * @timings.sdr: Use it when @type is %NAND_SDR_IFACE.
579  * @timings.nvddr: Use it when @type is %NAND_NVDDR_IFACE.
580  */
581 struct nand_interface_config {
582         enum nand_interface_type type;
583         struct nand_timings {
584                 unsigned int mode;
585                 union {
586                         struct nand_sdr_timings sdr;
587                         struct nand_nvddr_timings nvddr;
588                 };
589         } timings;
590 };
591
592 /**
593  * nand_interface_is_sdr - get the interface type
594  * @conf:       The data interface
595  */
596 static bool nand_interface_is_sdr(const struct nand_interface_config *conf)
597 {
598         return conf->type == NAND_SDR_IFACE;
599 }
600
601 /**
602  * nand_interface_is_nvddr - get the interface type
603  * @conf:       The data interface
604  */
605 static bool nand_interface_is_nvddr(const struct nand_interface_config *conf)
606 {
607         return conf->type == NAND_NVDDR_IFACE;
608 }
609
610 /**
611  * nand_get_sdr_timings - get SDR timing from data interface
612  * @conf:       The data interface
613  */
614 static inline const struct nand_sdr_timings *
615 nand_get_sdr_timings(const struct nand_interface_config *conf)
616 {
617         if (!nand_interface_is_sdr(conf))
618                 return ERR_PTR(-EINVAL);
619
620         return &conf->timings.sdr;
621 }
622
623 /**
624  * nand_get_nvddr_timings - get NV-DDR timing from data interface
625  * @conf:       The data interface
626  */
627 static inline const struct nand_nvddr_timings *
628 nand_get_nvddr_timings(const struct nand_interface_config *conf)
629 {
630         if (!nand_interface_is_nvddr(conf))
631                 return ERR_PTR(-EINVAL);
632
633         return &conf->timings.nvddr;
634 }
635
636 /**
637  * struct nand_op_cmd_instr - Definition of a command instruction
638  * @opcode: the command to issue in one cycle
639  */
640 struct nand_op_cmd_instr {
641         u8 opcode;
642 };
643
644 /**
645  * struct nand_op_addr_instr - Definition of an address instruction
646  * @naddrs: length of the @addrs array
647  * @addrs: array containing the address cycles to issue
648  */
649 struct nand_op_addr_instr {
650         unsigned int naddrs;
651         const u8 *addrs;
652 };
653
654 /**
655  * struct nand_op_data_instr - Definition of a data instruction
656  * @len: number of data bytes to move
657  * @buf: buffer to fill
658  * @buf.in: buffer to fill when reading from the NAND chip
659  * @buf.out: buffer to read from when writing to the NAND chip
660  * @force_8bit: force 8-bit access
661  *
662  * Please note that "in" and "out" are inverted from the ONFI specification
663  * and are from the controller perspective, so a "in" is a read from the NAND
664  * chip while a "out" is a write to the NAND chip.
665  */
666 struct nand_op_data_instr {
667         unsigned int len;
668         union {
669                 void *in;
670                 const void *out;
671         } buf;
672         bool force_8bit;
673 };
674
675 /**
676  * struct nand_op_waitrdy_instr - Definition of a wait ready instruction
677  * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms
678  */
679 struct nand_op_waitrdy_instr {
680         unsigned int timeout_ms;
681 };
682
683 /**
684  * enum nand_op_instr_type - Definition of all instruction types
685  * @NAND_OP_CMD_INSTR: command instruction
686  * @NAND_OP_ADDR_INSTR: address instruction
687  * @NAND_OP_DATA_IN_INSTR: data in instruction
688  * @NAND_OP_DATA_OUT_INSTR: data out instruction
689  * @NAND_OP_WAITRDY_INSTR: wait ready instruction
690  */
691 enum nand_op_instr_type {
692         NAND_OP_CMD_INSTR,
693         NAND_OP_ADDR_INSTR,
694         NAND_OP_DATA_IN_INSTR,
695         NAND_OP_DATA_OUT_INSTR,
696         NAND_OP_WAITRDY_INSTR,
697 };
698
699 /**
700  * struct nand_op_instr - Instruction object
701  * @type: the instruction type
702  * @ctx:  extra data associated to the instruction. You'll have to use the
703  *        appropriate element depending on @type
704  * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR
705  * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR
706  * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR
707  *            or %NAND_OP_DATA_OUT_INSTR
708  * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR
709  * @delay_ns: delay the controller should apply after the instruction has been
710  *            issued on the bus. Most modern controllers have internal timings
711  *            control logic, and in this case, the controller driver can ignore
712  *            this field.
