GNU Linux-libre 6.9.2-gnu
[releases.git] / include / linux / filter.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Linux Socket Filter Data Structures
4  */
5 #ifndef __LINUX_FILTER_H__
6 #define __LINUX_FILTER_H__
7
8 #include <linux/atomic.h>
9 #include <linux/bpf.h>
10 #include <linux/refcount.h>
11 #include <linux/compat.h>
12 #include <linux/skbuff.h>
13 #include <linux/linkage.h>
14 #include <linux/printk.h>
15 #include <linux/workqueue.h>
16 #include <linux/sched.h>
17 #include <linux/sched/clock.h>
18 #include <linux/capability.h>
19 #include <linux/set_memory.h>
20 #include <linux/kallsyms.h>
21 #include <linux/if_vlan.h>
22 #include <linux/vmalloc.h>
23 #include <linux/sockptr.h>
24 #include <crypto/sha1.h>
25 #include <linux/u64_stats_sync.h>
26
27 #include <net/sch_generic.h>
28
29 #include <asm/byteorder.h>
30 #include <uapi/linux/filter.h>
31
32 struct sk_buff;
33 struct sock;
34 struct seccomp_data;
35 struct bpf_prog_aux;
36 struct xdp_rxq_info;
37 struct xdp_buff;
38 struct sock_reuseport;
39 struct ctl_table;
40 struct ctl_table_header;
41
42 /* ArgX, context and stack frame pointer register positions. Note,
43  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44  * calls in BPF_CALL instruction.
45  */
46 #define BPF_REG_ARG1    BPF_REG_1
47 #define BPF_REG_ARG2    BPF_REG_2
48 #define BPF_REG_ARG3    BPF_REG_3
49 #define BPF_REG_ARG4    BPF_REG_4
50 #define BPF_REG_ARG5    BPF_REG_5
51 #define BPF_REG_CTX     BPF_REG_6
52 #define BPF_REG_FP      BPF_REG_10
53
54 /* Additional register mappings for converted user programs. */
55 #define BPF_REG_A       BPF_REG_0
56 #define BPF_REG_X       BPF_REG_7
57 #define BPF_REG_TMP     BPF_REG_2       /* scratch reg */
58 #define BPF_REG_D       BPF_REG_8       /* data, callee-saved */
59 #define BPF_REG_H       BPF_REG_9       /* hlen, callee-saved */
60
61 /* Kernel hidden auxiliary/helper register. */
62 #define BPF_REG_AX              MAX_BPF_REG
63 #define MAX_BPF_EXT_REG         (MAX_BPF_REG + 1)
64 #define MAX_BPF_JIT_REG         MAX_BPF_EXT_REG
65
66 /* unused opcode to mark special call to bpf_tail_call() helper */
67 #define BPF_TAIL_CALL   0xf0
68
69 /* unused opcode to mark special load instruction. Same as BPF_ABS */
70 #define BPF_PROBE_MEM   0x20
71
72 /* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73 #define BPF_PROBE_MEMSX 0x40
74
75 /* unused opcode to mark special load instruction. Same as BPF_MSH */
76 #define BPF_PROBE_MEM32 0xa0
77
78 /* unused opcode to mark call to interpreter with arguments */
79 #define BPF_CALL_ARGS   0xe0
80
81 /* unused opcode to mark speculation barrier for mitigating
82  * Speculative Store Bypass
83  */
84 #define BPF_NOSPEC      0xc0
85
86 /* As per nm, we expose JITed images as text (code) section for
87  * kallsyms. That way, tools like perf can find it to match
88  * addresses.
89  */
90 #define BPF_SYM_ELF_TYPE        't'
91
92 /* BPF program can access up to 512 bytes of stack space. */
93 #define MAX_BPF_STACK   512
94
95 /* Helper macros for filter block array initializers. */
96
97 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
98
99 #define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF)                    \
100         ((struct bpf_insn) {                                    \
101                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,        \
102                 .dst_reg = DST,                                 \
103                 .src_reg = SRC,                                 \
104                 .off   = OFF,                                   \
105                 .imm   = 0 })
106
107 #define BPF_ALU64_REG(OP, DST, SRC)                             \
108         BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
109
110 #define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF)                    \
111         ((struct bpf_insn) {                                    \
112                 .code  = BPF_ALU | BPF_OP(OP) | BPF_X,          \
113                 .dst_reg = DST,                                 \
114                 .src_reg = SRC,                                 \
115                 .off   = OFF,                                   \
116                 .imm   = 0 })
117
118 #define BPF_ALU32_REG(OP, DST, SRC)                             \
119         BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
120
121 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
122
123 #define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF)                    \
124         ((struct bpf_insn) {                                    \
125                 .code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,        \
126                 .dst_reg = DST,                                 \
127                 .src_reg = 0,                                   \
128                 .off   = OFF,                                   \
129                 .imm   = IMM })
130 #define BPF_ALU64_IMM(OP, DST, IMM)                             \
131         BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)
132
133 #define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF)                    \
134         ((struct bpf_insn) {                                    \
135                 .code  = BPF_ALU | BPF_OP(OP) | BPF_K,          \
136                 .dst_reg = DST,                                 \
137                 .src_reg = 0,                                   \
138                 .off   = OFF,                                   \
139                 .imm   = IMM })
140 #define BPF_ALU32_IMM(OP, DST, IMM)                             \
141         BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)
142
143 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
144
145 #define BPF_ENDIAN(TYPE, DST, LEN)                              \
146         ((struct bpf_insn) {                                    \
147                 .code  = BPF_ALU | BPF_END | BPF_SRC(TYPE),     \
148                 .dst_reg = DST,                                 \
149                 .src_reg = 0,                                   \
150                 .off   = 0,                                     \
151                 .imm   = LEN })
152
153 /* Byte Swap, bswap16/32/64 */
154
155 #define BPF_BSWAP(DST, LEN)                                     \
156         ((struct bpf_insn) {                                    \
157                 .code  = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE),      \
158                 .dst_reg = DST,                                 \
159                 .src_reg = 0,                                   \
160                 .off   = 0,                                     \
161                 .imm   = LEN })
162
163 /* Short form of mov, dst_reg = src_reg */
164
165 #define BPF_MOV64_REG(DST, SRC)                                 \
166         ((struct bpf_insn) {                                    \
167                 .code  = BPF_ALU64 | BPF_MOV | BPF_X,           \
168                 .dst_reg = DST,                                 \
169                 .src_reg = SRC,                                 \
170                 .off   = 0,                                     \
171                 .imm   = 0 })
172
173 #define BPF_MOV32_REG(DST, SRC)                                 \
174         ((struct bpf_insn) {                                    \
175                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
176                 .dst_reg = DST,                                 \
177                 .src_reg = SRC,                                 \
178                 .off   = 0,                                     \
179                 .imm   = 0 })
180
181 /* Short form of mov, dst_reg = imm32 */
182
183 #define BPF_MOV64_IMM(DST, IMM)                                 \
184         ((struct bpf_insn) {                                    \
185                 .code  = BPF_ALU64 | BPF_MOV | BPF_K,           \
186                 .dst_reg = DST,                                 \
187                 .src_reg = 0,                                   \
188                 .off   = 0,                                     \
189                 .imm   = IMM })
190
191 #define BPF_MOV32_IMM(DST, IMM)                                 \
192         ((struct bpf_insn) {                                    \
193                 .code  = BPF_ALU | BPF_MOV | BPF_K,             \
194                 .dst_reg = DST,                                 \
195                 .src_reg = 0,                                   \
196                 .off   = 0,                                     \
197                 .imm   = IMM })
198
199 /* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */
200
201 #define BPF_MOVSX64_REG(DST, SRC, OFF)                          \
202         ((struct bpf_insn) {                                    \
203                 .code  = BPF_ALU64 | BPF_MOV | BPF_X,           \
204                 .dst_reg = DST,                                 \
