Mention branches and keyring.
[releases.git] / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_atomic_helper.h>
47 #include <drm/i915_drm.h>
48
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "i915_pmu.h"
52 #include "i915_query.h"
53 #include "i915_vgpu.h"
54 #include "intel_drv.h"
55 #include "intel_uc.h"
56
57 static struct drm_driver driver;
58
59 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
60 static unsigned int i915_load_fail_count;
61
62 bool __i915_inject_load_failure(const char *func, int line)
63 {
64         if (i915_load_fail_count >= i915_modparams.inject_load_failure)
65                 return false;
66
67         if (++i915_load_fail_count == i915_modparams.inject_load_failure) {
68                 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
69                          i915_modparams.inject_load_failure, func, line);
70                 i915_modparams.inject_load_failure = 0;
71                 return true;
72         }
73
74         return false;
75 }
76
77 bool i915_error_injected(void)
78 {
79         return i915_load_fail_count && !i915_modparams.inject_load_failure;
80 }
81
82 #endif
83
84 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
85 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
86                     "providing the dmesg log by booting with drm.debug=0xf"
87
88 void
89 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
90               const char *fmt, ...)
91 {
92         static bool shown_bug_once;
93         struct device *kdev = dev_priv->drm.dev;
94         bool is_error = level[1] <= KERN_ERR[1];
95         bool is_debug = level[1] == KERN_DEBUG[1];
96         struct va_format vaf;
97         va_list args;
98
99         if (is_debug && !(drm_debug & DRM_UT_DRIVER))
100                 return;
101
102         va_start(args, fmt);
103
104         vaf.fmt = fmt;
105         vaf.va = &args;
106
107         if (is_error)
108                 dev_printk(level, kdev, "%pV", &vaf);
109         else
110                 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
111                            __builtin_return_address(0), &vaf);
112
113         va_end(args);
114
115         if (is_error && !shown_bug_once) {
116                 /*
117                  * Ask the user to file a bug report for the error, except
118                  * if they may have caused the bug by fiddling with unsafe
119                  * module parameters.
120                  */
121                 if (!test_taint(TAINT_USER))
122                         dev_notice(kdev, "%s", FDO_BUG_MSG);
123                 shown_bug_once = true;
124         }
125 }
126
127 /* Map PCH device id to PCH type, or PCH_NONE if unknown. */
128 static enum intel_pch
129 intel_pch_type(const struct drm_i915_private *dev_priv, unsigned short id)
130 {
131         switch (id) {
132         case INTEL_PCH_IBX_DEVICE_ID_TYPE:
133                 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
134                 WARN_ON(!IS_GEN5(dev_priv));
135                 return PCH_IBX;
136         case INTEL_PCH_CPT_DEVICE_ID_TYPE:
137                 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
138                 WARN_ON(!IS_GEN6(dev_priv) && !IS_IVYBRIDGE(dev_priv));
139                 return PCH_CPT;
140         case INTEL_PCH_PPT_DEVICE_ID_TYPE:
141                 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
142                 WARN_ON(!IS_GEN6(dev_priv) && !IS_IVYBRIDGE(dev_priv));
143                 /* PantherPoint is CPT compatible */
144                 return PCH_CPT;
145         case INTEL_PCH_LPT_DEVICE_ID_TYPE:
146                 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
147                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
148                 WARN_ON(IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv));
149                 return PCH_LPT;
150         case INTEL_PCH_LPT_LP_DEVICE_ID_TYPE:
151                 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
152                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
153                 WARN_ON(!IS_HSW_ULT(dev_priv) && !IS_BDW_ULT(dev_priv));
154                 return PCH_LPT;
155         case INTEL_PCH_WPT_DEVICE_ID_TYPE:
156                 DRM_DEBUG_KMS("Found WildcatPoint PCH\n");
157                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
158                 WARN_ON(IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv));
159                 /* WildcatPoint is LPT compatible */
160                 return PCH_LPT;
161         case INTEL_PCH_WPT_LP_DEVICE_ID_TYPE:
162                 DRM_DEBUG_KMS("Found WildcatPoint LP PCH\n");
163                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
164                 WARN_ON(!IS_HSW_ULT(dev_priv) && !IS_BDW_ULT(dev_priv));
165                 /* WildcatPoint is LPT compatible */
166                 return PCH_LPT;
167         case INTEL_PCH_SPT_DEVICE_ID_TYPE:
168                 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
169                 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv));
170                 return PCH_SPT;
171         case INTEL_PCH_SPT_LP_DEVICE_ID_TYPE:
172                 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
173                 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv));
174                 return PCH_SPT;
175         case INTEL_PCH_KBP_DEVICE_ID_TYPE:
176                 DRM_DEBUG_KMS("Found Kaby Lake PCH (KBP)\n");
177                 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv) &&
178                         !IS_COFFEELAKE(dev_priv));
179                 return PCH_KBP;
180         case INTEL_PCH_CNP_DEVICE_ID_TYPE:
181                 DRM_DEBUG_KMS("Found Cannon Lake PCH (CNP)\n");
182                 WARN_ON(!IS_CANNONLAKE(dev_priv) && !IS_COFFEELAKE(dev_priv));
183                 return PCH_CNP;
184         case INTEL_PCH_CNP_LP_DEVICE_ID_TYPE:
185                 DRM_DEBUG_KMS("Found Cannon Lake LP PCH (CNP-LP)\n");
186                 WARN_ON(!IS_CANNONLAKE(dev_priv) && !IS_COFFEELAKE(dev_priv));
187                 return PCH_CNP;
188         case INTEL_PCH_ICP_DEVICE_ID_TYPE:
189                 DRM_DEBUG_KMS("Found Ice Lake PCH\n");
190                 WARN_ON(!IS_ICELAKE(dev_priv));
191                 return PCH_ICP;
192         default:
193                 return PCH_NONE;
194         }
195 }
196
197 static bool intel_is_virt_pch(unsigned short id,
198                               unsigned short svendor, unsigned short sdevice)
199 {
200         return (id == INTEL_PCH_P2X_DEVICE_ID_TYPE ||
201                 id == INTEL_PCH_P3X_DEVICE_ID_TYPE ||
202                 (id == INTEL_PCH_QEMU_DEVICE_ID_TYPE &&
203                  svendor == PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
204                  sdevice == PCI_SUBDEVICE_ID_QEMU));
205 }
206
207 static unsigned short
208 intel_virt_detect_pch(const struct drm_i915_private *dev_priv)
209 {
210         unsigned short id = 0;
211
212         /*
213          * In a virtualized passthrough environment we can be in a
214          * setup where the ISA bridge is not able to be passed through.
215          * In this case, a south bridge can be emulated and we have to
216          * make an educated guess as to which PCH is really there.
217          */
218
219         if (IS_GEN5(dev_priv))
220                 id = INTEL_PCH_IBX_DEVICE_ID_TYPE;
221         else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
222                 id = INTEL_PCH_CPT_DEVICE_ID_TYPE;
223         else if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
224                 id = INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
225         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
226                 id = INTEL_PCH_LPT_DEVICE_ID_TYPE;
227         else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
228                 id = INTEL_PCH_SPT_DEVICE_ID_TYPE;
229         else if (IS_COFFEELAKE(dev_priv) || IS_CANNONLAKE(dev_priv))
230                 id = INTEL_PCH_CNP_DEVICE_ID_TYPE;
231         else if (IS_ICELAKE(dev_priv))
232                 id = INTEL_PCH_ICP_DEVICE_ID_TYPE;
233
234         if (id)
235                 DRM_DEBUG_KMS("Assuming PCH ID %04x\n", id);
236         else
237                 DRM_DEBUG_KMS("Assuming no PCH\n");
238
239         return id;
240 }
241
242 static void intel_detect_pch(struct drm_i915_private *dev_priv)
243 {
244         struct pci_dev *pch = NULL;
245
246         /*
247          * The reason to probe ISA bridge instead of Dev31:Fun0 is to
248          * make graphics device passthrough work easy for VMM, that only
249          * need to expose ISA bridge to let driver know the real hardware
250          * underneath. This is a requirement from virtualization team.
251          *
252          * In some virtualized environments (e.g. XEN), there is irrelevant
253          * ISA bridge in the system. To work reliably, we should scan trhough
254          * all the ISA bridge devices and check for the first match, instead
255          * of only checking the first one.
256          */
257         while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
258                 unsigned short id;
259                 enum intel_pch pch_type;
260
261                 if (pch->vendor != PCI_VENDOR_ID_INTEL)
262                         continue;
263
264                 id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
265
266                 pch_type = intel_pch_type(dev_priv, id);
267                 if (pch_type != PCH_NONE) {
268                         dev_priv->pch_type = pch_type;
269                         dev_priv->pch_id = id;
270                         break;
271                 } else if (intel_is_virt_pch(id, pch->subsystem_vendor,
272                                          pch->subsystem_device)) {
273                         id = intel_virt_detect_pch(dev_priv);
274                         pch_type = intel_pch_type(dev_priv, id);
275
276                         /* Sanity check virtual PCH id */
277                         if (WARN_ON(id && pch_type == PCH_NONE))
278                                 id = 0;
279
280                         dev_priv->pch_type = pch_type;
281                         dev_priv->pch_id = id;
282                         break;
283                 }
284         }
285
286         /*
287          * Use PCH_NOP (PCH but no South Display) for PCH platforms without
288          * display.
289          */
290         if (pch && INTEL_INFO(dev_priv)->num_pipes == 0) {
291                 DRM_DEBUG_KMS("Display disabled, reverting to NOP PCH\n");
292                 dev_priv->pch_type = PCH_NOP;
293                 dev_priv->pch_id = 0;
294         }
295
296         if (!pch)
297                 DRM_DEBUG_KMS("No PCH found.\n");
298
299         pci_dev_put(pch);
300 }
301
302 static int i915_getparam_ioctl(struct drm_device *dev, void *data,
303                                struct drm_file *file_priv)
304 {
305         struct drm_i915_private *dev_priv = to_i915(dev);
306         struct pci_dev *pdev = dev_priv->drm.pdev;
307         drm_i915_getparam_t *param = data;
308         int value;
309
310         switch (param->param) {
311         case I915_PARAM_IRQ_ACTIVE:
312         case I915_PARAM_ALLOW_BATCHBUFFER:
313         case I915_PARAM_LAST_DISPATCH:
314         case I915_PARAM_HAS_EXEC_CONSTANTS:
315                 /* Reject all old ums/dri params. */
316                 return -ENODEV;
317         case I915_PARAM_CHIPSET_ID:
318                 value = pdev->device;
319                 break;
320         case I915_PARAM_REVISION:
321                 value = pdev->revision;
322                 break;
323         case I915_PARAM_NUM_FENCES_AVAIL:
324                 value = dev_priv->num_fence_regs;
325                 break;
326         case I915_PARAM_HAS_OVERLAY:
327                 value = dev_priv->overlay ? 1 : 0;
328                 break;
329         case I915_PARAM_HAS_BSD:
330                 value = !!dev_priv->engine[VCS];
331                 break;
332         case I915_PARAM_HAS_BLT:
333                 value = !!dev_priv->engine[BCS];
334                 break;
335         case I915_PARAM_HAS_VEBOX:
336                 value = !!dev_priv->engine[VECS];
337                 break;
338         case I915_PARAM_HAS_BSD2:
339                 value = !!dev_priv->engine[VCS2];
340                 break;
341         case I915_PARAM_HAS_LLC:
342                 value = HAS_LLC(dev_priv);
343                 break;
344         case I915_PARAM_HAS_WT:
345                 value = HAS_WT(dev_priv);
346                 break;
347         case I915_PARAM_HAS_ALIASING_PPGTT:
348                 value = USES_PPGTT(dev_priv);
349                 break;
350         case I915_PARAM_HAS_SEMAPHORES:
351                 value = HAS_LEGACY_SEMAPHORES(dev_priv);
352                 break;
353         case I915_PARAM_HAS_SECURE_BATCHES:
354                 value = HAS_SECURE_BATCHES(dev_priv) && capable(CAP_SYS_ADMIN);
355                 break;
356         case I915_PARAM_CMD_PARSER_VERSION:
357                 value = i915_cmd_parser_get_version(dev_priv);
358                 break;
359         case I915_PARAM_SUBSLICE_TOTAL:
360                 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
361                 if (!value)
362                         return -ENODEV;
363                 break;
364         case I915_PARAM_EU_TOTAL:
365                 value = INTEL_INFO(dev_priv)->sseu.eu_total;
366                 if (!value)
367                         return -ENODEV;
368                 break;
369         case I915_PARAM_HAS_GPU_RESET:
370                 value = i915_modparams.enable_hangcheck &&
371                         intel_has_gpu_reset(dev_priv);
372                 if (value && intel_has_reset_engine(dev_priv))
373                         value = 2;
374                 break;
375         case I915_PARAM_HAS_RESOURCE_STREAMER:
376                 value = HAS_RESOURCE_STREAMER(dev_priv);
377                 break;
378         case I915_PARAM_HAS_POOLED_EU:
379                 value = HAS_POOLED_EU(dev_priv);
380                 break;
381         case I915_PARAM_MIN_EU_IN_POOL:
382                 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
383                 break;
384         case I915_PARAM_HUC_STATUS:
385                 value = intel_huc_check_status(&dev_priv->huc);
386                 if (value < 0)
387                         return value;
388                 break;
389         case I915_PARAM_MMAP_GTT_VERSION:
390                 /* Though we've started our numbering from 1, and so class all
391                  * earlier versions as 0, in effect their value is undefined as
392                  * the ioctl will report EINVAL for the unknown param!
