Mention branches and keyring.
[releases.git] / gt / intel_ggtt_fencing.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include "i915_drv.h"
25 #include "i915_scatterlist.h"
26 #include "i915_pvinfo.h"
27 #include "i915_vgpu.h"
28
29 /**
30  * DOC: fence register handling
31  *
32  * Important to avoid confusions: "fences" in the i915 driver are not execution
33  * fences used to track command completion but hardware detiler objects which
34  * wrap a given range of the global GTT. Each platform has only a fairly limited
35  * set of these objects.
36  *
37  * Fences are used to detile GTT memory mappings. They're also connected to the
38  * hardware frontbuffer render tracking and hence interact with frontbuffer
39  * compression. Furthermore on older platforms fences are required for tiled
40  * objects used by the display engine. They can also be used by the render
41  * engine - they're required for blitter commands and are optional for render
42  * commands. But on gen4+ both display (with the exception of fbc) and rendering
43  * have their own tiling state bits and don't need fences.
44  *
45  * Also note that fences only support X and Y tiling and hence can't be used for
46  * the fancier new tiling formats like W, Ys and Yf.
47  *
48  * Finally note that because fences are such a restricted resource they're
49  * dynamically associated with objects. Furthermore fence state is committed to
50  * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
51  * explicitly call i915_gem_object_get_fence() to synchronize fencing status
52  * for cpu access. Also note that some code wants an unfenced view, for those
53  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
54  *
55  * Internally these functions will synchronize with userspace access by removing
56  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
57  */
58
59 #define pipelined 0
60
61 static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence)
62 {
63         return fence->ggtt->vm.i915;
64 }
65
66 static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence)
67 {
68         return fence->ggtt->vm.gt->uncore;
69 }
70
71 static void i965_write_fence_reg(struct i915_fence_reg *fence)
72 {
73         i915_reg_t fence_reg_lo, fence_reg_hi;
74         int fence_pitch_shift;
75         u64 val;
76
77         if (INTEL_GEN(fence_to_i915(fence)) >= 6) {
78                 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
79                 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
80                 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
81
82         } else {
83                 fence_reg_lo = FENCE_REG_965_LO(fence->id);
84                 fence_reg_hi = FENCE_REG_965_HI(fence->id);
85                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
86         }
87
88         val = 0;
89         if (fence->tiling) {
90                 unsigned int stride = fence->stride;
91
92                 GEM_BUG_ON(!IS_ALIGNED(stride, 128));
93
94                 val = fence->start + fence->size - I965_FENCE_PAGE;
95                 val <<= 32;
96                 val |= fence->start;
97                 val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
98                 if (fence->tiling == I915_TILING_Y)
99                         val |= BIT(I965_FENCE_TILING_Y_SHIFT);
100                 val |= I965_FENCE_REG_VALID;
101         }
102
103         if (!pipelined) {
104                 struct intel_uncore *uncore = fence_to_uncore(fence);
105
106                 /*
107                  * To w/a incoherency with non-atomic 64-bit register updates,
108                  * we split the 64-bit update into two 32-bit writes. In order
109                  * for a partial fence not to be evaluated between writes, we
110                  * precede the update with write to turn off the fence register,
111                  * and only enable the fence as the last step.
112                  *
113                  * For extra levels of paranoia, we make sure each step lands
114                  * before applying the next step.
