GNU Linux-libre 4.14.259-gnu1
[releases.git] / fs / xfs / xfs_log.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37
38 kmem_zone_t     *xfs_log_ticket_zone;
39
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43         struct xlog             *log,
44         struct xlog_ticket      *ticket,
45         struct xlog_in_core     **iclog,
46         xfs_lsn_t               *commitlsnp);
47
48 STATIC struct xlog *
49 xlog_alloc_log(
50         struct xfs_mount        *mp,
51         struct xfs_buftarg      *log_target,
52         xfs_daddr_t             blk_offset,
53         int                     num_bblks);
54 STATIC int
55 xlog_space_left(
56         struct xlog             *log,
57         atomic64_t              *head);
58 STATIC int
59 xlog_sync(
60         struct xlog             *log,
61         struct xlog_in_core     *iclog);
62 STATIC void
63 xlog_dealloc_log(
64         struct xlog             *log);
65
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70         struct xlog             *log,
71         int                     aborted,
72         struct xlog_in_core     *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75         struct xlog             *log,
76         int                     len,
77         struct xlog_in_core     **iclog,
78         struct xlog_ticket      *ticket,
79         int                     *continued_write,
80         int                     *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83         struct xlog             *log,
84         struct xlog_in_core     *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87         struct xlog             *log,
88         struct xlog_in_core     *iclog,
89         int                     eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92         struct xlog             *log,
93         struct xlog_in_core     *iclog);
94
95 STATIC void
96 xlog_grant_push_ail(
97         struct xlog             *log,
98         int                     need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101         struct xlog             *log,
102         struct xlog_ticket      *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105         struct xlog             *log,
106         struct xlog_ticket      *ticket);
107
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111         struct xlog             *log,
112         void                    *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115         struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118         struct xlog             *log,
119         struct xlog_in_core     *iclog,
120         int                     count,
121         bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124         struct xlog             *log,
125         struct xlog_in_core     *iclog,
126         xfs_lsn_t               tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133
134 STATIC int
135 xlog_iclogs_empty(
136         struct xlog             *log);
137
138 static void
139 xlog_grant_sub_space(
140         struct xlog             *log,
141         atomic64_t              *head,
142         int                     bytes)
143 {
144         int64_t head_val = atomic64_read(head);
145         int64_t new, old;
146
147         do {
148                 int     cycle, space;
149
150                 xlog_crack_grant_head_val(head_val, &cycle, &space);
151
152                 space -= bytes;
153                 if (space < 0) {
154                         space += log->l_logsize;
155                         cycle--;
156                 }
157
158                 old = head_val;
159                 new = xlog_assign_grant_head_val(cycle, space);
160                 head_val = atomic64_cmpxchg(head, old, new);
161         } while (head_val != old);
162 }
163
164 static void
165 xlog_grant_add_space(
166         struct xlog             *log,
167         atomic64_t              *head,
168         int                     bytes)
169 {
170         int64_t head_val = atomic64_read(head);
171         int64_t new, old;
172
173         do {
174                 int             tmp;
175                 int             cycle, space;
176
177                 xlog_crack_grant_head_val(head_val, &cycle, &space);
178
179                 tmp = log->l_logsize - space;
180                 if (tmp > bytes)
181                         space += bytes;
182                 else {
183                         space = bytes - tmp;
184                         cycle++;
185                 }
186
187                 old = head_val;
188                 new = xlog_assign_grant_head_val(cycle, space);
189                 head_val = atomic64_cmpxchg(head, old, new);
190         } while (head_val != old);
191 }
192
193 STATIC void
194 xlog_grant_head_init(
195         struct xlog_grant_head  *head)
196 {
197         xlog_assign_grant_head(&head->grant, 1, 0);
198         INIT_LIST_HEAD(&head->waiters);
199         spin_lock_init(&head->lock);
200 }
201
202 STATIC void
203 xlog_grant_head_wake_all(
204         struct xlog_grant_head  *head)
205 {
206         struct xlog_ticket      *tic;
207
208         spin_lock(&head->lock);
209         list_for_each_entry(tic, &head->waiters, t_queue)
210                 wake_up_process(tic->t_task);
211         spin_unlock(&head->lock);
212 }
213
214 static inline int
215 xlog_ticket_reservation(
216         struct xlog             *log,
217         struct xlog_grant_head  *head,
218         struct xlog_ticket      *tic)
219 {
220         if (head == &log->l_write_head) {
221                 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222                 return tic->t_unit_res;
223         } else {
224                 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225                         return tic->t_unit_res * tic->t_cnt;
226                 else
227                         return tic->t_unit_res;
228         }
229 }
230
231 STATIC bool
232 xlog_grant_head_wake(
233         struct xlog             *log,
234         struct xlog_grant_head  *head,
235         int                     *free_bytes)
236 {
237         struct xlog_ticket      *tic;
238         int                     need_bytes;
239
240         list_for_each_entry(tic, &head->waiters, t_queue) {
241                 need_bytes = xlog_ticket_reservation(log, head, tic);
242                 if (*free_bytes < need_bytes)
243                         return false;
244
245                 *free_bytes -= need_bytes;
246                 trace_xfs_log_grant_wake_up(log, tic);
247                 wake_up_process(tic->t_task);
248         }
249
250         return true;
251 }
252
253 STATIC int
254 xlog_grant_head_wait(
255         struct xlog             *log,
256         struct xlog_grant_head  *head,
257         struct xlog_ticket      *tic,
258         int                     need_bytes) __releases(&head->lock)
259                                             __acquires(&head->lock)
260 {
261         list_add_tail(&tic->t_queue, &head->waiters);
262
263         do {
264                 if (XLOG_FORCED_SHUTDOWN(log))
265                         goto shutdown;
266                 xlog_grant_push_ail(log, need_bytes);
267
268                 __set_current_state(TASK_UNINTERRUPTIBLE);
269                 spin_unlock(&head->lock);
270
271                 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272
273                 trace_xfs_log_grant_sleep(log, tic);
274                 schedule();
275                 trace_xfs_log_grant_wake(log, tic);
276
277                 spin_lock(&head->lock);
278                 if (XLOG_FORCED_SHUTDOWN(log))
279                         goto shutdown;
280         } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282         list_del_init(&tic->t_queue);
283         return 0;
284 shutdown:
285         list_del_init(&tic->t_queue);
286         return -EIO;
287 }
288
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
307 xlog_grant_head_check(
308         struct xlog             *log,
309         struct xlog_grant_head  *head,
310         struct xlog_ticket      *tic,
311         int                     *need_bytes)
312 {
313         int                     free_bytes;
314         int                     error = 0;
315
316         ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318         /*
319          * If there are other waiters on the queue then give them a chance at
320          * logspace before us.  Wake up the first waiters, if we do not wake
321          * up all the waiters then go to sleep waiting for more free space,
322          * otherwise try to get some space for this transaction.
