GNU Linux-libre 5.10.217-gnu1
[releases.git] / include / linux / cpuset.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_CPUSET_H
3 #define _LINUX_CPUSET_H
4 /*
5  *  cpuset interface
6  *
7  *  Copyright (C) 2003 BULL SA
8  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
9  *
10  */
11
12 #include <linux/sched.h>
13 #include <linux/sched/topology.h>
14 #include <linux/sched/task.h>
15 #include <linux/cpumask.h>
16 #include <linux/nodemask.h>
17 #include <linux/mm.h>
18 #include <linux/jump_label.h>
19
20 #ifdef CONFIG_CPUSETS
21
22 /*
23  * Static branch rewrites can happen in an arbitrary order for a given
24  * key. In code paths where we need to loop with read_mems_allowed_begin() and
25  * read_mems_allowed_retry() to get a consistent view of mems_allowed, we need
26  * to ensure that begin() always gets rewritten before retry() in the
27  * disabled -> enabled transition. If not, then if local irqs are disabled
28  * around the loop, we can deadlock since retry() would always be
29  * comparing the latest value of the mems_allowed seqcount against 0 as
30  * begin() still would see cpusets_enabled() as false. The enabled -> disabled
31  * transition should happen in reverse order for the same reasons (want to stop
32  * looking at real value of mems_allowed.sequence in retry() first).
33  */
34 extern struct static_key_false cpusets_pre_enable_key;
35 extern struct static_key_false cpusets_enabled_key;
36 static inline bool cpusets_enabled(void)
37 {
38         return static_branch_unlikely(&cpusets_enabled_key);
39 }
40
41 static inline void cpuset_inc(void)
42 {
43         static_branch_inc_cpuslocked(&cpusets_pre_enable_key);
44         static_branch_inc_cpuslocked(&cpusets_enabled_key);
45 }
46
47 static inline void cpuset_dec(void)
48 {
49         static_branch_dec_cpuslocked(&cpusets_enabled_key);
50         static_branch_dec_cpuslocked(&cpusets_pre_enable_key);
51 }
52
53 extern int cpuset_init(void);
54 extern void cpuset_init_smp(void);
55 extern void cpuset_force_rebuild(void);
56 extern void cpuset_update_active_cpus(void);
57 extern void cpuset_wait_for_hotplug(void);
58 extern void inc_dl_tasks_cs(struct task_struct *task);
59 extern void dec_dl_tasks_cs(struct task_struct *task);
60 extern void cpuset_lock(void);
61 extern void cpuset_unlock(void);
62 extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask);
63 extern void cpuset_cpus_allowed_fallback(struct task_struct *p);
64 extern nodemask_t cpuset_mems_allowed(struct task_struct *p);
65 #define cpuset_current_mems_allowed (current->mems_allowed)
66 void cpuset_init_current_mems_allowed(void);
67 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask);
68
69 extern bool __cpuset_node_allowed(int node, gfp_t gfp_mask);
70
71 static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask)
72 {
73         if (cpusets_enabled())
74                 return __cpuset_node_allowed(node, gfp_mask);
75         return true;
76 }
77
78 static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
79 {
80         return __cpuset_node_allowed(zone_to_nid(z), gfp_mask);
81 }
82
83 static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
84 {
85         if (cpusets_enabled())
86                 return __cpuset_zone_allowed(z, gfp_mask);
87         return true;
88 }
89
90 extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
91                                           const struct task_struct *tsk2);
92
93 #define cpuset_memory_pressure_bump()                           \
94         do {                                                    \
95                 if (cpuset_memory_pressure_enabled)             \
96                         __cpuset_memory_pressure_bump();        \
97         } while (0)
98 extern int cpuset_memory_pressure_enabled;
99 extern void __cpuset_memory_pressure_bump(void);
100
101 extern void cpuset_task_status_allowed(struct seq_file *m,
102                                         struct task_struct *task);
103 extern int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
104                             struct pid *pid, struct task_struct *tsk);
105
106 extern int cpuset_mem_spread_node(void);
107 extern int cpuset_slab_spread_node(void);
108
109 static inline int cpuset_do_page_mem_spread(void)
110 {
111         return task_spread_page(current);
112 }
113
114 static inline int cpuset_do_slab_mem_spread(void)
115 {
116         return task_spread_slab(current);
117 }
118
119 extern bool current_cpuset_is_being_rebound(void);
120
121 extern void rebuild_sched_domains(void);
122
123 extern void cpuset_print_current_mems_allowed(void);
124
125 /*
126  * read_mems_allowed_begin is required when making decisions involving
127  * mems_allowed such as during page allocation. mems_allowed can be updated in
128  * parallel and depending on the new value an operation can fail potentially
129  * causing process failure. A retry loop with read_mems_allowed_begin and
130  * read_mems_allowed_retry prevents these artificial failures.
