GNU Linux-libre 5.10.217-gnu1
[releases.git] / include / linux / energy_model.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_ENERGY_MODEL_H
3 #define _LINUX_ENERGY_MODEL_H
4 #include <linux/cpumask.h>
5 #include <linux/device.h>
6 #include <linux/jump_label.h>
7 #include <linux/kobject.h>
8 #include <linux/rcupdate.h>
9 #include <linux/sched/cpufreq.h>
10 #include <linux/sched/topology.h>
11 #include <linux/types.h>
12
13 /**
14  * em_perf_state - Performance state of a performance domain
15  * @frequency:  The frequency in KHz, for consistency with CPUFreq
16  * @power:      The power consumed at this level, in milli-watts (by 1 CPU or
17                 by a registered device). It can be a total power: static and
18                 dynamic.
19  * @cost:       The cost coefficient associated with this level, used during
20  *              energy calculation. Equal to: power * max_frequency / frequency
21  */
22 struct em_perf_state {
23         unsigned long frequency;
24         unsigned long power;
25         unsigned long cost;
26 };
27
28 /**
29  * em_perf_domain - Performance domain
30  * @table:              List of performance states, in ascending order
31  * @nr_perf_states:     Number of performance states
32  * @cpus:               Cpumask covering the CPUs of the domain. It's here
33  *                      for performance reasons to avoid potential cache
34  *                      misses during energy calculations in the scheduler
35  *                      and simplifies allocating/freeing that memory region.
36  *
37  * In case of CPU device, a "performance domain" represents a group of CPUs
38  * whose performance is scaled together. All CPUs of a performance domain
39  * must have the same micro-architecture. Performance domains often have
40  * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus
41  * field is unused.
42  */
43 struct em_perf_domain {
44         struct em_perf_state *table;
45         int nr_perf_states;
46         unsigned long cpus[];
47 };
48
49 #define em_span_cpus(em) (to_cpumask((em)->cpus))
50
51 #ifdef CONFIG_ENERGY_MODEL
52 #define EM_MAX_POWER 0xFFFF
53
54 /*
55  * Increase resolution of energy estimation calculations for 64-bit
56  * architectures. The extra resolution improves decision made by EAS for the
57  * task placement when two Performance Domains might provide similar energy
58  * estimation values (w/o better resolution the values could be equal).
59  *
60  * We increase resolution only if we have enough bits to allow this increased
61  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
62  * are pretty high and the returns do not justify the increased costs.
63  */
64 #ifdef CONFIG_64BIT
65 #define em_scale_power(p) ((p) * 1000)
66 #else
67 #define em_scale_power(p) (p)
68 #endif
69
70 struct em_data_callback {
71         /**
72          * active_power() - Provide power at the next performance state of
73          *              a device
74          * @power       : Active power at the performance state in mW
75          *              (modified)
76          * @freq        : Frequency at the performance state in kHz
77          *              (modified)
78          * @dev         : Device for which we do this operation (can be a CPU)
79          *
80          * active_power() must find the lowest performance state of 'dev' above
81          * 'freq' and update 'power' and 'freq' to the matching active power
82          * and frequency.
83          *
84          * In case of CPUs, the power is the one of a single CPU in the domain,
85          * expressed in milli-watts. It is expected to fit in the
86          * [0, EM_MAX_POWER] range.
87          *
88          * Return 0 on success.
89          */
90         int (*active_power)(unsigned long *power, unsigned long *freq,
91                             struct device *dev);
92 };
93 #define EM_DATA_CB(_active_power_cb) { .active_power = &_active_power_cb }
94
95 struct em_perf_domain *em_cpu_get(int cpu);
96 struct em_perf_domain *em_pd_get(struct device *dev);
97 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
98                                 struct em_data_callback *cb, cpumask_t *span);
99 void em_dev_unregister_perf_domain(struct device *dev);
100
101 /**
102  * em_cpu_energy() - Estimates the energy consumed by the CPUs of a
103                 performance domain
104  * @pd          : performance domain for which energy has to be estimated
105  * @max_util    : highest utilization among CPUs of the domain
106  * @sum_util    : sum of the utilization of all CPUs in the domain
107  *
108  * This function must be used only for CPU devices. There is no validation,
109  * i.e. if the EM is a CPU type and has cpumask allocated. It is called from
110  * the scheduler code quite frequently and that is why there is not checks.