393                  */
394                 value = i915_gem_mmap_gtt_version();
395                 break;
396         case I915_PARAM_HAS_SCHEDULER:
397                 value = dev_priv->caps.scheduler;
398                 break;
399
400         case I915_PARAM_MMAP_VERSION:
401                 /* Remember to bump this if the version changes! */
402         case I915_PARAM_HAS_GEM:
403         case I915_PARAM_HAS_PAGEFLIPPING:
404         case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
405         case I915_PARAM_HAS_RELAXED_FENCING:
406         case I915_PARAM_HAS_COHERENT_RINGS:
407         case I915_PARAM_HAS_RELAXED_DELTA:
408         case I915_PARAM_HAS_GEN7_SOL_RESET:
409         case I915_PARAM_HAS_WAIT_TIMEOUT:
410         case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
411         case I915_PARAM_HAS_PINNED_BATCHES:
412         case I915_PARAM_HAS_EXEC_NO_RELOC:
413         case I915_PARAM_HAS_EXEC_HANDLE_LUT:
414         case I915_PARAM_HAS_COHERENT_PHYS_GTT:
415         case I915_PARAM_HAS_EXEC_SOFTPIN:
416         case I915_PARAM_HAS_EXEC_ASYNC:
417         case I915_PARAM_HAS_EXEC_FENCE:
418         case I915_PARAM_HAS_EXEC_CAPTURE:
419         case I915_PARAM_HAS_EXEC_BATCH_FIRST:
420         case I915_PARAM_HAS_EXEC_FENCE_ARRAY:
421                 /* For the time being all of these are always true;
422                  * if some supported hardware does not have one of these
423                  * features this value needs to be provided from
424                  * INTEL_INFO(), a feature macro, or similar.
425                  */
426                 value = 1;
427                 break;
428         case I915_PARAM_HAS_CONTEXT_ISOLATION:
429                 value = intel_engines_has_context_isolation(dev_priv);
430                 break;
431         case I915_PARAM_SLICE_MASK:
432                 value = INTEL_INFO(dev_priv)->sseu.slice_mask;
433                 if (!value)
434                         return -ENODEV;
435                 break;
436         case I915_PARAM_SUBSLICE_MASK:
437                 value = INTEL_INFO(dev_priv)->sseu.subslice_mask[0];
438                 if (!value)
439                         return -ENODEV;
440                 break;
441         case I915_PARAM_CS_TIMESTAMP_FREQUENCY:
442                 value = 1000 * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz;
443                 break;
444         default:
445                 DRM_DEBUG("Unknown parameter %d\n", param->param);
446                 return -EINVAL;
447         }
448
449         if (put_user(value, param->value))
450                 return -EFAULT;
451
452         return 0;
453 }
454
455 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
456 {
457         int domain = pci_domain_nr(dev_priv->drm.pdev->bus);
458
459         dev_priv->bridge_dev =
460                 pci_get_domain_bus_and_slot(domain, 0, PCI_DEVFN(0, 0));
461         if (!dev_priv->bridge_dev) {
462                 DRM_ERROR("bridge device not found\n");
463                 return -1;
464         }
465         return 0;
466 }
467
468 /* Allocate space for the MCH regs if needed, return nonzero on error */
469 static int
470 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
471 {
472         int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
473         u32 temp_lo, temp_hi = 0;
474         u64 mchbar_addr;
475         int ret;
476
477         if (INTEL_GEN(dev_priv) >= 4)
478                 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
479         pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
480         mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
481
482         /* If ACPI doesn't have it, assume we need to allocate it ourselves */
483 #ifdef CONFIG_PNP
484         if (mchbar_addr &&
485             pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
486                 return 0;
487 #endif
488
489         /* Get some space for it */
490         dev_priv->mch_res.name = "i915 MCHBAR";
491         dev_priv->mch_res.flags = IORESOURCE_MEM;
492         ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
493                                      &dev_priv->mch_res,
494                                      MCHBAR_SIZE, MCHBAR_SIZE,
495                                      PCIBIOS_MIN_MEM,
496                                      0, pcibios_align_resource,
497                                      dev_priv->bridge_dev);
498         if (ret) {
499                 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
500                 dev_priv->mch_res.start = 0;
501                 return ret;
502         }
503
504         if (INTEL_GEN(dev_priv) >= 4)
505                 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
506                                        upper_32_bits(dev_priv->mch_res.start));
507
508         pci_write_config_dword(dev_priv->bridge_dev, reg,
509                                lower_32_bits(dev_priv->mch_res.start));
510         return 0;
511 }
512
513 /* Setup MCHBAR if possible, return true if we should disable it again */
514 static void
515 intel_setup_mchbar(struct drm_i915_private *dev_priv)
516 {
517         int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
518         u32 temp;
519         bool enabled;
520
521         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
522                 return;
523
524         dev_priv->mchbar_need_disable = false;
525
526         if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
527                 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
528                 enabled = !!(temp & DEVEN_MCHBAR_EN);
529         } else {
530                 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
531                 enabled = temp & 1;
532         }
533
534         /* If it's already enabled, don't have to do anything */
535         if (enabled)
536                 return;
537
538         if (intel_alloc_mchbar_resource(dev_priv))
539                 return;
540
541         dev_priv->mchbar_need_disable = true;
542
543         /* Space is allocated or reserved, so enable it. */
544         if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
545                 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
546                                        temp | DEVEN_MCHBAR_EN);
547         } else {
548                 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
549                 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
550         }
551 }
552
553 static void
554 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
555 {
556         int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
557
558         if (dev_priv->mchbar_need_disable) {
559                 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
560                         u32 deven_val;
561
562                         pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
563                                               &deven_val);
564                         deven_val &= ~DEVEN_MCHBAR_EN;
565                         pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
566                                                deven_val);
567                 } else {
568                         u32 mchbar_val;
569
570                         pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
571                                               &mchbar_val);
572                         mchbar_val &= ~1;
573                         pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
574                                                mchbar_val);
575                 }
576         }
577
578         if (dev_priv->mch_res.start)
579                 release_resource(&dev_priv->mch_res);
580 }
581
582 /* true = enable decode, false = disable decoder */
583 static unsigned int i915_vga_set_decode(void *cookie, bool state)
584 {
585         struct drm_i915_private *dev_priv = cookie;
586
587         intel_modeset_vga_set_state(dev_priv, state);
588         if (state)
589                 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
590                        VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
591         else
592                 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
593 }
594
595 static int i915_resume_switcheroo(struct drm_device *dev);
596 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
597
598 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
599 {
600         struct drm_device *dev = pci_get_drvdata(pdev);
601         pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
602
603         if (state == VGA_SWITCHEROO_ON) {
604                 pr_info("switched on\n");
605                 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
606                 /* i915 resume handler doesn't set to D0 */
607                 pci_set_power_state(pdev, PCI_D0);
608                 i915_resume_switcheroo(dev);
609                 dev->switch_power_state = DRM_SWITCH_POWER_ON;
610         } else {
611                 pr_info("switched off\n");
612                 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
613                 i915_suspend_switcheroo(dev, pmm);
614                 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
615         }
616 }
617
618 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
619 {
620         struct drm_device *dev = pci_get_drvdata(pdev);
621
622         /*
623          * FIXME: open_count is protected by drm_global_mutex but that would lead to
624          * locking inversion with the driver load path. And the access here is
625          * completely racy anyway. So don't bother with locking for now.
626          */
627         return dev->open_count == 0;
628 }
629
630 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
631         .set_gpu_state = i915_switcheroo_set_state,
632         .reprobe = NULL,
633         .can_switch = i915_switcheroo_can_switch,
634 };
635
636 static int i915_load_modeset_init(struct drm_device *dev)
637 {
638         struct drm_i915_private *dev_priv = to_i915(dev);
639         struct pci_dev *pdev = dev_priv->drm.pdev;
640         int ret;
641
642         if (i915_inject_load_failure())
643                 return -ENODEV;
644
645         intel_bios_init(dev_priv);
646
647         /* If we have > 1 VGA cards, then we need to arbitrate access
648          * to the common VGA resources.
649          *
650          * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
651          * then we do not take part in VGA arbitration and the
652          * vga_client_register() fails with -ENODEV.
653          */
654         ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
655         if (ret && ret != -ENODEV)
656                 goto out;
657
658         intel_register_dsm_handler();
659
660         ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
661         if (ret)
662                 goto cleanup_vga_client;
663
664         /* must happen before intel_power_domains_init_hw() on VLV/CHV */
665         intel_update_rawclk(dev_priv);
666
667         intel_power_domains_init_hw(dev_priv, false);
668
669         intel_csr_ucode_init(dev_priv);
670
671         ret = intel_irq_install(dev_priv);
672         if (ret)
673                 goto cleanup_csr;
674
675         intel_setup_gmbus(dev_priv);
676
677         /* Important: The output setup functions called by modeset_init need
678          * working irqs for e.g. gmbus and dp aux transfers. */
679         ret = intel_modeset_init(dev);
680         if (ret)
681                 goto cleanup_irq;
682
683         ret = i915_gem_init(dev_priv);
684         if (ret)
685                 goto cleanup_modeset;
686
687         intel_setup_overlay(dev_priv);
688
689         if (INTEL_INFO(dev_priv)->num_pipes == 0)
690                 return 0;
691
692         ret = intel_fbdev_init(dev);
693         if (ret)
694                 goto cleanup_gem;
695
696         /* Only enable hotplug handling once the fbdev is fully set up. */
697         intel_hpd_init(dev_priv);
698
699         return 0;
700
701 cleanup_gem:
702         if (i915_gem_suspend(dev_priv))
703                 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
704         i915_gem_fini(dev_priv);
705 cleanup_modeset:
706         intel_modeset_cleanup(dev);
707 cleanup_irq:
708         drm_irq_uninstall(dev);
709         intel_teardown_gmbus(dev_priv);
710 cleanup_csr:
711         intel_csr_ucode_fini(dev_priv);
712         intel_power_domains_fini(dev_priv);
713         vga_switcheroo_unregister_client(pdev);
714 cleanup_vga_client:
715         vga_client_register(pdev, NULL, NULL, NULL);
716 out:
717         return ret;
718 }
719
720 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
721 {
722         struct apertures_struct *ap;
723         struct pci_dev *pdev = dev_priv->drm.pdev;
724         struct i915_ggtt *ggtt = &dev_priv->ggtt;
725         bool primary;
726         int ret;
727
728         ap = alloc_apertures(1);
729         if (!ap)
730                 return -ENOMEM;
731
732         ap->ranges[0].base = ggtt->gmadr.start;
733         ap->ranges[0].size = ggtt->mappable_end;
734
735         primary =
736                 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
737
738         ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
739
740         kfree(ap);
741
742         return ret;
743 }
744
745 #if !defined(CONFIG_VGA_CONSOLE)
746 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
747 {
748         return 0;
749 }
750 #elif !defined(CONFIG_DUMMY_CONSOLE)
751 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
752 {
753         return -ENODEV;
754 }
755 #else
756 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
757 {
758         int ret = 0;
759
760         DRM_INFO("Replacing VGA console driver\n");
761
762         console_lock();
763         if (con_is_bound(&vga_con))
764                 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
765         if (ret == 0) {
766                 ret = do_unregister_con_driver(&vga_con);
767
768                 /* Ignore "already unregistered". */
769                 if (ret == -ENODEV)
770                         ret = 0;
771         }
772         console_unlock();
773
774         return ret;
775 }
776 #endif
777
778 static void intel_init_dpio(struct drm_i915_private *dev_priv)
779 {
780         /*
781          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
782          * CHV x1 PHY (DP/HDMI D)
783          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
784          */
785         if (IS_CHERRYVIEW(dev_priv)) {
786                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
787                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
788         } else if (IS_VALLEYVIEW(dev_priv)) {
789                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
790         }
791 }
792
793 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
794 {
795         /*
796          * The i915 workqueue is primarily used for batched retirement of
797          * requests (and thus managing bo) once the task has been completed
798          * by the GPU. i915_retire_requests() is called directly when we
799          * need high-priority retirement, such as waiting for an explicit
800          * bo.