115                  */
116                 intel_uncore_write_fw(uncore, fence_reg_lo, 0);
117                 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
118
119                 intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val));
120                 intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val));
121                 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
122         }
123 }
124
125 static void i915_write_fence_reg(struct i915_fence_reg *fence)
126 {
127         u32 val;
128
129         val = 0;
130         if (fence->tiling) {
131                 unsigned int stride = fence->stride;
132                 unsigned int tiling = fence->tiling;
133                 bool is_y_tiled = tiling == I915_TILING_Y;
134
135                 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence)))
136                         stride /= 128;
137                 else
138                         stride /= 512;
139                 GEM_BUG_ON(!is_power_of_2(stride));
140
141                 val = fence->start;
142                 if (is_y_tiled)
143                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
144                 val |= I915_FENCE_SIZE_BITS(fence->size);
145                 val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
146
147                 val |= I830_FENCE_REG_VALID;
148         }
149
150         if (!pipelined) {
151                 struct intel_uncore *uncore = fence_to_uncore(fence);
152                 i915_reg_t reg = FENCE_REG(fence->id);
153
154                 intel_uncore_write_fw(uncore, reg, val);
155                 intel_uncore_posting_read_fw(uncore, reg);
156         }
157 }
158
159 static void i830_write_fence_reg(struct i915_fence_reg *fence)
160 {
161         u32 val;
162
163         val = 0;
164         if (fence->tiling) {
165                 unsigned int stride = fence->stride;
166
167                 val = fence->start;
168                 if (fence->tiling == I915_TILING_Y)
169                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
170                 val |= I830_FENCE_SIZE_BITS(fence->size);
171                 val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
172                 val |= I830_FENCE_REG_VALID;
173         }
174
175         if (!pipelined) {
176                 struct intel_uncore *uncore = fence_to_uncore(fence);
177                 i915_reg_t reg = FENCE_REG(fence->id);
178
179                 intel_uncore_write_fw(uncore, reg, val);
180                 intel_uncore_posting_read_fw(uncore, reg);
181         }
182 }
183
184 static void fence_write(struct i915_fence_reg *fence)
185 {
186         struct drm_i915_private *i915 = fence_to_i915(fence);
187
188         /*
189          * Previous access through the fence register is marshalled by
190          * the mb() inside the fault handlers (i915_gem_release_mmaps)
191          * and explicitly managed for internal users.
192          */
193
194         if (IS_GEN(i915, 2))
195                 i830_write_fence_reg(fence);
196         else if (IS_GEN(i915, 3))
197                 i915_write_fence_reg(fence);
198         else
199                 i965_write_fence_reg(fence);
200
201         /*
202          * Access through the fenced region afterwards is
203          * ordered by the posting reads whilst writing the registers.
204          */
205 }
206
207 static bool gpu_uses_fence_registers(struct i915_fence_reg *fence)
208 {
209         return INTEL_GEN(fence_to_i915(fence)) < 4;
210 }
211
212 static int fence_update(struct i915_fence_reg *fence,
213                         struct i915_vma *vma)
214 {
215         struct i915_ggtt *ggtt = fence->ggtt;
216         struct intel_uncore *uncore = fence_to_uncore(fence);
217         intel_wakeref_t wakeref;
218         struct i915_vma *old;
219         int ret;
220
221         fence->tiling = 0;
222         if (vma) {
223                 GEM_BUG_ON(!i915_gem_object_get_stride(vma->obj) ||
224                            !i915_gem_object_get_tiling(vma->obj));
225
226                 if (!i915_vma_is_map_and_fenceable(vma))
227                         return -EINVAL;
228
229                 if (gpu_uses_fence_registers(fence)) {
230                         /* implicit 'unfenced' GPU blits */
231                         ret = i915_vma_sync(vma);
232                         if (ret)
233                                 return ret;
234                 }
235
236                 fence->start = vma->node.start;
237                 fence->size = vma->fence_size;
238                 fence->stride = i915_gem_object_get_stride(vma->obj);
239                 fence->tiling = i915_gem_object_get_tiling(vma->obj);
240         }
241         WRITE_ONCE(fence->dirty, false);
242
243         old = xchg(&fence->vma, NULL);
244         if (old) {
245                 /* XXX Ideally we would move the waiting to outside the mutex */
246                 ret = i915_active_wait(&fence->active);
247                 if (ret) {
248                         fence->vma = old;
249                         return ret;
250                 }
251
252                 i915_vma_flush_writes(old);
253
254                 /*
255                  * Ensure that all userspace CPU access is completed before
256                  * stealing the fence.
257                  */
258                 if (old != vma) {
259                         GEM_BUG_ON(old->fence != fence);
260                         i915_vma_revoke_mmap(old);
261                         old->fence = NULL;
262                 }
263
264                 list_move(&fence->link, &ggtt->fence_list);
265         }
266
267         /*
268          * We only need to update the register itself if the device is awake.
269          * If the device is currently powered down, we will defer the write
270          * to the runtime resume, see intel_ggtt_restore_fences().