713  */
714 struct nand_op_instr {
715         enum nand_op_instr_type type;
716         union {
717                 struct nand_op_cmd_instr cmd;
718                 struct nand_op_addr_instr addr;
719                 struct nand_op_data_instr data;
720                 struct nand_op_waitrdy_instr waitrdy;
721         } ctx;
722         unsigned int delay_ns;
723 };
724
725 /*
726  * Special handling must be done for the WAITRDY timeout parameter as it usually
727  * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or
728  * tBERS (during an erase) which all of them are u64 values that cannot be
729  * divided by usual kernel macros and must be handled with the special
730  * DIV_ROUND_UP_ULL() macro.
731  *
732  * Cast to type of dividend is needed here to guarantee that the result won't
733  * be an unsigned long long when the dividend is an unsigned long (or smaller),
734  * which is what the compiler does when it sees ternary operator with 2
735  * different return types (picks the largest type to make sure there's no
736  * loss).
737  */
738 #define __DIVIDE(dividend, divisor) ({                                          \
739         (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ?      \
740                                DIV_ROUND_UP(dividend, divisor) :                \
741                                DIV_ROUND_UP_ULL(dividend, divisor));            \
742         })
743 #define PSEC_TO_NSEC(x) __DIVIDE(x, 1000)
744 #define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000)
745
746 #define NAND_OP_CMD(id, ns)                                             \
747         {                                                               \
748                 .type = NAND_OP_CMD_INSTR,                              \
749                 .ctx.cmd.opcode = id,                                   \
750                 .delay_ns = ns,                                         \
751         }
752
753 #define NAND_OP_ADDR(ncycles, cycles, ns)                               \
754         {                                                               \
755                 .type = NAND_OP_ADDR_INSTR,                             \
756                 .ctx.addr = {                                           \
757                         .naddrs = ncycles,                              \
758                         .addrs = cycles,                                \
759                 },                                                      \
760                 .delay_ns = ns,                                         \
761         }
762
763 #define NAND_OP_DATA_IN(l, b, ns)                                       \
764         {                                                               \
765                 .type = NAND_OP_DATA_IN_INSTR,                          \
766                 .ctx.data = {                                           \
767                         .len = l,                                       \
768                         .buf.in = b,                                    \
769                         .force_8bit = false,                            \
770                 },                                                      \
771                 .delay_ns = ns,                                         \
772         }
773
774 #define NAND_OP_DATA_OUT(l, b, ns)                                      \
775         {                                                               \
776                 .type = NAND_OP_DATA_OUT_INSTR,                         \
777                 .ctx.data = {                                           \
778                         .len = l,                                       \
779                         .buf.out = b,                                   \
780                         .force_8bit = false,                            \
781                 },                                                      \
782                 .delay_ns = ns,                                         \
783         }
784
785 #define NAND_OP_8BIT_DATA_IN(l, b, ns)                                  \
786         {                                                               \
787                 .type = NAND_OP_DATA_IN_INSTR,                          \
788                 .ctx.data = {                                           \
789                         .len = l,                                       \
790                         .buf.in = b,                                    \
791                         .force_8bit = true,                             \
792                 },                                                      \
793                 .delay_ns = ns,                                         \
794         }
795
796 #define NAND_OP_8BIT_DATA_OUT(l, b, ns)                                 \
797         {                                                               \
798                 .type = NAND_OP_DATA_OUT_INSTR,                         \
799                 .ctx.data = {                                           \
800                         .len = l,                                       \
801                         .buf.out = b,                                   \
802                         .force_8bit = true,                             \
803                 },                                                      \
804                 .delay_ns = ns,                                         \
805         }
806
807 #define NAND_OP_WAIT_RDY(tout_ms, ns)                                   \
808         {                                                               \
809                 .type = NAND_OP_WAITRDY_INSTR,                          \
810                 .ctx.waitrdy.timeout_ms = tout_ms,                      \
811                 .delay_ns = ns,                                         \
812         }
813
814 /**
815  * struct nand_subop - a sub operation
816  * @cs: the CS line to select for this NAND sub-operation
817  * @instrs: array of instructions
818  * @ninstrs: length of the @instrs array
819  * @first_instr_start_off: offset to start from for the first instruction
820  *                         of the sub-operation
821  * @last_instr_end_off: offset to end at (excluded) for the last instruction
822  *                      of the sub-operation
823  *
824  * Both @first_instr_start_off and @last_instr_end_off only apply to data or
825  * address instructions.
826  *
827  * When an operation cannot be handled as is by the NAND controller, it will
828  * be split by the parser into sub-operations which will be passed to the
829  * controller driver.