323          */
324         *need_bytes = xlog_ticket_reservation(log, head, tic);
325         free_bytes = xlog_space_left(log, &head->grant);
326         if (!list_empty_careful(&head->waiters)) {
327                 spin_lock(&head->lock);
328                 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329                     free_bytes < *need_bytes) {
330                         error = xlog_grant_head_wait(log, head, tic,
331                                                      *need_bytes);
332                 }
333                 spin_unlock(&head->lock);
334         } else if (free_bytes < *need_bytes) {
335                 spin_lock(&head->lock);
336                 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337                 spin_unlock(&head->lock);
338         }
339
340         return error;
341 }
342
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346         tic->t_res_num = 0;
347         tic->t_res_arr_sum = 0;
348         tic->t_res_num_ophdrs = 0;
349 }
350
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354         if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355                 /* add to overflow and start again */
356                 tic->t_res_o_flow += tic->t_res_arr_sum;
357                 tic->t_res_num = 0;
358                 tic->t_res_arr_sum = 0;
359         }
360
361         tic->t_res_arr[tic->t_res_num].r_len = len;
362         tic->t_res_arr[tic->t_res_num].r_type = type;
363         tic->t_res_arr_sum += len;
364         tic->t_res_num++;
365 }
366
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
371 xfs_log_regrant(
372         struct xfs_mount        *mp,
373         struct xlog_ticket      *tic)
374 {
375         struct xlog             *log = mp->m_log;
376         int                     need_bytes;
377         int                     error = 0;
378
379         if (XLOG_FORCED_SHUTDOWN(log))
380                 return -EIO;
381
382         XFS_STATS_INC(mp, xs_try_logspace);
383
384         /*
385          * This is a new transaction on the ticket, so we need to change the
386          * transaction ID so that the next transaction has a different TID in
387          * the log. Just add one to the existing tid so that we can see chains
388          * of rolling transactions in the log easily.
389          */
390         tic->t_tid++;
391
392         xlog_grant_push_ail(log, tic->t_unit_res);
393
394         tic->t_curr_res = tic->t_unit_res;
395         xlog_tic_reset_res(tic);
396
397         if (tic->t_cnt > 0)
398                 return 0;
399
400         trace_xfs_log_regrant(log, tic);
401
402         error = xlog_grant_head_check(log, &log->l_write_head, tic,
403                                       &need_bytes);
404         if (error)
405                 goto out_error;
406
407         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408         trace_xfs_log_regrant_exit(log, tic);
409         xlog_verify_grant_tail(log);
410         return 0;
411
412 out_error:
413         /*
414          * If we are failing, make sure the ticket doesn't have any current
415          * reservations.  We don't want to add this back when the ticket/
416          * transaction gets cancelled.
417          */
418         tic->t_curr_res = 0;
419         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420         return error;
421 }
422
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
432 xfs_log_reserve(
433         struct xfs_mount        *mp,
434         int                     unit_bytes,
435         int                     cnt,
436         struct xlog_ticket      **ticp,
437         uint8_t                 client,
438         bool                    permanent)
439 {
440         struct xlog             *log = mp->m_log;
441         struct xlog_ticket      *tic;
442         int                     need_bytes;
443         int                     error = 0;
444
445         ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
446
447         if (XLOG_FORCED_SHUTDOWN(log))
448                 return -EIO;
449
450         XFS_STATS_INC(mp, xs_try_logspace);
451
452         ASSERT(*ticp == NULL);
453         tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454                                 KM_SLEEP | KM_MAYFAIL);
455         if (!tic)
456                 return -ENOMEM;
457
458         *ticp = tic;
459
460         xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461                                             : tic->t_unit_res);
462
463         trace_xfs_log_reserve(log, tic);
464
465         error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466                                       &need_bytes);
467         if (error)
468                 goto out_error;
469
470         xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472         trace_xfs_log_reserve_exit(log, tic);
473         xlog_verify_grant_tail(log);
474         return 0;
475
476 out_error:
477         /*
478          * If we are failing, make sure the ticket doesn't have any current
479          * reservations.  We don't want to add this back when the ticket/
480          * transaction gets cancelled.
481          */
482         tic->t_curr_res = 0;
483         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
484         return error;
485 }
486
487
488 /*
489  * NOTES:
490  *
491  *      1. currblock field gets updated at startup and after in-core logs
492  *              marked as with WANT_SYNC.
493  */
494
495 /*
496  * This routine is called when a user of a log manager ticket is done with
497  * the reservation.  If the ticket was ever used, then a commit record for
498  * the associated transaction is written out as a log operation header with
499  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
500  * a given ticket.  If the ticket was one with a permanent reservation, then
501  * a few operations are done differently.  Permanent reservation tickets by
502  * default don't release the reservation.  They just commit the current
503  * transaction with the belief that the reservation is still needed.  A flag
504  * must be passed in before permanent reservations are actually released.
505  * When these type of tickets are not released, they need to be set into
506  * the inited state again.  By doing this, a start record will be written
507  * out when the next write occurs.