205                 .src_reg = SRC,                                 \
206                 .off   = OFF,                                   \
207                 .imm   = 0 })
208
209 #define BPF_MOVSX32_REG(DST, SRC, OFF)                          \
210         ((struct bpf_insn) {                                    \
211                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
212                 .dst_reg = DST,                                 \
213                 .src_reg = SRC,                                 \
214                 .off   = OFF,                                   \
215                 .imm   = 0 })
216
217 /* Special form of mov32, used for doing explicit zero extension on dst. */
218 #define BPF_ZEXT_REG(DST)                                       \
219         ((struct bpf_insn) {                                    \
220                 .code  = BPF_ALU | BPF_MOV | BPF_X,             \
221                 .dst_reg = DST,                                 \
222                 .src_reg = DST,                                 \
223                 .off   = 0,                                     \
224                 .imm   = 1 })
225
226 static inline bool insn_is_zext(const struct bpf_insn *insn)
227 {
228         return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
229 }
230
231 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
232 #define BPF_LD_IMM64(DST, IMM)                                  \
233         BPF_LD_IMM64_RAW(DST, 0, IMM)
234
235 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)                         \
236         ((struct bpf_insn) {                                    \
237                 .code  = BPF_LD | BPF_DW | BPF_IMM,             \
238                 .dst_reg = DST,                                 \
239                 .src_reg = SRC,                                 \
240                 .off   = 0,                                     \
241                 .imm   = (__u32) (IMM) }),                      \
242         ((struct bpf_insn) {                                    \
243                 .code  = 0, /* zero is reserved opcode */       \
244                 .dst_reg = 0,                                   \
245                 .src_reg = 0,                                   \
246                 .off   = 0,                                     \
247                 .imm   = ((__u64) (IMM)) >> 32 })
248
249 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
250 #define BPF_LD_MAP_FD(DST, MAP_FD)                              \
251         BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
252
253 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
254
255 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)                      \
256         ((struct bpf_insn) {                                    \
257                 .code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),   \
258                 .dst_reg = DST,                                 \
259                 .src_reg = SRC,                                 \
260                 .off   = 0,                                     \
261                 .imm   = IMM })
262
263 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)                      \
264         ((struct bpf_insn) {                                    \
265                 .code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE),     \
266                 .dst_reg = DST,                                 \
267                 .src_reg = SRC,                                 \
268                 .off   = 0,                                     \
269                 .imm   = IMM })
270
271 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
272
273 #define BPF_LD_ABS(SIZE, IMM)                                   \
274         ((struct bpf_insn) {                                    \
275                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS,     \
276                 .dst_reg = 0,                                   \
277                 .src_reg = 0,                                   \
278                 .off   = 0,                                     \
279                 .imm   = IMM })
280
281 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
282
283 #define BPF_LD_IND(SIZE, SRC, IMM)                              \
284         ((struct bpf_insn) {                                    \
285                 .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND,     \
286                 .dst_reg = 0,                                   \
287                 .src_reg = SRC,                                 \
288                 .off   = 0,                                     \
289                 .imm   = IMM })
290
291 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
292
293 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)                        \
294         ((struct bpf_insn) {                                    \
295                 .code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,    \
296                 .dst_reg = DST,                                 \
297                 .src_reg = SRC,                                 \
298                 .off   = OFF,                                   \
299                 .imm   = 0 })
300
301 /* Memory load, dst_reg = *(signed size *) (src_reg + off16) */
302
303 #define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF)                      \
304         ((struct bpf_insn) {                                    \
305                 .code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX,  \
306                 .dst_reg = DST,                                 \
307                 .src_reg = SRC,                                 \
308                 .off   = OFF,                                   \
309                 .imm   = 0 })
310
311 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
312
313 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)                        \
314         ((struct bpf_insn) {                                    \
315                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,    \
316                 .dst_reg = DST,                                 \
317                 .src_reg = SRC,                                 \
318                 .off   = OFF,                                   \
319                 .imm   = 0 })
320
321
322 /*
323  * Atomic operations:
324  *
325  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
326  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
327  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
328  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
329  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
330  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
331  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
332  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
333  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
334  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
335  */
336
337 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)                  \
338         ((struct bpf_insn) {                                    \
339                 .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
340                 .dst_reg = DST,                                 \
341                 .src_reg = SRC,                                 \
342                 .off   = OFF,                                   \
343                 .imm   = OP })
344
345 /* Legacy alias */
346 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
347
348 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
349
350 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)                         \
351         ((struct bpf_insn) {                                    \
352                 .code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM,     \
353                 .dst_reg = DST,                                 \
354                 .src_reg = 0,                                   \
355                 .off   = OFF,                                   \
356                 .imm   = IMM })
357
358 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
359
360 #define BPF_JMP_REG(OP, DST, SRC, OFF)                          \
361         ((struct bpf_insn) {                                    \
362                 .code  = BPF_JMP | BPF_OP(OP) | BPF_X,          \
363                 .dst_reg = DST,                                 \
364                 .src_reg = SRC,                                 \
365                 .off   = OFF,                                   \
366                 .imm   = 0 })
367
368 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
369
370 #define BPF_JMP_IMM(OP, DST, IMM, OFF)                          \
371         ((struct bpf_insn) {                                    \
372                 .code  = BPF_JMP | BPF_OP(OP) | BPF_K,          \
373                 .dst_reg = DST,                                 \
374                 .src_reg = 0,                                   \