830  */
831 struct nand_subop {
832         unsigned int cs;
833         const struct nand_op_instr *instrs;
834         unsigned int ninstrs;
835         unsigned int first_instr_start_off;
836         unsigned int last_instr_end_off;
837 };
838
839 unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
840                                            unsigned int op_id);
841 unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
842                                          unsigned int op_id);
843 unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
844                                            unsigned int op_id);
845 unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
846                                      unsigned int op_id);
847
848 /**
849  * struct nand_op_parser_addr_constraints - Constraints for address instructions
850  * @maxcycles: maximum number of address cycles the controller can issue in a
851  *             single step
852  */
853 struct nand_op_parser_addr_constraints {
854         unsigned int maxcycles;
855 };
856
857 /**
858  * struct nand_op_parser_data_constraints - Constraints for data instructions
859  * @maxlen: maximum data length that the controller can handle in a single step
860  */
861 struct nand_op_parser_data_constraints {
862         unsigned int maxlen;
863 };
864
865 /**
866  * struct nand_op_parser_pattern_elem - One element of a pattern
867  * @type: the instructuction type
868  * @optional: whether this element of the pattern is optional or mandatory
869  * @ctx: address or data constraint
870  * @ctx.addr: address constraint (number of cycles)
871  * @ctx.data: data constraint (data length)
872  */
873 struct nand_op_parser_pattern_elem {
874         enum nand_op_instr_type type;
875         bool optional;
876         union {
877                 struct nand_op_parser_addr_constraints addr;
878                 struct nand_op_parser_data_constraints data;
879         } ctx;
880 };
881
882 #define NAND_OP_PARSER_PAT_CMD_ELEM(_opt)                       \
883         {                                                       \
884                 .type = NAND_OP_CMD_INSTR,                      \
885                 .optional = _opt,                               \
886         }
887
888 #define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles)          \
889         {                                                       \
890                 .type = NAND_OP_ADDR_INSTR,                     \
891                 .optional = _opt,                               \
892                 .ctx.addr.maxcycles = _maxcycles,               \
893         }
894
895 #define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen)          \
896         {                                                       \
897                 .type = NAND_OP_DATA_IN_INSTR,                  \
898                 .optional = _opt,                               \
899                 .ctx.data.maxlen = _maxlen,                     \
900         }
901
902 #define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen)         \
903         {                                                       \
904                 .type = NAND_OP_DATA_OUT_INSTR,                 \
905                 .optional = _opt,                               \
906                 .ctx.data.maxlen = _maxlen,                     \
907         }
908
909 #define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt)                   \
910         {                                                       \
911                 .type = NAND_OP_WAITRDY_INSTR,                  \
912                 .optional = _opt,                               \
913         }
914
915 /**
916  * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor
917  * @elems: array of pattern elements
918  * @nelems: number of pattern elements in @elems array
919  * @exec: the function that will issue a sub-operation
920  *
921  * A pattern is a list of elements, each element reprensenting one instruction
922  * with its constraints. The pattern itself is used by the core to match NAND
923  * chip operation with NAND controller operations.
924  * Once a match between a NAND controller operation pattern and a NAND chip
925  * operation (or a sub-set of a NAND operation) is found, the pattern ->exec()
926  * hook is called so that the controller driver can issue the operation on the
927  * bus.
928  *
929  * Controller drivers should declare as many patterns as they support and pass
930  * this list of patterns (created with the help of the following macro) to
931  * the nand_op_parser_exec_op() helper.
932  */
933 struct nand_op_parser_pattern {
934         const struct nand_op_parser_pattern_elem *elems;
935         unsigned int nelems;
936         int (*exec)(struct nand_chip *chip, const struct nand_subop *subop);
937 };
938
939 #define NAND_OP_PARSER_PATTERN(_exec, ...)                                                      \
940         {                                                                                       \
941                 .exec = _exec,                                                                  \
942                 .elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ },          \
943                 .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) /      \
944                           sizeof(struct nand_op_parser_pattern_elem),                           \
945         }
946
947 /**
948  * struct nand_op_parser - NAND controller operation parser descriptor
949  * @patterns: array of supported patterns
950  * @npatterns: length of the @patterns array
951  *
952  * The parser descriptor is just an array of supported patterns which will be
953  * iterated by nand_op_parser_exec_op() everytime it tries to execute an
954  * NAND operation (or tries to determine if a specific operation is supported).
955  *
956  * It is worth mentioning that patterns will be tested in their declaration
957  * order, and the first match will be taken, so it's important to order patterns
958  * appropriately so that simple/inefficient patterns are placed at the end of
959  * the list. Usually, this is where you put single instruction patterns.