508  */
509 xfs_lsn_t
510 xfs_log_done(
511         struct xfs_mount        *mp,
512         struct xlog_ticket      *ticket,
513         struct xlog_in_core     **iclog,
514         bool                    regrant)
515 {
516         struct xlog             *log = mp->m_log;
517         xfs_lsn_t               lsn = 0;
518
519         if (XLOG_FORCED_SHUTDOWN(log) ||
520             /*
521              * If nothing was ever written, don't write out commit record.
522              * If we get an error, just continue and give back the log ticket.
523              */
524             (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525              (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526                 lsn = (xfs_lsn_t) -1;
527                 regrant = false;
528         }
529
530
531         if (!regrant) {
532                 trace_xfs_log_done_nonperm(log, ticket);
533
534                 /*
535                  * Release ticket if not permanent reservation or a specific
536                  * request has been made to release a permanent reservation.
537                  */
538                 xlog_ungrant_log_space(log, ticket);
539         } else {
540                 trace_xfs_log_done_perm(log, ticket);
541
542                 xlog_regrant_reserve_log_space(log, ticket);
543                 /* If this ticket was a permanent reservation and we aren't
544                  * trying to release it, reset the inited flags; so next time
545                  * we write, a start record will be written out.
546                  */
547                 ticket->t_flags |= XLOG_TIC_INITED;
548         }
549
550         xfs_log_ticket_put(ticket);
551         return lsn;
552 }
553
554 /*
555  * Attaches a new iclog I/O completion callback routine during
556  * transaction commit.  If the log is in error state, a non-zero
557  * return code is handed back and the caller is responsible for
558  * executing the callback at an appropriate time.
559  */
560 int
561 xfs_log_notify(
562         struct xfs_mount        *mp,
563         struct xlog_in_core     *iclog,
564         xfs_log_callback_t      *cb)
565 {
566         int     abortflg;
567
568         spin_lock(&iclog->ic_callback_lock);
569         abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
570         if (!abortflg) {
571                 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
572                               (iclog->ic_state == XLOG_STATE_WANT_SYNC));
573                 cb->cb_next = NULL;
574                 *(iclog->ic_callback_tail) = cb;
575                 iclog->ic_callback_tail = &(cb->cb_next);
576         }
577         spin_unlock(&iclog->ic_callback_lock);
578         return abortflg;
579 }
580
581 int
582 xfs_log_release_iclog(
583         struct xfs_mount        *mp,
584         struct xlog_in_core     *iclog)
585 {
586         if (xlog_state_release_iclog(mp->m_log, iclog)) {
587                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
588                 return -EIO;
589         }
590
591         return 0;
592 }
593
594 /*
595  * Mount a log filesystem
596  *
597  * mp           - ubiquitous xfs mount point structure
598  * log_target   - buftarg of on-disk log device
599  * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
600  * num_bblocks  - Number of BBSIZE blocks in on-disk log
601  *
602  * Return error or zero.
603  */
604 int
605 xfs_log_mount(
606         xfs_mount_t     *mp,
607         xfs_buftarg_t   *log_target,
608         xfs_daddr_t     blk_offset,
609         int             num_bblks)
610 {
611         bool            fatal = xfs_sb_version_hascrc(&mp->m_sb);
612         int             error = 0;
613         int             min_logfsbs;
614
615         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
616                 xfs_notice(mp, "Mounting V%d Filesystem",
617                            XFS_SB_VERSION_NUM(&mp->m_sb));
618         } else {
619                 xfs_notice(mp,
620 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
621                            XFS_SB_VERSION_NUM(&mp->m_sb));
622                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
623         }
624
625         mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
626         if (IS_ERR(mp->m_log)) {
627                 error = PTR_ERR(mp->m_log);
628                 goto out;
629         }
630
631         /*
632          * Validate the given log space and drop a critical message via syslog
633          * if the log size is too small that would lead to some unexpected
634          * situations in transaction log space reservation stage.
635          *
636          * Note: we can't just reject the mount if the validation fails.  This
637          * would mean that people would have to downgrade their kernel just to
638          * remedy the situation as there is no way to grow the log (short of
639          * black magic surgery with xfs_db).
640          *
641          * We can, however, reject mounts for CRC format filesystems, as the
642          * mkfs binary being used to make the filesystem should never create a
643          * filesystem with a log that is too small.
644          */
645         min_logfsbs = xfs_log_calc_minimum_size(mp);
646
647         if (mp->m_sb.sb_logblocks < min_logfsbs) {
648                 xfs_warn(mp,
649                 "Log size %d blocks too small, minimum size is %d blocks",
650                          mp->m_sb.sb_logblocks, min_logfsbs);
651                 error = -EINVAL;
652         } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
653                 xfs_warn(mp,
654                 "Log size %d blocks too large, maximum size is %lld blocks",
655                          mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
656                 error = -EINVAL;
657         } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
658                 xfs_warn(mp,
659                 "log size %lld bytes too large, maximum size is %lld bytes",
660                          XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
661                          XFS_MAX_LOG_BYTES);
662                 error = -EINVAL;
663         } else if (mp->m_sb.sb_logsunit > 1 &&
664                    mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
665                 xfs_warn(mp,
666                 "log stripe unit %u bytes must be a multiple of block size",
667                          mp->m_sb.sb_logsunit);
668                 error = -EINVAL;
669                 fatal = true;
670         }
671         if (error) {
672                 /*
673                  * Log check errors are always fatal on v5; or whenever bad
674                  * metadata leads to a crash.
675                  */
676                 if (fatal) {
677                         xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
678                         ASSERT(0);
679                         goto out_free_log;
680                 }
681                 xfs_crit(mp, "Log size out of supported range.");
682                 xfs_crit(mp,
683 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
684         }
685
686         /*
687          * Initialize the AIL now we have a log.
688          */
689         error = xfs_trans_ail_init(mp);
690         if (error) {
691                 xfs_warn(mp, "AIL initialisation failed: error %d", error);
692                 goto out_free_log;
693         }
694         mp->m_log->l_ailp = mp->m_ail;
695
696         /*
697          * skip log recovery on a norecovery mount.  pretend it all
698          * just worked.