801          *
802          * It is also used for periodic low-priority events, such as
803          * idle-timers and recording error state.
804          *
805          * All tasks on the workqueue are expected to acquire the dev mutex
806          * so there is no point in running more than one instance of the
807          * workqueue at any time.  Use an ordered one.
808          */
809         dev_priv->wq = alloc_ordered_workqueue("i915", 0);
810         if (dev_priv->wq == NULL)
811                 goto out_err;
812
813         dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
814         if (dev_priv->hotplug.dp_wq == NULL)
815                 goto out_free_wq;
816
817         return 0;
818
819 out_free_wq:
820         destroy_workqueue(dev_priv->wq);
821 out_err:
822         DRM_ERROR("Failed to allocate workqueues.\n");
823
824         return -ENOMEM;
825 }
826
827 static void i915_engines_cleanup(struct drm_i915_private *i915)
828 {
829         struct intel_engine_cs *engine;
830         enum intel_engine_id id;
831
832         for_each_engine(engine, i915, id)
833                 kfree(engine);
834 }
835
836 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
837 {
838         destroy_workqueue(dev_priv->hotplug.dp_wq);
839         destroy_workqueue(dev_priv->wq);
840 }
841
842 /*
843  * We don't keep the workarounds for pre-production hardware, so we expect our
844  * driver to fail on these machines in one way or another. A little warning on
845  * dmesg may help both the user and the bug triagers.
846  *
847  * Our policy for removing pre-production workarounds is to keep the
848  * current gen workarounds as a guide to the bring-up of the next gen
849  * (workarounds have a habit of persisting!). Anything older than that
850  * should be removed along with the complications they introduce.
851  */
852 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
853 {
854         bool pre = false;
855
856         pre |= IS_HSW_EARLY_SDV(dev_priv);
857         pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
858         pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
859
860         if (pre) {
861                 DRM_ERROR("This is a pre-production stepping. "
862                           "It may not be fully functional.\n");
863                 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
864         }
865 }
866
867 /**
868  * i915_driver_init_early - setup state not requiring device access
869  * @dev_priv: device private
870  * @ent: the matching pci_device_id
871  *
872  * Initialize everything that is a "SW-only" state, that is state not
873  * requiring accessing the device or exposing the driver via kernel internal
874  * or userspace interfaces. Example steps belonging here: lock initialization,
875  * system memory allocation, setting up device specific attributes and
876  * function hooks not requiring accessing the device.
877  */
878 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
879                                   const struct pci_device_id *ent)
880 {
881         const struct intel_device_info *match_info =
882                 (struct intel_device_info *)ent->driver_data;
883         struct intel_device_info *device_info;
884         int ret = 0;
885
886         if (i915_inject_load_failure())
887                 return -ENODEV;
888
889         /* Setup the write-once "constant" device info */
890         device_info = mkwrite_device_info(dev_priv);
891         memcpy(device_info, match_info, sizeof(*device_info));
892         device_info->device_id = dev_priv->drm.pdev->device;
893
894         BUILD_BUG_ON(INTEL_MAX_PLATFORMS >
895                      sizeof(device_info->platform_mask) * BITS_PER_BYTE);
896         BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
897         spin_lock_init(&dev_priv->irq_lock);
898         spin_lock_init(&dev_priv->gpu_error.lock);
899         mutex_init(&dev_priv->backlight_lock);
900         spin_lock_init(&dev_priv->uncore.lock);
901
902         mutex_init(&dev_priv->sb_lock);
903         mutex_init(&dev_priv->av_mutex);
904         mutex_init(&dev_priv->wm.wm_mutex);
905         mutex_init(&dev_priv->pps_mutex);
906
907         i915_memcpy_init_early(dev_priv);
908
909         ret = i915_workqueues_init(dev_priv);
910         if (ret < 0)
911                 goto err_engines;
912
913         ret = i915_gem_init_early(dev_priv);
914         if (ret < 0)
915                 goto err_workqueues;
916
917         /* This must be called before any calls to HAS_PCH_* */
918         intel_detect_pch(dev_priv);
919
920         intel_wopcm_init_early(&dev_priv->wopcm);
921         intel_uc_init_early(dev_priv);
922         intel_pm_setup(dev_priv);
923         intel_init_dpio(dev_priv);
924         intel_power_domains_init(dev_priv);
925         intel_irq_init(dev_priv);
926         intel_hangcheck_init(dev_priv);
927         intel_init_display_hooks(dev_priv);
928         intel_init_clock_gating_hooks(dev_priv);
929         intel_init_audio_hooks(dev_priv);
930         intel_display_crc_init(dev_priv);
931
932         intel_detect_preproduction_hw(dev_priv);
933
934         return 0;
935
936 err_workqueues:
937         i915_workqueues_cleanup(dev_priv);
938 err_engines:
939         i915_engines_cleanup(dev_priv);
940         return ret;
941 }
942
943 /**
944  * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
945  * @dev_priv: device private
946  */
947 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
948 {
949         intel_irq_fini(dev_priv);
950         intel_uc_cleanup_early(dev_priv);
951         i915_gem_cleanup_early(dev_priv);
952         i915_workqueues_cleanup(dev_priv);
953         i915_engines_cleanup(dev_priv);
954 }
955
956 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
957 {
958         struct pci_dev *pdev = dev_priv->drm.pdev;
959         int mmio_bar;
960         int mmio_size;
961
962         mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
963         /*
964          * Before gen4, the registers and the GTT are behind different BARs.
965          * However, from gen4 onwards, the registers and the GTT are shared
966          * in the same BAR, so we want to restrict this ioremap from
967          * clobbering the GTT which we want ioremap_wc instead. Fortunately,
968          * the register BAR remains the same size for all the earlier
969          * generations up to Ironlake.
970          */
971         if (INTEL_GEN(dev_priv) < 5)
972                 mmio_size = 512 * 1024;
973         else
974                 mmio_size = 2 * 1024 * 1024;
975         dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
976         if (dev_priv->regs == NULL) {
977                 DRM_ERROR("failed to map registers\n");
978
979                 return -EIO;
980         }
981
982         /* Try to make sure MCHBAR is enabled before poking at it */
983         intel_setup_mchbar(dev_priv);
984
985         return 0;
986 }
987
988 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
989 {
990         struct pci_dev *pdev = dev_priv->drm.pdev;
991
992         intel_teardown_mchbar(dev_priv);
993         pci_iounmap(pdev, dev_priv->regs);
994 }
995
996 /**
997  * i915_driver_init_mmio - setup device MMIO
998  * @dev_priv: device private
999  *
1000  * Setup minimal device state necessary for MMIO accesses later in the
1001  * initialization sequence. The setup here should avoid any other device-wide
1002  * side effects or exposing the driver via kernel internal or user space
1003  * interfaces.
1004  */
1005 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
1006 {
1007         int ret;
1008
1009         if (i915_inject_load_failure())
1010                 return -ENODEV;
1011
1012         if (i915_get_bridge_dev(dev_priv))
1013                 return -EIO;
1014
1015         ret = i915_mmio_setup(dev_priv);
1016         if (ret < 0)
1017                 goto err_bridge;
1018
1019         intel_uncore_init(dev_priv);
1020
1021         intel_device_info_init_mmio(dev_priv);
1022
1023         intel_uncore_prune(dev_priv);
1024
1025         intel_uc_init_mmio(dev_priv);
1026
1027         ret = intel_engines_init_mmio(dev_priv);
1028         if (ret)
1029                 goto err_uncore;
1030
1031         i915_gem_init_mmio(dev_priv);
1032
1033         return 0;
1034
1035 err_uncore:
1036         intel_uncore_fini(dev_priv);
1037 err_bridge:
1038         pci_dev_put(dev_priv->bridge_dev);
1039
1040         return ret;
1041 }
1042
1043 /**
1044  * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
1045  * @dev_priv: device private
1046  */
1047 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
1048 {
1049         intel_uncore_fini(dev_priv);
1050         i915_mmio_cleanup(dev_priv);
1051         pci_dev_put(dev_priv->bridge_dev);
1052 }
1053
1054 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
1055 {
1056         /*
1057          * i915.enable_ppgtt is read-only, so do an early pass to validate the
1058          * user's requested state against the hardware/driver capabilities.  We
1059          * do this now so that we can print out any log messages once rather
1060          * than every time we check intel_enable_ppgtt().
1061          */
1062         i915_modparams.enable_ppgtt =
1063                 intel_sanitize_enable_ppgtt(dev_priv,
1064                                             i915_modparams.enable_ppgtt);
1065         DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915_modparams.enable_ppgtt);
1066
1067         intel_gvt_sanitize_options(dev_priv);
1068 }
1069
1070 /**
1071  * i915_driver_init_hw - setup state requiring device access
1072  * @dev_priv: device private
1073  *
1074  * Setup state that requires accessing the device, but doesn't require
1075  * exposing the driver via kernel internal or userspace interfaces.
1076  */
1077 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1078 {
1079         struct pci_dev *pdev = dev_priv->drm.pdev;
1080         int ret;
1081
1082         if (i915_inject_load_failure())
1083                 return -ENODEV;
1084
1085         intel_device_info_runtime_init(mkwrite_device_info(dev_priv));
1086
1087         intel_sanitize_options(dev_priv);
1088
1089         i915_perf_init(dev_priv);
1090
1091         ret = i915_ggtt_probe_hw(dev_priv);
1092         if (ret)
1093                 goto err_perf;
1094
1095         /*
1096          * WARNING: Apparently we must kick fbdev drivers before vgacon,
1097          * otherwise the vga fbdev driver falls over.
1098          */
1099         ret = i915_kick_out_firmware_fb(dev_priv);
1100         if (ret) {
1101                 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1102                 goto err_ggtt;
1103         }
1104
1105         ret = i915_kick_out_vgacon(dev_priv);
1106         if (ret) {
1107                 DRM_ERROR("failed to remove conflicting VGA console\n");
1108                 goto err_ggtt;
1109         }
1110
1111         ret = i915_ggtt_init_hw(dev_priv);
1112         if (ret)
1113                 goto err_ggtt;
1114
1115         ret = i915_ggtt_enable_hw(dev_priv);
1116         if (ret) {
1117                 DRM_ERROR("failed to enable GGTT\n");
1118                 goto err_ggtt;
1119         }
1120
1121         pci_set_master(pdev);
1122
1123         /*
1124          * We don't have a max segment size, so set it to the max so sg's
1125          * debugging layer doesn't complain
1126          */
1127         dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1128
1129         /* overlay on gen2 is broken and can't address above 1G */
1130         if (IS_GEN2(dev_priv)) {
1131                 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1132                 if (ret) {
1133                         DRM_ERROR("failed to set DMA mask\n");
1134
1135                         goto err_ggtt;
1136                 }
1137         }
1138
1139         /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1140          * using 32bit addressing, overwriting memory if HWS is located
1141          * above 4GB.