131  */
132 static inline unsigned int read_mems_allowed_begin(void)
133 {
134         if (!static_branch_unlikely(&cpusets_pre_enable_key))
135                 return 0;
136
137         return read_seqcount_begin(&current->mems_allowed_seq);
138 }
139
140 /*
141  * If this returns true, the operation that took place after
142  * read_mems_allowed_begin may have failed artificially due to a concurrent
143  * update of mems_allowed. It is up to the caller to retry the operation if
144  * appropriate.
145  */
146 static inline bool read_mems_allowed_retry(unsigned int seq)
147 {
148         if (!static_branch_unlikely(&cpusets_enabled_key))
149                 return false;
150
151         return read_seqcount_retry(&current->mems_allowed_seq, seq);
152 }
153
154 static inline void set_mems_allowed(nodemask_t nodemask)
155 {
156         unsigned long flags;
157
158         task_lock(current);
159         local_irq_save(flags);
160         write_seqcount_begin(&current->mems_allowed_seq);
161         current->mems_allowed = nodemask;
162         write_seqcount_end(&current->mems_allowed_seq);
163         local_irq_restore(flags);
164         task_unlock(current);
165 }
166
167 #else /* !CONFIG_CPUSETS */
168
169 static inline bool cpusets_enabled(void) { return false; }
170
171 static inline int cpuset_init(void) { return 0; }
172 static inline void cpuset_init_smp(void) {}
173
174 static inline void cpuset_force_rebuild(void) { }
175
176 static inline void cpuset_update_active_cpus(void)
177 {
178         partition_sched_domains(1, NULL, NULL);
179 }
180
181 static inline void cpuset_wait_for_hotplug(void) { }
182
183 static inline void inc_dl_tasks_cs(struct task_struct *task) { }
184 static inline void dec_dl_tasks_cs(struct task_struct *task) { }
185 static inline void cpuset_lock(void) { }
186 static inline void cpuset_unlock(void) { }
187
188 static inline void cpuset_cpus_allowed(struct task_struct *p,
189                                        struct cpumask *mask)
190 {
191         cpumask_copy(mask, cpu_possible_mask);
192 }
193
194 static inline void cpuset_cpus_allowed_fallback(struct task_struct *p)
195 {
196 }
197
198 static inline nodemask_t cpuset_mems_allowed(struct task_struct *p)
199 {
200         return node_possible_map;
201 }
202
203 #define cpuset_current_mems_allowed (node_states[N_MEMORY])
204 static inline void cpuset_init_current_mems_allowed(void) {}
205
206 static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
207 {
208         return 1;
209 }
210
211 static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask)
212 {
213         return true;
214 }
215
216 static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
217 {
218         return true;
219 }
220
221 static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
222 {
223         return true;
224 }
225
226 static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
227                                                  const struct task_struct *tsk2)
228 {
229         return 1;
230 }
231
232 static inline void cpuset_memory_pressure_bump(void) {}
233
234 static inline void cpuset_task_status_allowed(struct seq_file *m,
235                                                 struct task_struct *task)
236 {
237 }
238
239 static inline int cpuset_mem_spread_node(void)
240 {
241         return 0;
242 }
243
244 static inline int cpuset_slab_spread_node(void)
245 {
246         return 0;
247 }
248
249 static inline int cpuset_do_page_mem_spread(void)
250 {
251         return 0;
252 }
253
254 static inline int cpuset_do_slab_mem_spread(void)
255 {
256         return 0;
257 }
258
259 static inline bool current_cpuset_is_being_rebound(void)
260 {
261         return false;
262 }
263
264 static inline void rebuild_sched_domains(void)
265 {
266         partition_sched_domains(1, NULL, NULL);
267 }
268
269 static inline void cpuset_print_current_mems_allowed(void)
270 {
271 }
272
273 static inline void set_mems_allowed(nodemask_t nodemask)
274 {
275 }
276
277 static inline unsigned int read_mems_allowed_begin(void)
278 {
279         return 0;
280 }
281
282 static inline bool read_mems_allowed_retry(unsigned int seq)
283 {
284         return false;
285 }
286
287 #endif /* !CONFIG_CPUSETS */
288
289 #endif /* _LINUX_CPUSET_H */