699          */
700         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
701                 int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
702
703                 if (readonly)
704                         mp->m_flags &= ~XFS_MOUNT_RDONLY;
705
706                 error = xlog_recover(mp->m_log);
707
708                 if (readonly)
709                         mp->m_flags |= XFS_MOUNT_RDONLY;
710                 if (error) {
711                         xfs_warn(mp, "log mount/recovery failed: error %d",
712                                 error);
713                         xlog_recover_cancel(mp->m_log);
714                         goto out_destroy_ail;
715                 }
716         }
717
718         error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
719                                "log");
720         if (error)
721                 goto out_destroy_ail;
722
723         /* Normal transactions can now occur */
724         mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
725
726         /*
727          * Now the log has been fully initialised and we know were our
728          * space grant counters are, we can initialise the permanent ticket
729          * needed for delayed logging to work.
730          */
731         xlog_cil_init_post_recovery(mp->m_log);
732
733         return 0;
734
735 out_destroy_ail:
736         xfs_trans_ail_destroy(mp);
737 out_free_log:
738         xlog_dealloc_log(mp->m_log);
739 out:
740         return error;
741 }
742
743 /*
744  * Finish the recovery of the file system.  This is separate from the
745  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
746  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
747  * here.
748  *
749  * If we finish recovery successfully, start the background log work. If we are
750  * not doing recovery, then we have a RO filesystem and we don't need to start
751  * it.
752  */
753 int
754 xfs_log_mount_finish(
755         struct xfs_mount        *mp)
756 {
757         int     error = 0;
758         bool    readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
759
760         if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
761                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
762                 return 0;
763         } else if (readonly) {
764                 /* Allow unlinked processing to proceed */
765                 mp->m_flags &= ~XFS_MOUNT_RDONLY;
766         }
767
768         /*
769          * During the second phase of log recovery, we need iget and
770          * iput to behave like they do for an active filesystem.
771          * xfs_fs_drop_inode needs to be able to prevent the deletion
772          * of inodes before we're done replaying log items on those
773          * inodes.  Turn it off immediately after recovery finishes
774          * so that we don't leak the quota inodes if subsequent mount
775          * activities fail.
776          *
777          * We let all inodes involved in redo item processing end up on
778          * the LRU instead of being evicted immediately so that if we do
779          * something to an unlinked inode, the irele won't cause
780          * premature truncation and freeing of the inode, which results
781          * in log recovery failure.  We have to evict the unreferenced
782          * lru inodes after clearing MS_ACTIVE because we don't
783          * otherwise clean up the lru if there's a subsequent failure in
784          * xfs_mountfs, which leads to us leaking the inodes if nothing
785          * else (e.g. quotacheck) references the inodes before the
786          * mount failure occurs.
787          */
788         mp->m_super->s_flags |= MS_ACTIVE;
789         error = xlog_recover_finish(mp->m_log);
790         if (!error)
791                 xfs_log_work_queue(mp);
792         mp->m_super->s_flags &= ~MS_ACTIVE;
793         evict_inodes(mp->m_super);
794
795         if (readonly)
796                 mp->m_flags |= XFS_MOUNT_RDONLY;
797
798         return error;
799 }
800
801 /*
802  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
803  * the log.
804  */
805 int
806 xfs_log_mount_cancel(
807         struct xfs_mount        *mp)
808 {
809         int                     error;
810
811         error = xlog_recover_cancel(mp->m_log);
812         xfs_log_unmount(mp);
813
814         return error;
815 }
816
817 /*
818  * Final log writes as part of unmount.
819  *
820  * Mark the filesystem clean as unmount happens.  Note that during relocation
821  * this routine needs to be executed as part of source-bag while the
822  * deallocation must not be done until source-end.
823  */
824
825 /*
826  * Unmount record used to have a string "Unmount filesystem--" in the
827  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
828  * We just write the magic number now since that particular field isn't
829  * currently architecture converted and "Unmount" is a bit foo.
830  * As far as I know, there weren't any dependencies on the old behaviour.
831  */
832
833 static int
834 xfs_log_unmount_write(xfs_mount_t *mp)
835 {
836         struct xlog      *log = mp->m_log;
837         xlog_in_core_t   *iclog;
838 #ifdef DEBUG
839         xlog_in_core_t   *first_iclog;
840 #endif
841         xlog_ticket_t   *tic = NULL;
842         xfs_lsn_t        lsn;
843         int              error;
844
845         /*
846          * Don't write out unmount record on norecovery mounts or ro devices.
847          * Or, if we are doing a forced umount (typically because of IO errors).
848          */
849         if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
850             xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
851                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
852                 return 0;
853         }
854
855         error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
856         ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
857
858 #ifdef DEBUG
859         first_iclog = iclog = log->l_iclog;
860         do {
861                 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
862                         ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
863                         ASSERT(iclog->ic_offset == 0);
864                 }
865                 iclog = iclog->ic_next;
866         } while (iclog != first_iclog);
867 #endif
868         if (! (XLOG_FORCED_SHUTDOWN(log))) {
869                 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
870                 if (!error) {
871                         /* the data section must be 32 bit size aligned */
872                         struct {
873                             uint16_t magic;
874                             uint16_t pad1;
875                             uint32_t pad2; /* may as well make it 64 bits */
876                         } magic = {
877                                 .magic = XLOG_UNMOUNT_TYPE,
878                         };
879                         struct xfs_log_iovec reg = {
880                                 .i_addr = &magic,
881                                 .i_len = sizeof(magic),
882                                 .i_type = XLOG_REG_TYPE_UNMOUNT,
883                         };
884                         struct xfs_log_vec vec = {
885                                 .lv_niovecs = 1,
886                                 .lv_iovecp = &reg,
887                         };
888
889                         /* remove inited flag, and account for space used */
890                         tic->t_flags = 0;
891                         tic->t_curr_res -= sizeof(magic);
892                         error = xlog_write(log, &vec, tic, &lsn,
893                                            NULL, XLOG_UNMOUNT_TRANS);
894                         /*
895                          * At this point, we're umounting anyway,
896                          * so there's no point in transitioning log state
897                          * to IOERROR. Just continue...