271          *
272          * This only works for removing the fence register, on acquisition
273          * the caller must hold the rpm wakeref. The fence register must
274          * be cleared before we can use any other fences to ensure that
275          * the new fences do not overlap the elided clears, confusing HW.
276          */
277         wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm);
278         if (!wakeref) {
279                 GEM_BUG_ON(vma);
280                 return 0;
281         }
282
283         WRITE_ONCE(fence->vma, vma);
284         fence_write(fence);
285
286         if (vma) {
287                 vma->fence = fence;
288                 list_move_tail(&fence->link, &ggtt->fence_list);
289         }
290
291         intel_runtime_pm_put(uncore->rpm, wakeref);
292         return 0;
293 }
294
295 /**
296  * i915_vma_revoke_fence - force-remove fence for a VMA
297  * @vma: vma to map linearly (not through a fence reg)
298  *
299  * This function force-removes any fence from the given object, which is useful
300  * if the kernel wants to do untiled GTT access.
301  */
302 void i915_vma_revoke_fence(struct i915_vma *vma)
303 {
304         struct i915_fence_reg *fence = vma->fence;
305         intel_wakeref_t wakeref;
306
307         lockdep_assert_held(&vma->vm->mutex);
308         if (!fence)
309                 return;
310
311         GEM_BUG_ON(fence->vma != vma);
312         GEM_BUG_ON(!i915_active_is_idle(&fence->active));
313         GEM_BUG_ON(atomic_read(&fence->pin_count));
314
315         fence->tiling = 0;
316         WRITE_ONCE(fence->vma, NULL);
317         vma->fence = NULL;
318
319         /*
320          * Skip the write to HW if and only if the device is currently
321          * suspended.
322          *
323          * If the driver does not currently hold a wakeref (if_in_use == 0),
324          * the device may currently be runtime suspended, or it may be woken
325          * up before the suspend takes place. If the device is not suspended
326          * (powered down) and we skip clearing the fence register, the HW is
327          * left in an undefined state where we may end up with multiple
328          * registers overlapping.
329          */
330         with_intel_runtime_pm_if_active(fence_to_uncore(fence)->rpm, wakeref)
331                 fence_write(fence);
332 }
333
334 static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt)
335 {
336         struct i915_fence_reg *fence;
337
338         list_for_each_entry(fence, &ggtt->fence_list, link) {
339                 GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
340
341                 if (atomic_read(&fence->pin_count))
342                         continue;
343
344                 return fence;
345         }
346
347         /* Wait for completion of pending flips which consume fences */
348         if (intel_has_pending_fb_unpin(ggtt->vm.i915))
349                 return ERR_PTR(-EAGAIN);
350
351         return ERR_PTR(-ENOBUFS);
352 }
353
354 int __i915_vma_pin_fence(struct i915_vma *vma)
355 {
356         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
357         struct i915_fence_reg *fence;
358         struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
359         int err;
360
361         lockdep_assert_held(&vma->vm->mutex);
362
363         /* Just update our place in the LRU if our fence is getting reused. */
364         if (vma->fence) {
365                 fence = vma->fence;
366                 GEM_BUG_ON(fence->vma != vma);
367                 atomic_inc(&fence->pin_count);
368                 if (!fence->dirty) {
369                         list_move_tail(&fence->link, &ggtt->fence_list);
370                         return 0;
371                 }
372         } else if (set) {
373                 fence = fence_find(ggtt);
374                 if (IS_ERR(fence))
375                         return PTR_ERR(fence);
376
377                 GEM_BUG_ON(atomic_read(&fence->pin_count));
378                 atomic_inc(&fence->pin_count);
379         } else {
380                 return 0;
381         }
382
383         err = fence_update(fence, set);
384         if (err)
385                 goto out_unpin;
386
387         GEM_BUG_ON(fence->vma != set);
388         GEM_BUG_ON(vma->fence != (set ? fence : NULL));
389
390         if (set)
391                 return 0;
392
393 out_unpin:
394         atomic_dec(&fence->pin_count);
395         return err;
396 }
397
398 /**
399  * i915_vma_pin_fence - set up fencing for a vma
400  * @vma: vma to map through a fence reg
401  *
402  * When mapping objects through the GTT, userspace wants to be able to write
403  * to them without having to worry about swizzling if the object is tiled.
