21d519c804cb9637db59e54cc3cd4e7cfc5561a1
[releases.git] / ifx6x60.c
1 // SPDX-License-Identifier: GPL-2.0
2 /****************************************************************************
3  *
4  * Driver for the IFX 6x60 spi modem.
5  *
6  * Copyright (C) 2008 Option International
7  * Copyright (C) 2008 Filip Aben <f.aben@option.com>
8  *                    Denis Joseph Barrow <d.barow@option.com>
9  *                    Jan Dumon <j.dumon@option.com>
10  *
11  * Copyright (C) 2009, 2010 Intel Corp
12  * Russ Gorby <russ.gorby@intel.com>
13  *
14  * Driver modified by Intel from Option gtm501l_spi.c
15  *
16  * Notes
17  * o    The driver currently assumes a single device only. If you need to
18  *      change this then look for saved_ifx_dev and add a device lookup
19  * o    The driver is intended to be big-endian safe but has never been
20  *      tested that way (no suitable hardware). There are a couple of FIXME
21  *      notes by areas that may need addressing
22  * o    Some of the GPIO naming/setup assumptions may need revisiting if
23  *      you need to use this driver for another platform.
24  *
25  *****************************************************************************/
26 #include <linux/dma-mapping.h>
27 #include <linux/module.h>
28 #include <linux/termios.h>
29 #include <linux/tty.h>
30 #include <linux/device.h>
31 #include <linux/spi/spi.h>
32 #include <linux/kfifo.h>
33 #include <linux/tty_flip.h>
34 #include <linux/timer.h>
35 #include <linux/serial.h>
36 #include <linux/interrupt.h>
37 #include <linux/irq.h>
38 #include <linux/rfkill.h>
39 #include <linux/fs.h>
40 #include <linux/ip.h>
41 #include <linux/dmapool.h>
42 #include <linux/gpio/consumer.h>
43 #include <linux/sched.h>
44 #include <linux/time.h>
45 #include <linux/wait.h>
46 #include <linux/pm.h>
47 #include <linux/pm_runtime.h>
48 #include <linux/spi/ifx_modem.h>
49 #include <linux/delay.h>
50 #include <linux/reboot.h>
51
52 #include "ifx6x60.h"
53
54 #define IFX_SPI_MORE_MASK               0x10
55 #define IFX_SPI_MORE_BIT                4       /* bit position in u8 */
56 #define IFX_SPI_CTS_BIT                 6       /* bit position in u8 */
57 #define IFX_SPI_MODE                    SPI_MODE_1
58 #define IFX_SPI_TTY_ID                  0
59 #define IFX_SPI_TIMEOUT_SEC             2
60 #define IFX_SPI_HEADER_0                (-1)
61 #define IFX_SPI_HEADER_F                (-2)
62
63 #define PO_POST_DELAY           200
64
65 /* forward reference */
66 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
67 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
68                                 unsigned long event, void *data);
69 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
70
71 /* local variables */
72 static int spi_bpw = 16;                /* 8, 16 or 32 bit word length */
73 static struct tty_driver *tty_drv;
74 static struct ifx_spi_device *saved_ifx_dev;
75 static struct lock_class_key ifx_spi_key;
76
77 static struct notifier_block ifx_modem_reboot_notifier_block = {
78         .notifier_call = ifx_modem_reboot_callback,
79 };
80
81 static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
82 {
83         gpiod_set_value(ifx_dev->gpio.pmu_reset, 1);
84         msleep(PO_POST_DELAY);
85
86         return 0;
87 }
88
89 static int ifx_modem_reboot_callback(struct notifier_block *nfb,
90                                  unsigned long event, void *data)
91 {
92         if (saved_ifx_dev)
93                 ifx_modem_power_off(saved_ifx_dev);
94         else
95                 pr_warn("no ifx modem active;\n");
96
97         return NOTIFY_OK;
98 }
99
100 /* GPIO/GPE settings */
101
102 /**
103  *      mrdy_set_high           -       set MRDY GPIO
104  *      @ifx: device we are controlling
105  *
106  */
107 static inline void mrdy_set_high(struct ifx_spi_device *ifx)
108 {
109         gpiod_set_value(ifx->gpio.mrdy, 1);
110 }
111
112 /**
113  *      mrdy_set_low            -       clear MRDY GPIO
114  *      @ifx: device we are controlling
115  *
116  */
117 static inline void mrdy_set_low(struct ifx_spi_device *ifx)
118 {
119         gpiod_set_value(ifx->gpio.mrdy, 0);
120 }
121
122 /**
123  *      ifx_spi_power_state_set
124  *      @ifx_dev: our SPI device
125  *      @val: bits to set
126  *
127  *      Set bit in power status and signal power system if status becomes non-0
128  */
129 static void
130 ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
131 {
132         unsigned long flags;
133
134         spin_lock_irqsave(&ifx_dev->power_lock, flags);
135
136         /*
137          * if power status is already non-0, just update, else
138          * tell power system
139          */
140         if (!ifx_dev->power_status)
141                 pm_runtime_get(&ifx_dev->spi_dev->dev);
142         ifx_dev->power_status |= val;
143
144         spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
145 }
146
147 /**
148  *      ifx_spi_power_state_clear       -       clear power bit
149  *      @ifx_dev: our SPI device
150  *      @val: bits to clear
151  *
152  *      clear bit in power status and signal power system if status becomes 0
153  */
154 static void
155 ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
156 {
157         unsigned long flags;
158
159         spin_lock_irqsave(&ifx_dev->power_lock, flags);
160
161         if (ifx_dev->power_status) {
162                 ifx_dev->power_status &= ~val;
163                 if (!ifx_dev->power_status)
164                         pm_runtime_put(&ifx_dev->spi_dev->dev);
165         }
166
167         spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
168 }
169
170 /**
171  *      swap_buf_8
172  *      @buf: our buffer
173  *      @len : number of bytes (not words) in the buffer
174  *      @end: end of buffer
175  *
176  *      Swap the contents of a buffer into big endian format
177  */
178 static inline void swap_buf_8(unsigned char *buf, int len, void *end)
179 {
180         /* don't swap buffer if SPI word width is 8 bits */
181         return;
182 }
183
184 /**
185  *      swap_buf_16
186  *      @buf: our buffer
187  *      @len : number of bytes (not words) in the buffer
188  *      @end: end of buffer
189  *
190  *      Swap the contents of a buffer into big endian format