375                 .off   = OFF,                                   \
376                 .imm   = IMM })
377
378 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
379
380 #define BPF_JMP32_REG(OP, DST, SRC, OFF)                        \
381         ((struct bpf_insn) {                                    \
382                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,        \
383                 .dst_reg = DST,                                 \
384                 .src_reg = SRC,                                 \
385                 .off   = OFF,                                   \
386                 .imm   = 0 })
387
388 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
389
390 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)                        \
391         ((struct bpf_insn) {                                    \
392                 .code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,        \
393                 .dst_reg = DST,                                 \
394                 .src_reg = 0,                                   \
395                 .off   = OFF,                                   \
396                 .imm   = IMM })
397
398 /* Unconditional jumps, goto pc + off16 */
399
400 #define BPF_JMP_A(OFF)                                          \
401         ((struct bpf_insn) {                                    \
402                 .code  = BPF_JMP | BPF_JA,                      \
403                 .dst_reg = 0,                                   \
404                 .src_reg = 0,                                   \
405                 .off   = OFF,                                   \
406                 .imm   = 0 })
407
408 /* Relative call */
409
410 #define BPF_CALL_REL(TGT)                                       \
411         ((struct bpf_insn) {                                    \
412                 .code  = BPF_JMP | BPF_CALL,                    \
413                 .dst_reg = 0,                                   \
414                 .src_reg = BPF_PSEUDO_CALL,                     \
415                 .off   = 0,                                     \
416                 .imm   = TGT })
417
418 /* Convert function address to BPF immediate */
419
420 #define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base)
421
422 #define BPF_EMIT_CALL(FUNC)                                     \
423         ((struct bpf_insn) {                                    \
424                 .code  = BPF_JMP | BPF_CALL,                    \
425                 .dst_reg = 0,                                   \
426                 .src_reg = 0,                                   \
427                 .off   = 0,                                     \
428                 .imm   = BPF_CALL_IMM(FUNC) })
429
430 /* Raw code statement block */
431
432 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)                  \
433         ((struct bpf_insn) {                                    \
434                 .code  = CODE,                                  \
435                 .dst_reg = DST,                                 \
436                 .src_reg = SRC,                                 \
437                 .off   = OFF,                                   \
438                 .imm   = IMM })
439
440 /* Program exit */
441
442 #define BPF_EXIT_INSN()                                         \
443         ((struct bpf_insn) {                                    \
444                 .code  = BPF_JMP | BPF_EXIT,                    \
445                 .dst_reg = 0,                                   \
446                 .src_reg = 0,                                   \
447                 .off   = 0,                                     \
448                 .imm   = 0 })
449
450 /* Speculation barrier */
451
452 #define BPF_ST_NOSPEC()                                         \
453         ((struct bpf_insn) {                                    \
454                 .code  = BPF_ST | BPF_NOSPEC,                   \
455                 .dst_reg = 0,                                   \
456                 .src_reg = 0,                                   \
457                 .off   = 0,                                     \
458                 .imm   = 0 })
459
460 /* Internal classic blocks for direct assignment */
461
462 #define __BPF_STMT(CODE, K)                                     \
463         ((struct sock_filter) BPF_STMT(CODE, K))
464
465 #define __BPF_JUMP(CODE, K, JT, JF)                             \
466         ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
467
468 #define bytes_to_bpf_size(bytes)                                \
469 ({                                                              \
470         int bpf_size = -EINVAL;                                 \
471                                                                 \
472         if (bytes == sizeof(u8))                                \
473                 bpf_size = BPF_B;                               \
474         else if (bytes == sizeof(u16))                          \
475                 bpf_size = BPF_H;                               \
476         else if (bytes == sizeof(u32))                          \
477                 bpf_size = BPF_W;                               \
478         else if (bytes == sizeof(u64))                          \
479                 bpf_size = BPF_DW;                              \
480                                                                 \
481         bpf_size;                                               \
482 })
483
484 #define bpf_size_to_bytes(bpf_size)                             \
485 ({                                                              \
486         int bytes = -EINVAL;                                    \
487                                                                 \
488         if (bpf_size == BPF_B)                                  \
489                 bytes = sizeof(u8);                             \
490         else if (bpf_size == BPF_H)                             \
491                 bytes = sizeof(u16);                            \
492         else if (bpf_size == BPF_W)                             \
493                 bytes = sizeof(u32);                            \
494         else if (bpf_size == BPF_DW)                            \
495                 bytes = sizeof(u64);                            \
496                                                                 \
497         bytes;                                                  \
498 })
499
500 #define BPF_SIZEOF(type)                                        \
501         ({                                                      \
502                 const int __size = bytes_to_bpf_size(sizeof(type)); \
503                 BUILD_BUG_ON(__size < 0);                       \
504                 __size;                                         \
505         })
506
507 #define BPF_FIELD_SIZEOF(type, field)                           \
508         ({                                                      \
509                 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
510                 BUILD_BUG_ON(__size < 0);                       \
511                 __size;                                         \
512         })
513
514 #define BPF_LDST_BYTES(insn)                                    \
515         ({                                                      \
516                 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
517                 WARN_ON(__size < 0);                            \
518                 __size;                                         \
519         })
520
521 #define __BPF_MAP_0(m, v, ...) v
522 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
523 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
524 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
525 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
526 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
527
528 #define __BPF_REG_0(...) __BPF_PAD(5)
529 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
530 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
531 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
532 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
533 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
534
535 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
536 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
537
538 #define __BPF_CAST(t, a)                                                       \
539         (__force t)                                                            \
540         (__force                                                               \
541          typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
542                                       (unsigned long)0, (t)0))) a
543 #define __BPF_V void
544 #define __BPF_N
545
546 #define __BPF_DECL_ARGS(t, a) t   a
547 #define __BPF_DECL_REGS(t, a) u64 a
548
