GNU Linux-libre 6.9.2-gnu
[releases.git] / include / asm-generic / mshyperv.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2
3 /*
4  * Linux-specific definitions for managing interactions with Microsoft's
5  * Hyper-V hypervisor. The definitions in this file are architecture
6  * independent. See arch/<arch>/include/asm/mshyperv.h for definitions
7  * that are specific to architecture <arch>.
8  *
9  * Definitions that are specified in the Hyper-V Top Level Functional
10  * Spec (TLFS) should not go in this file, but should instead go in
11  * hyperv-tlfs.h.
12  *
13  * Copyright (C) 2019, Microsoft, Inc.
14  *
15  * Author : Michael Kelley <mikelley@microsoft.com>
16  */
17
18 #ifndef _ASM_GENERIC_MSHYPERV_H
19 #define _ASM_GENERIC_MSHYPERV_H
20
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/bitops.h>
24 #include <acpi/acpi_numa.h>
25 #include <linux/cpumask.h>
26 #include <linux/nmi.h>
27 #include <asm/ptrace.h>
28 #include <asm/hyperv-tlfs.h>
29
30 #define VTPM_BASE_ADDRESS 0xfed40000
31
32 struct ms_hyperv_info {
33         u32 features;
34         u32 priv_high;
35         u32 misc_features;
36         u32 hints;
37         u32 nested_features;
38         u32 max_vp_index;
39         u32 max_lp_index;
40         u8 vtl;
41         union {
42                 u32 isolation_config_a;
43                 struct {
44                         u32 paravisor_present : 1;
45                         u32 reserved_a1 : 31;
46                 };
47         };
48         union {
49                 u32 isolation_config_b;
50                 struct {
51                         u32 cvm_type : 4;
52                         u32 reserved_b1 : 1;
53                         u32 shared_gpa_boundary_active : 1;
54                         u32 shared_gpa_boundary_bits : 6;
55                         u32 reserved_b2 : 20;
56                 };
57         };
58         u64 shared_gpa_boundary;
59 };
60 extern struct ms_hyperv_info ms_hyperv;
61 extern bool hv_nested;
62
63 extern void * __percpu *hyperv_pcpu_input_arg;
64 extern void * __percpu *hyperv_pcpu_output_arg;
65
66 extern u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr);
67 extern u64 hv_do_fast_hypercall8(u16 control, u64 input8);
68 bool hv_isolation_type_snp(void);
69 bool hv_isolation_type_tdx(void);
70
71 static inline struct hv_proximity_domain_info hv_numa_node_to_pxm_info(int node)
72 {
73         struct hv_proximity_domain_info pxm_info = {};
74
75         if (node != NUMA_NO_NODE) {
76                 pxm_info.domain_id = node_to_pxm(node);
77                 pxm_info.flags.proximity_info_valid = 1;
78                 pxm_info.flags.proximity_preferred = 1;
79         }
80
81         return pxm_info;
82 }
83
84 /* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */
85 static inline int hv_result(u64 status)
86 {
87         return status & HV_HYPERCALL_RESULT_MASK;
88 }
89
90 static inline bool hv_result_success(u64 status)
91 {
92         return hv_result(status) == HV_STATUS_SUCCESS;
93 }
94
95 static inline unsigned int hv_repcomp(u64 status)
96 {
97         /* Bits [43:32] of status have 'Reps completed' data. */
98         return (status & HV_HYPERCALL_REP_COMP_MASK) >>
99                          HV_HYPERCALL_REP_COMP_OFFSET;
100 }
101
102 /*
103  * Rep hypercalls. Callers of this functions are supposed to ensure that
104  * rep_count and varhead_size comply with Hyper-V hypercall definition.