191  */
192 static inline void swap_buf_16(unsigned char *buf, int len, void *end)
193 {
194         int n;
195
196         u16 *buf_16 = (u16 *)buf;
197         len = ((len + 1) >> 1);
198         if ((void *)&buf_16[len] > end) {
199                 pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
200                        &buf_16[len], end);
201                 return;
202         }
203         for (n = 0; n < len; n++) {
204                 *buf_16 = cpu_to_be16(*buf_16);
205                 buf_16++;
206         }
207 }
208
209 /**
210  *      swap_buf_32
211  *      @buf: our buffer
212  *      @len : number of bytes (not words) in the buffer
213  *      @end: end of buffer
214  *
215  *      Swap the contents of a buffer into big endian format
216  */
217 static inline void swap_buf_32(unsigned char *buf, int len, void *end)
218 {
219         int n;
220
221         u32 *buf_32 = (u32 *)buf;
222         len = (len + 3) >> 2;
223
224         if ((void *)&buf_32[len] > end) {
225                 pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
226                        &buf_32[len], end);
227                 return;
228         }
229         for (n = 0; n < len; n++) {
230                 *buf_32 = cpu_to_be32(*buf_32);
231                 buf_32++;
232         }
233 }
234
235 /**
236  *      mrdy_assert             -       assert MRDY line
237  *      @ifx_dev: our SPI device
238  *
239  *      Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
240  *      now.
241  *
242  *      FIXME: Can SRDY even go high as we are running this code ?
243  */
244 static void mrdy_assert(struct ifx_spi_device *ifx_dev)
245 {
246         int val = gpiod_get_value(ifx_dev->gpio.srdy);
247         if (!val) {
248                 if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
249                                       &ifx_dev->flags)) {
250                         mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
251
252                 }
253         }
254         ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
255         mrdy_set_high(ifx_dev);
256 }
257
258 /**
259  *      ifx_spi_timeout         -       SPI timeout
260  *      @t: timer in our SPI device
261  *
262  *      The SPI has timed out: hang up the tty. Users will then see a hangup
263  *      and error events.
264  */
265 static void ifx_spi_timeout(struct timer_list *t)
266 {
267         struct ifx_spi_device *ifx_dev = from_timer(ifx_dev, t, spi_timer);
268
269         dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
270         tty_port_tty_hangup(&ifx_dev->tty_port, false);
271         mrdy_set_low(ifx_dev);
272         clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
273 }
274
275 /* char/tty operations */
276
277 /**
278  *      ifx_spi_tiocmget        -       get modem lines
279  *      @tty: our tty device
280  *
281  *      Map the signal state into Linux modem flags and report the value
282  *      in Linux terms
283  */
284 static int ifx_spi_tiocmget(struct tty_struct *tty)
285 {
286         unsigned int value;
287         struct ifx_spi_device *ifx_dev = tty->driver_data;
288
289         value =
290         (test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
291         (test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
292         (test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
293         (test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
294         (test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
295         (test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
296         return value;
297 }
298
299 /**
300  *      ifx_spi_tiocmset        -       set modem bits
301  *      @tty: the tty structure
302  *      @set: bits to set
303  *      @clear: bits to clear
304  *
305  *      The IFX6x60 only supports DTR and RTS. Set them accordingly
306  *      and flag that an update to the modem is needed.
307  *
308  *      FIXME: do we need to kick the tranfers when we do this ?
309  */
310 static int ifx_spi_tiocmset(struct tty_struct *tty,
311                             unsigned int set, unsigned int clear)
312 {
313         struct ifx_spi_device *ifx_dev = tty->driver_data;
314
315         if (set & TIOCM_RTS)
316                 set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
317         if (set & TIOCM_DTR)
318                 set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
319         if (clear & TIOCM_RTS)
320                 clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
321         if (clear & TIOCM_DTR)
322                 clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
323
324         set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
325         return 0;
326 }
327
328 /**
329  *      ifx_spi_open    -       called on tty open
330  *      @tty: our tty device
331  *      @filp: file handle being associated with the tty
332  *
333  *      Open the tty interface. We let the tty_port layer do all the work
334  *      for us.
335  *
336  *      FIXME: Remove single device assumption and saved_ifx_dev
337  */
338 static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
339 {
340         return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
341 }
342
343 /**
344  *      ifx_spi_close   -       called when our tty closes
345  *      @tty: the tty being closed
346  *      @filp: the file handle being closed
347  *
348  *      Perform the close of the tty. We use the tty_port layer to do all
349  *      our hard work.
350  */
351 static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
352 {
353         struct ifx_spi_device *ifx_dev = tty->driver_data;
354         tty_port_close(&ifx_dev->tty_port, tty, filp);
355         /* FIXME: should we do an ifx_spi_reset here ? */
356 }
357
358 /**
359  *      ifx_decode_spi_header   -       decode received header
360  *      @buffer: the received data
361  *      @length: decoded length
362  *      @more: decoded more flag
363  *      @received_cts: status of cts we received
364  *
365  *      Note how received_cts is handled -- if header is all F it is left
366  *      the same as it was, if header is all 0 it is set to 0 otherwise it is
367  *      taken from the incoming header.