549 #define __BPF_PAD(n)                                                           \
550         __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
551                   u64, __ur_3, u64, __ur_4, u64, __ur_5)
552
553 #define BPF_CALL_x(x, attr, name, ...)                                         \
554         static __always_inline                                                 \
555         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
556         typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
557         attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));    \
558         attr u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))     \
559         {                                                                      \
560                 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
561         }                                                                      \
562         static __always_inline                                                 \
563         u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
564
565 #define __NOATTR
566 #define BPF_CALL_0(name, ...)   BPF_CALL_x(0, __NOATTR, name, __VA_ARGS__)
567 #define BPF_CALL_1(name, ...)   BPF_CALL_x(1, __NOATTR, name, __VA_ARGS__)
568 #define BPF_CALL_2(name, ...)   BPF_CALL_x(2, __NOATTR, name, __VA_ARGS__)
569 #define BPF_CALL_3(name, ...)   BPF_CALL_x(3, __NOATTR, name, __VA_ARGS__)
570 #define BPF_CALL_4(name, ...)   BPF_CALL_x(4, __NOATTR, name, __VA_ARGS__)
571 #define BPF_CALL_5(name, ...)   BPF_CALL_x(5, __NOATTR, name, __VA_ARGS__)
572
573 #define NOTRACE_BPF_CALL_1(name, ...)   BPF_CALL_x(1, notrace, name, __VA_ARGS__)
574
575 #define bpf_ctx_range(TYPE, MEMBER)                                             \
576         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
577 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)                              \
578         offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
579 #if BITS_PER_LONG == 64
580 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
581         offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
582 #else
583 # define bpf_ctx_range_ptr(TYPE, MEMBER)                                        \
584         offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
585 #endif /* BITS_PER_LONG == 64 */
586
587 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)                            \
588         ({                                                                      \
589                 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));             \
590                 *(PTR_SIZE) = (SIZE);                                           \
591                 offsetof(TYPE, MEMBER);                                         \
592         })
593
594 /* A struct sock_filter is architecture independent. */
595 struct compat_sock_fprog {
596         u16             len;
597         compat_uptr_t   filter; /* struct sock_filter * */
598 };
599
600 struct sock_fprog_kern {
601         u16                     len;
602         struct sock_filter      *filter;
603 };
604
605 /* Some arches need doubleword alignment for their instructions and/or data */
606 #define BPF_IMAGE_ALIGNMENT 8
607
608 struct bpf_binary_header {
609         u32 size;
610         u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
611 };
612
613 struct bpf_prog_stats {
614         u64_stats_t cnt;
615         u64_stats_t nsecs;
616         u64_stats_t misses;
617         struct u64_stats_sync syncp;
618 } __aligned(2 * sizeof(u64));
619
620 struct sk_filter {
621         refcount_t      refcnt;
622         struct rcu_head rcu;
623         struct bpf_prog *prog;
624 };
625
626 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
627
628 extern struct mutex nf_conn_btf_access_lock;
629 extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
630                                      const struct bpf_reg_state *reg,
631                                      int off, int size);
632
633 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
634                                           const struct bpf_insn *insnsi,
635                                           unsigned int (*bpf_func)(const void *,
636                                                                    const struct bpf_insn *));
637
638 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
639                                           const void *ctx,
640                                           bpf_dispatcher_fn dfunc)
641 {
642         u32 ret;
643
644         cant_migrate();
645         if (static_branch_unlikely(&bpf_stats_enabled_key)) {
646                 struct bpf_prog_stats *stats;
647                 u64 start = sched_clock();
648                 unsigned long flags;
649
650                 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
651                 stats = this_cpu_ptr(prog->stats);
652                 flags = u64_stats_update_begin_irqsave(&stats->syncp);
653                 u64_stats_inc(&stats->cnt);
654                 u64_stats_add(&stats->nsecs, sched_clock() - start);
655                 u64_stats_update_end_irqrestore(&stats->syncp, flags);
656         } else {
657                 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
658         }
659         return ret;
660 }
661
662 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
663 {
664         return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
665 }
666
667 /*
668  * Use in preemptible and therefore migratable context to make sure that
669  * the execution of the BPF program runs on one CPU.
670  *
671  * This uses migrate_disable/enable() explicitly to document that the
672  * invocation of a BPF program does not require reentrancy protection
673  * against a BPF program which is invoked from a preempting task.
674  */
675 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
676                                           const void *ctx)
677 {
678         u32 ret;
679
680         migrate_disable();
681         ret = bpf_prog_run(prog, ctx);
682         migrate_enable();
683         return ret;
684 }
685
686 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
687
688 struct bpf_skb_data_end {
689         struct qdisc_skb_cb qdisc_cb;
690         void *data_meta;
691         void *data_end;
692 };
693
694 struct bpf_nh_params {
695         u32 nh_family;
696         union {
697                 u32 ipv4_nh;
698                 struct in6_addr ipv6_nh;
699         };
700 };
701
702 struct bpf_redirect_info {
703         u64 tgt_index;
704         void *tgt_value;
705         struct bpf_map *map;
706         u32 flags;
707         u32 kern_flags;
708         u32 map_id;
709         enum bpf_map_type map_type;
710         struct bpf_nh_params nh;
711 };
712
713 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
714
715 /* flags for bpf_redirect_info kern_flags */
716 #define BPF_RI_F_RF_NO_DIRECT   BIT(0)  /* no napi_direct on return_frame */
717
718 /* Compute the linear packet data range [data, data_end) which
719  * will be accessed by various program types (cls_bpf, act_bpf,
720  * lwt, ...). Subsystems allowing direct data access must (!)
721  * ensure that cb[] area can be written to when BPF program is
722  * invoked (otherwise cb[] save/restore is necessary).
723  */
724 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
725 {
726         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
727
728         BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
729         cb->data_meta = skb->data - skb_metadata_len(skb);
730         cb->data_end  = skb->data + skb_headlen(skb);
731 }
732
733 /* Similar to bpf_compute_data_pointers(), except that save orginal
734  * data in cb->data and cb->meta_data for restore.
735  */
736 static inline void bpf_compute_and_save_data_end(
737         struct sk_buff *skb, void **saved_data_end)
738 {
739         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
740
741         *saved_data_end = cb->data_end;
742         cb->data_end  = skb->data + skb_headlen(skb);
743 }
744
745 /* Restore data saved by bpf_compute_and_save_data_end(). */
746 static inline void bpf_restore_data_end(
747         struct sk_buff *skb, void *saved_data_end)
748 {
749         struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
750
751         cb->data_end = saved_data_end;
752 }
753
754 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
755 {
756         /* eBPF programs may read/write skb->cb[] area to transfer meta
757          * data between tail calls. Since this also needs to work with
758          * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
759          *
760          * In some socket filter cases, the cb unfortunately needs to be
761          * saved/restored so that protocol specific skb->cb[] data won't
762          * be lost. In any case, due to unpriviledged eBPF programs
763          * attached to sockets, we need to clear the bpf_skb_cb() area
764          * to not leak previous contents to user space.
