GNU Linux-libre 5.15.54-gnu
[releases.git] / include / linux / filter.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7
8 #include <linux/atomic.h>
9 #include <linux/refcount.h>
10 #include <linux/compat.h>
11 #include <linux/skbuff.h>
12 #include <linux/linkage.h>
13 #include <linux/printk.h>
14 #include <linux/workqueue.h>
15 #include <linux/sched.h>
16 #include <linux/capability.h>
17 #include <linux/set_memory.h>
18 #include <linux/kallsyms.h>
19 #include <linux/if_vlan.h>
20 #include <linux/vmalloc.h>
21 #include <linux/sockptr.h>
22 #include <crypto/sha1.h>
23 #include <linux/u64_stats_sync.h>
24
25 #include <net/sch_generic.h>
26
27 #include <asm/byteorder.h>
28 #include <uapi/linux/filter.h>
29 #include <uapi/linux/bpf.h>
30
31 struct sk_buff;
32 struct sock;
33 struct seccomp_data;
34 struct bpf_prog_aux;
35 struct xdp_rxq_info;
36 struct xdp_buff;
37 struct sock_reuseport;
38 struct ctl_table;
39 struct ctl_table_header;
40
41 /* ArgX, context and stack frame pointer register positions. Note,
42  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
43  * calls in BPF_CALL instruction.
44  */
45 #define BPF_REG_ARG1    BPF_REG_1
46 #define BPF_REG_ARG2    BPF_REG_2
47 #define BPF_REG_ARG3    BPF_REG_3
48 #define BPF_REG_ARG4    BPF_REG_4
49 #define BPF_REG_ARG5    BPF_REG_5
50 #define BPF_REG_CTX     BPF_REG_6
51 #define BPF_REG_FP      BPF_REG_10
52
53 /* Additional register mappings for converted user programs. */
54 #define BPF_REG_A       BPF_REG_0
55 #define BPF_REG_X       BPF_REG_7
56 #define BPF_REG_TMP     BPF_REG_2       /* scratch reg */
57 #define BPF_REG_D       BPF_REG_8       /* data, callee-saved */
58 #define BPF_REG_H       BPF_REG_9       /* hlen, callee-saved */
59
60 /* Kernel hidden auxiliary/helper register. */
61 #define BPF_REG_AX              MAX_BPF_REG
62 #define MAX_BPF_EXT_REG         (MAX_BPF_REG + 1)
63 #define MAX_BPF_JIT_REG         MAX_BPF_EXT_REG
64
65 /* unused opcode to mark special call to bpf_tail_call() helper */
66 #define BPF_TAIL_CALL   0xf0
67
68 /* unused opcode to mark special load instruction. Same as BPF_ABS */
69 #define BPF_PROBE_MEM   0x20
70
71 /* unused opcode to mark call to interpreter with arguments */
72 #define BPF_CALL_ARGS   0xe0
73
74 /* unused opcode to mark speculation barrier for mitigating
75  * Speculative Store Bypass
76  */
77 #define BPF_NOSPEC      0xc0
78
79 /* As per nm, we expose JITed images as text (code) section for
80  * kallsyms. That way, tools like perf can find it to match
81  * addresses.
82  */
83 #define BPF_SYM_ELF_TYPE        't'
84
85 /* BPF program can access up to 512 bytes of stack space. */
86 #define MAX_BPF_STACK   512
87
88 /* Helper macros for filter block array initializers. */
89
90 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
91
92 #define BPF_ALU64_REG(OP, DST, SRC)                             \
93         ((struct bpf_insn) {                                    \
94                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,        \
95                 .dst_reg = DST,                                 \
96                 .src_reg = SRC,                                 \
97                 .off   = 0,                                     \
98                 .imm   = 0 })
99
100 #define BPF_ALU32_REG(OP, DST, SRC)                             \
101         ((struct bpf_insn) {                                    \
102                 .code  = BPF_ALU | BPF_OP(OP) | BPF_X,          \
103                 .dst_reg = DST,                                 \
104                 .src_reg = SRC,                                 \
105                 .off   = 0,                                     \
106                 .imm   = 0 })
107
108 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
109
110 #define BPF_ALU64_IMM(OP, DST, IMM)                             \
111         ((struct bpf_insn) {                                    \
112                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,        \
113                 .dst_reg = DST,                                 \
114                 .src_reg = 0,                                   \
115                 .off   = 0,                                     \
116                 .imm   = IMM })
117
118 #define BPF_ALU32_IMM(OP, DST, IMM)                             \
119         ((struct bpf_insn) {                                    \
120                 .code  = BPF_ALU | BPF_OP(OP) | BPF_K,          \
121                 .dst_reg = DST,                                 \
122                 .src_reg = 0,                                   \
123                 .off   = 0,                                     \
124                 .imm   = IMM })
125
126 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
127
128 #define BPF_ENDIAN(TYPE, DST, LEN)                              \
129         ((struct bpf_insn) {                                    \
130                 .code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),     \
131                 .dst_reg = DST,                                 \
132                 .src_reg = 0,                                   \
133                 .off   = 0,                                     \
134                 .imm   = LEN })
135
136 /* Short form of mov, dst_reg = src_reg */
137
138 #define BPF_MOV64_REG(DST, SRC)                                 \
139         ((struct bpf_insn) {                                    \
140                 .code  = BPF_ALU64 | BPF_MOV | BPF_X,           \
141                 .dst_reg = DST,                                 \
142                 .src_reg = SRC,                                 \
143                 .off   = 0,                                     \
144                 .imm   = 0 })
145
146 #define BPF_MOV32_REG(DST, SRC)                                 \
147         ((struct bpf_insn) {                                    \
148                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
149                 .dst_reg = DST,                                 \
150                 .src_reg = SRC,                                 \
151                 .off   = 0,                                     \
152                 .imm   = 0 })
153
154 /* Short form of mov, dst_reg = imm32 */
155
156 #define BPF_MOV64_IMM(DST, IMM)                                 \
157         ((struct bpf_insn) {                                    \
158                 .code  = BPF_ALU64 | BPF_MOV | BPF_K,           \
159                 .dst_reg = DST,                                 \
160                 .src_reg = 0,                                   \
161                 .off   = 0,                                     \
162                 .imm   = IMM })
163
164 #define BPF_MOV32_IMM(DST, IMM)                                 \
165         ((struct bpf_insn) {                                    \
166                 .code  = BPF_ALU | BPF_MOV | BPF_K,             \
167                 .dst_reg = DST,                                 \
168                 .src_reg = 0,                                   \
169                 .off   = 0,                                     \
170                 .imm   = IMM })
171
172 /* Special form of mov32, used for doing explicit zero extension on dst. */
173 #define BPF_ZEXT_REG(DST)                                       \
174         ((struct bpf_insn) {                                    \
175                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
176                 .dst_reg = DST,                                 \
177                 .src_reg = DST,                                 \
178                 .off   = 0,                                     \
179                 .imm   = 1 })
180
181 static inline bool insn_is_zext(const struct bpf_insn *insn)
182 {
183         return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
184 }
185
186 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
187 #define BPF_LD_IMM64(DST, IMM)                                  \
188         BPF_LD_IMM64_RAW(DST, 0, IMM)
189
190 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)                         \
191         ((struct bpf_insn) {                                    \
192                 .code  = BPF_LD | BPF_DW | BPF_IMM,             \
193                 .dst_reg = DST,                                 \