404  * This function walks the fence regs looking for a free one for @obj,
405  * stealing one if it can't find any.
406  *
407  * It then sets up the reg based on the object's properties: address, pitch
408  * and tiling format.
409  *
410  * For an untiled surface, this removes any existing fence.
411  *
412  * Returns:
413  *
414  * 0 on success, negative error code on failure.
415  */
416 int i915_vma_pin_fence(struct i915_vma *vma)
417 {
418         int err;
419
420         if (!vma->fence && !i915_gem_object_is_tiled(vma->obj))
421                 return 0;
422
423         /*
424          * Note that we revoke fences on runtime suspend. Therefore the user
425          * must keep the device awake whilst using the fence.
426          */
427         assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm);
428         GEM_BUG_ON(!i915_vma_is_pinned(vma));
429         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
430
431         err = mutex_lock_interruptible(&vma->vm->mutex);
432         if (err)
433                 return err;
434
435         err = __i915_vma_pin_fence(vma);
436         mutex_unlock(&vma->vm->mutex);
437
438         return err;
439 }
440
441 /**
442  * i915_reserve_fence - Reserve a fence for vGPU
443  * @ggtt: Global GTT
444  *
445  * This function walks the fence regs looking for a free one and remove
446  * it from the fence_list. It is used to reserve fence for vGPU to use.
447  */
448 struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt)
449 {
450         struct i915_fence_reg *fence;
451         int count;
452         int ret;
453
454         lockdep_assert_held(&ggtt->vm.mutex);
455
456         /* Keep at least one fence available for the display engine. */
457         count = 0;
458         list_for_each_entry(fence, &ggtt->fence_list, link)
459                 count += !atomic_read(&fence->pin_count);
460         if (count <= 1)
461                 return ERR_PTR(-ENOSPC);
462
463         fence = fence_find(ggtt);
464         if (IS_ERR(fence))
465                 return fence;
466
467         if (fence->vma) {
468                 /* Force-remove fence from VMA */
469                 ret = fence_update(fence, NULL);
470                 if (ret)
471                         return ERR_PTR(ret);
472         }
473
474         list_del(&fence->link);
475
476         return fence;
477 }
478
479 /**
480  * i915_unreserve_fence - Reclaim a reserved fence
481  * @fence: the fence reg
482  *
483  * This function add a reserved fence register from vGPU to the fence_list.
484  */
485 void i915_unreserve_fence(struct i915_fence_reg *fence)
486 {
487         struct i915_ggtt *ggtt = fence->ggtt;
488
489         lockdep_assert_held(&ggtt->vm.mutex);
490
491         list_add(&fence->link, &ggtt->fence_list);
492 }
493
494 /**
495  * intel_ggtt_restore_fences - restore fence state
496  * @ggtt: Global GTT
497  *
498  * Restore the hw fence state to match the software tracking again, to be called
499  * after a gpu reset and on resume. Note that on runtime suspend we only cancel
500  * the fences, to be reacquired by the user later.
501  */
502 void intel_ggtt_restore_fences(struct i915_ggtt *ggtt)
503 {
504         int i;
505
506         for (i = 0; i < ggtt->num_fences; i++)
507                 fence_write(&ggtt->fence_regs[i]);
508 }
509
510 /**
511  * DOC: tiling swizzling details
512  *
513  * The idea behind tiling is to increase cache hit rates by rearranging
514  * pixel data so that a group of pixel accesses are in the same cacheline.
515  * Performance improvement from doing this on the back/depth buffer are on
516  * the order of 30%.
517  *
518  * Intel architectures make this somewhat more complicated, though, by
519  * adjustments made to addressing of data when the memory is in interleaved
520  * mode (matched pairs of DIMMS) to improve memory bandwidth.
521  * For interleaved memory, the CPU sends every sequential 64 bytes
522  * to an alternate memory channel so it can get the bandwidth from both.
523  *
524  * The GPU also rearranges its accesses for increased bandwidth to interleaved
525  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
526  * it does it a little differently, since one walks addresses not just in the
527  * X direction but also Y.  So, along with alternating channels when bit
528  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
529  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
530  * are common to both the 915 and 965-class hardware.