105  */
106 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
107                                       void *input, void *output)
108 {
109         u64 control = code;
110         u64 status;
111         u16 rep_comp;
112
113         control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
114         control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
115
116         do {
117                 status = hv_do_hypercall(control, input, output);
118                 if (!hv_result_success(status))
119                         return status;
120
121                 rep_comp = hv_repcomp(status);
122
123                 control &= ~HV_HYPERCALL_REP_START_MASK;
124                 control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
125
126                 touch_nmi_watchdog();
127         } while (rep_comp < rep_count);
128
129         return status;
130 }
131
132 /* Generate the guest OS identifier as described in the Hyper-V TLFS */
133 static inline u64 hv_generate_guest_id(u64 kernel_version)
134 {
135         u64 guest_id;
136
137         guest_id = (((u64)HV_LINUX_VENDOR_ID) << 48);
138         guest_id |= (kernel_version << 16);
139
140         return guest_id;
141 }
142
143 /* Free the message slot and signal end-of-message if required */
144 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
145 {
146         /*
147          * On crash we're reading some other CPU's message page and we need
148          * to be careful: this other CPU may already had cleared the header
149          * and the host may already had delivered some other message there.
150          * In case we blindly write msg->header.message_type we're going
151          * to lose it. We can still lose a message of the same type but
152          * we count on the fact that there can only be one
153          * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
154          * on crash.
155          */
156         if (cmpxchg(&msg->header.message_type, old_msg_type,
157                     HVMSG_NONE) != old_msg_type)
158                 return;
159
160         /*
161          * The cmxchg() above does an implicit memory barrier to
162          * ensure the write to MessageType (ie set to
163          * HVMSG_NONE) happens before we read the
164          * MessagePending and EOMing. Otherwise, the EOMing
165          * will not deliver any more messages since there is
166          * no empty slot
167          */
168         if (msg->header.message_flags.msg_pending) {
169                 /*
170                  * This will cause message queue rescan to
171                  * possibly deliver another msg from the
172                  * hypervisor
173                  */
174                 hv_set_msr(HV_MSR_EOM, 0);
175         }
176 }
177
178 int hv_get_hypervisor_version(union hv_hypervisor_version_info *info);
179
180 void hv_setup_vmbus_handler(void (*handler)(void));
181 void hv_remove_vmbus_handler(void);
182 void hv_setup_stimer0_handler(void (*handler)(void));
183 void hv_remove_stimer0_handler(void);
184
185 void hv_setup_kexec_handler(void (*handler)(void));
186 void hv_remove_kexec_handler(void);
187 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
188 void hv_remove_crash_handler(void);
189
190 extern int vmbus_interrupt;
191 extern int vmbus_irq;
192
193 extern bool hv_root_partition;
194
195 #if IS_ENABLED(CONFIG_HYPERV)
196 /*
197  * Hypervisor's notion of virtual processor ID is different from
198  * Linux' notion of CPU ID. This information can only be retrieved
199  * in the context of the calling CPU. Setup a map for easy access
200  * to this information.
201  */
202 extern u32 *hv_vp_index;
203 extern u32 hv_max_vp_index;
204
205 extern u64 (*hv_read_reference_counter)(void);
206
207 /* Sentinel value for an uninitialized entry in hv_vp_index array */
208 #define VP_INVAL        U32_MAX
209
210 int __init hv_common_init(void);
211 void __init hv_common_free(void);
212 void __init ms_hyperv_late_init(void);
213 int hv_common_cpu_init(unsigned int cpu);
214 int hv_common_cpu_die(unsigned int cpu);
215
216 void *hv_alloc_hyperv_page(void);
217 void *hv_alloc_hyperv_zeroed_page(void);
218 void hv_free_hyperv_page(void *addr);
219
220 /**
221  * hv_cpu_number_to_vp_number() - Map CPU to VP.
222  * @cpu_number: CPU number in Linux terms
223  *
224  * This function returns the mapping between the Linux processor
225  * number and the hypervisor's virtual processor number, useful
226  * in making hypercalls and such that talk about specific
227  * processors.