960  */
961 struct nand_op_parser {
962         const struct nand_op_parser_pattern *patterns;
963         unsigned int npatterns;
964 };
965
966 #define NAND_OP_PARSER(...)                                                                     \
967         {                                                                                       \
968                 .patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ },            \
969                 .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) /        \
970                              sizeof(struct nand_op_parser_pattern),                             \
971         }
972
973 /**
974  * struct nand_operation - NAND operation descriptor
975  * @cs: the CS line to select for this NAND operation
976  * @instrs: array of instructions to execute
977  * @ninstrs: length of the @instrs array
978  *
979  * The actual operation structure that will be passed to chip->exec_op().
980  */
981 struct nand_operation {
982         unsigned int cs;
983         const struct nand_op_instr *instrs;
984         unsigned int ninstrs;
985 };
986
987 #define NAND_OPERATION(_cs, _instrs)                            \
988         {                                                       \
989                 .cs = _cs,                                      \
990                 .instrs = _instrs,                              \
991                 .ninstrs = ARRAY_SIZE(_instrs),                 \
992         }
993
994 int nand_op_parser_exec_op(struct nand_chip *chip,
995                            const struct nand_op_parser *parser,
996                            const struct nand_operation *op, bool check_only);
997
998 static inline void nand_op_trace(const char *prefix,
999                                  const struct nand_op_instr *instr)
1000 {
1001 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
1002         switch (instr->type) {
1003         case NAND_OP_CMD_INSTR:
1004                 pr_debug("%sCMD      [0x%02x]\n", prefix,
1005                          instr->ctx.cmd.opcode);
1006                 break;
1007         case NAND_OP_ADDR_INSTR:
1008                 pr_debug("%sADDR     [%d cyc: %*ph]\n", prefix,
1009                          instr->ctx.addr.naddrs,
1010                          instr->ctx.addr.naddrs < 64 ?
1011                          instr->ctx.addr.naddrs : 64,
1012                          instr->ctx.addr.addrs);
1013                 break;
1014         case NAND_OP_DATA_IN_INSTR:
1015                 pr_debug("%sDATA_IN  [%d B%s]\n", prefix,
1016                          instr->ctx.data.len,
1017                          instr->ctx.data.force_8bit ?
1018                          ", force 8-bit" : "");
1019                 break;
1020         case NAND_OP_DATA_OUT_INSTR:
1021                 pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
1022                          instr->ctx.data.len,
1023                          instr->ctx.data.force_8bit ?
1024                          ", force 8-bit" : "");
1025                 break;
1026         case NAND_OP_WAITRDY_INSTR:
1027                 pr_debug("%sWAITRDY  [max %d ms]\n", prefix,
1028                          instr->ctx.waitrdy.timeout_ms);
1029                 break;
1030         }
1031 #endif
1032 }
1033
1034 /**
1035  * struct nand_controller_ops - Controller operations
1036  *
1037  * @attach_chip: this method is called after the NAND detection phase after
1038  *               flash ID and MTD fields such as erase size, page size and OOB
1039  *               size have been set up. ECC requirements are available if
1040  *               provided by the NAND chip or device tree. Typically used to
1041  *               choose the appropriate ECC configuration and allocate
1042  *               associated resources.
1043  *               This hook is optional.
1044  * @detach_chip: free all resources allocated/claimed in
1045  *               nand_controller_ops->attach_chip().
1046  *               This hook is optional.
1047  * @exec_op:     controller specific method to execute NAND operations.
1048  *               This method replaces chip->legacy.cmdfunc(),
1049  *               chip->legacy.{read,write}_{buf,byte,word}(),
1050  *               chip->legacy.dev_ready() and chip->legacy.waifunc().
1051  * @setup_interface: setup the data interface and timing. If chipnr is set to
1052  *                   %NAND_DATA_IFACE_CHECK_ONLY this means the configuration
1053  *                   should not be applied but only checked.
1054  *                   This hook is optional.
1055  */
1056 struct nand_controller_ops {
1057         int (*attach_chip)(struct nand_chip *chip);
1058         void (*detach_chip)(struct nand_chip *chip);
1059         int (*exec_op)(struct nand_chip *chip,
1060                        const struct nand_operation *op,
1061                        bool check_only);
1062         int (*setup_interface)(struct nand_chip *chip, int chipnr,
1063                                const struct nand_interface_config *conf);
1064 };
1065
1066 /**
1067  * struct nand_controller - Structure used to describe a NAND controller
1068  *
1069  * @lock:               lock used to serialize accesses to the NAND controller
1070  * @ops:                NAND controller operations.