531  *
532  * The CPU also sometimes XORs in higher bits as well, to improve
533  * bandwidth doing strided access like we do so frequently in graphics.  This
534  * is called "Channel XOR Randomization" in the MCH documentation.  The result
535  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
536  * decode.
537  *
538  * All of this bit 6 XORing has an effect on our memory management,
539  * as we need to make sure that the 3d driver can correctly address object
540  * contents.
541  *
542  * If we don't have interleaved memory, all tiling is safe and no swizzling is
543  * required.
544  *
545  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
546  * 17 is not just a page offset, so as we page an object out and back in,
547  * individual pages in it will have different bit 17 addresses, resulting in
548  * each 64 bytes being swapped with its neighbor!
549  *
550  * Otherwise, if interleaved, we have to tell the 3d driver what the address
551  * swizzling it needs to do is, since it's writing with the CPU to the pages
552  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
553  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
554  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
555  * to match what the GPU expects.
556  */
557
558 /**
559  * detect_bit_6_swizzle - detect bit 6 swizzling pattern
560  * @ggtt: Global GGTT
561  *
562  * Detects bit 6 swizzling of address lookup between IGD access and CPU
563  * access through main memory.
564  */
565 static void detect_bit_6_swizzle(struct i915_ggtt *ggtt)
566 {
567         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
568         struct drm_i915_private *i915 = ggtt->vm.i915;
569         u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
570         u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
571
572         if (INTEL_GEN(i915) >= 8 || IS_VALLEYVIEW(i915)) {
573                 /*
574                  * On BDW+, swizzling is not used. We leave the CPU memory
575                  * controller in charge of optimizing memory accesses without
576                  * the extra address manipulation GPU side.
577                  *
578                  * VLV and CHV don't have GPU swizzling.
579                  */
580                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
581                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
582         } else if (INTEL_GEN(i915) >= 6) {
583                 if (i915->preserve_bios_swizzle) {
584                         if (intel_uncore_read(uncore, DISP_ARB_CTL) &
585                             DISP_TILE_SURFACE_SWIZZLING) {
586                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
587                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
588                         } else {
589                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
590                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
591                         }
592                 } else {
593                         u32 dimm_c0, dimm_c1;
594                         dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0);
595                         dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1);
596                         dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
597                         dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
598                         /*
599                          * Enable swizzling when the channels are populated
600                          * with identically sized dimms. We don't need to check
601                          * the 3rd channel because no cpu with gpu attached
602                          * ships in that configuration. Also, swizzling only
603                          * makes sense for 2 channels anyway.
604                          */
605                         if (dimm_c0 == dimm_c1) {
606                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
607                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
608                         } else {
609                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
610                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
611                         }
612                 }
613         } else if (IS_GEN(i915, 5)) {
614                 /*
615                  * On Ironlake whatever DRAM config, GPU always do
616                  * same swizzling setup.
617                  */
618                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
619                 swizzle_y = I915_BIT_6_SWIZZLE_9;
620         } else if (IS_GEN(i915, 2)) {
621                 /*
622                  * As far as we know, the 865 doesn't have these bit 6
623                  * swizzling issues.
624                  */
625                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
626                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
627         } else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) {
628                 /*
629                  * The 965, G33, and newer, have a very flexible memory
630                  * configuration.  It will enable dual-channel mode
631                  * (interleaving) on as much memory as it can, and the GPU
632                  * will additionally sometimes enable different bit 6
633                  * swizzling for tiled objects from the CPU.
634                  *
635                  * Here's what I found on the G965:
636                  *    slot fill         memory size  swizzling
637                  * 0A   0B   1A   1B    1-ch   2-ch
638                  * 512  0    0    0     512    0     O
639                  * 512  0    512  0     16     1008  X
640                  * 512  0    0    512   16     1008  X
641                  * 0    512  0    512   16     1008  X
642                  * 1024 1024 1024 0     2048   1024  O
643                  *
644                  * We could probably detect this based on either the DRB
645                  * matching, which was the case for the swizzling required in
646                  * the table above, or from the 1-ch value being less than
647                  * the minimum size of a rank.
648                  *
649                  * Reports indicate that the swizzling actually
650                  * varies depending upon page placement inside the
651                  * channels, i.e. we see swizzled pages where the
652                  * banks of memory are paired and unswizzled on the
653                  * uneven portion, so leave that as unknown.