1142          *
1143          * The documentation also mentions an issue with undefined
1144          * behaviour if any general state is accessed within a page above 4GB,
1145          * which also needs to be handled carefully.
1146          */
1147         if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1148                 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1149
1150                 if (ret) {
1151                         DRM_ERROR("failed to set DMA mask\n");
1152
1153                         goto err_ggtt;
1154                 }
1155         }
1156
1157         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1158                            PM_QOS_DEFAULT_VALUE);
1159
1160         intel_uncore_sanitize(dev_priv);
1161
1162         i915_gem_load_init_fences(dev_priv);
1163
1164         /* On the 945G/GM, the chipset reports the MSI capability on the
1165          * integrated graphics even though the support isn't actually there
1166          * according to the published specs.  It doesn't appear to function
1167          * correctly in testing on 945G.
1168          * This may be a side effect of MSI having been made available for PEG
1169          * and the registers being closely associated.
1170          *
1171          * According to chipset errata, on the 965GM, MSI interrupts may
1172          * be lost or delayed, and was defeatured. MSI interrupts seem to
1173          * get lost on g4x as well, and interrupt delivery seems to stay
1174          * properly dead afterwards. So we'll just disable them for all
1175          * pre-gen5 chipsets.
1176          *
1177          * dp aux and gmbus irq on gen4 seems to be able to generate legacy
1178          * interrupts even when in MSI mode. This results in spurious
1179          * interrupt warnings if the legacy irq no. is shared with another
1180          * device. The kernel then disables that interrupt source and so
1181          * prevents the other device from working properly.
1182          */
1183         if (INTEL_GEN(dev_priv) >= 5) {
1184                 if (pci_enable_msi(pdev) < 0)
1185                         DRM_DEBUG_DRIVER("can't enable MSI");
1186         }
1187
1188         ret = intel_gvt_init(dev_priv);
1189         if (ret)
1190                 goto err_msi;
1191
1192         intel_opregion_setup(dev_priv);
1193
1194         return 0;
1195
1196 err_msi:
1197         if (pdev->msi_enabled)
1198                 pci_disable_msi(pdev);
1199         pm_qos_remove_request(&dev_priv->pm_qos);
1200 err_ggtt:
1201         i915_ggtt_cleanup_hw(dev_priv);
1202 err_perf:
1203         i915_perf_fini(dev_priv);
1204         return ret;
1205 }
1206
1207 /**
1208  * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1209  * @dev_priv: device private
1210  */
1211 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1212 {
1213         struct pci_dev *pdev = dev_priv->drm.pdev;
1214
1215         i915_perf_fini(dev_priv);
1216
1217         if (pdev->msi_enabled)
1218                 pci_disable_msi(pdev);
1219
1220         pm_qos_remove_request(&dev_priv->pm_qos);
1221         i915_ggtt_cleanup_hw(dev_priv);
1222 }
1223
1224 /**
1225  * i915_driver_register - register the driver with the rest of the system
1226  * @dev_priv: device private
1227  *
1228  * Perform any steps necessary to make the driver available via kernel
1229  * internal or userspace interfaces.
1230  */
1231 static void i915_driver_register(struct drm_i915_private *dev_priv)
1232 {
1233         struct drm_device *dev = &dev_priv->drm;
1234
1235         i915_gem_shrinker_register(dev_priv);
1236         i915_pmu_register(dev_priv);
1237
1238         /*
1239          * Notify a valid surface after modesetting,
1240          * when running inside a VM.
1241          */
1242         if (intel_vgpu_active(dev_priv))
1243                 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1244
1245         /* Reveal our presence to userspace */
1246         if (drm_dev_register(dev, 0) == 0) {
1247                 i915_debugfs_register(dev_priv);
1248                 i915_setup_sysfs(dev_priv);
1249
1250                 /* Depends on sysfs having been initialized */
1251                 i915_perf_register(dev_priv);
1252         } else
1253                 DRM_ERROR("Failed to register driver for userspace access!\n");
1254
1255         if (INTEL_INFO(dev_priv)->num_pipes) {
1256                 /* Must be done after probing outputs */
1257                 intel_opregion_register(dev_priv);
1258                 acpi_video_register();
1259         }
1260
1261         if (IS_GEN5(dev_priv))
1262                 intel_gpu_ips_init(dev_priv);
1263
1264         intel_audio_init(dev_priv);
1265
1266         /*
1267          * Some ports require correctly set-up hpd registers for detection to
1268          * work properly (leading to ghost connected connector status), e.g. VGA
1269          * on gm45.  Hence we can only set up the initial fbdev config after hpd
1270          * irqs are fully enabled. We do it last so that the async config
1271          * cannot run before the connectors are registered.
1272          */
1273         intel_fbdev_initial_config_async(dev);
1274
1275         /*
1276          * We need to coordinate the hotplugs with the asynchronous fbdev
1277          * configuration, for which we use the fbdev->async_cookie.
1278          */
1279         if (INTEL_INFO(dev_priv)->num_pipes)
1280                 drm_kms_helper_poll_init(dev);
1281 }
1282
1283 /**
1284  * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1285  * @dev_priv: device private
1286  */
1287 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1288 {
1289         intel_fbdev_unregister(dev_priv);
1290         intel_audio_deinit(dev_priv);
1291
1292         /*
1293          * After flushing the fbdev (incl. a late async config which will
1294          * have delayed queuing of a hotplug event), then flush the hotplug
1295          * events.
1296          */
1297         drm_kms_helper_poll_fini(&dev_priv->drm);
1298
1299         intel_gpu_ips_teardown();
1300         acpi_video_unregister();
1301         intel_opregion_unregister(dev_priv);
1302
1303         i915_perf_unregister(dev_priv);
1304         i915_pmu_unregister(dev_priv);
1305
1306         i915_teardown_sysfs(dev_priv);
1307         drm_dev_unregister(&dev_priv->drm);
1308
1309         i915_gem_shrinker_unregister(dev_priv);
1310 }
1311
1312 static void i915_welcome_messages(struct drm_i915_private *dev_priv)
1313 {
1314         if (drm_debug & DRM_UT_DRIVER) {
1315                 struct drm_printer p = drm_debug_printer("i915 device info:");
1316
1317                 intel_device_info_dump(&dev_priv->info, &p);
1318                 intel_device_info_dump_runtime(&dev_priv->info, &p);
1319         }
1320
1321         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1322                 DRM_INFO("DRM_I915_DEBUG enabled\n");
1323         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1324                 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1325 }
1326
1327 /**
1328  * i915_driver_load - setup chip and create an initial config
1329  * @pdev: PCI device
1330  * @ent: matching PCI ID entry
1331  *
1332  * The driver load routine has to do several things:
1333  *   - drive output discovery via intel_modeset_init()
1334  *   - initialize the memory manager
1335  *   - allocate initial config memory
1336  *   - setup the DRM framebuffer with the allocated memory
1337  */
1338 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1339 {
1340         const struct intel_device_info *match_info =
1341                 (struct intel_device_info *)ent->driver_data;
1342         struct drm_i915_private *dev_priv;
1343         int ret;
1344
1345         /* Enable nuclear pageflip on ILK+ */
1346         if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1347                 driver.driver_features &= ~DRIVER_ATOMIC;
1348
1349         ret = -ENOMEM;
1350         dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1351         if (dev_priv)
1352                 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1353         if (ret) {
1354                 DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1355                 goto out_free;
1356         }
1357
1358         dev_priv->drm.pdev = pdev;
1359         dev_priv->drm.dev_private = dev_priv;
1360
1361         ret = pci_enable_device(pdev);
1362         if (ret)
1363                 goto out_fini;
1364
1365         pci_set_drvdata(pdev, &dev_priv->drm);
1366         /*
1367          * Disable the system suspend direct complete optimization, which can
1368          * leave the device suspended skipping the driver's suspend handlers
1369          * if the device was already runtime suspended. This is needed due to
1370          * the difference in our runtime and system suspend sequence and
1371          * becaue the HDA driver may require us to enable the audio power
1372          * domain during system suspend.
1373          */
1374         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
1375
1376         ret = i915_driver_init_early(dev_priv, ent);
1377         if (ret < 0)
1378                 goto out_pci_disable;
1379
1380         intel_runtime_pm_get(dev_priv);
1381
1382         ret = i915_driver_init_mmio(dev_priv);
1383         if (ret < 0)
1384                 goto out_runtime_pm_put;
1385
1386         ret = i915_driver_init_hw(dev_priv);
1387         if (ret < 0)
1388                 goto out_cleanup_mmio;
1389
1390         /*
1391          * TODO: move the vblank init and parts of modeset init steps into one
1392          * of the i915_driver_init_/i915_driver_register functions according
1393          * to the role/effect of the given init step.
1394          */
1395         if (INTEL_INFO(dev_priv)->num_pipes) {
1396                 ret = drm_vblank_init(&dev_priv->drm,
1397                                       INTEL_INFO(dev_priv)->num_pipes);
1398                 if (ret)
1399                         goto out_cleanup_hw;
1400         }
1401
1402         ret = i915_load_modeset_init(&dev_priv->drm);
1403         if (ret < 0)
1404                 goto out_cleanup_hw;
1405
1406         i915_driver_register(dev_priv);
1407
1408         intel_runtime_pm_enable(dev_priv);
1409
1410         intel_init_ipc(dev_priv);
1411
1412         intel_runtime_pm_put(dev_priv);
1413
1414         i915_welcome_messages(dev_priv);
1415
1416         return 0;
1417
1418 out_cleanup_hw:
1419         i915_driver_cleanup_hw(dev_priv);
1420 out_cleanup_mmio:
1421         i915_driver_cleanup_mmio(dev_priv);
1422 out_runtime_pm_put:
1423         intel_runtime_pm_put(dev_priv);
1424         i915_driver_cleanup_early(dev_priv);
1425 out_pci_disable:
1426         pci_disable_device(pdev);
1427 out_fini:
1428         i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1429         drm_dev_fini(&dev_priv->drm);
1430 out_free:
1431         kfree(dev_priv);
1432         pci_set_drvdata(pdev, NULL);
1433         return ret;
1434 }
1435
1436 void i915_driver_unload(struct drm_device *dev)
1437 {
1438         struct drm_i915_private *dev_priv = to_i915(dev);
1439         struct pci_dev *pdev = dev_priv->drm.pdev;
1440
1441         i915_driver_unregister(dev_priv);
1442
1443         if (i915_gem_suspend(dev_priv))
1444                 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1445
1446         intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1447
1448         drm_atomic_helper_shutdown(dev);
1449
1450         intel_gvt_cleanup(dev_priv);
1451
1452         intel_modeset_cleanup(dev);
1453
1454         intel_bios_cleanup(dev_priv);
1455
1456         vga_switcheroo_unregister_client(pdev);
1457         vga_client_register(pdev, NULL, NULL, NULL);
1458
1459         intel_csr_ucode_fini(dev_priv);
1460
1461         /* Free error state after interrupts are fully disabled. */
1462         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1463         i915_reset_error_state(dev_priv);
1464
1465         i915_gem_fini(dev_priv);
1466         intel_fbc_cleanup_cfb(dev_priv);
1467
1468         intel_power_domains_fini(dev_priv);
1469
1470         i915_driver_cleanup_hw(dev_priv);
1471         i915_driver_cleanup_mmio(dev_priv);
1472
1473         intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1474 }
1475
1476 static void i915_driver_release(struct drm_device *dev)
1477 {
1478         struct drm_i915_private *dev_priv = to_i915(dev);
1479
1480         i915_driver_cleanup_early(dev_priv);
1481         drm_dev_fini(&dev_priv->drm);
1482
1483         kfree(dev_priv);
1484 }
1485
1486 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1487 {
1488         struct drm_i915_private *i915 = to_i915(dev);
1489         int ret;
1490
1491         ret = i915_gem_open(i915, file);
1492         if (ret)
1493                 return ret;
1494
1495         return 0;
1496 }
1497
1498 /**
1499  * i915_driver_lastclose - clean up after all DRM clients have exited
1500  * @dev: DRM device
1501  *
1502  * Take care of cleaning up after all DRM clients have exited.  In the
1503  * mode setting case, we want to restore the kernel's initial mode (just
1504  * in case the last client left us in a bad state).