194                 .src_reg = SRC,                                 \
195                 .off   = 0,                                     \
196                 .imm   = (__u32) (IMM) }),                      \
197         ((struct bpf_insn) {                                    \
198                 .code  = 0, /* zero is reserved opcode */       \
199                 .dst_reg = 0,                                   \
200                 .src_reg = 0,                                   \
201                 .off   = 0,                                     \
202                 .imm   = ((__u64) (IMM)) >> 32 })
203
204 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
205 #define BPF_LD_MAP_FD(DST, MAP_FD)                              \
206         BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
207
208 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
209
210 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)                      \
211         ((struct bpf_insn) {                                    \
212                 .code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),   \
213                 .dst_reg = DST,                                 \
214                 .src_reg = SRC,                                 \
215                 .off   = 0,                                     \
216                 .imm   = IMM })
217
218 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)                      \
219         ((struct bpf_insn) {                                    \
220                 .code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),     \
221                 .dst_reg = DST,                                 \
222                 .src_reg = SRC,                                 \
223                 .off   = 0,                                     \
224                 .imm   = IMM })
225
226 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
227
228 #define BPF_LD_ABS(SIZE, IMM)                                   \
229         ((struct bpf_insn) {                                    \
230                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,     \
231                 .dst_reg = 0,                                   \
232                 .src_reg = 0,                                   \
233                 .off   = 0,                                     \
234                 .imm   = IMM })
235
236 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
237
238 #define BPF_LD_IND(SIZE, SRC, IMM)                              \
239         ((struct bpf_insn) {                                    \
240                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,     \
241                 .dst_reg = 0,                                   \
242                 .src_reg = SRC,                                 \
243                 .off   = 0,                                     \
244                 .imm   = IMM })
245
246 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
247
248 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)                        \
249         ((struct bpf_insn) {                                    \
250                 .code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,    \
251                 .dst_reg = DST,                                 \
252                 .src_reg = SRC,                                 \
253                 .off   = OFF,                                   \
254                 .imm   = 0 })
255
256 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
257
258 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)                        \
259         ((struct bpf_insn) {                                    \
260                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,    \
261                 .dst_reg = DST,                                 \
262                 .src_reg = SRC,                                 \
263                 .off   = OFF,                                   \
264                 .imm   = 0 })
265
266
267 /*
268  * Atomic operations:
269  *
270  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
271  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
272  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
273  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
274  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
275  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
276  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
277  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
278  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
279  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
280  */
281
282 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)                  \
283         ((struct bpf_insn) {                                    \
284                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
285                 .dst_reg = DST,                                 \
286                 .src_reg = SRC,                                 \
287                 .off   = OFF,                                   \
288                 .imm   = OP })
289
290 /* Legacy alias */
291 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
292
293 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
294
295 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)                         \
296         ((struct bpf_insn) {                                    \
297                 .code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,     \
298                 .dst_reg = DST,                                 \
299                 .src_reg = 0,                                   \
300                 .off   = OFF,                                   \
301                 .imm   = IMM })
302
303 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
304
305 #define BPF_JMP_REG(OP, DST, SRC, OFF)                          \
306         ((struct bpf_insn) {                                    \
307                 .code  = BPF_JMP | BPF_OP(OP) | BPF_X,          \
308                 .dst_reg = DST,                                 \
309                 .src_reg = SRC,                                 \
310                 .off   = OFF,                                   \
311                 .imm   = 0 })
312
313 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
314
315 #define BPF_JMP_IMM(OP, DST, IMM, OFF)                          \
316         ((struct bpf_insn) {                                    \
317                 .code  = BPF_JMP | BPF_OP(OP) | BPF_K,          \
318                 .dst_reg = DST,                                 \
319                 .src_reg = 0,                                   \
320                 .off   = OFF,                                   \
321                 .imm   = IMM })
322
323 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
324
325 #define BPF_JMP32_REG(OP, DST, SRC, OFF)                        \
326         ((struct bpf_insn) {                                    \
327                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,        \
328                 .dst_reg = DST,                                 \
329                 .src_reg = SRC,                                 \
330                 .off   = OFF,                                   \
331                 .imm   = 0 })
332
333 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
334
335 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)                        \
336         ((struct bpf_insn) {                                    \
337                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,        \
338                 .dst_reg = DST,                                 \
339                 .src_reg = 0,                                   \
340                 .off   = OFF,                                   \
341                 .imm   = IMM })
342
343 /* Unconditional jumps, goto pc + off16 */
344
345 #define BPF_JMP_A(OFF)                                          \
346         ((struct bpf_insn) {                                    \
347                 .code  = BPF_JMP | BPF_JA,                      \
348                 .dst_reg = 0,                                   \
349                 .src_reg = 0,                                   \
350                 .off   = OFF,                                   \
351                 .imm   = 0 })
352