1071  */
1072 struct nand_controller {
1073         struct mutex lock;
1074         const struct nand_controller_ops *ops;
1075 };
1076
1077 static inline void nand_controller_init(struct nand_controller *nfc)
1078 {
1079         mutex_init(&nfc->lock);
1080 }
1081
1082 /**
1083  * struct nand_legacy - NAND chip legacy fields/hooks
1084  * @IO_ADDR_R: address to read the 8 I/O lines of the flash device
1085  * @IO_ADDR_W: address to write the 8 I/O lines of the flash device
1086  * @select_chip: select/deselect a specific target/die
1087  * @read_byte: read one byte from the chip
1088  * @write_byte: write a single byte to the chip on the low 8 I/O lines
1089  * @write_buf: write data from the buffer to the chip
1090  * @read_buf: read data from the chip into the buffer
1091  * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used
1092  *            to write command and address
1093  * @cmdfunc: hardware specific function for writing commands to the chip.
1094  * @dev_ready: hardware specific function for accessing device ready/busy line.
1095  *             If set to NULL no access to ready/busy is available and the
1096  *             ready/busy information is read from the chip status register.
1097  * @waitfunc: hardware specific function for wait on ready.
1098  * @block_bad: check if a block is bad, using OOB markers
1099  * @block_markbad: mark a block bad
1100  * @set_features: set the NAND chip features
1101  * @get_features: get the NAND chip features
1102  * @chip_delay: chip dependent delay for transferring data from array to read
1103  *              regs (tR).
1104  * @dummy_controller: dummy controller implementation for drivers that can
1105  *                    only control a single chip
1106  *
1107  * If you look at this structure you're already wrong. These fields/hooks are
1108  * all deprecated.
1109  */
1110 struct nand_legacy {
1111         void __iomem *IO_ADDR_R;
1112         void __iomem *IO_ADDR_W;
1113         void (*select_chip)(struct nand_chip *chip, int cs);
1114         u8 (*read_byte)(struct nand_chip *chip);
1115         void (*write_byte)(struct nand_chip *chip, u8 byte);
1116         void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len);
1117         void (*read_buf)(struct nand_chip *chip, u8 *buf, int len);
1118         void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl);
1119         void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column,
1120                         int page_addr);
1121         int (*dev_ready)(struct nand_chip *chip);
1122         int (*waitfunc)(struct nand_chip *chip);
1123         int (*block_bad)(struct nand_chip *chip, loff_t ofs);
1124         int (*block_markbad)(struct nand_chip *chip, loff_t ofs);
1125         int (*set_features)(struct nand_chip *chip, int feature_addr,
1126                             u8 *subfeature_para);
1127         int (*get_features)(struct nand_chip *chip, int feature_addr,
1128                             u8 *subfeature_para);
1129         int chip_delay;
1130         struct nand_controller dummy_controller;
1131 };
1132
1133 /**
1134  * struct nand_chip_ops - NAND chip operations
1135  * @suspend: Suspend operation
1136  * @resume: Resume operation
1137  * @lock_area: Lock operation
1138  * @unlock_area: Unlock operation
1139  * @setup_read_retry: Set the read-retry mode (mostly needed for MLC NANDs)
1140  * @choose_interface_config: Choose the best interface configuration
1141  */
1142 struct nand_chip_ops {
1143         int (*suspend)(struct nand_chip *chip);
1144         void (*resume)(struct nand_chip *chip);
1145         int (*lock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1146         int (*unlock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len);
1147         int (*setup_read_retry)(struct nand_chip *chip, int retry_mode);
1148         int (*choose_interface_config)(struct nand_chip *chip,
1149                                        struct nand_interface_config *iface);
1150 };
1151
1152 /**
1153  * struct nand_manufacturer - NAND manufacturer structure
1154  * @desc: The manufacturer description
1155  * @priv: Private information for the manufacturer driver
1156  */
1157 struct nand_manufacturer {
1158         const struct nand_manufacturer_desc *desc;
1159         void *priv;
1160 };
1161
1162 /**
1163  * struct nand_chip - NAND Private Flash Chip Data
1164  * @base: Inherit from the generic NAND device
1165  * @id: Holds NAND ID
1166  * @parameters: Holds generic parameters under an easily readable form
1167  * @manufacturer: Manufacturer information
1168  * @ops: NAND chip operations
1169  * @legacy: All legacy fields/hooks. If you develop a new driver, don't even try
1170  *          to use any of these fields/hooks, and if you're modifying an
1171  *          existing driver that is using those fields/hooks, you should
1172  *          consider reworking the driver and avoid using them.
1173  * @options: Various chip options. They can partly be set to inform nand_scan
1174  *           about special functionality. See the defines for further
1175  *           explanation.
1176  * @current_interface_config: The currently used NAND interface configuration
1177  * @best_interface_config: The best NAND interface configuration which fits both
1178  *                         the NAND chip and NAND controller constraints. If
1179  *                         unset, the default reset interface configuration must
1180  *                         be used.
1181  * @bbt_erase_shift: Number of address bits in a bbt entry
1182  * @bbt_options: Bad block table specific options. All options used here must
1183  *               come from bbm.h. By default, these options will be copied to
1184  *               the appropriate nand_bbt_descr's.