765          */
766         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
767         BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
768                      sizeof_field(struct qdisc_skb_cb, data));
769
770         return qdisc_skb_cb(skb)->data;
771 }
772
773 /* Must be invoked with migration disabled */
774 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
775                                          const void *ctx)
776 {
777         const struct sk_buff *skb = ctx;
778         u8 *cb_data = bpf_skb_cb(skb);
779         u8 cb_saved[BPF_SKB_CB_LEN];
780         u32 res;
781
782         if (unlikely(prog->cb_access)) {
783                 memcpy(cb_saved, cb_data, sizeof(cb_saved));
784                 memset(cb_data, 0, sizeof(cb_saved));
785         }
786
787         res = bpf_prog_run(prog, skb);
788
789         if (unlikely(prog->cb_access))
790                 memcpy(cb_data, cb_saved, sizeof(cb_saved));
791
792         return res;
793 }
794
795 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
796                                        struct sk_buff *skb)
797 {
798         u32 res;
799
800         migrate_disable();
801         res = __bpf_prog_run_save_cb(prog, skb);
802         migrate_enable();
803         return res;
804 }
805
806 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
807                                         struct sk_buff *skb)
808 {
809         u8 *cb_data = bpf_skb_cb(skb);
810         u32 res;
811
812         if (unlikely(prog->cb_access))
813                 memset(cb_data, 0, BPF_SKB_CB_LEN);
814
815         res = bpf_prog_run_pin_on_cpu(prog, skb);
816         return res;
817 }
818
819 DECLARE_BPF_DISPATCHER(xdp)
820
821 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
822
823 u32 xdp_master_redirect(struct xdp_buff *xdp);
824
825 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
826
827 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
828 {
829         return prog->len * sizeof(struct bpf_insn);
830 }
831
832 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
833 {
834         return round_up(bpf_prog_insn_size(prog) +
835                         sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
836 }
837
838 static inline unsigned int bpf_prog_size(unsigned int proglen)
839 {
840         return max(sizeof(struct bpf_prog),
841                    offsetof(struct bpf_prog, insns[proglen]));
842 }
843
844 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
845 {
846         /* When classic BPF programs have been loaded and the arch
847          * does not have a classic BPF JIT (anymore), they have been
848          * converted via bpf_migrate_filter() to eBPF and thus always
849          * have an unspec program type.
850          */
851         return prog->type == BPF_PROG_TYPE_UNSPEC;
852 }
853
854 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
855 {
856         const u32 size_machine = sizeof(unsigned long);
857
858         if (size > size_machine && size % size_machine == 0)
859                 size = size_machine;
860
861         return size;
862 }
863
864 static inline bool
865 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
866 {
867         return size <= size_default && (size & (size - 1)) == 0;
868 }
869
870 static inline u8
871 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
872 {
873         u8 access_off = off & (size_default - 1);
874
875 #ifdef __LITTLE_ENDIAN
876         return access_off;
877 #else
878         return size_default - (access_off + size);
879 #endif
880 }
881
882 #define bpf_ctx_wide_access_ok(off, size, type, field)                  \
883         (size == sizeof(__u64) &&                                       \
884         off >= offsetof(type, field) &&                                 \
885         off + sizeof(__u64) <= offsetofend(type, field) &&              \
886         off % sizeof(__u64) == 0)
887
888 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
889
890 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
891 {
892 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
893         if (!fp->jited) {
894                 set_vm_flush_reset_perms(fp);
895                 set_memory_ro((unsigned long)fp, fp->pages);
896         }
897 #endif
898 }
899
900 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
901 {
902         set_vm_flush_reset_perms(hdr);
903         set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
904 }
905
906 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
907 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
908 {
909         return sk_filter_trim_cap(sk, skb, 1);
910 }
911
912 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
913 void bpf_prog_free(struct bpf_prog *fp);
914
915 bool bpf_opcode_in_insntable(u8 code);
916
917 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
918                                const u32 *insn_to_jit_off);
919 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
920 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
921
922 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
923 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
924 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
925                                   gfp_t gfp_extra_flags);
926 void __bpf_prog_free(struct bpf_prog *fp);
927
928 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
929 {
930         __bpf_prog_free(fp);
931 }
932
933 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
934                                        unsigned int flen);
935
936 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
937 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
938                               bpf_aux_classic_check_t trans, bool save_orig);
939 void bpf_prog_destroy(struct bpf_prog *fp);
940
941 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
942 int sk_attach_bpf(u32 ufd, struct sock *sk);
943 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
944 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
945 void sk_reuseport_prog_free(struct bpf_prog *prog);
946 int sk_detach_filter(struct sock *sk);
947 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
948
949 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
950 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
951
952 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
953 #define __bpf_call_base_args \
954         ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
955          (void *)__bpf_call_base)
956
957 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
958 void bpf_jit_compile(struct bpf_prog *prog);
959 bool bpf_jit_needs_zext(void);
960 bool bpf_jit_supports_subprog_tailcalls(void);
961 bool bpf_jit_supports_kfunc_call(void);
962 bool bpf_jit_supports_far_kfunc_call(void);
963 bool bpf_jit_supports_exceptions(void);
964 bool bpf_jit_supports_ptr_xchg(void);
965 bool bpf_jit_supports_arena(void);
966 u64 bpf_arch_uaddress_limit(void);
967 void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
968 bool bpf_helper_changes_pkt_data(void *func);
969
970 static inline bool bpf_dump_raw_ok(const struct cred *cred)
971 {
972         /* Reconstruction of call-sites is dependent on kallsyms,
973          * thus make dump the same restriction.
974          */
975         return kallsyms_show_value(cred);
976 }
977
978 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
979                                        const struct bpf_insn *patch, u32 len);
980 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
981
982 void bpf_clear_redirect_map(struct bpf_map *map);
983
984 static inline bool xdp_return_frame_no_direct(void)
985 {
986         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
987
988         return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
989 }
990
991 static inline void xdp_set_return_frame_no_direct(void)
992 {
993         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
994
995         ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
996 }
997
998 static inline void xdp_clear_return_frame_no_direct(void)
999 {
1000         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1001
1002         ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
1003 }
1004
1005 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
1006                                  unsigned int pktlen)
1007 {
1008         unsigned int len;
1009
1010         if (unlikely(!(fwd->flags & IFF_UP)))
1011                 return -ENETDOWN;
1012
1013         len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1014         if (pktlen > len)
1015                 return -EMSGSIZE;
1016
1017         return 0;
1018 }
1019
1020 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1021  * same cpu context. Further for best results no more than a single map
1022  * for the do_redirect/do_flush pair should be used. This limitation is
1023  * because we only track one map and force a flush when the map changes.
