Mention branches and keyring.
[releases.git] / gt / uc / intel_guc_submission.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5
6 #include <linux/circ_buf.h>
7
8 #include "gem/i915_gem_context.h"
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_pm.h"
11 #include "gt/intel_gt.h"
12 #include "gt/intel_gt_pm.h"
13 #include "gt/intel_lrc_reg.h"
14 #include "gt/intel_ring.h"
15
16 #include "intel_guc_submission.h"
17
18 #include "i915_drv.h"
19 #include "i915_trace.h"
20
21 /**
22  * DOC: GuC-based command submission
23  *
24  * IMPORTANT NOTE: GuC submission is currently not supported in i915. The GuC
25  * firmware is moving to an updated submission interface and we plan to
26  * turn submission back on when that lands. The below documentation (and related
27  * code) matches the old submission model and will be updated as part of the
28  * upgrade to the new flow.
29  *
30  * GuC stage descriptor:
31  * During initialization, the driver allocates a static pool of 1024 such
32  * descriptors, and shares them with the GuC. Currently, we only use one
33  * descriptor. This stage descriptor lets the GuC know about the workqueue and
34  * process descriptor. Theoretically, it also lets the GuC know about our HW
35  * contexts (context ID, etc...), but we actually employ a kind of submission
36  * where the GuC uses the LRCA sent via the work item instead. This is called
37  * a "proxy" submission.
38  *
39  * The Scratch registers:
40  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
41  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
42  * triggers an interrupt on the GuC via another register write (0xC4C8).
43  * Firmware writes a success/fail code back to the action register after
44  * processes the request. The kernel driver polls waiting for this update and
45  * then proceeds.
46  *
47  * Work Items:
48  * There are several types of work items that the host may place into a
49  * workqueue, each with its own requirements and limitations. Currently only
50  * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
51  * represents in-order queue. The kernel driver packs ring tail pointer and an
52  * ELSP context descriptor dword into Work Item.
53  * See guc_add_request()
54  *
55  */
56
57 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
58 {
59         return rb_entry(rb, struct i915_priolist, node);
60 }
61
62 static struct guc_stage_desc *__get_stage_desc(struct intel_guc *guc, u32 id)
63 {
64         struct guc_stage_desc *base = guc->stage_desc_pool_vaddr;
65
66         return &base[id];
67 }
68
69 static int guc_workqueue_create(struct intel_guc *guc)
70 {
71         return intel_guc_allocate_and_map_vma(guc, GUC_WQ_SIZE, &guc->workqueue,
72                                               &guc->workqueue_vaddr);
73 }
74
75 static void guc_workqueue_destroy(struct intel_guc *guc)
76 {
77         i915_vma_unpin_and_release(&guc->workqueue, I915_VMA_RELEASE_MAP);
78 }
79
80 /*
81  * Initialise the process descriptor shared with the GuC firmware.
82  */
83 static int guc_proc_desc_create(struct intel_guc *guc)
84 {
85         const u32 size = PAGE_ALIGN(sizeof(struct guc_process_desc));
86
87         return intel_guc_allocate_and_map_vma(guc, size, &guc->proc_desc,
88                                               &guc->proc_desc_vaddr);
89 }
90
91 static void guc_proc_desc_destroy(struct intel_guc *guc)
92 {
93         i915_vma_unpin_and_release(&guc->proc_desc, I915_VMA_RELEASE_MAP);
94 }
95
96 static void guc_proc_desc_init(struct intel_guc *guc)
97 {
98         struct guc_process_desc *desc;
99
100         desc = memset(guc->proc_desc_vaddr, 0, sizeof(*desc));
101
102         /*
103          * XXX: pDoorbell and WQVBaseAddress are pointers in process address
104          * space for ring3 clients (set them as in mmap_ioctl) or kernel
105          * space for kernel clients (map on demand instead? May make debug
106          * easier to have it mapped).