1185  * @badblockpos: Bad block marker position in the oob area
1186  * @badblockbits: Minimum number of set bits in a good block's bad block marker
1187  *                position; i.e., BBM = 11110111b is good when badblockbits = 7
1188  * @bbt_td: Bad block table descriptor for flash lookup
1189  * @bbt_md: Bad block table mirror descriptor
1190  * @badblock_pattern: Bad block scan pattern used for initial bad block scan
1191  * @bbt: Bad block table pointer
1192  * @page_shift: Number of address bits in a page (column address bits)
1193  * @phys_erase_shift: Number of address bits in a physical eraseblock
1194  * @chip_shift: Number of address bits in one chip
1195  * @pagemask: Page number mask = number of (pages / chip) - 1
1196  * @subpagesize: Holds the subpagesize
1197  * @data_buf: Buffer for data, size is (page size + oobsize)
1198  * @oob_poi: pointer on the OOB area covered by data_buf
1199  * @pagecache: Structure containing page cache related fields
1200  * @pagecache.bitflips: Number of bitflips of the cached page
1201  * @pagecache.page: Page number currently in the cache. -1 means no page is
1202  *                  currently cached
1203  * @buf_align: Minimum buffer alignment required by a platform
1204  * @lock: Lock protecting the suspended field. Also used to serialize accesses
1205  *        to the NAND device
1206  * @suspended: Set to 1 when the device is suspended, 0 when it's not
1207  * @resume_wq: wait queue to sleep if rawnand is in suspended state.
1208  * @cur_cs: Currently selected target. -1 means no target selected, otherwise we
1209  *          should always have cur_cs >= 0 && cur_cs < nanddev_ntargets().
1210  *          NAND Controller drivers should not modify this value, but they're
1211  *          allowed to read it.
1212  * @read_retries: The number of read retry modes supported
1213  * @controller: The hardware controller structure which is shared among multiple
1214  *              independent devices
1215  * @ecc: The ECC controller structure
1216  * @priv: Chip private data
1217  */
1218 struct nand_chip {
1219         struct nand_device base;
1220         struct nand_id id;
1221         struct nand_parameters parameters;
1222         struct nand_manufacturer manufacturer;
1223         struct nand_chip_ops ops;
1224         struct nand_legacy legacy;
1225         unsigned int options;
1226
1227         /* Data interface */
1228         const struct nand_interface_config *current_interface_config;
1229         struct nand_interface_config *best_interface_config;
1230
1231         /* Bad block information */
1232         unsigned int bbt_erase_shift;
1233         unsigned int bbt_options;
1234         unsigned int badblockpos;
1235         unsigned int badblockbits;
1236         struct nand_bbt_descr *bbt_td;
1237         struct nand_bbt_descr *bbt_md;
1238         struct nand_bbt_descr *badblock_pattern;
1239         u8 *bbt;
1240
1241         /* Device internal layout */
1242         unsigned int page_shift;
1243         unsigned int phys_erase_shift;
1244         unsigned int chip_shift;
1245         unsigned int pagemask;
1246         unsigned int subpagesize;
1247
1248         /* Buffers */
1249         u8 *data_buf;
1250         u8 *oob_poi;
1251         struct {
1252                 unsigned int bitflips;
1253                 int page;
1254         } pagecache;
1255         unsigned long buf_align;
1256
1257         /* Internals */
1258         struct mutex lock;
1259         unsigned int suspended : 1;
1260         wait_queue_head_t resume_wq;
1261         int cur_cs;
1262         int read_retries;
1263
1264         /* Externals */
1265         struct nand_controller *controller;
1266         struct nand_ecc_ctrl ecc;
1267         void *priv;
1268 };
1269
1270 static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd)
1271 {
1272         return container_of(mtd, struct nand_chip, base.mtd);
1273 }
1274
1275 static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip)
1276 {
1277         return &chip->base.mtd;
1278 }
1279
1280 static inline void *nand_get_controller_data(struct nand_chip *chip)
1281 {
1282         return chip->priv;
1283 }
1284
1285 static inline void nand_set_controller_data(struct nand_chip *chip, void *priv)
1286 {
1287         chip->priv = priv;
1288 }
1289
1290 static inline void nand_set_manufacturer_data(struct nand_chip *chip,
1291                                               void *priv)
1292 {
1293         chip->manufacturer.priv = priv;
1294 }
1295
1296 static inline void *nand_get_manufacturer_data(struct nand_chip *chip)
1297 {
1298         return chip->manufacturer.priv;
1299 }
1300
1301 static inline void nand_set_flash_node(struct nand_chip *chip,
1302                                        struct device_node *np)
1303 {
1304         mtd_set_of_node(nand_to_mtd(chip), np);
1305 }
1306
1307 static inline struct device_node *nand_get_flash_node(struct nand_chip *chip)
1308 {
1309         return mtd_get_of_node(nand_to_mtd(chip));
1310 }
1311
1312 /**
1313  * nand_get_interface_config - Retrieve the current interface configuration
1314  *                             of a NAND chip
1315  * @chip: The NAND chip
1316  */
1317 static inline const struct nand_interface_config *
1318 nand_get_interface_config(struct nand_chip *chip)
1319 {
1320         return chip->current_interface_config;
1321 }
1322
1323 /*
1324  * A helper for defining older NAND chips where the second ID byte fully
1325  * defined the chip, including the geometry (chip size, eraseblock size, page
1326  * size). All these chips have 512 bytes NAND page size.