898                          */
899                 }
900
901                 if (error)
902                         xfs_alert(mp, "%s: unmount record failed", __func__);
903
904
905                 spin_lock(&log->l_icloglock);
906                 iclog = log->l_iclog;
907                 atomic_inc(&iclog->ic_refcnt);
908                 xlog_state_want_sync(log, iclog);
909                 spin_unlock(&log->l_icloglock);
910                 error = xlog_state_release_iclog(log, iclog);
911
912                 spin_lock(&log->l_icloglock);
913                 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
914                       iclog->ic_state == XLOG_STATE_DIRTY)) {
915                         if (!XLOG_FORCED_SHUTDOWN(log)) {
916                                 xlog_wait(&iclog->ic_force_wait,
917                                                         &log->l_icloglock);
918                         } else {
919                                 spin_unlock(&log->l_icloglock);
920                         }
921                 } else {
922                         spin_unlock(&log->l_icloglock);
923                 }
924                 if (tic) {
925                         trace_xfs_log_umount_write(log, tic);
926                         xlog_ungrant_log_space(log, tic);
927                         xfs_log_ticket_put(tic);
928                 }
929         } else {
930                 /*
931                  * We're already in forced_shutdown mode, couldn't
932                  * even attempt to write out the unmount transaction.
933                  *
934                  * Go through the motions of sync'ing and releasing
935                  * the iclog, even though no I/O will actually happen,
936                  * we need to wait for other log I/Os that may already
937                  * be in progress.  Do this as a separate section of
938                  * code so we'll know if we ever get stuck here that
939                  * we're in this odd situation of trying to unmount
940                  * a file system that went into forced_shutdown as
941                  * the result of an unmount..
942                  */
943                 spin_lock(&log->l_icloglock);
944                 iclog = log->l_iclog;
945                 atomic_inc(&iclog->ic_refcnt);
946
947                 xlog_state_want_sync(log, iclog);
948                 spin_unlock(&log->l_icloglock);
949                 error =  xlog_state_release_iclog(log, iclog);
950
951                 spin_lock(&log->l_icloglock);
952
953                 if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
954                         || iclog->ic_state == XLOG_STATE_DIRTY
955                         || iclog->ic_state == XLOG_STATE_IOERROR) ) {
956
957                                 xlog_wait(&iclog->ic_force_wait,
958                                                         &log->l_icloglock);
959                 } else {
960                         spin_unlock(&log->l_icloglock);
961                 }
962         }
963
964         return error;
965 }       /* xfs_log_unmount_write */
966
967 /*
968  * Empty the log for unmount/freeze.
969  *
970  * To do this, we first need to shut down the background log work so it is not
971  * trying to cover the log as we clean up. We then need to unpin all objects in
972  * the log so we can then flush them out. Once they have completed their IO and
973  * run the callbacks removing themselves from the AIL, we can write the unmount
974  * record.
975  */
976 void
977 xfs_log_quiesce(
978         struct xfs_mount        *mp)
979 {
980         cancel_delayed_work_sync(&mp->m_log->l_work);
981         xfs_log_force(mp, XFS_LOG_SYNC);
982
983         /*
984          * The superblock buffer is uncached and while xfs_ail_push_all_sync()
985          * will push it, xfs_wait_buftarg() will not wait for it. Further,
986          * xfs_buf_iowait() cannot be used because it was pushed with the
987          * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
988          * the IO to complete.
989          */
990         xfs_ail_push_all_sync(mp->m_ail);
991         xfs_wait_buftarg(mp->m_ddev_targp);
992         xfs_buf_lock(mp->m_sb_bp);
993         xfs_buf_unlock(mp->m_sb_bp);
994
995         xfs_log_unmount_write(mp);
996 }
997
998 /*
999  * Shut down and release the AIL and Log.
1000  *
1001  * During unmount, we need to ensure we flush all the dirty metadata objects
1002  * from the AIL so that the log is empty before we write the unmount record to
1003  * the log. Once this is done, we can tear down the AIL and the log.
1004  */
1005 void
1006 xfs_log_unmount(
1007         struct xfs_mount        *mp)
1008 {
1009         xfs_log_quiesce(mp);
1010
1011         xfs_trans_ail_destroy(mp);
1012
1013         xfs_sysfs_del(&mp->m_log->l_kobj);
1014
1015         xlog_dealloc_log(mp->m_log);
1016 }
1017
1018 void
1019 xfs_log_item_init(
1020         struct xfs_mount        *mp,
1021         struct xfs_log_item     *item,
1022         int                     type,
1023         const struct xfs_item_ops *ops)
1024 {
1025         item->li_mountp = mp;
1026         item->li_ailp = mp->m_ail;
1027         item->li_type = type;
1028         item->li_ops = ops;
1029         item->li_lv = NULL;
1030
1031         INIT_LIST_HEAD(&item->li_ail);
1032         INIT_LIST_HEAD(&item->li_cil);
1033 }
1034
1035 /*
1036  * Wake up processes waiting for log space after we have moved the log tail.
1037  */
1038 void
1039 xfs_log_space_wake(
1040         struct xfs_mount        *mp)
1041 {
1042         struct xlog             *log = mp->m_log;
1043         int                     free_bytes;
1044
1045         if (XLOG_FORCED_SHUTDOWN(log))
1046                 return;
1047
1048         if (!list_empty_careful(&log->l_write_head.waiters)) {
1049                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1050
1051                 spin_lock(&log->l_write_head.lock);
1052                 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1053                 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1054                 spin_unlock(&log->l_write_head.lock);
1055         }
1056
1057         if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1058                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1059
1060                 spin_lock(&log->l_reserve_head.lock);
1061                 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1062                 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1063                 spin_unlock(&log->l_reserve_head.lock);
1064         }
1065 }
1066
1067 /*
1068  * Determine if we have a transaction that has gone to disk that needs to be
1069  * covered. To begin the transition to the idle state firstly the log needs to
1070  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1071  * we start attempting to cover the log.