228  *
229  * Return: Virtual processor number in Hyper-V terms
230  */
231 static inline int hv_cpu_number_to_vp_number(int cpu_number)
232 {
233         return hv_vp_index[cpu_number];
234 }
235
236 static inline int __cpumask_to_vpset(struct hv_vpset *vpset,
237                                     const struct cpumask *cpus,
238                                     bool (*func)(int cpu))
239 {
240         int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1;
241         int max_vcpu_bank = hv_max_vp_index / HV_VCPUS_PER_SPARSE_BANK;
242
243         /* vpset.valid_bank_mask can represent up to HV_MAX_SPARSE_VCPU_BANKS banks */
244         if (max_vcpu_bank >= HV_MAX_SPARSE_VCPU_BANKS)
245                 return 0;
246
247         /*
248          * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
249          * structs are not cleared between calls, we risk flushing unneeded
250          * vCPUs otherwise.
251          */
252         for (vcpu_bank = 0; vcpu_bank <= max_vcpu_bank; vcpu_bank++)
253                 vpset->bank_contents[vcpu_bank] = 0;
254
255         /*
256          * Some banks may end up being empty but this is acceptable.
257          */
258         for_each_cpu(cpu, cpus) {
259                 if (func && func(cpu))
260                         continue;
261                 vcpu = hv_cpu_number_to_vp_number(cpu);
262                 if (vcpu == VP_INVAL)
263                         return -1;
264                 vcpu_bank = vcpu / HV_VCPUS_PER_SPARSE_BANK;
265                 vcpu_offset = vcpu % HV_VCPUS_PER_SPARSE_BANK;
266                 __set_bit(vcpu_offset, (unsigned long *)
267                           &vpset->bank_contents[vcpu_bank]);
268                 if (vcpu_bank >= nr_bank)
269                         nr_bank = vcpu_bank + 1;
270         }
271         vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0);
272         return nr_bank;
273 }
274
275 /*
276  * Convert a Linux cpumask into a Hyper-V VPset. In the _skip variant,
277  * 'func' is called for each CPU present in cpumask.  If 'func' returns
278  * true, that CPU is skipped -- i.e., that CPU from cpumask is *not*
279  * added to the Hyper-V VPset. If 'func' is NULL, no CPUs are
280  * skipped.
281  */
282 static inline int cpumask_to_vpset(struct hv_vpset *vpset,
283                                     const struct cpumask *cpus)
284 {
285         return __cpumask_to_vpset(vpset, cpus, NULL);
286 }
287
288 static inline int cpumask_to_vpset_skip(struct hv_vpset *vpset,
289                                     const struct cpumask *cpus,
290                                     bool (*func)(int cpu))
291 {
292         return __cpumask_to_vpset(vpset, cpus, func);
293 }
294
295 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die);
296 bool hv_is_hyperv_initialized(void);
297 bool hv_is_hibernation_supported(void);
298 enum hv_isolation_type hv_get_isolation_type(void);
299 bool hv_is_isolation_supported(void);
300 bool hv_isolation_type_snp(void);
301 u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size);
302 u64 hv_tdx_hypercall(u64 control, u64 param1, u64 param2);
303 void hyperv_cleanup(void);
304 bool hv_query_ext_cap(u64 cap_query);
305 void hv_setup_dma_ops(struct device *dev, bool coherent);
306 #else /* CONFIG_HYPERV */
307 static inline bool hv_is_hyperv_initialized(void) { return false; }
308 static inline bool hv_is_hibernation_supported(void) { return false; }
309 static inline void hyperv_cleanup(void) {}
310 static inline void ms_hyperv_late_init(void) {}
311 static inline bool hv_is_isolation_supported(void) { return false; }
312 static inline enum hv_isolation_type hv_get_isolation_type(void)
313 {
314         return HV_ISOLATION_TYPE_NONE;
315 }
316 #endif /* CONFIG_HYPERV */
317
318 #endif