1505  *
1506  * Additionally, in the non-mode setting case, we'll tear down the GTT
1507  * and DMA structures, since the kernel won't be using them, and clea
1508  * up any GEM state.
1509  */
1510 static void i915_driver_lastclose(struct drm_device *dev)
1511 {
1512         intel_fbdev_restore_mode(dev);
1513         vga_switcheroo_process_delayed_switch();
1514 }
1515
1516 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1517 {
1518         struct drm_i915_file_private *file_priv = file->driver_priv;
1519
1520         mutex_lock(&dev->struct_mutex);
1521         i915_gem_context_close(file);
1522         i915_gem_release(dev, file);
1523         mutex_unlock(&dev->struct_mutex);
1524
1525         kfree(file_priv);
1526 }
1527
1528 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1529 {
1530         struct drm_device *dev = &dev_priv->drm;
1531         struct intel_encoder *encoder;
1532
1533         drm_modeset_lock_all(dev);
1534         for_each_intel_encoder(dev, encoder)
1535                 if (encoder->suspend)
1536                         encoder->suspend(encoder);
1537         drm_modeset_unlock_all(dev);
1538 }
1539
1540 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1541                               bool rpm_resume);
1542 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1543
1544 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1545 {
1546 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1547         if (acpi_target_system_state() < ACPI_STATE_S3)
1548                 return true;
1549 #endif
1550         return false;
1551 }
1552
1553 static int i915_drm_prepare(struct drm_device *dev)
1554 {
1555         struct drm_i915_private *i915 = to_i915(dev);
1556         int err;
1557
1558         /*
1559          * NB intel_display_suspend() may issue new requests after we've
1560          * ostensibly marked the GPU as ready-to-sleep here. We need to
1561          * split out that work and pull it forward so that after point,
1562          * the GPU is not woken again.
1563          */
1564         err = i915_gem_suspend(i915);
1565         if (err)
1566                 dev_err(&i915->drm.pdev->dev,
1567                         "GEM idle failed, suspend/resume might fail\n");
1568
1569         return err;
1570 }
1571
1572 static int i915_drm_suspend(struct drm_device *dev)
1573 {
1574         struct drm_i915_private *dev_priv = to_i915(dev);
1575         struct pci_dev *pdev = dev_priv->drm.pdev;
1576         pci_power_t opregion_target_state;
1577
1578         disable_rpm_wakeref_asserts(dev_priv);
1579
1580         /* We do a lot of poking in a lot of registers, make sure they work
1581          * properly. */
1582         intel_display_set_init_power(dev_priv, true);
1583
1584         drm_kms_helper_poll_disable(dev);
1585
1586         pci_save_state(pdev);
1587
1588         intel_display_suspend(dev);
1589
1590         intel_dp_mst_suspend(dev_priv);
1591
1592         intel_runtime_pm_disable_interrupts(dev_priv);
1593         intel_hpd_cancel_work(dev_priv);
1594
1595         intel_suspend_encoders(dev_priv);
1596
1597         intel_suspend_hw(dev_priv);
1598
1599         i915_gem_suspend_gtt_mappings(dev_priv);
1600
1601         i915_save_state(dev_priv);
1602
1603         opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1604         intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1605
1606         intel_opregion_unregister(dev_priv);
1607
1608         intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1609
1610         dev_priv->suspend_count++;
1611
1612         intel_csr_ucode_suspend(dev_priv);
1613
1614         enable_rpm_wakeref_asserts(dev_priv);
1615
1616         return 0;
1617 }
1618
1619 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1620 {
1621         struct drm_i915_private *dev_priv = to_i915(dev);
1622         struct pci_dev *pdev = dev_priv->drm.pdev;
1623         int ret;
1624
1625         disable_rpm_wakeref_asserts(dev_priv);
1626
1627         i915_gem_suspend_late(dev_priv);
1628
1629         intel_display_set_init_power(dev_priv, false);
1630         i915_rc6_ctx_wa_suspend(dev_priv);
1631         intel_uncore_suspend(dev_priv);
1632
1633         /*
1634          * In case of firmware assisted context save/restore don't manually
1635          * deinit the power domains. This also means the CSR/DMC firmware will
1636          * stay active, it will power down any HW resources as required and
1637          * also enable deeper system power states that would be blocked if the
1638          * firmware was inactive.
1639          */
1640         if (IS_GEN9_LP(dev_priv) || hibernation || !suspend_to_idle(dev_priv) ||
1641             dev_priv->csr.dmc_payload == NULL) {
1642                 intel_power_domains_suspend(dev_priv);
1643                 dev_priv->power_domains_suspended = true;
1644         }
1645
1646         ret = 0;
1647         if (IS_GEN9_LP(dev_priv))
1648                 bxt_enable_dc9(dev_priv);
1649         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1650                 hsw_enable_pc8(dev_priv);
1651         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1652                 ret = vlv_suspend_complete(dev_priv);
1653
1654         if (ret) {
1655                 DRM_ERROR("Suspend complete failed: %d\n", ret);
1656                 if (dev_priv->power_domains_suspended) {
1657                         intel_power_domains_init_hw(dev_priv, true);
1658                         dev_priv->power_domains_suspended = false;
1659                 }
1660
1661                 goto out;
1662         }
1663
1664         pci_disable_device(pdev);
1665         /*
1666          * During hibernation on some platforms the BIOS may try to access
1667          * the device even though it's already in D3 and hang the machine. So
1668          * leave the device in D0 on those platforms and hope the BIOS will
1669          * power down the device properly. The issue was seen on multiple old
1670          * GENs with different BIOS vendors, so having an explicit blacklist
1671          * is inpractical; apply the workaround on everything pre GEN6. The
1672          * platforms where the issue was seen:
1673          * Lenovo Thinkpad X301, X61s, X60, T60, X41
1674          * Fujitsu FSC S7110
1675          * Acer Aspire 1830T
1676          */
1677         if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1678                 pci_set_power_state(pdev, PCI_D3hot);
1679
1680 out:
1681         enable_rpm_wakeref_asserts(dev_priv);
1682
1683         return ret;
1684 }
1685
1686 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1687 {
1688         int error;
1689
1690         if (!dev) {
1691                 DRM_ERROR("dev: %p\n", dev);
1692                 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1693                 return -ENODEV;
1694         }
1695
1696         if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1697                          state.event != PM_EVENT_FREEZE))
1698                 return -EINVAL;
1699
1700         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1701                 return 0;
1702
1703         error = i915_drm_suspend(dev);
1704         if (error)
1705                 return error;
1706
1707         return i915_drm_suspend_late(dev, false);
1708 }
1709
1710 static int i915_drm_resume(struct drm_device *dev)
1711 {
1712         struct drm_i915_private *dev_priv = to_i915(dev);
1713         int ret;
1714
1715         disable_rpm_wakeref_asserts(dev_priv);
1716         intel_sanitize_gt_powersave(dev_priv);
1717
1718         i915_gem_sanitize(dev_priv);
1719
1720         ret = i915_ggtt_enable_hw(dev_priv);
1721         if (ret)
1722                 DRM_ERROR("failed to re-enable GGTT\n");
1723
1724         intel_csr_ucode_resume(dev_priv);
1725
1726         i915_restore_state(dev_priv);
1727         intel_pps_unlock_regs_wa(dev_priv);
1728         intel_opregion_setup(dev_priv);
1729
1730         intel_init_pch_refclk(dev_priv);
1731
1732         /*
1733          * Interrupts have to be enabled before any batches are run. If not the
1734          * GPU will hang. i915_gem_init_hw() will initiate batches to
1735          * update/restore the context.
1736          *
1737          * drm_mode_config_reset() needs AUX interrupts.
1738          *
1739          * Modeset enabling in intel_modeset_init_hw() also needs working
1740          * interrupts.
1741          */
1742         intel_runtime_pm_enable_interrupts(dev_priv);
1743
1744         drm_mode_config_reset(dev);
1745
1746         i915_gem_resume(dev_priv);
1747
1748         intel_modeset_init_hw(dev);
1749         intel_init_clock_gating(dev_priv);
1750
1751         spin_lock_irq(&dev_priv->irq_lock);
1752         if (dev_priv->display.hpd_irq_setup)
1753                 dev_priv->display.hpd_irq_setup(dev_priv);
1754         spin_unlock_irq(&dev_priv->irq_lock);
1755
1756         intel_dp_mst_resume(dev_priv);
1757
1758         intel_display_resume(dev);
1759
1760         drm_kms_helper_poll_enable(dev);
1761
1762         /*
1763          * ... but also need to make sure that hotplug processing
1764          * doesn't cause havoc. Like in the driver load code we don't
1765          * bother with the tiny race here where we might loose hotplug
1766          * notifications.
1767          * */
1768         intel_hpd_init(dev_priv);
1769
1770         intel_opregion_register(dev_priv);
1771
1772         intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1773
1774         intel_opregion_notify_adapter(dev_priv, PCI_D0);
1775
1776         enable_rpm_wakeref_asserts(dev_priv);
1777
1778         return 0;
1779 }
1780
1781 static int i915_drm_resume_early(struct drm_device *dev)
1782 {
1783         struct drm_i915_private *dev_priv = to_i915(dev);
1784         struct pci_dev *pdev = dev_priv->drm.pdev;
1785         int ret;
1786
1787         /*
1788          * We have a resume ordering issue with the snd-hda driver also
1789          * requiring our device to be power up. Due to the lack of a
1790          * parent/child relationship we currently solve this with an early
1791          * resume hook.
1792          *
1793          * FIXME: This should be solved with a special hdmi sink device or
1794          * similar so that power domains can be employed.
1795          */
1796
1797         /*
1798          * Note that we need to set the power state explicitly, since we
1799          * powered off the device during freeze and the PCI core won't power
1800          * it back up for us during thaw. Powering off the device during
1801          * freeze is not a hard requirement though, and during the
1802          * suspend/resume phases the PCI core makes sure we get here with the
1803          * device powered on. So in case we change our freeze logic and keep
1804          * the device powered we can also remove the following set power state
1805          * call.
1806          */
1807         ret = pci_set_power_state(pdev, PCI_D0);
1808         if (ret) {
1809                 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1810                 goto out;
1811         }
1812
1813         /*
1814          * Note that pci_enable_device() first enables any parent bridge
1815          * device and only then sets the power state for this device. The
1816          * bridge enabling is a nop though, since bridge devices are resumed
1817          * first. The order of enabling power and enabling the device is
1818          * imposed by the PCI core as described above, so here we preserve the
1819          * same order for the freeze/thaw phases.
1820          *
1821          * TODO: eventually we should remove pci_disable_device() /
1822          * pci_enable_enable_device() from suspend/resume. Due to how they
1823          * depend on the device enable refcount we can't anyway depend on them
1824          * disabling/enabling the device.
1825          */
1826         if (pci_enable_device(pdev)) {
1827                 ret = -EIO;
1828                 goto out;
1829         }
1830
1831         pci_set_master(pdev);
1832
1833         disable_rpm_wakeref_asserts(dev_priv);
1834
1835         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1836                 ret = vlv_resume_prepare(dev_priv, false);
1837         if (ret)
1838                 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1839                           ret);
1840
1841         intel_uncore_resume_early(dev_priv);
1842
1843         if (IS_GEN9_LP(dev_priv)) {
1844                 gen9_sanitize_dc_state(dev_priv);
1845                 bxt_disable_dc9(dev_priv);
1846         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1847                 hsw_disable_pc8(dev_priv);
1848         }
1849
1850         intel_uncore_sanitize(dev_priv);
1851
1852         if (dev_priv->power_domains_suspended)
1853                 intel_power_domains_init_hw(dev_priv, true);
1854         else
1855                 intel_display_set_init_power(dev_priv, true);
1856
1857         i915_rc6_ctx_wa_resume(dev_priv);
1858
1859         intel_engines_sanitize(dev_priv);
1860
1861         enable_rpm_wakeref_asserts(dev_priv);
1862
1863 out:
1864         dev_priv->power_domains_suspended = false;
1865
1866         return ret;
1867 }
1868
1869 static int i915_resume_switcheroo(struct drm_device *dev)
1870 {
1871         int ret;
1872
1873         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1874                 return 0;
1875
1876         ret = i915_drm_resume_early(dev);
1877         if (ret)
1878                 return ret;
1879
1880         return i915_drm_resume(dev);
1881 }
1882
1883 /**
1884  * i915_reset - reset chip after a hang
1885  * @i915: #drm_i915_private to reset
1886  * @stalled_mask: mask of the stalled engines with the guilty requests
1887  * @reason: user error message for why we are resetting
1888  *
1889  * Reset the chip.  Useful if a hang is detected. Marks the device as wedged
1890  * on failure.