353 /* Relative call */
354
355 #define BPF_CALL_REL(TGT)                                       \
356         ((struct bpf_insn) {                                    \
357                 .code  = BPF_JMP | BPF_CALL,                    \
358                 .dst_reg = 0,                                   \
359                 .src_reg = BPF_PSEUDO_CALL,                     \
360                 .off   = 0,                                     \
361                 .imm   = TGT })
362
363 /* Function call */
364
365 #define BPF_CAST_CALL(x)                                        \
366                 ((u64 (*)(u64, u64, u64, u64, u64))(x))
367
368 #define BPF_EMIT_CALL(FUNC)                                     \
369         ((struct bpf_insn) {                                    \
370                 .code  = BPF_JMP | BPF_CALL,                    \
371                 .dst_reg = 0,                                   \
372                 .src_reg = 0,                                   \
373                 .off   = 0,                                     \
374                 .imm   = ((FUNC) - __bpf_call_base) })
375
376 /* Raw code statement block */
377
378 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)                  \
379         ((struct bpf_insn) {                                    \
380                 .code  = CODE,                                  \
381                 .dst_reg = DST,                                 \
382                 .src_reg = SRC,                                 \
383                 .off   = OFF,                                   \
384                 .imm   = IMM })
385
386 /* Program exit */
387
388 #define BPF_EXIT_INSN()                                         \
389         ((struct bpf_insn) {                                    \
390                 .code  = BPF_JMP | BPF_EXIT,                    \
391                 .dst_reg = 0,                                   \
392                 .src_reg = 0,                                   \
393                 .off   = 0,                                     \
394                 .imm   = 0 })
395
396 /* Speculation barrier */
397
398 #define BPF_ST_NOSPEC()                                         \
399         ((struct bpf_insn) {                                    \
400                 .code  = BPF_ST | BPF_NOSPEC,                   \
401                 .dst_reg = 0,                                   \
402                 .src_reg = 0,                                   \
403                 .off   = 0,                                     \
404                 .imm   = 0 })
405
406 /* Internal classic blocks for direct assignment */
407
408 #define __BPF_STMT(CODE, K)                                     \
409         ((struct sock_filter) BPF_STMT(CODE, K))
410
411 #define __BPF_JUMP(CODE, K, JT, JF)                             \
412         ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
413
414 #define bytes_to_bpf_size(bytes)                                \
415 ({                                                              \
416         int bpf_size = -EINVAL;                                 \
417                                                                 \
418         if (bytes == sizeof(u8))                                \
419                 bpf_size = BPF_B;                               \
420         else if (bytes == sizeof(u16))                          \
421                 bpf_size = BPF_H;                               \
422         else if (bytes == sizeof(u32))                          \
423                 bpf_size = BPF_W;                               \
424         else if (bytes == sizeof(u64))                          \
425                 bpf_size = BPF_DW;                              \
426                                                                 \
427         bpf_size;                                               \
428 })
429
430 #define bpf_size_to_bytes(bpf_size)                             \
431 ({                                                              \
432         int bytes = -EINVAL;                                    \
433                                                                 \
434         if (bpf_size == BPF_B)                                  \
435                 bytes = sizeof(u8);                             \
436         else if (bpf_size == BPF_H)                             \
437                 bytes = sizeof(u16);                            \
438         else if (bpf_size == BPF_W)                             \
439                 bytes = sizeof(u32);                            \
440         else if (bpf_size == BPF_DW)                            \
441                 bytes = sizeof(u64);                            \
442                                                                 \
443         bytes;                                                  \
444 })
445
446 #define BPF_SIZEOF(type)                                        \
447         ({                                                      \
448                 const int __size = bytes_to_bpf_size(sizeof(type)); \
449                 BUILD_BUG_ON(__size < 0);                       \
450                 __size;                                         \
451         })
452
453 #define BPF_FIELD_SIZEOF(type, field)                           \
454         ({                                                      \
455                 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
456                 BUILD_BUG_ON(__size < 0);                       \
457                 __size;                                         \
458         })
459
460 #define BPF_LDST_BYTES(insn)                                    \
461         ({                                                      \
462                 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
463                 WARN_ON(__size < 0);                            \
464                 __size;                                         \
465         })
466
467 #define __BPF_MAP_0(m, v, ...) v
468 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
469 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
470 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
471 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
472 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
473
474 #define __BPF_REG_0(...) __BPF_PAD(5)
475 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
476 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
477 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
478 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
479 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
480
481 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
482 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
483
484 #define __BPF_CAST(t, a)                                                       \
485         (__force t)                                                            \
486         (__force                                                               \
487          typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
488                                       (unsigned long)0, (t)0))) a
489 #define __BPF_V void
490 #define __BPF_N
491
492 #define __BPF_DECL_ARGS(t, a) t   a
493 #define __BPF_DECL_REGS(t, a) u64 a
494
495 #define __BPF_PAD(n)                                                           \
496         __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
497                   u64, __ur_3, u64, __ur_4, u64, __ur_5)
498
499 #define BPF_CALL_x(x, name, ...)                                               \
500         static __always_inline                                                 \
501         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
502         typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
503         u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));         \
504         u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))          \
505         {                                                                      \
506                 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
507         }                                                                      \
508         static __always_inline                                                 \