368  *
369  *      FIXME: endianness
370  */
371 static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
372                         unsigned char *more, unsigned char *received_cts)
373 {
374         u16 h1;
375         u16 h2;
376         u16 *in_buffer = (u16 *)buffer;
377
378         h1 = *in_buffer;
379         h2 = *(in_buffer+1);
380
381         if (h1 == 0 && h2 == 0) {
382                 *received_cts = 0;
383                 *more = 0;
384                 return IFX_SPI_HEADER_0;
385         } else if (h1 == 0xffff && h2 == 0xffff) {
386                 *more = 0;
387                 /* spi_slave_cts remains as it was */
388                 return IFX_SPI_HEADER_F;
389         }
390
391         *length = h1 & 0xfff;   /* upper bits of byte are flags */
392         *more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
393         *received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
394         return 0;
395 }
396
397 /**
398  *      ifx_setup_spi_header    -       set header fields
399  *      @txbuffer: pointer to start of SPI buffer
400  *      @tx_count: bytes
401  *      @more: indicate if more to follow
402  *
403  *      Format up an SPI header for a transfer
404  *
405  *      FIXME: endianness?
406  */
407 static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
408                                         unsigned char more)
409 {
410         *(u16 *)(txbuffer) = tx_count;
411         *(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
412         txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
413 }
414
415 /**
416  *      ifx_spi_prepare_tx_buffer       -       prepare transmit frame
417  *      @ifx_dev: our SPI device
418  *
419  *      The transmit buffr needs a header and various other bits of
420  *      information followed by as much data as we can pull from the FIFO
421  *      and transfer. This function formats up a suitable buffer in the
422  *      ifx_dev->tx_buffer
423  *
424  *      FIXME: performance - should we wake the tty when the queue is half
425  *                           empty ?
426  */
427 static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
428 {
429         int temp_count;
430         int queue_length;
431         int tx_count;
432         unsigned char *tx_buffer;
433
434         tx_buffer = ifx_dev->tx_buffer;
435
436         /* make room for required SPI header */
437         tx_buffer += IFX_SPI_HEADER_OVERHEAD;
438         tx_count = IFX_SPI_HEADER_OVERHEAD;
439
440         /* clear to signal no more data if this turns out to be the
441          * last buffer sent in a sequence */
442         ifx_dev->spi_more = 0;
443
444         /* if modem cts is set, just send empty buffer */
445         if (!ifx_dev->spi_slave_cts) {
446                 /* see if there's tx data */
447                 queue_length = kfifo_len(&ifx_dev->tx_fifo);
448                 if (queue_length != 0) {
449                         /* data to mux -- see if there's room for it */
450                         temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
451                         temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
452                                         tx_buffer, temp_count,
453                                         &ifx_dev->fifo_lock);
454
455                         /* update buffer pointer and data count in message */
456                         tx_buffer += temp_count;
457                         tx_count += temp_count;
458                         if (temp_count == queue_length)
459                                 /* poke port to get more data */
460                                 tty_port_tty_wakeup(&ifx_dev->tty_port);
461                         else /* more data in port, use next SPI message */
462                                 ifx_dev->spi_more = 1;
463                 }
464         }
465         /* have data and info for header -- set up SPI header in buffer */
466         /* spi header needs payload size, not entire buffer size */
467         ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
468                                         tx_count-IFX_SPI_HEADER_OVERHEAD,
469                                         ifx_dev->spi_more);
470         /* swap actual data in the buffer */
471         ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
472                 &ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
473         return tx_count;
474 }
475
476 /**
477  *      ifx_spi_write           -       line discipline write
478  *      @tty: our tty device
479  *      @buf: pointer to buffer to write (kernel space)
480  *      @count: size of buffer
481  *
482  *      Write the characters we have been given into the FIFO. If the device
483  *      is not active then activate it, when the SRDY line is asserted back
484  *      this will commence I/O
485  */
486 static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
487                          int count)
488 {
489         struct ifx_spi_device *ifx_dev = tty->driver_data;
490         unsigned char *tmp_buf = (unsigned char *)buf;
491         unsigned long flags;
492         bool is_fifo_empty;
493         int tx_count;
494
495         spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
496         is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
497         tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
498         spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
499         if (is_fifo_empty)
500                 mrdy_assert(ifx_dev);
501
502         return tx_count;
503 }
504
505 /**
506  *      ifx_spi_chars_in_buffer -       line discipline helper
507  *      @tty: our tty device
508  *
509  *      Report how much data we can accept before we drop bytes. As we use
510  *      a simple FIFO this is nice and easy.
511  */
512 static int ifx_spi_write_room(struct tty_struct *tty)
513 {
514         struct ifx_spi_device *ifx_dev = tty->driver_data;
515         return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
516 }
517
518 /**
519  *      ifx_spi_chars_in_buffer -       line discipline helper
520  *      @tty: our tty device
521  *
522  *      Report how many characters we have buffered. In our case this is the
523  *      number of bytes sitting in our transmit FIFO.
524  */
525 static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
526 {
527         struct ifx_spi_device *ifx_dev = tty->driver_data;
528         return kfifo_len(&ifx_dev->tx_fifo);
529 }
530
531 /**
532  *      ifx_port_hangup
533  *      @tty: our tty
534  *
535  *      tty port hang up. Called when tty_hangup processing is invoked either
536  *      by loss of carrier, or by software (eg vhangup). Serialized against
537  *      activate/shutdown by the tty layer.
538  */
539 static void ifx_spi_hangup(struct tty_struct *tty)
540 {
541         struct ifx_spi_device *ifx_dev = tty->driver_data;
542         tty_port_hangup(&ifx_dev->tty_port);
543 }
544
545 /**
546  *      ifx_port_activate
547  *      @port: our tty port
548  *
549  *      tty port activate method - called for first open. Serialized
550  *      with hangup and shutdown by the tty layer.