107          */
108         desc->wq_base_addr = 0;
109         desc->db_base_addr = 0;
110
111         desc->wq_size_bytes = GUC_WQ_SIZE;
112         desc->wq_status = WQ_STATUS_ACTIVE;
113         desc->priority = GUC_CLIENT_PRIORITY_KMD_NORMAL;
114 }
115
116 static void guc_proc_desc_fini(struct intel_guc *guc)
117 {
118         memset(guc->proc_desc_vaddr, 0, sizeof(struct guc_process_desc));
119 }
120
121 static int guc_stage_desc_pool_create(struct intel_guc *guc)
122 {
123         u32 size = PAGE_ALIGN(sizeof(struct guc_stage_desc) *
124                               GUC_MAX_STAGE_DESCRIPTORS);
125
126         return intel_guc_allocate_and_map_vma(guc, size, &guc->stage_desc_pool,
127                                               &guc->stage_desc_pool_vaddr);
128 }
129
130 static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
131 {
132         i915_vma_unpin_and_release(&guc->stage_desc_pool, I915_VMA_RELEASE_MAP);
133 }
134
135 /*
136  * Initialise/clear the stage descriptor shared with the GuC firmware.
137  *
138  * This descriptor tells the GuC where (in GGTT space) to find the important
139  * data structures related to work submission (process descriptor, write queue,
140  * etc).
141  */
142 static void guc_stage_desc_init(struct intel_guc *guc)
143 {
144         struct guc_stage_desc *desc;
145
146         /* we only use 1 stage desc, so hardcode it to 0 */
147         desc = __get_stage_desc(guc, 0);
148         memset(desc, 0, sizeof(*desc));
149
150         desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
151                           GUC_STAGE_DESC_ATTR_KERNEL;
152
153         desc->stage_id = 0;
154         desc->priority = GUC_CLIENT_PRIORITY_KMD_NORMAL;
155
156         desc->process_desc = intel_guc_ggtt_offset(guc, guc->proc_desc);
157         desc->wq_addr = intel_guc_ggtt_offset(guc, guc->workqueue);
158         desc->wq_size = GUC_WQ_SIZE;
159 }
160
161 static void guc_stage_desc_fini(struct intel_guc *guc)
162 {
163         struct guc_stage_desc *desc;
164
165         desc = __get_stage_desc(guc, 0);
166         memset(desc, 0, sizeof(*desc));
167 }
168
169 /* Construct a Work Item and append it to the GuC's Work Queue */
170 static void guc_wq_item_append(struct intel_guc *guc,
171                                u32 target_engine, u32 context_desc,
172                                u32 ring_tail, u32 fence_id)
173 {
174         /* wqi_len is in DWords, and does not include the one-word header */
175         const size_t wqi_size = sizeof(struct guc_wq_item);
176         const u32 wqi_len = wqi_size / sizeof(u32) - 1;
177         struct guc_process_desc *desc = guc->proc_desc_vaddr;
178         struct guc_wq_item *wqi;
179         u32 wq_off;
180
181         lockdep_assert_held(&guc->wq_lock);
182
183         /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
184          * should not have the case where structure wqi is across page, neither
185          * wrapped to the beginning. This simplifies the implementation below.
186          *
187          * XXX: if not the case, we need save data to a temp wqi and copy it to
188          * workqueue buffer dw by dw.
189          */
190         BUILD_BUG_ON(wqi_size != 16);
191
192         /* We expect the WQ to be active if we're appending items to it */
193         GEM_BUG_ON(desc->wq_status != WQ_STATUS_ACTIVE);
194
195         /* Free space is guaranteed. */
196         wq_off = READ_ONCE(desc->tail);
197         GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
198                               GUC_WQ_SIZE) < wqi_size);
199         GEM_BUG_ON(wq_off & (wqi_size - 1));
200
201         wqi = guc->workqueue_vaddr + wq_off;
202
203         /* Now fill in the 4-word work queue item */
204         wqi->header = WQ_TYPE_INORDER |
205                       (wqi_len << WQ_LEN_SHIFT) |
206                       (target_engine << WQ_TARGET_SHIFT) |
207                       WQ_NO_WCFLUSH_WAIT;
208         wqi->context_desc = context_desc;
209         wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
210         GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
211         wqi->fence_id = fence_id;
212
213         /* Make the update visible to GuC */
214         WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
215 }
216
217 static void guc_add_request(struct intel_guc *guc, struct i915_request *rq)
218 {
219         struct intel_engine_cs *engine = rq->engine;
220         u32 ctx_desc = rq->context->lrc.ccid;
221         u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);
222
223         guc_wq_item_append(guc, engine->guc_id, ctx_desc,
224                            ring_tail, rq->fence.seqno);
225 }
226
227 /*
228  * When we're doing submissions using regular execlists backend, writing to
229  * ELSP from CPU side is enough to make sure that writes to ringbuffer pages
230  * pinned in mappable aperture portion of GGTT are visible to command streamer.