1327  */
1328 #define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts)          \
1329         { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \
1330           .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) }
1331
1332 /*
1333  * A helper for defining newer chips which report their page size and
1334  * eraseblock size via the extended ID bytes.
1335  *
1336  * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with
1337  * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the
1338  * device ID now only represented a particular total chip size (and voltage,
1339  * buswidth), and the page size, eraseblock size, and OOB size could vary while
1340  * using the same device ID.
1341  */
1342 #define EXTENDED_ID_NAND(nm, devid, chipsz, opts)                      \
1343         { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \
1344           .options = (opts) }
1345
1346 #define NAND_ECC_INFO(_strength, _step) \
1347                         { .strength_ds = (_strength), .step_ds = (_step) }
1348 #define NAND_ECC_STRENGTH(type)         ((type)->ecc.strength_ds)
1349 #define NAND_ECC_STEP(type)             ((type)->ecc.step_ds)
1350
1351 /**
1352  * struct nand_flash_dev - NAND Flash Device ID Structure
1353  * @name: a human-readable name of the NAND chip
1354  * @dev_id: the device ID (the second byte of the full chip ID array)
1355  * @mfr_id: manufacturer ID part of the full chip ID array (refers the same
1356  *          memory address as ``id[0]``)
1357  * @dev_id: device ID part of the full chip ID array (refers the same memory
1358  *          address as ``id[1]``)
1359  * @id: full device ID array
1360  * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as
1361  *            well as the eraseblock size) is determined from the extended NAND
1362  *            chip ID array)
1363  * @chipsize: total chip size in MiB
1364  * @erasesize: eraseblock size in bytes (determined from the extended ID if 0)
1365  * @options: stores various chip bit options
1366  * @id_len: The valid length of the @id.
1367  * @oobsize: OOB size
1368  * @ecc: ECC correctability and step information from the datasheet.
1369  * @ecc.strength_ds: The ECC correctability from the datasheet, same as the
1370  *                   @ecc_strength_ds in nand_chip{}.
1371  * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
1372  *               @ecc_step_ds in nand_chip{}, also from the datasheet.
1373  *               For example, the "4bit ECC for each 512Byte" can be set with
1374  *               NAND_ECC_INFO(4, 512).
1375  */
1376 struct nand_flash_dev {
1377         char *name;
1378         union {
1379                 struct {
1380                         uint8_t mfr_id;
1381                         uint8_t dev_id;
1382                 };
1383                 uint8_t id[NAND_MAX_ID_LEN];
1384         };
1385         unsigned int pagesize;
1386         unsigned int chipsize;
1387         unsigned int erasesize;
1388         unsigned int options;
1389         uint16_t id_len;
1390         uint16_t oobsize;
1391         struct {
1392                 uint16_t strength_ds;
1393                 uint16_t step_ds;
1394         } ecc;
1395 };
1396
1397 int nand_create_bbt(struct nand_chip *chip);
1398
1399 /*
1400  * Check if it is a SLC nand.
1401  * The !nand_is_slc() can be used to check the MLC/TLC nand chips.
1402  * We do not distinguish the MLC and TLC now.