551  */
552 static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
553 {
554         struct ifx_spi_device *ifx_dev =
555                 container_of(port, struct ifx_spi_device, tty_port);
556
557         /* clear any old data; can't do this in 'close' */
558         kfifo_reset(&ifx_dev->tx_fifo);
559
560         /* clear any flag which may be set in port shutdown procedure */
561         clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
562         clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
563
564         /* put port data into this tty */
565         tty->driver_data = ifx_dev;
566
567         /* allows flip string push from int context */
568         port->low_latency = 1;
569
570         /* set flag to allows data transfer */
571         set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
572
573         return 0;
574 }
575
576 /**
577  *      ifx_port_shutdown
578  *      @port: our tty port
579  *
580  *      tty port shutdown method - called for last port close. Serialized
581  *      with hangup and activate by the tty layer.
582  */
583 static void ifx_port_shutdown(struct tty_port *port)
584 {
585         struct ifx_spi_device *ifx_dev =
586                 container_of(port, struct ifx_spi_device, tty_port);
587
588         clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
589         mrdy_set_low(ifx_dev);
590         del_timer(&ifx_dev->spi_timer);
591         clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
592         tasklet_kill(&ifx_dev->io_work_tasklet);
593 }
594
595 static const struct tty_port_operations ifx_tty_port_ops = {
596         .activate = ifx_port_activate,
597         .shutdown = ifx_port_shutdown,
598 };
599
600 static const struct tty_operations ifx_spi_serial_ops = {
601         .open = ifx_spi_open,
602         .close = ifx_spi_close,
603         .write = ifx_spi_write,
604         .hangup = ifx_spi_hangup,
605         .write_room = ifx_spi_write_room,
606         .chars_in_buffer = ifx_spi_chars_in_buffer,
607         .tiocmget = ifx_spi_tiocmget,
608         .tiocmset = ifx_spi_tiocmset,
609 };
610
611 /**
612  *      ifx_spi_insert_fip_string       -       queue received data
613  *      @ifx_dev: our SPI device
614  *      @chars: buffer we have received
615  *      @size: number of chars reeived
616  *
617  *      Queue bytes to the tty assuming the tty side is currently open. If
618  *      not the discard the data.
619  */
620 static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
621                                     unsigned char *chars, size_t size)
622 {
623         tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
624         tty_flip_buffer_push(&ifx_dev->tty_port);
625 }
626
627 /**
628  *      ifx_spi_complete        -       SPI transfer completed
629  *      @ctx: our SPI device
630  *
631  *      An SPI transfer has completed. Process any received data and kick off
632  *      any further transmits we can commence.
633  */
634 static void ifx_spi_complete(void *ctx)
635 {
636         struct ifx_spi_device *ifx_dev = ctx;
637         int length;
638         int actual_length;
639         unsigned char more = 0;
640         unsigned char cts;
641         int local_write_pending = 0;
642         int queue_length;
643         int srdy;
644         int decode_result;
645
646         mrdy_set_low(ifx_dev);
647
648         if (!ifx_dev->spi_msg.status) {
649                 /* check header validity, get comm flags */
650                 ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
651                         &ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
652                 decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
653                                 &length, &more, &cts);
654                 if (decode_result == IFX_SPI_HEADER_0) {
655                         dev_dbg(&ifx_dev->spi_dev->dev,
656                                 "ignore input: invalid header 0");
657                         ifx_dev->spi_slave_cts = 0;
658                         goto complete_exit;
659                 } else if (decode_result == IFX_SPI_HEADER_F) {
660                         dev_dbg(&ifx_dev->spi_dev->dev,
661                                 "ignore input: invalid header F");
662                         goto complete_exit;
663                 }
664
665                 ifx_dev->spi_slave_cts = cts;
666
667                 actual_length = min((unsigned int)length,
668                                         ifx_dev->spi_msg.actual_length);
669                 ifx_dev->swap_buf(
670                         (ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
671                          actual_length,
672                          &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
673                 ifx_spi_insert_flip_string(
674                         ifx_dev,
675                         ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
676                         (size_t)actual_length);
677         } else {
678                 more = 0;
679                 dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
680                        ifx_dev->spi_msg.status);
681         }
682
683 complete_exit:
684         if (ifx_dev->write_pending) {
685                 ifx_dev->write_pending = 0;
686                 local_write_pending = 1;
687         }
688
689         clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
690
691         queue_length = kfifo_len(&ifx_dev->tx_fifo);
692         srdy = gpiod_get_value(ifx_dev->gpio.srdy);
693         if (!srdy)
694                 ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
695
696         /* schedule output if there is more to do */
697         if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
698                 tasklet_schedule(&ifx_dev->io_work_tasklet);
699         else {
700                 if (more || ifx_dev->spi_more || queue_length > 0 ||
701                         local_write_pending) {
702                         if (ifx_dev->spi_slave_cts) {
703                                 if (more)
704                                         mrdy_assert(ifx_dev);
705                         } else
706                                 mrdy_assert(ifx_dev);
707                 } else {
708                         /*
709                          * poke line discipline driver if any for more data
710                          * may or may not get more data to write
711                          * for now, say not busy
712                          */
713                         ifx_spi_power_state_clear(ifx_dev,
714                                                   IFX_SPI_POWER_DATA_PENDING);
715                         tty_port_tty_wakeup(&ifx_dev->tty_port);
716                 }
717         }
718 }
719
720 /**
721  *      ifx_spio_io             -       I/O tasklet
722  *      @data: our SPI device
723  *
724  *      Queue data for transmission if possible and then kick off the
725  *      transfer.