231  * Writes done by GuC on our behalf are not guaranteeing such ordering,
232  * therefore, to ensure the flush, we're issuing a POSTING READ.
233  */
234 static void flush_ggtt_writes(struct i915_vma *vma)
235 {
236         if (i915_vma_is_map_and_fenceable(vma))
237                 intel_uncore_posting_read_fw(vma->vm->gt->uncore,
238                                              GUC_STATUS);
239 }
240
241 static void guc_submit(struct intel_engine_cs *engine,
242                        struct i915_request **out,
243                        struct i915_request **end)
244 {
245         struct intel_guc *guc = &engine->gt->uc.guc;
246
247         spin_lock(&guc->wq_lock);
248
249         do {
250                 struct i915_request *rq = *out++;
251
252                 flush_ggtt_writes(rq->ring->vma);
253                 guc_add_request(guc, rq);
254         } while (out != end);
255
256         spin_unlock(&guc->wq_lock);
257 }
258
259 static inline int rq_prio(const struct i915_request *rq)
260 {
261         return rq->sched.attr.priority;
262 }
263
264 static struct i915_request *schedule_in(struct i915_request *rq, int idx)
265 {
266         trace_i915_request_in(rq, idx);
267
268         /*
269          * Currently we are not tracking the rq->context being inflight
270          * (ce->inflight = rq->engine). It is only used by the execlists
271          * backend at the moment, a similar counting strategy would be
272          * required if we generalise the inflight tracking.
273          */
274
275         __intel_gt_pm_get(rq->engine->gt);
276         return i915_request_get(rq);
277 }
278
279 static void schedule_out(struct i915_request *rq)
280 {
281         trace_i915_request_out(rq);
282
283         intel_gt_pm_put_async(rq->engine->gt);
284         i915_request_put(rq);
285 }
286
287 static void __guc_dequeue(struct intel_engine_cs *engine)
288 {
289         struct intel_engine_execlists * const execlists = &engine->execlists;
290         struct i915_request **first = execlists->inflight;
291         struct i915_request ** const last_port = first + execlists->port_mask;
292         struct i915_request *last = first[0];
293         struct i915_request **port;
294         bool submit = false;
295         struct rb_node *rb;
296
297         lockdep_assert_held(&engine->active.lock);
298
299         if (last) {
300                 if (*++first)
301                         return;
302
303                 last = NULL;
304         }
305
306         /*
307          * We write directly into the execlists->inflight queue and don't use
308          * the execlists->pending queue, as we don't have a distinct switch
309          * event.