654                  */
655                 if (intel_uncore_read16(uncore, C0DRB3) ==
656                     intel_uncore_read16(uncore, C1DRB3)) {
657                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
658                         swizzle_y = I915_BIT_6_SWIZZLE_9;
659                 }
660         } else {
661                 u32 dcc = intel_uncore_read(uncore, DCC);
662
663                 /*
664                  * On 9xx chipsets, channel interleave by the CPU is
665                  * determined by DCC.  For single-channel, neither the CPU
666                  * nor the GPU do swizzling.  For dual channel interleaved,
667                  * the GPU's interleave is bit 9 and 10 for X tiled, and bit
668                  * 9 for Y tiled.  The CPU's interleave is independent, and
669                  * can be based on either bit 11 (haven't seen this yet) or
670                  * bit 17 (common).
671                  */
672                 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
673                 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
674                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
675                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
676                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
677                         break;
678                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
679                         if (dcc & DCC_CHANNEL_XOR_DISABLE) {
680                                 /*
681                                  * This is the base swizzling by the GPU for
682                                  * tiled buffers.
683                                  */
684                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
685                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
686                         } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
687                                 /* Bit 11 swizzling by the CPU in addition. */
688                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
689                                 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
690                         } else {
691                                 /* Bit 17 swizzling by the CPU in addition. */
692                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
693                                 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
694                         }
695                         break;
696                 }
697
698                 /* check for L-shaped memory aka modified enhanced addressing */
699                 if (IS_GEN(i915, 4) &&
700                     !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
701                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
702                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
703                 }
704
705                 if (dcc == 0xffffffff) {
706                         drm_err(&i915->drm, "Couldn't read from MCHBAR.  "
707                                   "Disabling tiling.\n");
708                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
709                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
710                 }
711         }
712
713         if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
714             swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
715                 /*
716                  * Userspace likes to explode if it sees unknown swizzling,
717                  * so lie. We will finish the lie when reporting through
718                  * the get-tiling-ioctl by reporting the physical swizzle
719                  * mode as unknown instead.
720                  *
721                  * As we don't strictly know what the swizzling is, it may be
722                  * bit17 dependent, and so we need to also prevent the pages
723                  * from being moved.
724                  */
725                 i915->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
726                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
727                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
728         }
729
730         i915->ggtt.bit_6_swizzle_x = swizzle_x;
731         i915->ggtt.bit_6_swizzle_y = swizzle_y;
732 }
733
734 /*
735  * Swap every 64 bytes of this page around, to account for it having a new
736  * bit 17 of its physical address and therefore being interpreted differently
737  * by the GPU.
738  */
739 static void swizzle_page(struct page *page)
740 {
741         char temp[64];
742         char *vaddr;
743         int i;
744
745         vaddr = kmap(page);
746
747         for (i = 0; i < PAGE_SIZE; i += 128) {
748                 memcpy(temp, &vaddr[i], 64);
749                 memcpy(&vaddr[i], &vaddr[i + 64], 64);
750                 memcpy(&vaddr[i + 64], temp, 64);
751         }
752
753         kunmap(page);
754 }
755
756 /**
757  * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
758  * @obj: i915 GEM buffer object
759  * @pages: the scattergather list of physical pages
760  *
761  * This function fixes up the swizzling in case any page frame number for this
762  * object has changed in bit 17 since that state has been saved with
763  * i915_gem_object_save_bit_17_swizzle().
764  *
765  * This is called when pinning backing storage again, since the kernel is free
766  * to move unpinned backing storage around (either by directly moving pages or
767  * by swapping them out and back in again).
768  */
769 void
770 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
771                                   struct sg_table *pages)
772 {
773         struct sgt_iter sgt_iter;
774         struct page *page;
775         int i;
776
777         if (obj->bit_17 == NULL)
778                 return;
779
780         i = 0;
781         for_each_sgt_page(page, sgt_iter, pages) {
782                 char new_bit_17 = page_to_phys(page) >> 17;
783                 if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
784                         swizzle_page(page);
785                         set_page_dirty(page);
786                 }
787                 i++;
788         }
789 }
790
791 /**
792  * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
793  * @obj: i915 GEM buffer object
794  * @pages: the scattergather list of physical pages
795  *
796  * This function saves the bit 17 of each page frame number so that swizzling
797  * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
798  * be called before the backing storage can be unpinned.