726  */
727 static void ifx_spi_io(struct tasklet_struct *t)
728 {
729         int retval;
730         struct ifx_spi_device *ifx_dev = from_tasklet(ifx_dev, t,
731                                                       io_work_tasklet);
732
733         if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
734                 test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
735                 if (ifx_dev->gpio.unack_srdy_int_nb > 0)
736                         ifx_dev->gpio.unack_srdy_int_nb--;
737
738                 ifx_spi_prepare_tx_buffer(ifx_dev);
739
740                 spi_message_init(&ifx_dev->spi_msg);
741                 INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
742
743                 ifx_dev->spi_msg.context = ifx_dev;
744                 ifx_dev->spi_msg.complete = ifx_spi_complete;
745
746                 /* set up our spi transfer */
747                 /* note len is BYTES, not transfers */
748                 ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
749                 ifx_dev->spi_xfer.cs_change = 0;
750                 ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
751                 /* ifx_dev->spi_xfer.speed_hz = 390625; */
752                 ifx_dev->spi_xfer.bits_per_word =
753                         ifx_dev->spi_dev->bits_per_word;
754
755                 ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
756                 ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
757
758                 /*
759                  * setup dma pointers
760                  */
761                 if (ifx_dev->use_dma) {
762                         ifx_dev->spi_msg.is_dma_mapped = 1;
763                         ifx_dev->tx_dma = ifx_dev->tx_bus;
764                         ifx_dev->rx_dma = ifx_dev->rx_bus;
765                         ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
766                         ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
767                 } else {
768                         ifx_dev->spi_msg.is_dma_mapped = 0;
769                         ifx_dev->tx_dma = (dma_addr_t)0;
770                         ifx_dev->rx_dma = (dma_addr_t)0;
771                         ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
772                         ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
773                 }
774
775                 spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
776
777                 /* Assert MRDY. This may have already been done by the write
778                  * routine.
779                  */
780                 mrdy_assert(ifx_dev);
781
782                 retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
783                 if (retval) {
784                         clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
785                                   &ifx_dev->flags);
786                         tasklet_schedule(&ifx_dev->io_work_tasklet);
787                         return;
788                 }
789         } else
790                 ifx_dev->write_pending = 1;
791 }
792
793 /**
794  *      ifx_spi_free_port       -       free up the tty side
795  *      @ifx_dev: IFX device going away
796  *
797  *      Unregister and free up a port when the device goes away
798  */
799 static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
800 {
801         if (ifx_dev->tty_dev)
802                 tty_unregister_device(tty_drv, ifx_dev->minor);
803         tty_port_destroy(&ifx_dev->tty_port);
804         kfifo_free(&ifx_dev->tx_fifo);
805 }
806
807 /**
808  *      ifx_spi_create_port     -       create a new port
809  *      @ifx_dev: our spi device
810  *
811  *      Allocate and initialise the tty port that goes with this interface
812  *      and add it to the tty layer so that it can be opened.
813  */
814 static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
815 {
816         int ret = 0;
817         struct tty_port *pport = &ifx_dev->tty_port;
818
819         spin_lock_init(&ifx_dev->fifo_lock);
820         lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
821                 &ifx_spi_key, 0);
822
823         if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
824                 ret = -ENOMEM;
825                 goto error_ret;
826         }
827
828         tty_port_init(pport);
829         pport->ops = &ifx_tty_port_ops;
830         ifx_dev->minor = IFX_SPI_TTY_ID;
831         ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
832                         ifx_dev->minor, &ifx_dev->spi_dev->dev);
833         if (IS_ERR(ifx_dev->tty_dev)) {
834                 dev_dbg(&ifx_dev->spi_dev->dev,
835                         "%s: registering tty device failed", __func__);
836                 ret = PTR_ERR(ifx_dev->tty_dev);
837                 goto error_port;
838         }
839         return 0;
840
841 error_port:
842         tty_port_destroy(pport);
843 error_ret:
844         ifx_spi_free_port(ifx_dev);
845         return ret;
846 }
847
848 /**
849  *      ifx_spi_handle_srdy             -       handle SRDY
850  *      @ifx_dev: device asserting SRDY
851  *
852  *      Check our device state and see what we need to kick off when SRDY
853  *      is asserted. This usually means killing the timer and firing off the
854  *      I/O processing.
855  */
856 static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
857 {
858         if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
859                 del_timer(&ifx_dev->spi_timer);
860                 clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
861         }
862
863         ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
864
865         if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
866                 tasklet_schedule(&ifx_dev->io_work_tasklet);
867         else
868                 set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
869 }
870
871 /**
872  *      ifx_spi_srdy_interrupt  -       SRDY asserted
873  *      @irq: our IRQ number
874  *      @dev: our ifx device
875  *
876  *      The modem asserted SRDY. Handle the srdy event
877  */
878 static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
879 {
880         struct ifx_spi_device *ifx_dev = dev;
881         ifx_dev->gpio.unack_srdy_int_nb++;
882         ifx_spi_handle_srdy(ifx_dev);
883         return IRQ_HANDLED;
884 }
885
886 /**
887  *      ifx_spi_reset_interrupt -       Modem has changed reset state
888  *      @irq: interrupt number
889  *      @dev: our device pointer
890  *
891  *      The modem has either entered or left reset state. Check the GPIO
892  *      line to see which.