509         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
510
511 #define BPF_CALL_0(name, ...)   BPF_CALL_x(0, name, __VA_ARGS__)
512 #define BPF_CALL_1(name, ...)   BPF_CALL_x(1, name, __VA_ARGS__)
513 #define BPF_CALL_2(name, ...)   BPF_CALL_x(2, name, __VA_ARGS__)
514 #define BPF_CALL_3(name, ...)   BPF_CALL_x(3, name, __VA_ARGS__)
515 #define BPF_CALL_4(name, ...)   BPF_CALL_x(4, name, __VA_ARGS__)
516 #define BPF_CALL_5(name, ...)   BPF_CALL_x(5, name, __VA_ARGS__)
517
518 #define bpf_ctx_range(TYPE, MEMBER)                                             \
519         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
520 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)                              \
521         offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
522 #if BITS_PER_LONG == 64
523 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
524         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
525 #else
526 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
527         offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
528 #endif /* BITS_PER_LONG == 64 */
529
530 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)                            \
531         ({                                                                      \
532                 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));             \
533                 *(PTR_SIZE) = (SIZE);                                           \
534                 offsetof(TYPE, MEMBER);                                         \
535         })
536
537 /* A struct sock_filter is architecture independent. */
538 struct compat_sock_fprog {
539         u16             len;
540         compat_uptr_t   filter; /* struct sock_filter * */
541 };
542
543 struct sock_fprog_kern {
544         u16                     len;
545         struct sock_filter      *filter;
546 };
547
548 /* Some arches need doubleword alignment for their instructions and/or data */
549 #define BPF_IMAGE_ALIGNMENT 8
550
551 struct bpf_binary_header {
552         u32 pages;
553         u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
554 };
555
556 struct bpf_prog_stats {
557         u64_stats_t cnt;
558         u64_stats_t nsecs;
559         u64_stats_t misses;
560         struct u64_stats_sync syncp;
561 } __aligned(2 * sizeof(u64));
562
563 struct bpf_prog {
564         u16                     pages;          /* Number of allocated pages */
565         u16                     jited:1,        /* Is our filter JIT'ed? */
566                                 jit_requested:1,/* archs need to JIT the prog */
567                                 gpl_compatible:1, /* Is filter GPL compatible? */
568                                 cb_access:1,    /* Is control block accessed? */
569                                 dst_needed:1,   /* Do we need dst entry? */
570                                 blinded:1,      /* Was blinded */
571                                 is_func:1,      /* program is a bpf function */
572                                 kprobe_override:1, /* Do we override a kprobe? */
573                                 has_callchain_buf:1, /* callchain buffer allocated? */
574                                 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
575                                 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
576                                 call_get_func_ip:1; /* Do we call get_func_ip() */
577         enum bpf_prog_type      type;           /* Type of BPF program */
578         enum bpf_attach_type    expected_attach_type; /* For some prog types */
579         u32                     len;            /* Number of filter blocks */
580         u32                     jited_len;      /* Size of jited insns in bytes */
581         u8                      tag[BPF_TAG_SIZE];
582         struct bpf_prog_stats __percpu *stats;
583         int __percpu            *active;
584         unsigned int            (*bpf_func)(const void *ctx,
585                                             const struct bpf_insn *insn);
586         struct bpf_prog_aux     *aux;           /* Auxiliary fields */
587         struct sock_fprog_kern  *orig_prog;     /* Original BPF program */
588         /* Instructions for interpreter */
589         struct sock_filter      insns[0];
590         struct bpf_insn         insnsi[];
591 };
592
593 struct sk_filter {
594         refcount_t      refcnt;
595         struct rcu_head rcu;
596         struct bpf_prog *prog;
597 };
598
599 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
600
601 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
602                                           const struct bpf_insn *insnsi,
603                                           unsigned int (*bpf_func)(const void *,
604                                                                    const struct bpf_insn *));
605
606 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
607                                           const void *ctx,
608                                           bpf_dispatcher_fn dfunc)
609 {
610         u32 ret;
611
612         cant_migrate();
613         if (static_branch_unlikely(&bpf_stats_enabled_key)) {
614                 struct bpf_prog_stats *stats;
615                 u64 start = sched_clock();
616                 unsigned long flags;
617
618                 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
619                 stats = this_cpu_ptr(prog->stats);
620                 flags = u64_stats_update_begin_irqsave(&stats->syncp);
621                 u64_stats_inc(&stats->cnt);
622                 u64_stats_add(&stats->nsecs, sched_clock() - start);
623                 u64_stats_update_end_irqrestore(&stats->syncp, flags);
624         } else {
625                 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
626         }
627         return ret;
628 }
629
630 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
631 {
632         return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
633 }
634
635 /*
636  * Use in preemptible and therefore migratable context to make sure that
637  * the execution of the BPF program runs on one CPU.
638  *
639  * This uses migrate_disable/enable() explicitly to document that the
640  * invocation of a BPF program does not require reentrancy protection
641  * against a BPF program which is invoked from a preempting task.
642  */
643 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
644                                           const void *ctx)
645 {
646         u32 ret;
647
648         migrate_disable();
649         ret = bpf_prog_run(prog, ctx);
650         migrate_enable();
651         return ret;
652 }
653
654 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
655
656 struct bpf_skb_data_end {
657         struct qdisc_skb_cb qdisc_cb;
658         void *data_meta;
659         void *data_end;
660 };
661
662 struct bpf_nh_params {
663         u32 nh_family;
664         union {
665                 u32 ipv4_nh;
666                 struct in6_addr ipv6_nh;
667         };
668 };
669
670 struct bpf_redirect_info {
671         u32 flags;
672         u32 tgt_index;
673         void *tgt_value;
674         struct bpf_map *map;
675         u32 map_id;
676         enum bpf_map_type map_type;
677         u32 kern_flags;
678         struct bpf_nh_params nh;
679 };
680
681 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
682
683 /* flags for bpf_redirect_info kern_flags */
684 #define BPF_RI_F_RF_NO_DIRECT   BIT(0)  /* no napi_direct on return_frame */
685
686 /* Compute the linear packet data range [data, data_end) which
687  * will be accessed by various program types (cls_bpf, act_bpf,
688  * lwt, ...). Subsystems allowing direct data access must (!)
689  * ensure that cb[] area can be written to when BPF program is
690  * invoked (otherwise cb[] save/restore is necessary).
691  */
692 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
693 {
694         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
695
696         BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
697         cb->data_meta = skb->data - skb_metadata_len(skb);
698         cb->data_end  = skb->data + skb_headlen(skb);
699 }
700
701 /* Similar to bpf_compute_data_pointers(), except that save orginal
702  * data in cb->data and cb->meta_data for restore.