1891  *
1892  * Caller must hold the struct_mutex.
1893  *
1894  * Procedure is fairly simple:
1895  *   - reset the chip using the reset reg
1896  *   - re-init context state
1897  *   - re-init hardware status page
1898  *   - re-init ring buffer
1899  *   - re-init interrupt state
1900  *   - re-init display
1901  */
1902 void i915_reset(struct drm_i915_private *i915,
1903                 unsigned int stalled_mask,
1904                 const char *reason)
1905 {
1906         struct i915_gpu_error *error = &i915->gpu_error;
1907         int ret;
1908         int i;
1909
1910         GEM_TRACE("flags=%lx\n", error->flags);
1911
1912         might_sleep();
1913         lockdep_assert_held(&i915->drm.struct_mutex);
1914         GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
1915
1916         if (!test_bit(I915_RESET_HANDOFF, &error->flags))
1917                 return;
1918
1919         /* Clear any previous failed attempts at recovery. Time to try again. */
1920         if (!i915_gem_unset_wedged(i915))
1921                 goto wakeup;
1922
1923         if (reason)
1924                 dev_notice(i915->drm.dev, "Resetting chip for %s\n", reason);
1925         error->reset_count++;
1926
1927         disable_irq(i915->drm.irq);
1928         ret = i915_gem_reset_prepare(i915);
1929         if (ret) {
1930                 dev_err(i915->drm.dev, "GPU recovery failed\n");
1931                 goto taint;
1932         }
1933
1934         if (!intel_has_gpu_reset(i915)) {
1935                 if (i915_modparams.reset)
1936                         dev_err(i915->drm.dev, "GPU reset not supported\n");
1937                 else
1938                         DRM_DEBUG_DRIVER("GPU reset disabled\n");
1939                 goto error;
1940         }
1941
1942         for (i = 0; i < 3; i++) {
1943                 ret = intel_gpu_reset(i915, ALL_ENGINES);
1944                 if (ret == 0)
1945                         break;
1946
1947                 msleep(100);
1948         }
1949         if (ret) {
1950                 dev_err(i915->drm.dev, "Failed to reset chip\n");
1951                 goto taint;
1952         }
1953
1954         /* Ok, now get things going again... */
1955
1956         /*
1957          * Everything depends on having the GTT running, so we need to start
1958          * there.
1959          */
1960         ret = i915_ggtt_enable_hw(i915);
1961         if (ret) {
1962                 DRM_ERROR("Failed to re-enable GGTT following reset (%d)\n",
1963                           ret);
1964                 goto error;
1965         }
1966
1967         i915_gem_reset(i915, stalled_mask);
1968         intel_overlay_reset(i915);
1969
1970         /*
1971          * Next we need to restore the context, but we don't use those
1972          * yet either...
1973          *
1974          * Ring buffer needs to be re-initialized in the KMS case, or if X
1975          * was running at the time of the reset (i.e. we weren't VT
1976          * switched away).
1977          */
1978         ret = i915_gem_init_hw(i915);
1979         if (ret) {
1980                 DRM_ERROR("Failed to initialise HW following reset (%d)\n",
1981                           ret);
1982                 goto error;
1983         }
1984
1985         i915_queue_hangcheck(i915);
1986
1987 finish:
1988         i915_gem_reset_finish(i915);
1989         enable_irq(i915->drm.irq);
1990
1991 wakeup:
1992         clear_bit(I915_RESET_HANDOFF, &error->flags);
1993         wake_up_bit(&error->flags, I915_RESET_HANDOFF);
1994         return;
1995
1996 taint:
1997         /*
1998          * History tells us that if we cannot reset the GPU now, we
1999          * never will. This then impacts everything that is run
2000          * subsequently. On failing the reset, we mark the driver
2001          * as wedged, preventing further execution on the GPU.
2002          * We also want to go one step further and add a taint to the
2003          * kernel so that any subsequent faults can be traced back to
2004          * this failure. This is important for CI, where if the
2005          * GPU/driver fails we would like to reboot and restart testing
2006          * rather than continue on into oblivion. For everyone else,
2007          * the system should still plod along, but they have been warned!
2008          */
2009         add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2010 error:
2011         i915_gem_set_wedged(i915);
2012         i915_retire_requests(i915);
2013         goto finish;
2014 }
2015
2016 static inline int intel_gt_reset_engine(struct drm_i915_private *dev_priv,
2017                                         struct intel_engine_cs *engine)
2018 {
2019         return intel_gpu_reset(dev_priv, intel_engine_flag(engine));
2020 }
2021
2022 /**
2023  * i915_reset_engine - reset GPU engine to recover from a hang
2024  * @engine: engine to reset
2025  * @msg: reason for GPU reset; or NULL for no dev_notice()
2026  *
2027  * Reset a specific GPU engine. Useful if a hang is detected.
2028  * Returns zero on successful reset or otherwise an error code.
2029  *
2030  * Procedure is:
2031  *  - identifies the request that caused the hang and it is dropped
2032  *  - reset engine (which will force the engine to idle)
2033  *  - re-init/configure engine
2034  */
2035 int i915_reset_engine(struct intel_engine_cs *engine, const char *msg)
2036 {
2037         struct i915_gpu_error *error = &engine->i915->gpu_error;
2038         struct i915_request *active_request;
2039         int ret;
2040
2041         GEM_TRACE("%s flags=%lx\n", engine->name, error->flags);
2042         GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &error->flags));
2043
2044         active_request = i915_gem_reset_prepare_engine(engine);
2045         if (IS_ERR_OR_NULL(active_request)) {
2046                 /* Either the previous reset failed, or we pardon the reset. */
2047                 ret = PTR_ERR(active_request);
2048                 goto out;
2049         }
2050
2051         if (msg)
2052                 dev_notice(engine->i915->drm.dev,
2053                            "Resetting %s for %s\n", engine->name, msg);
2054         error->reset_engine_count[engine->id]++;
2055
2056         if (!engine->i915->guc.execbuf_client)
2057                 ret = intel_gt_reset_engine(engine->i915, engine);
2058         else
2059                 ret = intel_guc_reset_engine(&engine->i915->guc, engine);
2060         if (ret) {
2061                 /* If we fail here, we expect to fallback to a global reset */
2062                 DRM_DEBUG_DRIVER("%sFailed to reset %s, ret=%d\n",
2063                                  engine->i915->guc.execbuf_client ? "GuC " : "",
2064                                  engine->name, ret);
2065                 goto out;
2066         }
2067
2068         /*
2069          * The request that caused the hang is stuck on elsp, we know the
2070          * active request and can drop it, adjust head to skip the offending
2071          * request to resume executing remaining requests in the queue.
2072          */
2073         i915_gem_reset_engine(engine, active_request, true);
2074
2075         /*
2076          * The engine and its registers (and workarounds in case of render)
2077          * have been reset to their default values. Follow the init_ring
2078          * process to program RING_MODE, HWSP and re-enable submission.
2079          */
2080         ret = engine->init_hw(engine);
2081         if (ret)
2082                 goto out;
2083
2084 out:
2085         i915_gem_reset_finish_engine(engine);
2086         return ret;
2087 }
2088
2089 static int i915_pm_prepare(struct device *kdev)
2090 {
2091         struct pci_dev *pdev = to_pci_dev(kdev);
2092         struct drm_device *dev = pci_get_drvdata(pdev);
2093
2094         if (!dev) {
2095                 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2096                 return -ENODEV;
2097         }
2098
2099         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2100                 return 0;
2101
2102         return i915_drm_prepare(dev);
2103 }
2104
2105 static int i915_pm_suspend(struct device *kdev)
2106 {
2107         struct pci_dev *pdev = to_pci_dev(kdev);
2108         struct drm_device *dev = pci_get_drvdata(pdev);
2109
2110         if (!dev) {
2111                 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2112                 return -ENODEV;
2113         }
2114
2115         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2116                 return 0;
2117
2118         return i915_drm_suspend(dev);
2119 }
2120
2121 static int i915_pm_suspend_late(struct device *kdev)
2122 {
2123         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2124
2125         /*
2126          * We have a suspend ordering issue with the snd-hda driver also
2127          * requiring our device to be power up. Due to the lack of a
2128          * parent/child relationship we currently solve this with an late
2129          * suspend hook.
2130          *
2131          * FIXME: This should be solved with a special hdmi sink device or
2132          * similar so that power domains can be employed.
2133          */
2134         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2135                 return 0;
2136
2137         return i915_drm_suspend_late(dev, false);
2138 }
2139
2140 static int i915_pm_poweroff_late(struct device *kdev)
2141 {
2142         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2143
2144         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2145                 return 0;
2146
2147         return i915_drm_suspend_late(dev, true);
2148 }
2149
2150 static int i915_pm_resume_early(struct device *kdev)
2151 {
2152         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2153
2154         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2155                 return 0;
2156
2157         return i915_drm_resume_early(dev);
2158 }
2159
2160 static int i915_pm_resume(struct device *kdev)
2161 {
2162         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2163
2164         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2165                 return 0;
2166
2167         return i915_drm_resume(dev);
2168 }
2169
2170 /* freeze: before creating the hibernation_image */
2171 static int i915_pm_freeze(struct device *kdev)
2172 {
2173         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2174         int ret;
2175
2176         if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2177                 ret = i915_drm_suspend(dev);
2178                 if (ret)
2179                         return ret;
2180         }
2181
2182         ret = i915_gem_freeze(kdev_to_i915(kdev));
2183         if (ret)
2184                 return ret;
2185
2186         return 0;
2187 }
2188
2189 static int i915_pm_freeze_late(struct device *kdev)
2190 {
2191         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2192         int ret;
2193
2194         if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2195                 ret = i915_drm_suspend_late(dev, true);
2196                 if (ret)
2197                         return ret;
2198         }
2199
2200         ret = i915_gem_freeze_late(kdev_to_i915(kdev));
2201         if (ret)
2202                 return ret;
2203
2204         return 0;
2205 }
2206
2207 /* thaw: called after creating the hibernation image, but before turning off. */
2208 static int i915_pm_thaw_early(struct device *kdev)
2209 {
2210         return i915_pm_resume_early(kdev);
2211 }
2212
2213 static int i915_pm_thaw(struct device *kdev)
2214 {
2215         return i915_pm_resume(kdev);
2216 }
2217
2218 /* restore: called after loading the hibernation image. */
2219 static int i915_pm_restore_early(struct device *kdev)
2220 {
2221         return i915_pm_resume_early(kdev);
2222 }
2223
2224 static int i915_pm_restore(struct device *kdev)
2225 {
2226         return i915_pm_resume(kdev);
2227 }
2228
2229 /*
2230  * Save all Gunit registers that may be lost after a D3 and a subsequent
2231  * S0i[R123] transition. The list of registers needing a save/restore is
2232  * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2233  * registers in the following way:
2234  * - Driver: saved/restored by the driver
2235  * - Punit : saved/restored by the Punit firmware
2236  * - No, w/o marking: no need to save/restore, since the register is R/O or
2237  *                    used internally by the HW in a way that doesn't depend
2238  *                    keeping the content across a suspend/resume.