893  *
894  *      FIXME: review locking on MR_INPROGRESS versus
895  *      parallel unsolicited reset/solicited reset
896  */
897 static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
898 {
899         struct ifx_spi_device *ifx_dev = dev;
900         int val = gpiod_get_value(ifx_dev->gpio.reset_out);
901         int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
902
903         if (val == 0) {
904                 /* entered reset */
905                 set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
906                 if (!solreset) {
907                         /* unsolicited reset  */
908                         tty_port_tty_hangup(&ifx_dev->tty_port, false);
909                 }
910         } else {
911                 /* exited reset */
912                 clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
913                 if (solreset) {
914                         set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
915                         wake_up(&ifx_dev->mdm_reset_wait);
916                 }
917         }
918         return IRQ_HANDLED;
919 }
920
921 /**
922  *      ifx_spi_free_device - free device
923  *      @ifx_dev: device to free
924  *
925  *      Free the IFX device
926  */
927 static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
928 {
929         ifx_spi_free_port(ifx_dev);
930         dma_free_coherent(&ifx_dev->spi_dev->dev,
931                                 IFX_SPI_TRANSFER_SIZE,
932                                 ifx_dev->tx_buffer,
933                                 ifx_dev->tx_bus);
934         dma_free_coherent(&ifx_dev->spi_dev->dev,
935                                 IFX_SPI_TRANSFER_SIZE,
936                                 ifx_dev->rx_buffer,
937                                 ifx_dev->rx_bus);
938 }
939
940 /**
941  *      ifx_spi_reset   -       reset modem
942  *      @ifx_dev: modem to reset
943  *
944  *      Perform a reset on the modem
945  */
946 static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
947 {
948         int ret;
949         /*
950          * set up modem power, reset
951          *
952          * delays are required on some platforms for the modem
953          * to reset properly
954          */
955         set_bit(MR_START, &ifx_dev->mdm_reset_state);
956         gpiod_set_value(ifx_dev->gpio.po, 0);
957         gpiod_set_value(ifx_dev->gpio.reset, 0);
958         msleep(25);
959         gpiod_set_value(ifx_dev->gpio.reset, 1);
960         msleep(1);
961         gpiod_set_value(ifx_dev->gpio.po, 1);
962         msleep(1);
963         gpiod_set_value(ifx_dev->gpio.po, 0);
964         ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
965                                  test_bit(MR_COMPLETE,
966                                           &ifx_dev->mdm_reset_state),
967                                  IFX_RESET_TIMEOUT);
968         if (!ret)
969                 dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
970                          ifx_dev->mdm_reset_state);
971
972         ifx_dev->mdm_reset_state = 0;
973         return ret;
974 }
975
976 /**
977  *      ifx_spi_spi_probe       -       probe callback
978  *      @spi: our possible matching SPI device
979  *
980  *      Probe for a 6x60 modem on SPI bus. Perform any needed device and
981  *      GPIO setup.
982  *
983  *      FIXME:
984  *      -       Support for multiple devices
985  *      -       Split out MID specific GPIO handling eventually
986  */
987
988 static int ifx_spi_spi_probe(struct spi_device *spi)
989 {
990         int ret;
991         int srdy;
992         struct ifx_modem_platform_data *pl_data;
993         struct ifx_spi_device *ifx_dev;
994         struct device *dev = &spi->dev;
995
996         if (saved_ifx_dev) {
997                 dev_dbg(dev, "ignoring subsequent detection");
998                 return -ENODEV;
999         }
1000
1001         pl_data = dev_get_platdata(dev);
1002         if (!pl_data) {
1003                 dev_err(dev, "missing platform data!");
1004                 return -ENODEV;
1005         }
1006
1007         /* initialize structure to hold our device variables */
1008         ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1009         if (!ifx_dev) {
1010                 dev_err(dev, "spi device allocation failed");
1011                 return -ENOMEM;
1012         }
1013         saved_ifx_dev = ifx_dev;
1014         ifx_dev->spi_dev = spi;
1015         clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1016         spin_lock_init(&ifx_dev->write_lock);
1017         spin_lock_init(&ifx_dev->power_lock);
1018         ifx_dev->power_status = 0;
1019         timer_setup(&ifx_dev->spi_timer, ifx_spi_timeout, 0);
1020         ifx_dev->modem = pl_data->modem_type;
1021         ifx_dev->use_dma = pl_data->use_dma;
1022         ifx_dev->max_hz = pl_data->max_hz;
1023         /* initialize spi mode, etc */
1024         spi->max_speed_hz = ifx_dev->max_hz;
1025         spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1026         spi->bits_per_word = spi_bpw;
1027         ret = spi_setup(spi);
1028         if (ret) {
1029                 dev_err(dev, "SPI setup wasn't successful %d", ret);
1030                 kfree(ifx_dev);
1031                 return -ENODEV;
1032         }
1033
1034         /* init swap_buf function according to word width configuration */
1035         if (spi->bits_per_word == 32)
1036                 ifx_dev->swap_buf = swap_buf_32;
1037         else if (spi->bits_per_word == 16)
1038                 ifx_dev->swap_buf = swap_buf_16;
1039         else
1040                 ifx_dev->swap_buf = swap_buf_8;
1041
1042         /* ensure SPI protocol flags are initialized to enable transfer */
1043         ifx_dev->spi_more = 0;
1044         ifx_dev->spi_slave_cts = 0;
1045
1046         /*initialize transfer and dma buffers */
1047         ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1048                                 IFX_SPI_TRANSFER_SIZE,
1049                                 &ifx_dev->tx_bus,
1050                                 GFP_KERNEL);
1051         if (!ifx_dev->tx_buffer) {
1052                 dev_err(dev, "DMA-TX buffer allocation failed");
1053                 ret = -ENOMEM;
1054                 goto error_ret;
1055         }
1056         ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1057                                 IFX_SPI_TRANSFER_SIZE,
1058                                 &ifx_dev->rx_bus,