703  */
704 static inline void bpf_compute_and_save_data_end(
705         struct sk_buff *skb, void **saved_data_end)
706 {
707         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
708
709         *saved_data_end = cb->data_end;
710         cb->data_end  = skb->data + skb_headlen(skb);
711 }
712
713 /* Restore data saved by bpf_compute_data_pointers(). */
714 static inline void bpf_restore_data_end(
715         struct sk_buff *skb, void *saved_data_end)
716 {
717         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
718
719         cb->data_end = saved_data_end;
720 }
721
722 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
723 {
724         /* eBPF programs may read/write skb->cb[] area to transfer meta
725          * data between tail calls. Since this also needs to work with
726          * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
727          *
728          * In some socket filter cases, the cb unfortunately needs to be
729          * saved/restored so that protocol specific skb->cb[] data won't
730          * be lost. In any case, due to unpriviledged eBPF programs
731          * attached to sockets, we need to clear the bpf_skb_cb() area
732          * to not leak previous contents to user space.
733          */
734         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
735         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
736                      sizeof_field(struct qdisc_skb_cb, data));
737
738         return qdisc_skb_cb(skb)->data;
739 }
740
741 /* Must be invoked with migration disabled */
742 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
743                                          const void *ctx)
744 {
745         const struct sk_buff *skb = ctx;
746         u8 *cb_data = bpf_skb_cb(skb);
747         u8 cb_saved[BPF_SKB_CB_LEN];
748         u32 res;
749
750         if (unlikely(prog->cb_access)) {
751                 memcpy(cb_saved, cb_data, sizeof(cb_saved));
752                 memset(cb_data, 0, sizeof(cb_saved));
753         }
754
755         res = bpf_prog_run(prog, skb);
756
757         if (unlikely(prog->cb_access))
758                 memcpy(cb_data, cb_saved, sizeof(cb_saved));
759
760         return res;
761 }
762
763 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
764                                        struct sk_buff *skb)
765 {
766         u32 res;
767
768         migrate_disable();
769         res = __bpf_prog_run_save_cb(prog, skb);
770         migrate_enable();
771         return res;
772 }
773
774 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
775                                         struct sk_buff *skb)
776 {
777         u8 *cb_data = bpf_skb_cb(skb);
778         u32 res;
779
780         if (unlikely(prog->cb_access))
781                 memset(cb_data, 0, BPF_SKB_CB_LEN);
782
783         res = bpf_prog_run_pin_on_cpu(prog, skb);
784         return res;
785 }
786
787 DECLARE_BPF_DISPATCHER(xdp)
788
789 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
790
791 u32 xdp_master_redirect(struct xdp_buff *xdp);
792
793 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
794                                             struct xdp_buff *xdp)
795 {
796         /* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
797          * under local_bh_disable(), which provides the needed RCU protection
798          * for accessing map entries.
799          */
800         u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
801
802         if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) {
803                 if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev))
804                         act = xdp_master_redirect(xdp);
805         }
806
807         return act;
808 }
809
810 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
811
812 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
813 {
814         return prog->len * sizeof(struct bpf_insn);
815 }
816
817 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
818 {
819         return round_up(bpf_prog_insn_size(prog) +
820                         sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
821 }
822
823 static inline unsigned int bpf_prog_size(unsigned int proglen)
824 {
825         return max(sizeof(struct bpf_prog),
826                    offsetof(struct bpf_prog, insns[proglen]));
827 }
828
829 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
830 {
831         /* When classic BPF programs have been loaded and the arch
832          * does not have a classic BPF JIT (anymore), they have been
833          * converted via bpf_migrate_filter() to eBPF and thus always
834          * have an unspec program type.
835          */
836         return prog->type == BPF_PROG_TYPE_UNSPEC;
837 }
838
839 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
840 {
841         const u32 size_machine = sizeof(unsigned long);
842
843         if (size > size_machine && size % size_machine == 0)
844                 size = size_machine;
845
846         return size;
847 }
848
849 static inline bool
850 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
851 {
852         return size <= size_default && (size & (size - 1)) == 0;
853 }
854
855 static inline u8
856 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
857 {
858         u8 access_off = off & (size_default - 1);
859
860 #ifdef __LITTLE_ENDIAN
861         return access_off;
862 #else
863         return size_default - (access_off + size);
864 #endif
865 }
866
867 #define bpf_ctx_wide_access_ok(off, size, type, field)                  \
868         (size == sizeof(__u64) &&                                       \
869         off >= offsetof(type, field) &&                                 \
870         off + sizeof(__u64) <= offsetofend(type, field) &&              \
871         off % sizeof(__u64) == 0)
872
873 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
874
875 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
876 {
877 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
878         if (!fp->jited) {
879                 set_vm_flush_reset_perms(fp);
880                 set_memory_ro((unsigned long)fp, fp->pages);
881         }
882 #endif
883 }
884
885 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
886 {
887         set_vm_flush_reset_perms(hdr);
888         set_memory_ro((unsigned long)hdr, hdr->pages);
889         set_memory_x((unsigned long)hdr, hdr->pages);
890 }
891
892 static inline struct bpf_binary_header *
893 bpf_jit_binary_hdr(const struct bpf_prog *fp)
894 {
895         unsigned long real_start = (unsigned long)fp->bpf_func;
896         unsigned long addr = real_start & PAGE_MASK;
897
898         return (void *)addr;
899 }
900
901 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
902 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
903 {
904         return sk_filter_trim_cap(sk, skb, 1);
905 }
906
907 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
908 void bpf_prog_free(struct bpf_prog *fp);
909
910 bool bpf_opcode_in_insntable(u8 code);
911
912 void bpf_prog_free_linfo(struct bpf_prog *prog);
913 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
914                                const u32 *insn_to_jit_off);
915 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
916 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
917
918 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
919 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
920 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
921                                   gfp_t gfp_extra_flags);
922 void __bpf_prog_free(struct bpf_prog *fp);
923
924 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
925 {
926         __bpf_prog_free(fp);
927 }
928
929 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
930                                        unsigned int flen);
931
932 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
933 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
934                               bpf_aux_classic_check_t trans, bool save_orig);
935 void bpf_prog_destroy(struct bpf_prog *fp);
936
937 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
938 int sk_attach_bpf(u32 ufd, struct sock *sk);
939 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
940 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
941 void sk_reuseport_prog_free(struct bpf_prog *prog);
942 int sk_detach_filter(struct sock *sk);
943 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
944                   unsigned int len);
945
946 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
947 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
948
949 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
950 #define __bpf_call_base_args \
951         ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
952          (void *)__bpf_call_base)
953
954 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
955 void bpf_jit_compile(struct bpf_prog *prog);
956 bool bpf_jit_needs_zext(void);
957 bool bpf_jit_supports_kfunc_call(void);
958 bool bpf_helper_changes_pkt_data(void *func);
959
960 static inline bool bpf_dump_raw_ok(const struct cred *cred)
961 {
962         /* Reconstruction of call-sites is dependent on kallsyms,
963          * thus make dump the same restriction.