2239  * - Debug : used for debugging
2240  *
2241  * We save/restore all registers marked with 'Driver', with the following
2242  * exceptions:
2243  * - Registers out of use, including also registers marked with 'Debug'.
2244  *   These have no effect on the driver's operation, so we don't save/restore
2245  *   them to reduce the overhead.
2246  * - Registers that are fully setup by an initialization function called from
2247  *   the resume path. For example many clock gating and RPS/RC6 registers.
2248  * - Registers that provide the right functionality with their reset defaults.
2249  *
2250  * TODO: Except for registers that based on the above 3 criteria can be safely
2251  * ignored, we save/restore all others, practically treating the HW context as
2252  * a black-box for the driver. Further investigation is needed to reduce the
2253  * saved/restored registers even further, by following the same 3 criteria.
2254  */
2255 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2256 {
2257         struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2258         int i;
2259
2260         /* GAM 0x4000-0x4770 */
2261         s->wr_watermark         = I915_READ(GEN7_WR_WATERMARK);
2262         s->gfx_prio_ctrl        = I915_READ(GEN7_GFX_PRIO_CTRL);
2263         s->arb_mode             = I915_READ(ARB_MODE);
2264         s->gfx_pend_tlb0        = I915_READ(GEN7_GFX_PEND_TLB0);
2265         s->gfx_pend_tlb1        = I915_READ(GEN7_GFX_PEND_TLB1);
2266
2267         for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2268                 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2269
2270         s->media_max_req_count  = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2271         s->gfx_max_req_count    = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2272
2273         s->render_hwsp          = I915_READ(RENDER_HWS_PGA_GEN7);
2274         s->ecochk               = I915_READ(GAM_ECOCHK);
2275         s->bsd_hwsp             = I915_READ(BSD_HWS_PGA_GEN7);
2276         s->blt_hwsp             = I915_READ(BLT_HWS_PGA_GEN7);
2277
2278         s->tlb_rd_addr          = I915_READ(GEN7_TLB_RD_ADDR);
2279
2280         /* MBC 0x9024-0x91D0, 0x8500 */
2281         s->g3dctl               = I915_READ(VLV_G3DCTL);
2282         s->gsckgctl             = I915_READ(VLV_GSCKGCTL);
2283         s->mbctl                = I915_READ(GEN6_MBCTL);
2284
2285         /* GCP 0x9400-0x9424, 0x8100-0x810C */
2286         s->ucgctl1              = I915_READ(GEN6_UCGCTL1);
2287         s->ucgctl3              = I915_READ(GEN6_UCGCTL3);
2288         s->rcgctl1              = I915_READ(GEN6_RCGCTL1);
2289         s->rcgctl2              = I915_READ(GEN6_RCGCTL2);
2290         s->rstctl               = I915_READ(GEN6_RSTCTL);
2291         s->misccpctl            = I915_READ(GEN7_MISCCPCTL);
2292
2293         /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2294         s->gfxpause             = I915_READ(GEN6_GFXPAUSE);
2295         s->rpdeuhwtc            = I915_READ(GEN6_RPDEUHWTC);
2296         s->rpdeuc               = I915_READ(GEN6_RPDEUC);
2297         s->ecobus               = I915_READ(ECOBUS);
2298         s->pwrdwnupctl          = I915_READ(VLV_PWRDWNUPCTL);
2299         s->rp_down_timeout      = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2300         s->rp_deucsw            = I915_READ(GEN6_RPDEUCSW);
2301         s->rcubmabdtmr          = I915_READ(GEN6_RCUBMABDTMR);
2302         s->rcedata              = I915_READ(VLV_RCEDATA);
2303         s->spare2gh             = I915_READ(VLV_SPAREG2H);
2304
2305         /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2306         s->gt_imr               = I915_READ(GTIMR);
2307         s->gt_ier               = I915_READ(GTIER);
2308         s->pm_imr               = I915_READ(GEN6_PMIMR);
2309         s->pm_ier               = I915_READ(GEN6_PMIER);
2310
2311         for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2312                 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2313
2314         /* GT SA CZ domain, 0x100000-0x138124 */
2315         s->tilectl              = I915_READ(TILECTL);
2316         s->gt_fifoctl           = I915_READ(GTFIFOCTL);
2317         s->gtlc_wake_ctrl       = I915_READ(VLV_GTLC_WAKE_CTRL);
2318         s->gtlc_survive         = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2319         s->pmwgicz              = I915_READ(VLV_PMWGICZ);
2320
2321         /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2322         s->gu_ctl0              = I915_READ(VLV_GU_CTL0);
2323         s->gu_ctl1              = I915_READ(VLV_GU_CTL1);
2324         s->pcbr                 = I915_READ(VLV_PCBR);
2325         s->clock_gate_dis2      = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2326
2327         /*
2328          * Not saving any of:
2329          * DFT,         0x9800-0x9EC0
2330          * SARB,        0xB000-0xB1FC
2331          * GAC,         0x5208-0x524C, 0x14000-0x14C000
2332          * PCI CFG
2333          */
2334 }
2335
2336 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2337 {
2338         struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2339         u32 val;
2340         int i;
2341
2342         /* GAM 0x4000-0x4770 */
2343         I915_WRITE(GEN7_WR_WATERMARK,   s->wr_watermark);
2344         I915_WRITE(GEN7_GFX_PRIO_CTRL,  s->gfx_prio_ctrl);
2345         I915_WRITE(ARB_MODE,            s->arb_mode | (0xffff << 16));
2346         I915_WRITE(GEN7_GFX_PEND_TLB0,  s->gfx_pend_tlb0);
2347         I915_WRITE(GEN7_GFX_PEND_TLB1,  s->gfx_pend_tlb1);
2348
2349         for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2350                 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2351
2352         I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2353         I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2354
2355         I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2356         I915_WRITE(GAM_ECOCHK,          s->ecochk);
2357         I915_WRITE(BSD_HWS_PGA_GEN7,    s->bsd_hwsp);
2358         I915_WRITE(BLT_HWS_PGA_GEN7,    s->blt_hwsp);
2359
2360         I915_WRITE(GEN7_TLB_RD_ADDR,    s->tlb_rd_addr);
2361
2362         /* MBC 0x9024-0x91D0, 0x8500 */
2363         I915_WRITE(VLV_G3DCTL,          s->g3dctl);
2364         I915_WRITE(VLV_GSCKGCTL,        s->gsckgctl);
2365         I915_WRITE(GEN6_MBCTL,          s->mbctl);
2366
2367         /* GCP 0x9400-0x9424, 0x8100-0x810C */
2368         I915_WRITE(GEN6_UCGCTL1,        s->ucgctl1);
2369         I915_WRITE(GEN6_UCGCTL3,        s->ucgctl3);
2370         I915_WRITE(GEN6_RCGCTL1,        s->rcgctl1);
2371         I915_WRITE(GEN6_RCGCTL2,        s->rcgctl2);
2372         I915_WRITE(GEN6_RSTCTL,         s->rstctl);
2373         I915_WRITE(GEN7_MISCCPCTL,      s->misccpctl);
2374
2375         /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2376         I915_WRITE(GEN6_GFXPAUSE,       s->gfxpause);
2377         I915_WRITE(GEN6_RPDEUHWTC,      s->rpdeuhwtc);
2378         I915_WRITE(GEN6_RPDEUC,         s->rpdeuc);
2379         I915_WRITE(ECOBUS,              s->ecobus);
2380         I915_WRITE(VLV_PWRDWNUPCTL,     s->pwrdwnupctl);
2381         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2382         I915_WRITE(GEN6_RPDEUCSW,       s->rp_deucsw);
2383         I915_WRITE(GEN6_RCUBMABDTMR,    s->rcubmabdtmr);
2384         I915_WRITE(VLV_RCEDATA,         s->rcedata);
2385         I915_WRITE(VLV_SPAREG2H,        s->spare2gh);
2386
2387         /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2388         I915_WRITE(GTIMR,               s->gt_imr);
2389         I915_WRITE(GTIER,               s->gt_ier);
2390         I915_WRITE(GEN6_PMIMR,          s->pm_imr);
2391         I915_WRITE(GEN6_PMIER,          s->pm_ier);
2392
2393         for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2394                 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2395
2396         /* GT SA CZ domain, 0x100000-0x138124 */
2397         I915_WRITE(TILECTL,                     s->tilectl);
2398         I915_WRITE(GTFIFOCTL,                   s->gt_fifoctl);
2399         /*
2400          * Preserve the GT allow wake and GFX force clock bit, they are not
2401          * be restored, as they are used to control the s0ix suspend/resume
2402          * sequence by the caller.
2403          */
2404         val = I915_READ(VLV_GTLC_WAKE_CTRL);
2405         val &= VLV_GTLC_ALLOWWAKEREQ;
2406         val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2407         I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2408
2409         val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2410         val &= VLV_GFX_CLK_FORCE_ON_BIT;
2411         val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2412         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2413
2414         I915_WRITE(VLV_PMWGICZ,                 s->pmwgicz);
2415
2416         /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2417         I915_WRITE(VLV_GU_CTL0,                 s->gu_ctl0);
2418         I915_WRITE(VLV_GU_CTL1,                 s->gu_ctl1);
2419         I915_WRITE(VLV_PCBR,                    s->pcbr);
2420         I915_WRITE(VLV_GUNIT_CLOCK_GATE2,       s->clock_gate_dis2);
2421 }
2422
2423 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2424                                   u32 mask, u32 val)
2425 {
2426         /* The HW does not like us polling for PW_STATUS frequently, so
2427          * use the sleeping loop rather than risk the busy spin within
2428          * intel_wait_for_register().
2429          *
2430          * Transitioning between RC6 states should be at most 2ms (see
2431          * valleyview_enable_rps) so use a 3ms timeout.
2432          */
2433         return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2434                         3);
2435 }
2436
2437 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2438 {
2439         u32 val;
2440         int err;
2441
2442         val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2443         val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2444         if (force_on)
2445                 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2446         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2447
2448         if (!force_on)
2449                 return 0;
2450
2451         err = intel_wait_for_register(dev_priv,
2452                                       VLV_GTLC_SURVIVABILITY_REG,
2453                                       VLV_GFX_CLK_STATUS_BIT,
2454                                       VLV_GFX_CLK_STATUS_BIT,
2455                                       20);
2456         if (err)
2457                 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2458                           I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2459
2460         return err;
2461 }
2462
2463 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2464 {
2465         u32 mask;
2466         u32 val;
2467         int err;
2468
2469         val = I915_READ(VLV_GTLC_WAKE_CTRL);
2470         val &= ~VLV_GTLC_ALLOWWAKEREQ;
2471         if (allow)
2472                 val |= VLV_GTLC_ALLOWWAKEREQ;
2473         I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2474         POSTING_READ(VLV_GTLC_WAKE_CTRL);
2475
2476         mask = VLV_GTLC_ALLOWWAKEACK;
2477         val = allow ? mask : 0;
2478
2479         err = vlv_wait_for_pw_status(dev_priv, mask, val);
2480         if (err)
2481                 DRM_ERROR("timeout disabling GT waking\n");
2482
2483         return err;
2484 }
2485
2486 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2487                                   bool wait_for_on)
2488 {
2489         u32 mask;
2490         u32 val;
2491
2492         mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2493         val = wait_for_on ? mask : 0;
2494
2495         /*
2496          * RC6 transitioning can be delayed up to 2 msec (see
2497          * valleyview_enable_rps), use 3 msec for safety.
2498          *
2499          * This can fail to turn off the rc6 if the GPU is stuck after a failed
2500          * reset and we are trying to force the machine to sleep.
2501          */
2502         if (vlv_wait_for_pw_status(dev_priv, mask, val))
2503                 DRM_DEBUG_DRIVER("timeout waiting for GT wells to go %s\n",
2504                                  onoff(wait_for_on));
2505 }
2506
2507 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2508 {
2509         if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2510                 return;
2511
2512         DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2513         I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2514 }
2515
2516 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2517 {
2518         u32 mask;
2519         int err;
2520
2521         /*
2522          * Bspec defines the following GT well on flags as debug only, so
2523          * don't treat them as hard failures.