1059                                 GFP_KERNEL);
1060         if (!ifx_dev->rx_buffer) {
1061                 dev_err(dev, "DMA-RX buffer allocation failed");
1062                 ret = -ENOMEM;
1063                 goto error_ret;
1064         }
1065
1066         /* initialize waitq for modem reset */
1067         init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1068
1069         spi_set_drvdata(spi, ifx_dev);
1070         tasklet_setup(&ifx_dev->io_work_tasklet, ifx_spi_io);
1071
1072         set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1073
1074         /* create our tty port */
1075         ret = ifx_spi_create_port(ifx_dev);
1076         if (ret != 0) {
1077                 dev_err(dev, "create default tty port failed");
1078                 goto error_ret;
1079         }
1080
1081         ifx_dev->gpio.reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
1082         if (IS_ERR(ifx_dev->gpio.reset)) {
1083                 dev_err(dev, "could not obtain reset GPIO\n");
1084                 ret = PTR_ERR(ifx_dev->gpio.reset);
1085                 goto error_ret;
1086         }
1087         gpiod_set_consumer_name(ifx_dev->gpio.reset, "ifxModem reset");
1088         ifx_dev->gpio.po = devm_gpiod_get(dev, "power", GPIOD_OUT_LOW);
1089         if (IS_ERR(ifx_dev->gpio.po)) {
1090                 dev_err(dev, "could not obtain power GPIO\n");
1091                 ret = PTR_ERR(ifx_dev->gpio.po);
1092                 goto error_ret;
1093         }
1094         gpiod_set_consumer_name(ifx_dev->gpio.po, "ifxModem power");
1095         ifx_dev->gpio.mrdy = devm_gpiod_get(dev, "mrdy", GPIOD_OUT_LOW);
1096         if (IS_ERR(ifx_dev->gpio.mrdy)) {
1097                 dev_err(dev, "could not obtain mrdy GPIO\n");
1098                 ret = PTR_ERR(ifx_dev->gpio.mrdy);
1099                 goto error_ret;
1100         }
1101         gpiod_set_consumer_name(ifx_dev->gpio.mrdy, "ifxModem mrdy");
1102         ifx_dev->gpio.srdy = devm_gpiod_get(dev, "srdy", GPIOD_IN);
1103         if (IS_ERR(ifx_dev->gpio.srdy)) {
1104                 dev_err(dev, "could not obtain srdy GPIO\n");
1105                 ret = PTR_ERR(ifx_dev->gpio.srdy);
1106                 goto error_ret;
1107         }
1108         gpiod_set_consumer_name(ifx_dev->gpio.srdy, "ifxModem srdy");
1109         ifx_dev->gpio.reset_out = devm_gpiod_get(dev, "rst_out", GPIOD_IN);
1110         if (IS_ERR(ifx_dev->gpio.reset_out)) {
1111                 dev_err(dev, "could not obtain rst_out GPIO\n");
1112                 ret = PTR_ERR(ifx_dev->gpio.reset_out);
1113                 goto error_ret;
1114         }
1115         gpiod_set_consumer_name(ifx_dev->gpio.reset_out, "ifxModem reset out");
1116         ifx_dev->gpio.pmu_reset = devm_gpiod_get(dev, "pmu_reset", GPIOD_ASIS);
1117         if (IS_ERR(ifx_dev->gpio.pmu_reset)) {
1118                 dev_err(dev, "could not obtain pmu_reset GPIO\n");
1119                 ret = PTR_ERR(ifx_dev->gpio.pmu_reset);
1120                 goto error_ret;
1121         }
1122         gpiod_set_consumer_name(ifx_dev->gpio.pmu_reset, "ifxModem PMU reset");
1123
1124         ret = request_irq(gpiod_to_irq(ifx_dev->gpio.reset_out),
1125                           ifx_spi_reset_interrupt,
1126                           IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1127                           ifx_dev);
1128         if (ret) {
1129                 dev_err(dev, "Unable to get irq %x\n",
1130                         gpiod_to_irq(ifx_dev->gpio.reset_out));
1131                 goto error_ret;
1132         }
1133
1134         ret = ifx_spi_reset(ifx_dev);
1135
1136         ret = request_irq(gpiod_to_irq(ifx_dev->gpio.srdy),
1137                           ifx_spi_srdy_interrupt, IRQF_TRIGGER_RISING, DRVNAME,
1138                           ifx_dev);
1139         if (ret) {
1140                 dev_err(dev, "Unable to get irq %x",
1141                         gpiod_to_irq(ifx_dev->gpio.srdy));
1142                 goto error_ret2;
1143         }
1144
1145         /* set pm runtime power state and register with power system */
1146         pm_runtime_set_active(dev);
1147         pm_runtime_enable(dev);
1148
1149         /* handle case that modem is already signaling SRDY */
1150         /* no outgoing tty open at this point, this just satisfies the
1151          * modem's read and should reset communication properly
1152          */
1153         srdy = gpiod_get_value(ifx_dev->gpio.srdy);
1154
1155         if (srdy) {
1156                 mrdy_assert(ifx_dev);
1157                 ifx_spi_handle_srdy(ifx_dev);
1158         } else
1159                 mrdy_set_low(ifx_dev);
1160         return 0;
1161
1162 error_ret2:
1163         free_irq(gpiod_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1164 error_ret:
1165         ifx_spi_free_device(ifx_dev);
1166         saved_ifx_dev = NULL;
1167         return ret;
1168 }
1169
1170 /**
1171  *      ifx_spi_spi_remove      -       SPI device was removed
1172  *      @spi: SPI device
1173  *
1174  *      FIXME: We should be shutting the device down here not in
1175  *      the module unload path.
1176  */
1177
1178 static int ifx_spi_spi_remove(struct spi_device *spi)
1179 {
1180         struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1181         /* stop activity */
1182         tasklet_kill(&ifx_dev->io_work_tasklet);
1183
1184         pm_runtime_disable(&spi->dev);
1185
1186         /* free irq */
1187         free_irq(gpiod_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1188         free_irq(gpiod_to_irq(ifx_dev->gpio.srdy), ifx_dev);
1189
1190         /* free allocations */
1191         ifx_spi_free_device(ifx_dev);
1192
1193         saved_ifx_dev = NULL;
1194         return 0;
1195 }
1196
1197 /**
1198  *      ifx_spi_spi_shutdown    -       called on SPI shutdown
1199  *      @spi: SPI device
1200  *
1201  *      No action needs to be taken here
1202  */
1203
1204 static void ifx_spi_spi_shutdown(struct spi_device *spi)
1205 {
1206         struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1207
1208         ifx_modem_power_off(ifx_dev);
1209 }
1210
1211 /*
1212  * various suspends and resumes have nothing to do
1213  * no hardware to save state for
1214  */
1215
1216 /**
1217  *      ifx_spi_pm_suspend      -       suspend modem on system suspend
1218  *      @dev: device being suspended
1219  *
1220  *      Suspend the modem. No action needed on Intel MID platforms, may
1221  *      need extending for other systems.