964          */
965         return kallsyms_show_value(cred);
966 }
967
968 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
969                                        const struct bpf_insn *patch, u32 len);
970 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
971
972 void bpf_clear_redirect_map(struct bpf_map *map);
973
974 static inline bool xdp_return_frame_no_direct(void)
975 {
976         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
977
978         return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
979 }
980
981 static inline void xdp_set_return_frame_no_direct(void)
982 {
983         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
984
985         ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
986 }
987
988 static inline void xdp_clear_return_frame_no_direct(void)
989 {
990         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
991
992         ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
993 }
994
995 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
996                                  unsigned int pktlen)
997 {
998         unsigned int len;
999
1000         if (unlikely(!(fwd->flags & IFF_UP)))
1001                 return -ENETDOWN;
1002
1003         len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1004         if (pktlen > len)
1005                 return -EMSGSIZE;
1006
1007         return 0;
1008 }
1009
1010 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1011  * same cpu context. Further for best results no more than a single map
1012  * for the do_redirect/do_flush pair should be used. This limitation is
1013  * because we only track one map and force a flush when the map changes.
1014  * This does not appear to be a real limitation for existing software.
1015  */
1016 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1017                             struct xdp_buff *xdp, struct bpf_prog *prog);
1018 int xdp_do_redirect(struct net_device *dev,
1019                     struct xdp_buff *xdp,
1020                     struct bpf_prog *prog);
1021 void xdp_do_flush(void);
1022
1023 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
1024  * it is no longer only flushing maps. Keep this define for compatibility
1025  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
1026  */
1027 #define xdp_do_flush_map xdp_do_flush
1028
1029 void bpf_warn_invalid_xdp_action(u32 act);
1030
1031 #ifdef CONFIG_INET
1032 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1033                                   struct bpf_prog *prog, struct sk_buff *skb,
1034                                   struct sock *migrating_sk,
1035                                   u32 hash);
1036 #else
1037 static inline struct sock *
1038 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1039                      struct bpf_prog *prog, struct sk_buff *skb,
1040                      struct sock *migrating_sk,
1041                      u32 hash)
1042 {
1043         return NULL;
1044 }
1045 #endif
1046
1047 #ifdef CONFIG_BPF_JIT
1048 extern int bpf_jit_enable;
1049 extern int bpf_jit_harden;
1050 extern int bpf_jit_kallsyms;
1051 extern long bpf_jit_limit;
1052 extern long bpf_jit_limit_max;
1053
1054 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1055
1056 struct bpf_binary_header *
1057 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1058                      unsigned int alignment,
1059                      bpf_jit_fill_hole_t bpf_fill_ill_insns);
1060 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1061 u64 bpf_jit_alloc_exec_limit(void);
1062 void *bpf_jit_alloc_exec(unsigned long size);
1063 void bpf_jit_free_exec(void *addr);
1064 void bpf_jit_free(struct bpf_prog *fp);
1065
1066 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1067                                 struct bpf_jit_poke_descriptor *poke);
1068
1069 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1070                           const struct bpf_insn *insn, bool extra_pass,
1071                           u64 *func_addr, bool *func_addr_fixed);
1072
1073 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1074 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1075
1076 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1077                                 u32 pass, void *image)
1078 {
1079         pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1080                proglen, pass, image, current->comm, task_pid_nr(current));
1081
1082         if (image)
1083                 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1084                                16, 1, image, proglen, false);
1085 }
1086
1087 static inline bool bpf_jit_is_ebpf(void)
1088 {
1089 # ifdef CONFIG_HAVE_EBPF_JIT
1090         return true;
1091 # else
1092         return false;
1093 # endif
1094 }
1095
1096 static inline bool ebpf_jit_enabled(void)
1097 {
1098         return bpf_jit_enable && bpf_jit_is_ebpf();
1099 }
1100
1101 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1102 {
1103         return fp->jited && bpf_jit_is_ebpf();
1104 }
1105
1106 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1107 {
1108         /* These are the prerequisites, should someone ever have the
1109          * idea to call blinding outside of them, we make sure to
1110          * bail out.
1111          */
1112         if (!bpf_jit_is_ebpf())
1113                 return false;
1114         if (!prog->jit_requested)
1115                 return false;
1116         if (!bpf_jit_harden)
1117                 return false;
1118         if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1119                 return false;
1120
1121         return true;
1122 }
1123
1124 static inline bool bpf_jit_kallsyms_enabled(void)
1125 {
1126         /* There are a couple of corner cases where kallsyms should
1127          * not be enabled f.e. on hardening.