1024  * This does not appear to be a real limitation for existing software.
1025  */
1026 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1027                             struct xdp_buff *xdp, struct bpf_prog *prog);
1028 int xdp_do_redirect(struct net_device *dev,
1029                     struct xdp_buff *xdp,
1030                     struct bpf_prog *prog);
1031 int xdp_do_redirect_frame(struct net_device *dev,
1032                           struct xdp_buff *xdp,
1033                           struct xdp_frame *xdpf,
1034                           struct bpf_prog *prog);
1035 void xdp_do_flush(void);
1036
1037 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
1038
1039 #ifdef CONFIG_INET
1040 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1041                                   struct bpf_prog *prog, struct sk_buff *skb,
1042                                   struct sock *migrating_sk,
1043                                   u32 hash);
1044 #else
1045 static inline struct sock *
1046 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1047                      struct bpf_prog *prog, struct sk_buff *skb,
1048                      struct sock *migrating_sk,
1049                      u32 hash)
1050 {
1051         return NULL;
1052 }
1053 #endif
1054
1055 #ifdef CONFIG_BPF_JIT
1056 extern int bpf_jit_enable;
1057 extern int bpf_jit_harden;
1058 extern int bpf_jit_kallsyms;
1059 extern long bpf_jit_limit;
1060 extern long bpf_jit_limit_max;
1061
1062 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1063
1064 void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1065
1066 struct bpf_binary_header *
1067 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1068                      unsigned int alignment,
1069                      bpf_jit_fill_hole_t bpf_fill_ill_insns);
1070 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1071 u64 bpf_jit_alloc_exec_limit(void);
1072 void *bpf_jit_alloc_exec(unsigned long size);
1073 void bpf_jit_free_exec(void *addr);
1074 void bpf_jit_free(struct bpf_prog *fp);
1075 struct bpf_binary_header *
1076 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1077
1078 void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1079 void bpf_prog_pack_free(void *ptr, u32 size);
1080
1081 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1082 {
1083         return list_empty(&fp->aux->ksym.lnode) ||
1084                fp->aux->ksym.lnode.prev == LIST_POISON2;
1085 }
1086
1087 struct bpf_binary_header *
1088 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1089                           unsigned int alignment,
1090                           struct bpf_binary_header **rw_hdr,
1091                           u8 **rw_image,
1092                           bpf_jit_fill_hole_t bpf_fill_ill_insns);
1093 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1094                                  struct bpf_binary_header *ro_header,
1095                                  struct bpf_binary_header *rw_header);
1096 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1097                               struct bpf_binary_header *rw_header);
1098
1099 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1100                                 struct bpf_jit_poke_descriptor *poke);
1101
1102 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1103                           const struct bpf_insn *insn, bool extra_pass,
1104                           u64 *func_addr, bool *func_addr_fixed);
1105
1106 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1107 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1108
1109 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1110                                 u32 pass, void *image)
1111 {
1112         pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1113                proglen, pass, image, current->comm, task_pid_nr(current));
1114
1115         if (image)
1116                 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1117                                16, 1, image, proglen, false);
1118 }
1119
1120 static inline bool bpf_jit_is_ebpf(void)
1121 {
1122 # ifdef CONFIG_HAVE_EBPF_JIT
1123         return true;
1124 # else
1125         return false;
1126 # endif
1127 }
1128
1129 static inline bool ebpf_jit_enabled(void)
1130 {
1131         return bpf_jit_enable && bpf_jit_is_ebpf();
1132 }
1133
1134 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1135 {
1136         return fp->jited && bpf_jit_is_ebpf();
1137 }
1138
1139 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1140 {
1141         /* These are the prerequisites, should someone ever have the
1142          * idea to call blinding outside of them, we make sure to
1143          * bail out.
1144          */
1145         if (!bpf_jit_is_ebpf())
1146                 return false;
1147         if (!prog->jit_requested)
1148                 return false;
1149         if (!bpf_jit_harden)
1150                 return false;
1151         if (bpf_jit_harden == 1 && bpf_token_capable(prog->aux->token, CAP_BPF))
1152                 return false;
1153
1154         return true;
1155 }
1156
1157 static inline bool bpf_jit_kallsyms_enabled(void)
1158 {
1159         /* There are a couple of corner cases where kallsyms should
1160          * not be enabled f.e. on hardening.