1403  */
1404 static inline bool nand_is_slc(struct nand_chip *chip)
1405 {
1406         WARN(nanddev_bits_per_cell(&chip->base) == 0,
1407              "chip->bits_per_cell is used uninitialized\n");
1408         return nanddev_bits_per_cell(&chip->base) == 1;
1409 }
1410
1411 /**
1412  * Check if the opcode's address should be sent only on the lower 8 bits
1413  * @command: opcode to check
1414  */
1415 static inline int nand_opcode_8bits(unsigned int command)
1416 {
1417         switch (command) {
1418         case NAND_CMD_READID:
1419         case NAND_CMD_PARAM:
1420         case NAND_CMD_GET_FEATURES:
1421         case NAND_CMD_SET_FEATURES:
1422                 return 1;
1423         default:
1424                 break;
1425         }
1426         return 0;
1427 }
1428
1429 int nand_check_erased_ecc_chunk(void *data, int datalen,
1430                                 void *ecc, int ecclen,
1431                                 void *extraoob, int extraooblen,
1432                                 int threshold);
1433
1434 int nand_ecc_choose_conf(struct nand_chip *chip,
1435                          const struct nand_ecc_caps *caps, int oobavail);
1436
1437 /* Default write_oob implementation */
1438 int nand_write_oob_std(struct nand_chip *chip, int page);
1439
1440 /* Default read_oob implementation */
1441 int nand_read_oob_std(struct nand_chip *chip, int page);
1442
1443 /* Stub used by drivers that do not support GET/SET FEATURES operations */
1444 int nand_get_set_features_notsupp(struct nand_chip *chip, int addr,
1445                                   u8 *subfeature_param);
1446
1447 /* read_page_raw implementations */
1448 int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
1449                        int page);
1450 int nand_monolithic_read_page_raw(struct nand_chip *chip, uint8_t *buf,
1451                                   int oob_required, int page);
1452
1453 /* write_page_raw implementations */
1454 int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1455                         int oob_required, int page);
1456 int nand_monolithic_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
1457                                    int oob_required, int page);
1458
1459 /* Reset and initialize a NAND device */
1460 int nand_reset(struct nand_chip *chip, int chipnr);
1461
1462 /* NAND operation helpers */
1463 int nand_reset_op(struct nand_chip *chip);
1464 int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
1465                    unsigned int len);
1466 int nand_status_op(struct nand_chip *chip, u8 *status);
1467 int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock);
1468 int nand_read_page_op(struct nand_chip *chip, unsigned int page,
1469                       unsigned int offset_in_page, void *buf, unsigned int len);
1470 int nand_change_read_column_op(struct nand_chip *chip,
1471                                unsigned int offset_in_page, void *buf,
1472                                unsigned int len, bool force_8bit);
1473 int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
1474                      unsigned int offset_in_page, void *buf, unsigned int len);
1475 int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
1476                             unsigned int offset_in_page, const void *buf,
1477                             unsigned int len);
1478 int nand_prog_page_end_op(struct nand_chip *chip);
1479 int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
1480                       unsigned int offset_in_page, const void *buf,
1481                       unsigned int len);
1482 int nand_change_write_column_op(struct nand_chip *chip,
1483                                 unsigned int offset_in_page, const void *buf,
1484                                 unsigned int len, bool force_8bit);
1485 int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
1486                       bool force_8bit, bool check_only);
1487 int nand_write_data_op(struct nand_chip *chip, const void *buf,
1488                        unsigned int len, bool force_8bit);
1489
1490 /* Scan and identify a NAND device */
1491 int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips,
1492                        struct nand_flash_dev *ids);
1493
1494 static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips)
1495 {
1496         return nand_scan_with_ids(chip, max_chips, NULL);
1497 }
1498
1499 /* Internal helper for board drivers which need to override command function */
1500 void nand_wait_ready(struct nand_chip *chip);
1501
1502 /*
1503  * Free resources held by the NAND device, must be called on error after a
1504  * sucessful nand_scan().
1505  */
1506 void nand_cleanup(struct nand_chip *chip);
1507
1508 /*
1509  * External helper for controller drivers that have to implement the WAITRDY
1510  * instruction and have no physical pin to check it.
1511  */
1512 int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms);
1513 struct gpio_desc;
1514 int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
1515                       unsigned long timeout_ms);
1516
1517 /* Select/deselect a NAND target. */
1518 void nand_select_target(struct nand_chip *chip, unsigned int cs);
1519 void nand_deselect_target(struct nand_chip *chip);
1520
1521 /* Bitops */
1522 void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
1523                        unsigned int src_off, unsigned int nbits);
1524
1525 /**
1526  * nand_get_data_buf() - Get the internal page buffer
1527  * @chip: NAND chip object
1528  *
1529  * Returns the pre-allocated page buffer after invalidating the cache. This
1530  * function should be used by drivers that do not want to allocate their own
1531  * bounce buffer and still need such a buffer for specific operations (most
1532  * commonly when reading OOB data only).
1533  *
1534  * Be careful to never call this function in the write/write_oob path, because
1535  * the core may have placed the data to be written out in this buffer.
1536  *
1537  * Return: pointer to the page cache buffer
1538  */
1539 static inline void *nand_get_data_buf(struct nand_chip *chip)
1540 {
1541         chip->pagecache.page = -1;
1542
1543         return chip->data_buf;
1544 }
1545
1546 #endif /* __LINUX_MTD_RAWNAND_H */