1128          */
1129         if (bpf_jit_harden)
1130                 return false;
1131         if (!bpf_jit_kallsyms)
1132                 return false;
1133         if (bpf_jit_kallsyms == 1)
1134                 return true;
1135
1136         return false;
1137 }
1138
1139 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1140                                  unsigned long *off, char *sym);
1141 bool is_bpf_text_address(unsigned long addr);
1142 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1143                     char *sym);
1144
1145 static inline const char *
1146 bpf_address_lookup(unsigned long addr, unsigned long *size,
1147                    unsigned long *off, char **modname, char *sym)
1148 {
1149         const char *ret = __bpf_address_lookup(addr, size, off, sym);
1150
1151         if (ret && modname)
1152                 *modname = NULL;
1153         return ret;
1154 }
1155
1156 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1157 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1158
1159 #else /* CONFIG_BPF_JIT */
1160
1161 static inline bool ebpf_jit_enabled(void)
1162 {
1163         return false;
1164 }
1165
1166 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1167 {
1168         return false;
1169 }
1170
1171 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1172 {
1173         return false;
1174 }
1175
1176 static inline int
1177 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1178                             struct bpf_jit_poke_descriptor *poke)
1179 {
1180         return -ENOTSUPP;
1181 }
1182
1183 static inline void bpf_jit_free(struct bpf_prog *fp)
1184 {
1185         bpf_prog_unlock_free(fp);
1186 }
1187
1188 static inline bool bpf_jit_kallsyms_enabled(void)
1189 {
1190         return false;
1191 }
1192
1193 static inline const char *
1194 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1195                      unsigned long *off, char *sym)
1196 {
1197         return NULL;
1198 }
1199
1200 static inline bool is_bpf_text_address(unsigned long addr)
1201 {
1202         return false;
1203 }
1204
1205 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1206                                   char *type, char *sym)
1207 {
1208         return -ERANGE;
1209 }
1210
1211 static inline const char *
1212 bpf_address_lookup(unsigned long addr, unsigned long *size,
1213                    unsigned long *off, char **modname, char *sym)
1214 {
1215         return NULL;
1216 }
1217
1218 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1219 {
1220 }
1221
1222 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1223 {
1224 }
1225
1226 #endif /* CONFIG_BPF_JIT */
1227
1228 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1229
1230 #define BPF_ANC         BIT(15)
1231
1232 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1233 {
1234         switch (first->code) {
1235         case BPF_RET | BPF_K:
1236         case BPF_LD | BPF_W | BPF_LEN:
1237                 return false;
1238
1239         case BPF_LD | BPF_W | BPF_ABS:
1240         case BPF_LD | BPF_H | BPF_ABS:
1241         case BPF_LD | BPF_B | BPF_ABS:
1242                 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1243                         return true;
1244                 return false;
1245
1246         default:
1247                 return true;
1248         }
1249 }
1250
1251 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1252 {
1253         BUG_ON(ftest->code & BPF_ANC);
1254
1255         switch (ftest->code) {
1256         case BPF_LD | BPF_W | BPF_ABS:
1257         case BPF_LD | BPF_H | BPF_ABS:
1258         case BPF_LD | BPF_B | BPF_ABS:
1259 #define BPF_ANCILLARY(CODE)     case SKF_AD_OFF + SKF_AD_##CODE:        \
1260                                 return BPF_ANC | SKF_AD_##CODE
1261                 switch (ftest->k) {
1262                 BPF_ANCILLARY(PROTOCOL);
1263                 BPF_ANCILLARY(PKTTYPE);
1264                 BPF_ANCILLARY(IFINDEX);
1265                 BPF_ANCILLARY(NLATTR);
1266                 BPF_ANCILLARY(NLATTR_NEST);
1267                 BPF_ANCILLARY(MARK);
1268                 BPF_ANCILLARY(QUEUE);
1269                 BPF_ANCILLARY(HATYPE);
1270                 BPF_ANCILLARY(RXHASH);
1271                 BPF_ANCILLARY(CPU);
1272                 BPF_ANCILLARY(ALU_XOR_X);
1273                 BPF_ANCILLARY(VLAN_TAG);
1274                 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1275                 BPF_ANCILLARY(PAY_OFFSET);
1276                 BPF_ANCILLARY(RANDOM);
1277                 BPF_ANCILLARY(VLAN_TPID);
1278                 }
1279                 fallthrough;
1280         default:
1281                 return ftest->code;
1282         }
1283 }
1284
1285 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1286                                            int k, unsigned int size);
1287
1288 static inline int bpf_tell_extensions(void)
1289 {
1290         return SKF_AD_MAX;
1291 }
1292
1293 struct bpf_sock_addr_kern {
1294         struct sock *sk;
1295         struct sockaddr *uaddr;
1296         /* Temporary "register" to make indirect stores to nested structures
1297          * defined above. We need three registers to make such a store, but
1298          * only two (src and dst) are available at convert_ctx_access time
1299          */
1300         u64 tmp_reg;
1301         void *t_ctx;    /* Attach type specific context. */
1302 };
1303
1304 struct bpf_sock_ops_kern {
1305         struct  sock *sk;
1306         union {
1307                 u32 args[4];
1308                 u32 reply;
1309                 u32 replylong[4];
1310         };
1311         struct sk_buff  *syn_skb;
1312         struct sk_buff  *skb;
1313         void    *skb_data_end;
1314         u8      op;
1315         u8      is_fullsock;
1316         u8      remaining_opt_len;
1317         u64     temp;                   /* temp and everything after is not
1318                                          * initialized to 0 before calling
1319                                          * the BPF program. New fields that
1320                                          * should be initialized to 0 should
1321                                          * be inserted before temp.
1322                                          * temp is scratch storage used by
1323                                          * sock_ops_convert_ctx_access
1324                                          * as temporary storage of a register.
1325                                          */
1326 };
1327
1328 struct bpf_sysctl_kern {
1329         struct ctl_table_header *head;
1330         struct ctl_table *table;
1331         void *cur_val;
1332         size_t cur_len;
1333         void *new_val;
1334         size_t new_len;
1335         int new_updated;
1336         int write;
1337         loff_t *ppos;
1338         /* Temporary "register" for indirect stores to ppos. */
1339         u64 tmp_reg;
1340 };
1341
1342 #define BPF_SOCKOPT_KERN_BUF_SIZE       32
1343 struct bpf_sockopt_buf {
1344         u8              data[BPF_SOCKOPT_KERN_BUF_SIZE];
1345 };
1346
1347 struct bpf_sockopt_kern {
1348         struct sock     *sk;
1349         u8              *optval;
1350         u8              *optval_end;
1351         s32             level;
1352         s32             optname;
1353         s32             optlen;
1354         s32             retval;
1355 };
1356
1357 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1358
1359 struct bpf_sk_lookup_kern {
1360         u16             family;
1361         u16             protocol;
1362         __be16          sport;
1363         u16             dport;
1364         struct {
1365                 __be32 saddr;
1366                 __be32 daddr;
1367         } v4;
1368         struct {
1369                 const struct in6_addr *saddr;
1370                 const struct in6_addr *daddr;
1371         } v6;
1372         struct sock     *selected_sk;
1373         bool            no_reuseport;
1374 };
1375
1376 extern struct static_key_false bpf_sk_lookup_enabled;
1377
1378 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1379  *
1380  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1381  * SK_DROP. Their meaning is as follows:
1382  *
1383  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1384  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1385  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1386  *
1387  * This macro aggregates return values and selected sockets from
1388  * multiple BPF programs according to following rules in order:
1389  *
1390  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1391  *     macro result is SK_PASS and last ctx.selected_sk is used.