310          */
311         port = first;
312         while ((rb = rb_first_cached(&execlists->queue))) {
313                 struct i915_priolist *p = to_priolist(rb);
314                 struct i915_request *rq, *rn;
315                 int i;
316
317                 priolist_for_each_request_consume(rq, rn, p, i) {
318                         if (last && rq->context != last->context) {
319                                 if (port == last_port)
320                                         goto done;
321
322                                 *port = schedule_in(last,
323                                                     port - execlists->inflight);
324                                 port++;
325                         }
326
327                         list_del_init(&rq->sched.link);
328                         __i915_request_submit(rq);
329                         submit = true;
330                         last = rq;
331                 }
332
333                 rb_erase_cached(&p->node, &execlists->queue);
334                 i915_priolist_free(p);
335         }
336 done:
337         execlists->queue_priority_hint =
338                 rb ? to_priolist(rb)->priority : INT_MIN;
339         if (submit) {
340                 *port = schedule_in(last, port - execlists->inflight);
341                 *++port = NULL;
342                 guc_submit(engine, first, port);
343         }
344         execlists->active = execlists->inflight;
345 }
346
347 static void guc_submission_tasklet(unsigned long data)
348 {
349         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
350         struct intel_engine_execlists * const execlists = &engine->execlists;
351         struct i915_request **port, *rq;
352         unsigned long flags;
353
354         spin_lock_irqsave(&engine->active.lock, flags);
355
356         for (port = execlists->inflight; (rq = *port); port++) {
357                 if (!i915_request_completed(rq))
358                         break;
359
360                 schedule_out(rq);
361         }
362         if (port != execlists->inflight) {
363                 int idx = port - execlists->inflight;
364                 int rem = ARRAY_SIZE(execlists->inflight) - idx;
365                 memmove(execlists->inflight, port, rem * sizeof(*port));
366         }
367
368         __guc_dequeue(engine);
369
370         spin_unlock_irqrestore(&engine->active.lock, flags);
371 }
372
373 static void guc_reset_prepare(struct intel_engine_cs *engine)
374 {
375         struct intel_engine_execlists * const execlists = &engine->execlists;
376
377         ENGINE_TRACE(engine, "\n");
378
379         /*
380          * Prevent request submission to the hardware until we have
381          * completed the reset in i915_gem_reset_finish(). If a request
382          * is completed by one engine, it may then queue a request
383          * to a second via its execlists->tasklet *just* as we are
384          * calling engine->init_hw() and also writing the ELSP.
385          * Turning off the execlists->tasklet until the reset is over
386          * prevents the race.
387          */
388         __tasklet_disable_sync_once(&execlists->tasklet);
389 }
390
391 static void
392 cancel_port_requests(struct intel_engine_execlists * const execlists)
393 {
394         struct i915_request * const *port, *rq;
395
396         /* Note we are only using the inflight and not the pending queue */
397
398         for (port = execlists->active; (rq = *port); port++)
399                 schedule_out(rq);
400         execlists->active =
401                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
402 }
403
404 static void guc_reset_rewind(struct intel_engine_cs *engine, bool stalled)
405 {
406         struct intel_engine_execlists * const execlists = &engine->execlists;
407         struct i915_request *rq;
408         unsigned long flags;
409
410         spin_lock_irqsave(&engine->active.lock, flags);
411
412         cancel_port_requests(execlists);
413
414         /* Push back any incomplete requests for replay after the reset. */
415         rq = execlists_unwind_incomplete_requests(execlists);
416         if (!rq)
417                 goto out_unlock;
418
419         if (!i915_request_started(rq))
420                 stalled = false;
421
422         __i915_request_reset(rq, stalled);
423         intel_lr_context_reset(engine, rq->context, rq->head, stalled);
424
425 out_unlock:
426         spin_unlock_irqrestore(&engine->active.lock, flags);
427 }
428
429 static void guc_reset_cancel(struct intel_engine_cs *engine)
430 {
431         struct intel_engine_execlists * const execlists = &engine->execlists;
432         struct i915_request *rq, *rn;
433         struct rb_node *rb;
434         unsigned long flags;
435
436         ENGINE_TRACE(engine, "\n");
437
438         /*
439          * Before we call engine->cancel_requests(), we should have exclusive
440          * access to the submission state. This is arranged for us by the
441          * caller disabling the interrupt generation, the tasklet and other
442          * threads that may then access the same state, giving us a free hand
443          * to reset state. However, we still need to let lockdep be aware that
444          * we know this state may be accessed in hardirq context, so we
445          * disable the irq around this manipulation and we want to keep
446          * the spinlock focused on its duties and not accidentally conflate
447          * coverage to the submission's irq state. (Similarly, although we
448          * shouldn't need to disable irq around the manipulation of the
449          * submission's irq state, we also wish to remind ourselves that
450          * it is irq state.)