2524          */
2525         vlv_wait_for_gt_wells(dev_priv, false);
2526
2527         mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2528         WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2529
2530         vlv_check_no_gt_access(dev_priv);
2531
2532         err = vlv_force_gfx_clock(dev_priv, true);
2533         if (err)
2534                 goto err1;
2535
2536         err = vlv_allow_gt_wake(dev_priv, false);
2537         if (err)
2538                 goto err2;
2539
2540         if (!IS_CHERRYVIEW(dev_priv))
2541                 vlv_save_gunit_s0ix_state(dev_priv);
2542
2543         err = vlv_force_gfx_clock(dev_priv, false);
2544         if (err)
2545                 goto err2;
2546
2547         return 0;
2548
2549 err2:
2550         /* For safety always re-enable waking and disable gfx clock forcing */
2551         vlv_allow_gt_wake(dev_priv, true);
2552 err1:
2553         vlv_force_gfx_clock(dev_priv, false);
2554
2555         return err;
2556 }
2557
2558 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2559                                 bool rpm_resume)
2560 {
2561         int err;
2562         int ret;
2563
2564         /*
2565          * If any of the steps fail just try to continue, that's the best we
2566          * can do at this point. Return the first error code (which will also
2567          * leave RPM permanently disabled).
2568          */
2569         ret = vlv_force_gfx_clock(dev_priv, true);
2570
2571         if (!IS_CHERRYVIEW(dev_priv))
2572                 vlv_restore_gunit_s0ix_state(dev_priv);
2573
2574         err = vlv_allow_gt_wake(dev_priv, true);
2575         if (!ret)
2576                 ret = err;
2577
2578         err = vlv_force_gfx_clock(dev_priv, false);
2579         if (!ret)
2580                 ret = err;
2581
2582         vlv_check_no_gt_access(dev_priv);
2583
2584         if (rpm_resume)
2585                 intel_init_clock_gating(dev_priv);
2586
2587         return ret;
2588 }
2589
2590 static int intel_runtime_suspend(struct device *kdev)
2591 {
2592         struct pci_dev *pdev = to_pci_dev(kdev);
2593         struct drm_device *dev = pci_get_drvdata(pdev);
2594         struct drm_i915_private *dev_priv = to_i915(dev);
2595         int ret;
2596
2597         if (WARN_ON_ONCE(!(dev_priv->gt_pm.rc6.enabled && HAS_RC6(dev_priv))))
2598                 return -ENODEV;
2599
2600         if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2601                 return -ENODEV;
2602
2603         DRM_DEBUG_KMS("Suspending device\n");
2604
2605         disable_rpm_wakeref_asserts(dev_priv);
2606
2607         /*
2608          * We are safe here against re-faults, since the fault handler takes
2609          * an RPM reference.
2610          */
2611         i915_gem_runtime_suspend(dev_priv);
2612
2613         intel_uc_suspend(dev_priv);
2614
2615         intel_runtime_pm_disable_interrupts(dev_priv);
2616
2617         intel_uncore_suspend(dev_priv);
2618
2619         ret = 0;
2620         if (IS_GEN9_LP(dev_priv)) {
2621                 bxt_display_core_uninit(dev_priv);
2622                 bxt_enable_dc9(dev_priv);
2623         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2624                 hsw_enable_pc8(dev_priv);
2625         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2626                 ret = vlv_suspend_complete(dev_priv);
2627         }
2628
2629         if (ret) {
2630                 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2631                 intel_uncore_runtime_resume(dev_priv);
2632
2633                 intel_runtime_pm_enable_interrupts(dev_priv);
2634
2635                 intel_uc_resume(dev_priv);
2636
2637                 i915_gem_init_swizzling(dev_priv);
2638                 i915_gem_restore_fences(dev_priv);
2639
2640                 enable_rpm_wakeref_asserts(dev_priv);
2641
2642                 return ret;
2643         }
2644
2645         enable_rpm_wakeref_asserts(dev_priv);
2646         WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2647
2648         if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2649                 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2650
2651         dev_priv->runtime_pm.suspended = true;
2652
2653         /*
2654          * FIXME: We really should find a document that references the arguments
2655          * used below!
2656          */
2657         if (IS_BROADWELL(dev_priv)) {
2658                 /*
2659                  * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2660                  * being detected, and the call we do at intel_runtime_resume()
2661                  * won't be able to restore them. Since PCI_D3hot matches the
2662                  * actual specification and appears to be working, use it.
2663                  */
2664                 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2665         } else {
2666                 /*
2667                  * current versions of firmware which depend on this opregion
2668                  * notification have repurposed the D1 definition to mean
2669                  * "runtime suspended" vs. what you would normally expect (D3)
2670                  * to distinguish it from notifications that might be sent via
2671                  * the suspend path.
2672                  */
2673                 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2674         }
2675
2676         assert_forcewakes_inactive(dev_priv);
2677
2678         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2679                 intel_hpd_poll_init(dev_priv);
2680
2681         DRM_DEBUG_KMS("Device suspended\n");
2682         return 0;
2683 }
2684
2685 static int intel_runtime_resume(struct device *kdev)
2686 {
2687         struct pci_dev *pdev = to_pci_dev(kdev);
2688         struct drm_device *dev = pci_get_drvdata(pdev);
2689         struct drm_i915_private *dev_priv = to_i915(dev);
2690         int ret = 0;
2691
2692         if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2693                 return -ENODEV;
2694
2695         DRM_DEBUG_KMS("Resuming device\n");
2696
2697         WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2698         disable_rpm_wakeref_asserts(dev_priv);
2699
2700         intel_opregion_notify_adapter(dev_priv, PCI_D0);
2701         dev_priv->runtime_pm.suspended = false;
2702         if (intel_uncore_unclaimed_mmio(dev_priv))
2703                 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2704
2705         if (IS_GEN9_LP(dev_priv)) {
2706                 bxt_disable_dc9(dev_priv);
2707                 bxt_display_core_init(dev_priv, true);
2708                 if (dev_priv->csr.dmc_payload &&
2709                     (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2710                         gen9_enable_dc5(dev_priv);
2711         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2712                 hsw_disable_pc8(dev_priv);
2713         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2714                 ret = vlv_resume_prepare(dev_priv, true);
2715         }
2716
2717         intel_uncore_runtime_resume(dev_priv);
2718
2719         intel_runtime_pm_enable_interrupts(dev_priv);
2720
2721         intel_uc_resume(dev_priv);
2722
2723         /*
2724          * No point of rolling back things in case of an error, as the best
2725          * we can do is to hope that things will still work (and disable RPM).
2726          */
2727         i915_gem_init_swizzling(dev_priv);
2728         i915_gem_restore_fences(dev_priv);
2729
2730         /*
2731          * On VLV/CHV display interrupts are part of the display
2732          * power well, so hpd is reinitialized from there. For
2733          * everyone else do it here.
2734          */
2735         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2736                 intel_hpd_init(dev_priv);
2737
2738         intel_enable_ipc(dev_priv);
2739
2740         enable_rpm_wakeref_asserts(dev_priv);
2741
2742         if (ret)
2743                 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2744         else
2745                 DRM_DEBUG_KMS("Device resumed\n");
2746
2747         return ret;
2748 }
2749
2750 const struct dev_pm_ops i915_pm_ops = {
2751         /*
2752          * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2753          * PMSG_RESUME]
2754          */
2755         .prepare = i915_pm_prepare,
2756         .suspend = i915_pm_suspend,
2757         .suspend_late = i915_pm_suspend_late,
2758         .resume_early = i915_pm_resume_early,
2759         .resume = i915_pm_resume,
2760
2761         /*
2762          * S4 event handlers
2763          * @freeze, @freeze_late    : called (1) before creating the
2764          *                            hibernation image [PMSG_FREEZE] and
2765          *                            (2) after rebooting, before restoring
2766          *                            the image [PMSG_QUIESCE]
2767          * @thaw, @thaw_early       : called (1) after creating the hibernation
2768          *                            image, before writing it [PMSG_THAW]
2769          *                            and (2) after failing to create or
2770          *                            restore the image [PMSG_RECOVER]
2771          * @poweroff, @poweroff_late: called after writing the hibernation
2772          *                            image, before rebooting [PMSG_HIBERNATE]
2773          * @restore, @restore_early : called after rebooting and restoring the
2774          *                            hibernation image [PMSG_RESTORE]
2775          */
2776         .freeze = i915_pm_freeze,
2777         .freeze_late = i915_pm_freeze_late,
2778         .thaw_early = i915_pm_thaw_early,
2779         .thaw = i915_pm_thaw,
2780         .poweroff = i915_pm_suspend,
2781         .poweroff_late = i915_pm_poweroff_late,
2782         .restore_early = i915_pm_restore_early,
2783         .restore = i915_pm_restore,
2784
2785         /* S0ix (via runtime suspend) event handlers */
2786         .runtime_suspend = intel_runtime_suspend,
2787         .runtime_resume = intel_runtime_resume,
2788 };
2789
2790 static const struct vm_operations_struct i915_gem_vm_ops = {
2791         .fault = i915_gem_fault,
2792         .open = drm_gem_vm_open,
2793         .close = drm_gem_vm_close,
2794 };
2795
2796 static const struct file_operations i915_driver_fops = {
2797         .owner = THIS_MODULE,
2798         .open = drm_open,
2799         .release = drm_release,
2800         .unlocked_ioctl = drm_ioctl,
2801         .mmap = drm_gem_mmap,
2802         .poll = drm_poll,
2803         .read = drm_read,
2804         .compat_ioctl = i915_compat_ioctl,
2805         .llseek = noop_llseek,
2806 };
2807
2808 static int
2809 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2810                           struct drm_file *file)
2811 {
2812         return -ENODEV;
2813 }
2814
2815 static const struct drm_ioctl_desc i915_ioctls[] = {
2816         DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2817         DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2818         DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2819         DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2820         DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2821         DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2822         DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2823         DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2824         DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2825         DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2826         DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2827         DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2828         DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2829         DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2830         DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE,  drm_noop, DRM_AUTH),
2831         DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2832         DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2833         DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2834         DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer_ioctl, DRM_AUTH),
2835         DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2836         DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2837         DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2838         DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2839         DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2840         DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2841         DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2842         DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2843         DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2844         DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2845         DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2846         DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2847         DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2848         DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2849         DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2850         DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2851         DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2852         DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2853         DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2854         DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id_ioctl, 0),
2855         DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2856         DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER),
2857         DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER),
2858         DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey_ioctl, DRM_MASTER),
2859         DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER),
2860         DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2861         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2862         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2863         DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2864         DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2865         DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2866         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2867         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2868         DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2869         DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2870         DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2871         DRM_IOCTL_DEF_DRV(I915_QUERY, i915_query_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2872 };
2873
2874 static struct drm_driver driver = {
2875         /* Don't use MTRRs here; the Xserver or userspace app should
2876          * deal with them for Intel hardware.
2877          */
2878         .driver_features =
2879             DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2880             DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2881         .release = i915_driver_release,
2882         .open = i915_driver_open,
2883         .lastclose = i915_driver_lastclose,
2884         .postclose = i915_driver_postclose,
2885
2886         .gem_close_object = i915_gem_close_object,
2887         .gem_free_object_unlocked = i915_gem_free_object,
2888         .gem_vm_ops = &i915_gem_vm_ops,
2889
2890         .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2891         .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2892         .gem_prime_export = i915_gem_prime_export,
2893         .gem_prime_import = i915_gem_prime_import,
2894
2895         .dumb_create = i915_gem_dumb_create,
2896         .dumb_map_offset = i915_gem_mmap_gtt,
2897         .ioctls = i915_ioctls,
2898         .num_ioctls = ARRAY_SIZE(i915_ioctls),
2899         .fops = &i915_driver_fops,
2900         .name = DRIVER_NAME,
2901         .desc = DRIVER_DESC,
2902         .date = DRIVER_DATE,
2903         .major = DRIVER_MAJOR,
2904         .minor = DRIVER_MINOR,
2905         .patchlevel = DRIVER_PATCHLEVEL,
2906 };
2907
2908 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2909 #include "selftests/mock_drm.c"
2910 #endif