1392  *  2. If any program returned SK_DROP return value,
1393  *     macro result is SK_DROP.
1394  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1395  *
1396  * Caller must ensure that the prog array is non-NULL, and that the
1397  * array as well as the programs it contains remain valid.
1398  */
1399 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)                  \
1400         ({                                                              \
1401                 struct bpf_sk_lookup_kern *_ctx = &(ctx);               \
1402                 struct bpf_prog_array_item *_item;                      \
1403                 struct sock *_selected_sk = NULL;                       \
1404                 bool _no_reuseport = false;                             \
1405                 struct bpf_prog *_prog;                                 \
1406                 bool _all_pass = true;                                  \
1407                 u32 _ret;                                               \
1408                                                                         \
1409                 migrate_disable();                                      \
1410                 _item = &(array)->items[0];                             \
1411                 while ((_prog = READ_ONCE(_item->prog))) {              \
1412                         /* restore most recent selection */             \
1413                         _ctx->selected_sk = _selected_sk;               \
1414                         _ctx->no_reuseport = _no_reuseport;             \
1415                                                                         \
1416                         _ret = func(_prog, _ctx);                       \
1417                         if (_ret == SK_PASS && _ctx->selected_sk) {     \
1418                                 /* remember last non-NULL socket */     \
1419                                 _selected_sk = _ctx->selected_sk;       \
1420                                 _no_reuseport = _ctx->no_reuseport;     \
1421                         } else if (_ret == SK_DROP && _all_pass) {      \
1422                                 _all_pass = false;                      \
1423                         }                                               \
1424                         _item++;                                        \
1425                 }                                                       \
1426                 _ctx->selected_sk = _selected_sk;                       \
1427                 _ctx->no_reuseport = _no_reuseport;                     \
1428                 migrate_enable();                                       \
1429                 _all_pass || _selected_sk ? SK_PASS : SK_DROP;          \
1430          })
1431
1432 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1433                                         const __be32 saddr, const __be16 sport,
1434                                         const __be32 daddr, const u16 dport,
1435                                         struct sock **psk)
1436 {
1437         struct bpf_prog_array *run_array;
1438         struct sock *selected_sk = NULL;
1439         bool no_reuseport = false;
1440
1441         rcu_read_lock();
1442         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1443         if (run_array) {
1444                 struct bpf_sk_lookup_kern ctx = {
1445                         .family         = AF_INET,
1446                         .protocol       = protocol,
1447                         .v4.saddr       = saddr,
1448                         .v4.daddr       = daddr,
1449                         .sport          = sport,
1450                         .dport          = dport,
1451                 };
1452                 u32 act;
1453
1454                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1455                 if (act == SK_PASS) {
1456                         selected_sk = ctx.selected_sk;
1457                         no_reuseport = ctx.no_reuseport;
1458                 } else {
1459                         selected_sk = ERR_PTR(-ECONNREFUSED);
1460                 }
1461         }
1462         rcu_read_unlock();
1463         *psk = selected_sk;
1464         return no_reuseport;
1465 }
1466
1467 #if IS_ENABLED(CONFIG_IPV6)
1468 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1469                                         const struct in6_addr *saddr,
1470                                         const __be16 sport,
1471                                         const struct in6_addr *daddr,
1472                                         const u16 dport,
1473                                         struct sock **psk)
1474 {
1475         struct bpf_prog_array *run_array;
1476         struct sock *selected_sk = NULL;
1477         bool no_reuseport = false;
1478
1479         rcu_read_lock();
1480         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1481         if (run_array) {
1482                 struct bpf_sk_lookup_kern ctx = {
1483                         .family         = AF_INET6,
1484                         .protocol       = protocol,
1485                         .v6.saddr       = saddr,
1486                         .v6.daddr       = daddr,
1487                         .sport          = sport,
1488                         .dport          = dport,
1489                 };
1490                 u32 act;
1491
1492                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1493                 if (act == SK_PASS) {
1494                         selected_sk = ctx.selected_sk;
1495                         no_reuseport = ctx.no_reuseport;
1496                 } else {
1497                         selected_sk = ERR_PTR(-ECONNREFUSED);
1498                 }
1499         }
1500         rcu_read_unlock();
1501         *psk = selected_sk;
1502         return no_reuseport;
1503 }
1504 #endif /* IS_ENABLED(CONFIG_IPV6) */
1505
1506 static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex,
1507                                                   u64 flags, const u64 flag_mask,
1508                                                   void *lookup_elem(struct bpf_map *map, u32 key))
1509 {
1510         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1511         const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1512
1513         /* Lower bits of the flags are used as return code on lookup failure */
1514         if (unlikely(flags & ~(action_mask | flag_mask)))
1515                 return XDP_ABORTED;
1516
1517         ri->tgt_value = lookup_elem(map, ifindex);
1518         if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1519                 /* If the lookup fails we want to clear out the state in the
1520                  * redirect_info struct completely, so that if an eBPF program
1521                  * performs multiple lookups, the last one always takes
1522                  * precedence.
1523                  */
1524                 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1525                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
1526                 return flags & action_mask;
1527         }
1528
1529         ri->tgt_index = ifindex;
1530         ri->map_id = map->id;
1531         ri->map_type = map->map_type;
1532
1533         if (flags & BPF_F_BROADCAST) {
1534                 WRITE_ONCE(ri->map, map);
1535                 ri->flags = flags;
1536         } else {
1537                 WRITE_ONCE(ri->map, NULL);
1538                 ri->flags = 0;
1539         }
1540
1541         return XDP_REDIRECT;
1542 }
1543
1544 #endif /* __LINUX_FILTER_H__ */