799  */
800 void
801 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
802                                     struct sg_table *pages)
803 {
804         const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
805         struct sgt_iter sgt_iter;
806         struct page *page;
807         int i;
808
809         if (obj->bit_17 == NULL) {
810                 obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
811                 if (obj->bit_17 == NULL) {
812                         DRM_ERROR("Failed to allocate memory for bit 17 "
813                                   "record\n");
814                         return;
815                 }
816         }
817
818         i = 0;
819
820         for_each_sgt_page(page, sgt_iter, pages) {
821                 if (page_to_phys(page) & (1 << 17))
822                         __set_bit(i, obj->bit_17);
823                 else
824                         __clear_bit(i, obj->bit_17);
825                 i++;
826         }
827 }
828
829 void intel_ggtt_init_fences(struct i915_ggtt *ggtt)
830 {
831         struct drm_i915_private *i915 = ggtt->vm.i915;
832         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
833         int num_fences;
834         int i;
835
836         INIT_LIST_HEAD(&ggtt->fence_list);
837         INIT_LIST_HEAD(&ggtt->userfault_list);
838         intel_wakeref_auto_init(&ggtt->userfault_wakeref, uncore->rpm);
839
840         detect_bit_6_swizzle(ggtt);
841
842         if (!i915_ggtt_has_aperture(ggtt))
843                 num_fences = 0;
844         else if (INTEL_GEN(i915) >= 7 &&
845                  !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)))
846                 num_fences = 32;
847         else if (INTEL_GEN(i915) >= 4 ||
848                  IS_I945G(i915) || IS_I945GM(i915) ||
849                  IS_G33(i915) || IS_PINEVIEW(i915))
850                 num_fences = 16;
851         else
852                 num_fences = 8;
853
854         if (intel_vgpu_active(i915))
855                 num_fences = intel_uncore_read(uncore,
856                                                vgtif_reg(avail_rs.fence_num));
857         ggtt->fence_regs = kcalloc(num_fences,
858                                    sizeof(*ggtt->fence_regs),
859                                    GFP_KERNEL);
860         if (!ggtt->fence_regs)
861                 num_fences = 0;
862
863         /* Initialize fence registers to zero */
864         for (i = 0; i < num_fences; i++) {
865                 struct i915_fence_reg *fence = &ggtt->fence_regs[i];
866
867                 i915_active_init(&fence->active, NULL, NULL);
868                 fence->ggtt = ggtt;
869                 fence->id = i;
870                 list_add_tail(&fence->link, &ggtt->fence_list);
871         }
872         ggtt->num_fences = num_fences;
873
874         intel_ggtt_restore_fences(ggtt);
875 }
876
877 void intel_ggtt_fini_fences(struct i915_ggtt *ggtt)
878 {
879         int i;
880
881         for (i = 0; i < ggtt->num_fences; i++) {
882                 struct i915_fence_reg *fence = &ggtt->fence_regs[i];
883
884                 i915_active_fini(&fence->active);
885         }
886
887         kfree(ggtt->fence_regs);
888 }
889
890 void intel_gt_init_swizzling(struct intel_gt *gt)
891 {
892         struct drm_i915_private *i915 = gt->i915;
893         struct intel_uncore *uncore = gt->uncore;
894
895         if (INTEL_GEN(i915) < 5 ||
896             i915->ggtt.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
897                 return;
898
899         intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING);
900
901         if (IS_GEN(i915, 5))
902                 return;
903
904         intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL);
905
906         if (IS_GEN(i915, 6))
907                 intel_uncore_write(uncore,
908                                    ARB_MODE,
909                                    _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
910         else if (IS_GEN(i915, 7))
911                 intel_uncore_write(uncore,
912                                    ARB_MODE,
913                                    _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
914         else if (IS_GEN(i915, 8))
915                 intel_uncore_write(uncore,
916                                    GAMTARBMODE,
917                                    _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
918         else
919                 MISSING_CASE(INTEL_GEN(i915));
920 }