1161          */
1162         if (bpf_jit_harden)
1163                 return false;
1164         if (!bpf_jit_kallsyms)
1165                 return false;
1166         if (bpf_jit_kallsyms == 1)
1167                 return true;
1168
1169         return false;
1170 }
1171
1172 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1173                                  unsigned long *off, char *sym);
1174 bool is_bpf_text_address(unsigned long addr);
1175 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1176                     char *sym);
1177 struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);
1178
1179 static inline const char *
1180 bpf_address_lookup(unsigned long addr, unsigned long *size,
1181                    unsigned long *off, char **modname, char *sym)
1182 {
1183         const char *ret = __bpf_address_lookup(addr, size, off, sym);
1184
1185         if (ret && modname)
1186                 *modname = NULL;
1187         return ret;
1188 }
1189
1190 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1191 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1192
1193 #else /* CONFIG_BPF_JIT */
1194
1195 static inline bool ebpf_jit_enabled(void)
1196 {
1197         return false;
1198 }
1199
1200 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1201 {
1202         return false;
1203 }
1204
1205 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1206 {
1207         return false;
1208 }
1209
1210 static inline int
1211 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1212                             struct bpf_jit_poke_descriptor *poke)
1213 {
1214         return -ENOTSUPP;
1215 }
1216
1217 static inline void bpf_jit_free(struct bpf_prog *fp)
1218 {
1219         bpf_prog_unlock_free(fp);
1220 }
1221
1222 static inline bool bpf_jit_kallsyms_enabled(void)
1223 {
1224         return false;
1225 }
1226
1227 static inline const char *
1228 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1229                      unsigned long *off, char *sym)
1230 {
1231         return NULL;
1232 }
1233
1234 static inline bool is_bpf_text_address(unsigned long addr)
1235 {
1236         return false;
1237 }
1238
1239 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1240                                   char *type, char *sym)
1241 {
1242         return -ERANGE;
1243 }
1244
1245 static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
1246 {
1247         return NULL;
1248 }
1249
1250 static inline const char *
1251 bpf_address_lookup(unsigned long addr, unsigned long *size,
1252                    unsigned long *off, char **modname, char *sym)
1253 {
1254         return NULL;
1255 }
1256
1257 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1258 {
1259 }
1260
1261 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1262 {
1263 }
1264
1265 #endif /* CONFIG_BPF_JIT */
1266
1267 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1268
1269 #define BPF_ANC         BIT(15)
1270
1271 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1272 {
1273         switch (first->code) {
1274         case BPF_RET | BPF_K:
1275         case BPF_LD | BPF_W | BPF_LEN:
1276                 return false;
1277
1278         case BPF_LD | BPF_W | BPF_ABS:
1279         case BPF_LD | BPF_H | BPF_ABS:
1280         case BPF_LD | BPF_B | BPF_ABS:
1281                 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1282                         return true;
1283                 return false;
1284
1285         default:
1286                 return true;
1287         }
1288 }
1289
1290 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1291 {
1292         BUG_ON(ftest->code & BPF_ANC);
1293
1294         switch (ftest->code) {
1295         case BPF_LD | BPF_W | BPF_ABS:
1296         case BPF_LD | BPF_H | BPF_ABS:
1297         case BPF_LD | BPF_B | BPF_ABS:
1298 #define BPF_ANCILLARY(CODE)     case SKF_AD_OFF + SKF_AD_##CODE:        \
1299                                 return BPF_ANC | SKF_AD_##CODE
1300                 switch (ftest->k) {
1301                 BPF_ANCILLARY(PROTOCOL);
1302                 BPF_ANCILLARY(PKTTYPE);
1303                 BPF_ANCILLARY(IFINDEX);
1304                 BPF_ANCILLARY(NLATTR);
1305                 BPF_ANCILLARY(NLATTR_NEST);
1306                 BPF_ANCILLARY(MARK);
1307                 BPF_ANCILLARY(QUEUE);
1308                 BPF_ANCILLARY(HATYPE);
1309                 BPF_ANCILLARY(RXHASH);
1310                 BPF_ANCILLARY(CPU);
1311                 BPF_ANCILLARY(ALU_XOR_X);
1312                 BPF_ANCILLARY(VLAN_TAG);
1313                 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1314                 BPF_ANCILLARY(PAY_OFFSET);
1315                 BPF_ANCILLARY(RANDOM);
1316                 BPF_ANCILLARY(VLAN_TPID);
1317                 }
1318                 fallthrough;
1319         default:
1320                 return ftest->code;
1321         }
1322 }
1323
1324 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1325                                            int k, unsigned int size);
1326
1327 static inline int bpf_tell_extensions(void)
1328 {
1329         return SKF_AD_MAX;
1330 }
1331
1332 struct bpf_sock_addr_kern {
1333         struct sock *sk;
1334         struct sockaddr *uaddr;
1335         /* Temporary "register" to make indirect stores to nested structures
1336          * defined above. We need three registers to make such a store, but
1337          * only two (src and dst) are available at convert_ctx_access time
1338          */
1339         u64 tmp_reg;
1340         void *t_ctx;    /* Attach type specific context. */
1341         u32 uaddrlen;
1342 };
1343
1344 struct bpf_sock_ops_kern {
1345         struct  sock *sk;
1346         union {
1347                 u32 args[4];
1348                 u32 reply;
1349                 u32 replylong[4];
1350         };
1351         struct sk_buff  *syn_skb;
1352         struct sk_buff  *skb;
1353         void    *skb_data_end;
1354         u8      op;
1355         u8      is_fullsock;
1356         u8      remaining_opt_len;
1357         u64     temp;                   /* temp and everything after is not
1358                                          * initialized to 0 before calling
1359                                          * the BPF program. New fields that
1360                                          * should be initialized to 0 should
1361                                          * be inserted before temp.
1362                                          * temp is scratch storage used by
1363                                          * sock_ops_convert_ctx_access
1364                                          * as temporary storage of a register.
1365                                          */
1366 };
1367
1368 struct bpf_sysctl_kern {
1369         struct ctl_table_header *head;
1370         struct ctl_table *table;
1371         void *cur_val;
1372         size_t cur_len;
1373         void *new_val;
1374         size_t new_len;
1375         int new_updated;
1376         int write;
1377         loff_t *ppos;
1378         /* Temporary "register" for indirect stores to ppos. */
1379         u64 tmp_reg;
1380 };
1381
1382 #define BPF_SOCKOPT_KERN_BUF_SIZE       32
1383 struct bpf_sockopt_buf {
1384         u8              data[BPF_SOCKOPT_KERN_BUF_SIZE];
1385 };
1386
1387 struct bpf_sockopt_kern {
1388         struct sock     *sk;
1389         u8              *optval;
1390         u8              *optval_end;
1391         s32             level;
1392         s32             optname;
1393         s32             optlen;
1394         /* for retval in struct bpf_cg_run_ctx */
1395         struct task_struct *current_task;
1396         /* Temporary "register" for indirect stores to ppos. */
1397         u64             tmp_reg;
1398 };
1399
1400 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1401
1402 struct bpf_sk_lookup_kern {
1403         u16             family;
1404         u16             protocol;
1405         __be16          sport;
1406         u16             dport;
1407         struct {
1408                 __be32 saddr;
1409                 __be32 daddr;
1410         } v4;
1411         struct {
1412                 const struct in6_addr *saddr;
1413                 const struct in6_addr *daddr;
1414         } v6;
1415         struct sock     *selected_sk;
1416         u32             ingress_ifindex;
1417         bool            no_reuseport;
1418 };
1419
1420 extern struct static_key_false bpf_sk_lookup_enabled;
1421
1422 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1423  *
1424  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1425  * SK_DROP. Their meaning is as follows:
1426  *
1427  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1428  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1429  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1430  *
1431  * This macro aggregates return values and selected sockets from
1432  * multiple BPF programs according to following rules in order:
1433  *
1434  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1435  *     macro result is SK_PASS and last ctx.selected_sk is used.
1436  *  2. If any program returned SK_DROP return value,
1437  *     macro result is SK_DROP.
1438  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1439  *
1440  * Caller must ensure that the prog array is non-NULL, and that the
1441  * array as well as the programs it contains remain valid.