111  *
112  * Return: the sum of the energy consumed by the CPUs of the domain assuming
113  * a capacity state satisfying the max utilization of the domain.
114  */
115 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
116                                 unsigned long max_util, unsigned long sum_util)
117 {
118         unsigned long freq, scale_cpu;
119         struct em_perf_state *ps;
120         int i, cpu;
121
122         /*
123          * In order to predict the performance state, map the utilization of
124          * the most utilized CPU of the performance domain to a requested
125          * frequency, like schedutil.
126          */
127         cpu = cpumask_first(to_cpumask(pd->cpus));
128         scale_cpu = arch_scale_cpu_capacity(cpu);
129         ps = &pd->table[pd->nr_perf_states - 1];
130         freq = map_util_freq(max_util, ps->frequency, scale_cpu);
131
132         /*
133          * Find the lowest performance state of the Energy Model above the
134          * requested frequency.
135          */
136         for (i = 0; i < pd->nr_perf_states; i++) {
137                 ps = &pd->table[i];
138                 if (ps->frequency >= freq)
139                         break;
140         }
141
142         /*
143          * The capacity of a CPU in the domain at the performance state (ps)
144          * can be computed as:
145          *
146          *             ps->freq * scale_cpu
147          *   ps->cap = --------------------                          (1)
148          *                 cpu_max_freq
149          *
150          * So, ignoring the costs of idle states (which are not available in
151          * the EM), the energy consumed by this CPU at that performance state
152          * is estimated as:
153          *
154          *             ps->power * cpu_util
155          *   cpu_nrg = --------------------                          (2)
156          *                   ps->cap
157          *
158          * since 'cpu_util / ps->cap' represents its percentage of busy time.
159          *
160          *   NOTE: Although the result of this computation actually is in
161          *         units of power, it can be manipulated as an energy value
162          *         over a scheduling period, since it is assumed to be
163          *         constant during that interval.
164          *
165          * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product
166          * of two terms:
167          *
168          *             ps->power * cpu_max_freq   cpu_util
169          *   cpu_nrg = ------------------------ * ---------          (3)
170          *                    ps->freq            scale_cpu
171          *
172          * The first term is static, and is stored in the em_perf_state struct
173          * as 'ps->cost'.
174          *
175          * Since all CPUs of the domain have the same micro-architecture, they
176          * share the same 'ps->cost', and the same CPU capacity. Hence, the
177          * total energy of the domain (which is the simple sum of the energy of
178          * all of its CPUs) can be factorized as:
179          *
180          *            ps->cost * \Sum cpu_util
181          *   pd_nrg = ------------------------                       (4)
182          *                  scale_cpu
183          */
184         return ps->cost * sum_util / scale_cpu;
185 }
186
187 /**
188  * em_pd_nr_perf_states() - Get the number of performance states of a perf.
189  *                              domain
190  * @pd          : performance domain for which this must be done
191  *
192  * Return: the number of performance states in the performance domain table
193  */
194 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
195 {
196         return pd->nr_perf_states;
197 }
198
199 #else
200 struct em_data_callback {};
201 #define EM_DATA_CB(_active_power_cb) { }
202
203 static inline
204 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
205                                 struct em_data_callback *cb, cpumask_t *span)
206 {
207         return -EINVAL;
208 }
209 static inline void em_dev_unregister_perf_domain(struct device *dev)
210 {
211 }
212 static inline struct em_perf_domain *em_cpu_get(int cpu)
213 {
214         return NULL;
215 }
216 static inline struct em_perf_domain *em_pd_get(struct device *dev)
217 {
218         return NULL;
219 }
220 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
221                         unsigned long max_util, unsigned long sum_util)
222 {
223         return 0;
224 }
225 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
226 {
227         return 0;
228 }
229 #endif
230
231 #endif