451          */
452         spin_lock_irqsave(&engine->active.lock, flags);
453
454         /* Cancel the requests on the HW and clear the ELSP tracker. */
455         cancel_port_requests(execlists);
456
457         /* Mark all executing requests as skipped. */
458         list_for_each_entry(rq, &engine->active.requests, sched.link) {
459                 i915_request_set_error_once(rq, -EIO);
460                 i915_request_mark_complete(rq);
461         }
462
463         /* Flush the queued requests to the timeline list (for retiring). */
464         while ((rb = rb_first_cached(&execlists->queue))) {
465                 struct i915_priolist *p = to_priolist(rb);
466                 int i;
467
468                 priolist_for_each_request_consume(rq, rn, p, i) {
469                         list_del_init(&rq->sched.link);
470                         __i915_request_submit(rq);
471                         dma_fence_set_error(&rq->fence, -EIO);
472                         i915_request_mark_complete(rq);
473                 }
474
475                 rb_erase_cached(&p->node, &execlists->queue);
476                 i915_priolist_free(p);
477         }
478
479         /* Remaining _unready_ requests will be nop'ed when submitted */
480
481         execlists->queue_priority_hint = INT_MIN;
482         execlists->queue = RB_ROOT_CACHED;
483
484         spin_unlock_irqrestore(&engine->active.lock, flags);
485 }
486
487 static void guc_reset_finish(struct intel_engine_cs *engine)
488 {
489         struct intel_engine_execlists * const execlists = &engine->execlists;
490
491         if (__tasklet_enable(&execlists->tasklet))
492                 /* And kick in case we missed a new request submission. */
493                 tasklet_hi_schedule(&execlists->tasklet);
494
495         ENGINE_TRACE(engine, "depth->%d\n",
496                      atomic_read(&execlists->tasklet.count));
497 }
498
499 /*
500  * Everything below here is concerned with setup & teardown, and is
501  * therefore not part of the somewhat time-critical batch-submission
502  * path of guc_submit() above.
503  */
504
505 /*
506  * Set up the memory resources to be shared with the GuC (via the GGTT)
507  * at firmware loading time.
508  */
509 int intel_guc_submission_init(struct intel_guc *guc)
510 {
511         int ret;
512
513         if (guc->stage_desc_pool)
514                 return 0;
515
516         ret = guc_stage_desc_pool_create(guc);
517         if (ret)
518                 return ret;
519         /*
520          * Keep static analysers happy, let them know that we allocated the
521          * vma after testing that it didn't exist earlier.
522          */
523         GEM_BUG_ON(!guc->stage_desc_pool);
524
525         ret = guc_workqueue_create(guc);
526         if (ret)
527                 goto err_pool;
528
529         ret = guc_proc_desc_create(guc);
530         if (ret)
531                 goto err_workqueue;
532
533         spin_lock_init(&guc->wq_lock);
534
535         return 0;
536
537 err_workqueue:
538         guc_workqueue_destroy(guc);
539 err_pool:
540         guc_stage_desc_pool_destroy(guc);
541         return ret;
542 }
543
544 void intel_guc_submission_fini(struct intel_guc *guc)
545 {
546         if (guc->stage_desc_pool) {
547                 guc_proc_desc_destroy(guc);
548                 guc_workqueue_destroy(guc);
549                 guc_stage_desc_pool_destroy(guc);
550         }
551 }
552
553 static void guc_interrupts_capture(struct intel_gt *gt)
554 {
555         struct intel_uncore *uncore = gt->uncore;
556         u32 irqs = GT_CONTEXT_SWITCH_INTERRUPT;
557         u32 dmask = irqs << 16 | irqs;
558
559         GEM_BUG_ON(INTEL_GEN(gt->i915) < 11);
560
561         /* Don't handle the ctx switch interrupt in GuC submission mode */
562         intel_uncore_rmw(uncore, GEN11_RENDER_COPY_INTR_ENABLE, dmask, 0);
563         intel_uncore_rmw(uncore, GEN11_VCS_VECS_INTR_ENABLE, dmask, 0);
564 }
565
566 static void guc_interrupts_release(struct intel_gt *gt)
567 {
568         struct intel_uncore *uncore = gt->uncore;
569         u32 irqs = GT_CONTEXT_SWITCH_INTERRUPT;
570         u32 dmask = irqs << 16 | irqs;
571
572         GEM_BUG_ON(INTEL_GEN(gt->i915) < 11);
573
574         /* Handle ctx switch interrupts again */
575         intel_uncore_rmw(uncore, GEN11_RENDER_COPY_INTR_ENABLE, 0, dmask);
576         intel_uncore_rmw(uncore, GEN11_VCS_VECS_INTR_ENABLE, 0, dmask);
577 }
578
579 static void guc_set_default_submission(struct intel_engine_cs *engine)
580 {
581         /*
582          * We inherit a bunch of functions from execlists that we'd like
583          * to keep using:
584          *
585          *    engine->submit_request = execlists_submit_request;
586          *    engine->cancel_requests = execlists_cancel_requests;
587          *    engine->schedule = execlists_schedule;
588          *
589          * But we need to override the actual submission backend in order
590          * to talk to the GuC.