1442  */
1443 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)                  \
1444         ({                                                              \
1445                 struct bpf_sk_lookup_kern *_ctx = &(ctx);               \
1446                 struct bpf_prog_array_item *_item;                      \
1447                 struct sock *_selected_sk = NULL;                       \
1448                 bool _no_reuseport = false;                             \
1449                 struct bpf_prog *_prog;                                 \
1450                 bool _all_pass = true;                                  \
1451                 u32 _ret;                                               \
1452                                                                         \
1453                 migrate_disable();                                      \
1454                 _item = &(array)->items[0];                             \
1455                 while ((_prog = READ_ONCE(_item->prog))) {              \
1456                         /* restore most recent selection */             \
1457                         _ctx->selected_sk = _selected_sk;               \
1458                         _ctx->no_reuseport = _no_reuseport;             \
1459                                                                         \
1460                         _ret = func(_prog, _ctx);                       \
1461                         if (_ret == SK_PASS && _ctx->selected_sk) {     \
1462                                 /* remember last non-NULL socket */     \
1463                                 _selected_sk = _ctx->selected_sk;       \
1464                                 _no_reuseport = _ctx->no_reuseport;     \
1465                         } else if (_ret == SK_DROP && _all_pass) {      \
1466                                 _all_pass = false;                      \
1467                         }                                               \
1468                         _item++;                                        \
1469                 }                                                       \
1470                 _ctx->selected_sk = _selected_sk;                       \
1471                 _ctx->no_reuseport = _no_reuseport;                     \
1472                 migrate_enable();                                       \
1473                 _all_pass || _selected_sk ? SK_PASS : SK_DROP;          \
1474          })
1475
1476 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1477                                         const __be32 saddr, const __be16 sport,
1478                                         const __be32 daddr, const u16 dport,
1479                                         const int ifindex, struct sock **psk)
1480 {
1481         struct bpf_prog_array *run_array;
1482         struct sock *selected_sk = NULL;
1483         bool no_reuseport = false;
1484
1485         rcu_read_lock();
1486         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1487         if (run_array) {
1488                 struct bpf_sk_lookup_kern ctx = {
1489                         .family         = AF_INET,
1490                         .protocol       = protocol,
1491                         .v4.saddr       = saddr,
1492                         .v4.daddr       = daddr,
1493                         .sport          = sport,
1494                         .dport          = dport,
1495                         .ingress_ifindex        = ifindex,
1496                 };
1497                 u32 act;
1498
1499                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1500                 if (act == SK_PASS) {
1501                         selected_sk = ctx.selected_sk;
1502                         no_reuseport = ctx.no_reuseport;
1503                 } else {
1504                         selected_sk = ERR_PTR(-ECONNREFUSED);
1505                 }
1506         }
1507         rcu_read_unlock();
1508         *psk = selected_sk;
1509         return no_reuseport;
1510 }
1511
1512 #if IS_ENABLED(CONFIG_IPV6)
1513 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1514                                         const struct in6_addr *saddr,
1515                                         const __be16 sport,
1516                                         const struct in6_addr *daddr,
1517                                         const u16 dport,
1518                                         const int ifindex, struct sock **psk)
1519 {
1520         struct bpf_prog_array *run_array;
1521         struct sock *selected_sk = NULL;
1522         bool no_reuseport = false;
1523
1524         rcu_read_lock();
1525         run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1526         if (run_array) {
1527                 struct bpf_sk_lookup_kern ctx = {
1528                         .family         = AF_INET6,
1529                         .protocol       = protocol,
1530                         .v6.saddr       = saddr,
1531                         .v6.daddr       = daddr,
1532                         .sport          = sport,
1533                         .dport          = dport,
1534                         .ingress_ifindex        = ifindex,
1535                 };
1536                 u32 act;
1537
1538                 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1539                 if (act == SK_PASS) {
1540                         selected_sk = ctx.selected_sk;
1541                         no_reuseport = ctx.no_reuseport;
1542                 } else {
1543                         selected_sk = ERR_PTR(-ECONNREFUSED);
1544                 }
1545         }
1546         rcu_read_unlock();
1547         *psk = selected_sk;
1548         return no_reuseport;
1549 }
1550 #endif /* IS_ENABLED(CONFIG_IPV6) */
1551
1552 static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1553                                                    u64 flags, const u64 flag_mask,
1554                                                    void *lookup_elem(struct bpf_map *map, u32 key))
1555 {
1556         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1557         const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1558
1559         /* Lower bits of the flags are used as return code on lookup failure */
1560         if (unlikely(flags & ~(action_mask | flag_mask)))
1561                 return XDP_ABORTED;
1562
1563         ri->tgt_value = lookup_elem(map, index);
1564         if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1565                 /* If the lookup fails we want to clear out the state in the
1566                  * redirect_info struct completely, so that if an eBPF program
1567                  * performs multiple lookups, the last one always takes
1568                  * precedence.
1569                  */
1570                 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1571                 ri->map_type = BPF_MAP_TYPE_UNSPEC;
1572                 return flags & action_mask;
1573         }
1574
1575         ri->tgt_index = index;
1576         ri->map_id = map->id;
1577         ri->map_type = map->map_type;
1578
1579         if (flags & BPF_F_BROADCAST) {
1580                 WRITE_ONCE(ri->map, map);
1581                 ri->flags = flags;
1582         } else {
1583                 WRITE_ONCE(ri->map, NULL);
1584                 ri->flags = 0;
1585         }
1586
1587         return XDP_REDIRECT;
1588 }
1589
1590 #ifdef CONFIG_NET
1591 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1592 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1593                           u32 len, u64 flags);
1594 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1595 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1596 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1597 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1598                       void *buf, unsigned long len, bool flush);
1599 #else /* CONFIG_NET */
1600 static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1601                                        void *to, u32 len)
1602 {
1603         return -EOPNOTSUPP;
1604 }
1605
1606 static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1607                                         const void *from, u32 len, u64 flags)
1608 {
1609         return -EOPNOTSUPP;
1610 }
1611
1612 static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1613                                        void *buf, u32 len)
1614 {
1615         return -EOPNOTSUPP;
1616 }
1617
1618 static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1619                                         void *buf, u32 len)
1620 {
1621         return -EOPNOTSUPP;
1622 }
1623
1624 static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1625 {
1626         return NULL;
1627 }
1628
1629 static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1630                                     unsigned long len, bool flush)
1631 {
1632 }
1633 #endif /* CONFIG_NET */
1634
1635 #endif /* __LINUX_FILTER_H__ */