1222  */
1223 static int ifx_spi_pm_suspend(struct device *dev)
1224 {
1225         return 0;
1226 }
1227
1228 /**
1229  *      ifx_spi_pm_resume       -       resume modem on system resume
1230  *      @dev: device being suspended
1231  *
1232  *      Allow the modem to resume. No action needed.
1233  *
1234  *      FIXME: do we need to reset anything here ?
1235  */
1236 static int ifx_spi_pm_resume(struct device *dev)
1237 {
1238         return 0;
1239 }
1240
1241 /**
1242  *      ifx_spi_pm_runtime_resume       -       suspend modem
1243  *      @dev: device being suspended
1244  *
1245  *      Allow the modem to resume. No action needed.
1246  */
1247 static int ifx_spi_pm_runtime_resume(struct device *dev)
1248 {
1249         return 0;
1250 }
1251
1252 /**
1253  *      ifx_spi_pm_runtime_suspend      -       suspend modem
1254  *      @dev: device being suspended
1255  *
1256  *      Allow the modem to suspend and thus suspend to continue up the
1257  *      device tree.
1258  */
1259 static int ifx_spi_pm_runtime_suspend(struct device *dev)
1260 {
1261         return 0;
1262 }
1263
1264 /**
1265  *      ifx_spi_pm_runtime_idle         -       check if modem idle
1266  *      @dev: our device
1267  *
1268  *      Check conditions and queue runtime suspend if idle.
1269  */
1270 static int ifx_spi_pm_runtime_idle(struct device *dev)
1271 {
1272         struct spi_device *spi = to_spi_device(dev);
1273         struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1274
1275         if (!ifx_dev->power_status)
1276                 pm_runtime_suspend(dev);
1277
1278         return 0;
1279 }
1280
1281 static const struct dev_pm_ops ifx_spi_pm = {
1282         .resume = ifx_spi_pm_resume,
1283         .suspend = ifx_spi_pm_suspend,
1284         .runtime_resume = ifx_spi_pm_runtime_resume,
1285         .runtime_suspend = ifx_spi_pm_runtime_suspend,
1286         .runtime_idle = ifx_spi_pm_runtime_idle
1287 };
1288
1289 static const struct spi_device_id ifx_id_table[] = {
1290         {"ifx6160", 0},
1291         {"ifx6260", 0},
1292         { }
1293 };
1294 MODULE_DEVICE_TABLE(spi, ifx_id_table);
1295
1296 /* spi operations */
1297 static struct spi_driver ifx_spi_driver = {
1298         .driver = {
1299                 .name = DRVNAME,
1300                 .pm = &ifx_spi_pm,
1301         },
1302         .probe = ifx_spi_spi_probe,
1303         .shutdown = ifx_spi_spi_shutdown,
1304         .remove = ifx_spi_spi_remove,
1305         .id_table = ifx_id_table
1306 };
1307
1308 /**
1309  *      ifx_spi_exit    -       module exit
1310  *
1311  *      Unload the module.
1312  */
1313
1314 static void __exit ifx_spi_exit(void)
1315 {
1316         /* unregister */
1317         spi_unregister_driver(&ifx_spi_driver);
1318         tty_unregister_driver(tty_drv);
1319         put_tty_driver(tty_drv);
1320         unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1321 }
1322
1323 /**
1324  *      ifx_spi_init            -       module entry point
1325  *
1326  *      Initialise the SPI and tty interfaces for the IFX SPI driver
1327  *      We need to initialize upper-edge spi driver after the tty
1328  *      driver because otherwise the spi probe will race
1329  */
1330
1331 static int __init ifx_spi_init(void)
1332 {
1333         int result;
1334
1335         tty_drv = alloc_tty_driver(1);
1336         if (!tty_drv) {
1337                 pr_err("%s: alloc_tty_driver failed", DRVNAME);
1338                 return -ENOMEM;
1339         }
1340
1341         tty_drv->driver_name = DRVNAME;
1342         tty_drv->name = TTYNAME;
1343         tty_drv->minor_start = IFX_SPI_TTY_ID;
1344         tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1345         tty_drv->subtype = SERIAL_TYPE_NORMAL;
1346         tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1347         tty_drv->init_termios = tty_std_termios;
1348
1349         tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1350
1351         result = tty_register_driver(tty_drv);
1352         if (result) {
1353                 pr_err("%s: tty_register_driver failed(%d)",
1354                         DRVNAME, result);
1355                 goto err_free_tty;
1356         }
1357
1358         result = spi_register_driver(&ifx_spi_driver);
1359         if (result) {
1360                 pr_err("%s: spi_register_driver failed(%d)",
1361                         DRVNAME, result);
1362                 goto err_unreg_tty;
1363         }
1364
1365         result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1366         if (result) {
1367                 pr_err("%s: register ifx modem reboot notifier failed(%d)",
1368                         DRVNAME, result);
1369                 goto err_unreg_spi;
1370         }
1371
1372         return 0;
1373 err_unreg_spi:
1374         spi_unregister_driver(&ifx_spi_driver);
1375 err_unreg_tty:
1376         tty_unregister_driver(tty_drv);
1377 err_free_tty:
1378         put_tty_driver(tty_drv);
1379
1380         return result;
1381 }
1382
1383 module_init(ifx_spi_init);
1384 module_exit(ifx_spi_exit);
1385
1386 MODULE_AUTHOR("Intel");
1387 MODULE_DESCRIPTION("IFX6x60 spi driver");
1388 MODULE_LICENSE("GPL");
1389 MODULE_INFO(Version, "0.1-IFX6x60");