591          */
592         intel_execlists_set_default_submission(engine);
593
594         engine->execlists.tasklet.func = guc_submission_tasklet;
595
596         /* do not use execlists park/unpark */
597         engine->park = engine->unpark = NULL;
598
599         engine->reset.prepare = guc_reset_prepare;
600         engine->reset.rewind = guc_reset_rewind;
601         engine->reset.cancel = guc_reset_cancel;
602         engine->reset.finish = guc_reset_finish;
603
604         engine->flags &= ~I915_ENGINE_SUPPORTS_STATS;
605         engine->flags |= I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
606
607         /*
608          * For the breadcrumb irq to work we need the interrupts to stay
609          * enabled. However, on all platforms on which we'll have support for
610          * GuC submission we don't allow disabling the interrupts at runtime, so
611          * we're always safe with the current flow.
612          */
613         GEM_BUG_ON(engine->irq_enable || engine->irq_disable);
614 }
615
616 void intel_guc_submission_enable(struct intel_guc *guc)
617 {
618         struct intel_gt *gt = guc_to_gt(guc);
619         struct intel_engine_cs *engine;
620         enum intel_engine_id id;
621
622         /*
623          * We're using GuC work items for submitting work through GuC. Since
624          * we're coalescing multiple requests from a single context into a
625          * single work item prior to assigning it to execlist_port, we can
626          * never have more work items than the total number of ports (for all
627          * engines). The GuC firmware is controlling the HEAD of work queue,
628          * and it is guaranteed that it will remove the work item from the
629          * queue before our request is completed.
630          */
631         BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.inflight) *
632                      sizeof(struct guc_wq_item) *
633                      I915_NUM_ENGINES > GUC_WQ_SIZE);
634
635         guc_proc_desc_init(guc);
636         guc_stage_desc_init(guc);
637
638         /* Take over from manual control of ELSP (execlists) */
639         guc_interrupts_capture(gt);
640
641         for_each_engine(engine, gt, id) {
642                 engine->set_default_submission = guc_set_default_submission;
643                 engine->set_default_submission(engine);
644         }
645 }
646
647 void intel_guc_submission_disable(struct intel_guc *guc)
648 {
649         struct intel_gt *gt = guc_to_gt(guc);
650
651         GEM_BUG_ON(gt->awake); /* GT should be parked first */
652
653         /* Note: By the time we're here, GuC may have already been reset */
654
655         guc_interrupts_release(gt);
656
657         guc_stage_desc_fini(guc);
658         guc_proc_desc_fini(guc);
659 }
660
661 static bool __guc_submission_selected(struct intel_guc *guc)
662 {
663         struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
664
665         if (!intel_guc_submission_is_supported(guc))
666                 return false;
667
668         return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
669 }
670
671 void intel_guc_submission_init_early(struct intel_guc *guc)
672 {
673         guc->submission_selected = __guc_submission_selected(guc);
674 }
675
676 bool intel_engine_in_guc_submission_mode(const struct intel_engine_cs *engine)
677 {
678         return engine->set_default_submission == guc_set_default_submission;
679 }