1072  *
1073  * Only if we are then in a state where covering is needed, the caller is
1074  * informed that dummy transactions are required to move the log into the idle
1075  * state.
1076  *
1077  * If there are any items in the AIl or CIL, then we do not want to attempt to
1078  * cover the log as we may be in a situation where there isn't log space
1079  * available to run a dummy transaction and this can lead to deadlocks when the
1080  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1081  * there's no point in running a dummy transaction at this point because we
1082  * can't start trying to idle the log until both the CIL and AIL are empty.
1083  */
1084 static int
1085 xfs_log_need_covered(xfs_mount_t *mp)
1086 {
1087         struct xlog     *log = mp->m_log;
1088         int             needed = 0;
1089
1090         if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1091                 return 0;
1092
1093         if (!xlog_cil_empty(log))
1094                 return 0;
1095
1096         spin_lock(&log->l_icloglock);
1097         switch (log->l_covered_state) {
1098         case XLOG_STATE_COVER_DONE:
1099         case XLOG_STATE_COVER_DONE2:
1100         case XLOG_STATE_COVER_IDLE:
1101                 break;
1102         case XLOG_STATE_COVER_NEED:
1103         case XLOG_STATE_COVER_NEED2:
1104                 if (xfs_ail_min_lsn(log->l_ailp))
1105                         break;
1106                 if (!xlog_iclogs_empty(log))
1107                         break;
1108
1109                 needed = 1;
1110                 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1111                         log->l_covered_state = XLOG_STATE_COVER_DONE;
1112                 else
1113                         log->l_covered_state = XLOG_STATE_COVER_DONE2;
1114                 break;
1115         default:
1116                 needed = 1;
1117                 break;
1118         }
1119         spin_unlock(&log->l_icloglock);
1120         return needed;
1121 }
1122
1123 /*
1124  * We may be holding the log iclog lock upon entering this routine.
1125  */
1126 xfs_lsn_t
1127 xlog_assign_tail_lsn_locked(
1128         struct xfs_mount        *mp)
1129 {
1130         struct xlog             *log = mp->m_log;
1131         struct xfs_log_item     *lip;
1132         xfs_lsn_t               tail_lsn;
1133
1134         assert_spin_locked(&mp->m_ail->xa_lock);
1135
1136         /*
1137          * To make sure we always have a valid LSN for the log tail we keep
1138          * track of the last LSN which was committed in log->l_last_sync_lsn,
1139          * and use that when the AIL was empty.
1140          */
1141         lip = xfs_ail_min(mp->m_ail);
1142         if (lip)
1143                 tail_lsn = lip->li_lsn;
1144         else
1145                 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1146         trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1147         atomic64_set(&log->l_tail_lsn, tail_lsn);
1148         return tail_lsn;
1149 }
1150
1151 xfs_lsn_t
1152 xlog_assign_tail_lsn(
1153         struct xfs_mount        *mp)
1154 {
1155         xfs_lsn_t               tail_lsn;
1156
1157         spin_lock(&mp->m_ail->xa_lock);
1158         tail_lsn = xlog_assign_tail_lsn_locked(mp);
1159         spin_unlock(&mp->m_ail->xa_lock);
1160
1161         return tail_lsn;
1162 }
1163
1164 /*
1165  * Return the space in the log between the tail and the head.  The head
1166  * is passed in the cycle/bytes formal parms.  In the special case where
1167  * the reserve head has wrapped passed the tail, this calculation is no
1168  * longer valid.  In this case, just return 0 which means there is no space
1169  * in the log.  This works for all places where this function is called
1170  * with the reserve head.  Of course, if the write head were to ever
1171  * wrap the tail, we should blow up.  Rather than catch this case here,
1172  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1173  *
1174  * This code also handles the case where the reservation head is behind
1175  * the tail.  The details of this case are described below, but the end
1176  * result is that we return the size of the log as the amount of space left.
1177  */
1178 STATIC int
1179 xlog_space_left(
1180         struct xlog     *log,
1181         atomic64_t      *head)
1182 {
1183         int             free_bytes;
1184         int             tail_bytes;
1185         int             tail_cycle;
1186         int             head_cycle;
1187         int             head_bytes;
1188
1189         xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1190         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1191         tail_bytes = BBTOB(tail_bytes);
1192         if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1193                 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1194         else if (tail_cycle + 1 < head_cycle)
1195                 return 0;
1196         else if (tail_cycle < head_cycle) {
1197                 ASSERT(tail_cycle == (head_cycle - 1));
1198                 free_bytes = tail_bytes - head_bytes;
1199         } else {
1200                 /*
1201                  * The reservation head is behind the tail.
1202                  * In this case we just want to return the size of the
1203                  * log as the amount of space left.
1204                  */
1205                 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1206                 xfs_alert(log->l_mp,
1207                           "  tail_cycle = %d, tail_bytes = %d",
1208                           tail_cycle, tail_bytes);
1209                 xfs_alert(log->l_mp,
1210                           "  GH   cycle = %d, GH   bytes = %d",
1211                           head_cycle, head_bytes);
1212                 ASSERT(0);
1213                 free_bytes = log->l_logsize;
1214         }
1215         return free_bytes;
1216 }
1217
1218
1219 /*
1220  * Log function which is called when an io completes.
1221  *
1222  * The log manager needs its own routine, in order to control what
1223  * happens with the buffer after the write completes.
1224  */
1225 static void
1226 xlog_iodone(xfs_buf_t *bp)
1227 {
1228         struct xlog_in_core     *iclog = bp->b_fspriv;
1229         struct xlog             *l = iclog->ic_log;
1230         int                     aborted = 0;
1231
1232         /*
1233          * Race to shutdown the filesystem if we see an error or the iclog is in
1234          * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1235          * CRC errors into log recovery.
1236          */
1237         if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR) ||
1238             iclog->ic_state & XLOG_STATE_IOABORT) {
1239                 if (iclog->ic_state & XLOG_STATE_IOABORT)
1240                         iclog->ic_state &= ~XLOG_STATE_IOABORT;
1241
1242                 xfs_buf_ioerror_alert(bp, __func__);
1243                 xfs_buf_stale(bp);
1244                 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1245                 /*
1246                  * This flag will be propagated to the trans-committed
1247                  * callback routines to let them know that the log-commit
1248                  * didn't succeed.
1249                  */
1250                 aborted = XFS_LI_ABORTED;
1251         } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1252                 aborted = XFS_LI_ABORTED;
1253         }
1254
1255         /* log I/O is always issued ASYNC */
1256         ASSERT(bp->b_flags & XBF_ASYNC);
1257         xlog_state_done_syncing(iclog, aborted);
1258
1259         /*
1260          * drop the buffer lock now that we are done. Nothing references
1261          * the buffer after this, so an unmount waiting on this lock can now
1262          * tear it down safely. As such, it is unsafe to reference the buffer
1263          * (bp) after the unlock as we could race with it being freed.
1264          */
1265         xfs_buf_unlock(bp);
1266 }
1267
1268 /*
1269  * Return size of each in-core log record buffer.
1270  *
1271  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1272  *
1273  * If the filesystem blocksize is too large, we may need to choose a
1274  * larger size since the directory code currently logs entire blocks.
1275  */
1276
1277 STATIC void
1278 xlog_get_iclog_buffer_size(
1279         struct xfs_mount        *mp,
1280         struct xlog             *log)
1281 {
1282         int size;
1283         int xhdrs;
1284
1285         if (mp->m_logbufs <= 0)
1286                 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1287         else
1288                 log->l_iclog_bufs = mp->m_logbufs;
1289
1290         /*
1291          * Buffer size passed in from mount system call.
1292          */
1293         if (mp->m_logbsize > 0) {
1294                 size = log->l_iclog_size = mp->m_logbsize;
1295                 log->l_iclog_size_log = 0;
1296                 while (size != 1) {
1297                         log->l_iclog_size_log++;
1298                         size >>= 1;
1299                 }
1300
1301                 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1302                         /* # headers = size / 32k
1303                          * one header holds cycles from 32k of data
1304                          */
1305
1306                         xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1307                         if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1308                                 xhdrs++;
1309                         log->l_iclog_hsize = xhdrs << BBSHIFT;
1310                         log->l_iclog_heads = xhdrs;
1311                 } else {
1312                         ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1313                         log->l_iclog_hsize = BBSIZE;
1314                         log->l_iclog_heads = 1;
1315                 }
1316                 goto done;
1317         }
1318
1319         /* All machines use 32kB buffers by default. */
1320         log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1321         log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1322
1323         /* the default log size is 16k or 32k which is one header sector */
1324         log->l_iclog_hsize = BBSIZE;
1325         log->l_iclog_heads = 1;
1326
1327 done:
1328         /* are we being asked to make the sizes selected above visible? */
1329         if (mp->m_logbufs == 0)
1330                 mp->m_logbufs = log->l_iclog_bufs;
1331         if (mp->m_logbsize == 0)
1332                 mp->m_logbsize = log->l_iclog_size;
1333 }       /* xlog_get_iclog_buffer_size */
1334
1335
1336 void
1337 xfs_log_work_queue(
1338         struct xfs_mount        *mp)
1339 {
1340         queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1341                                 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1342 }
1343
1344 /*
1345  * Every sync period we need to unpin all items in the AIL and push them to
1346  * disk. If there is nothing dirty, then we might need to cover the log to
1347  * indicate that the filesystem is idle.
1348  */
1349 static void
1350 xfs_log_worker(
1351         struct work_struct      *work)
1352 {
1353         struct xlog             *log = container_of(to_delayed_work(work),
1354                                                 struct xlog, l_work);
1355         struct xfs_mount        *mp = log->l_mp;
1356
1357         /* dgc: errors ignored - not fatal and nowhere to report them */
1358         if (xfs_log_need_covered(mp)) {
1359                 /*
1360                  * Dump a transaction into the log that contains no real change.
1361                  * This is needed to stamp the current tail LSN into the log
1362                  * during the covering operation.
1363                  *
1364                  * We cannot use an inode here for this - that will push dirty
1365                  * state back up into the VFS and then periodic inode flushing
1366                  * will prevent log covering from making progress. Hence we
1367                  * synchronously log the superblock instead to ensure the
1368                  * superblock is immediately unpinned and can be written back.
1369                  */
1370                 xfs_sync_sb(mp, true);
1371         } else
1372                 xfs_log_force(mp, 0);
1373
1374         /* start pushing all the metadata that is currently dirty */
1375         xfs_ail_push_all(mp->m_ail);
1376
1377         /* queue us up again */
1378         xfs_log_work_queue(mp);
1379 }
1380
1381 /*
1382  * This routine initializes some of the log structure for a given mount point.
1383  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1384  * some other stuff may be filled in too.
1385  */
1386 STATIC struct xlog *
1387 xlog_alloc_log(
1388         struct xfs_mount        *mp,
1389         struct xfs_buftarg      *log_target,
1390         xfs_daddr_t             blk_offset,
1391         int                     num_bblks)
1392 {
1393         struct xlog             *log;
1394         xlog_rec_header_t       *head;
1395         xlog_in_core_t          **iclogp;
1396         xlog_in_core_t          *iclog, *prev_iclog=NULL;
1397         xfs_buf_t               *bp;
1398         int                     i;
1399         int                     error = -ENOMEM;
1400         uint                    log2_size = 0;
1401
1402         log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1403         if (!log) {
1404                 xfs_warn(mp, "Log allocation failed: No memory!");
1405                 goto out;
1406         }
1407
1408         log->l_mp          = mp;
1409         log->l_targ        = log_target;
1410         log->l_logsize     = BBTOB(num_bblks);
1411         log->l_logBBstart  = blk_offset;
1412         log->l_logBBsize   = num_bblks;
1413         log->l_covered_state = XLOG_STATE_COVER_IDLE;
1414         log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1415         INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1416
1417         log->l_prev_block  = -1;
1418         /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1419         xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1420         xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1421         log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1422
1423         xlog_grant_head_init(&log->l_reserve_head);
1424         xlog_grant_head_init(&log->l_write_head);
1425
1426         error = -EFSCORRUPTED;
1427         if (xfs_sb_version_hassector(&mp->m_sb)) {
1428                 log2_size = mp->m_sb.sb_logsectlog;
1429                 if (log2_size < BBSHIFT) {
1430                         xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1431                                 log2_size, BBSHIFT);
1432                         goto out_free_log;
1433                 }
1434
1435                 log2_size -= BBSHIFT;
1436                 if (log2_size > mp->m_sectbb_log) {
1437                         xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1438                                 log2_size, mp->m_sectbb_log);
1439                         goto out_free_log;
1440                 }
1441
1442                 /* for larger sector sizes, must have v2 or external log */
1443                 if (log2_size && log->l_logBBstart > 0 &&
1444                             !xfs_sb_version_haslogv2(&mp->m_sb)) {
1445                         xfs_warn(mp,
1446                 "log sector size (0x%x) invalid for configuration.",
1447                                 log2_size);
1448                         goto out_free_log;
1449                 }
1450         }
1451         log->l_sectBBsize = 1 << log2_size;
1452
1453         xlog_get_iclog_buffer_size(mp, log);
1454
1455         /*
1456          * Use a NULL block for the extra log buffer used during splits so that
1457          * it will trigger errors if we ever try to do IO on it without first
1458          * having set it up properly.
1459          */
1460         error = -ENOMEM;
1461         bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1462                            BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1463         if (!bp)
1464                 goto out_free_log;
1465
1466         /*
1467          * The iclogbuf buffer locks are held over IO but we are not going to do
1468          * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1469          * when appropriately.
1470          */
1471         ASSERT(xfs_buf_islocked(bp));
1472         xfs_buf_unlock(bp);
1473
1474         /* use high priority wq for log I/O completion */
1475         bp->b_ioend_wq = mp->m_log_workqueue;
1476         bp->b_iodone = xlog_iodone;
1477         log->l_xbuf = bp;
1478
1479         spin_lock_init(&log->l_icloglock);
1480         init_waitqueue_head(&log->l_flush_wait);
1481
1482         iclogp = &log->l_iclog;
1483         /*
1484          * The amount of memory to allocate for the iclog structure is
1485          * rather funky due to the way the structure is defined.  It is
1486          * done this way so that we can use different sizes for machines
1487          * with different amounts of memory.  See the definition of
1488          * xlog_in_core_t in xfs_log_priv.h for details.
1489          */
1490         ASSERT(log->l_iclog_size >= 4096);
1491         for (i=0; i < log->l_iclog_bufs; i++) {
1492                 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1493                 if (!*iclogp)
1494                         goto out_free_iclog;
1495
1496                 iclog = *iclogp;
1497                 iclog->ic_prev = prev_iclog;
1498                 prev_iclog = iclog;
1499
1500                 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1501                                           BTOBB(log->l_iclog_size),
1502                                           XBF_NO_IOACCT);
1503                 if (!bp)
1504                         goto out_free_iclog;
1505
1506                 ASSERT(xfs_buf_islocked(bp));
1507                 xfs_buf_unlock(bp);
1508
1509                 /* use high priority wq for log I/O completion */
1510                 bp->b_ioend_wq = mp->m_log_workqueue;
1511                 bp->b_iodone = xlog_iodone;
1512                 iclog->ic_bp = bp;
1513                 iclog->ic_data = bp->b_addr;
1514 #ifdef DEBUG
1515                 log->l_iclog_bak[i] = &iclog->ic_header;
1516 #endif
1517                 head = &iclog->ic_header;
1518                 memset(head, 0, sizeof(xlog_rec_header_t));
1519                 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1520                 head->h_version = cpu_to_be32(
1521                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1522                 head->h_size = cpu_to_be32(log->l_iclog_size);
1523                 /* new fields */
1524                 head->h_fmt = cpu_to_be32(XLOG_FMT);
1525                 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1526
1527                 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1528                 iclog->ic_state = XLOG_STATE_ACTIVE;
1529                 iclog->ic_log = log;
1530                 atomic_set(&iclog->ic_refcnt, 0);
1531                 spin_lock_init(&iclog->ic_callback_lock);
1532                 iclog->ic_callback_tail = &(iclog->ic_callback);
1533                 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1534
1535                 init_waitqueue_head(&iclog->ic_force_wait);
1536                 init_waitqueue_head(&iclog->ic_write_wait);
1537
1538                 iclogp = &iclog->ic_next;
1539         }
1540         *iclogp = log->l_iclog;                 /* complete ring */
1541         log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1542
1543         error = xlog_cil_init(log);
1544         if (error)
1545                 goto out_free_iclog;
1546         return log;
1547
1548 out_free_iclog:
1549         for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1550                 prev_iclog = iclog->ic_next;
1551                 if (iclog->ic_bp)
1552                         xfs_buf_free(iclog->ic_bp);
1553                 kmem_free(iclog);
1554                 if (prev_iclog == log->l_iclog)
1555                         break;
1556         }
1557         spinlock_destroy(&log->l_icloglock);
1558         xfs_buf_free(log->l_xbuf);
1559 out_free_log:
1560         kmem_free(log);
1561 out:
1562         return ERR_PTR(error);
1563 }       /* xlog_alloc_log */
1564
1565
1566 /*
1567  * Write out the commit record of a transaction associated with the given
1568  * ticket.  Return the lsn of the commit record.
1569  */
1570 STATIC int
1571 xlog_commit_record(
1572         struct xlog             *log,
1573         struct xlog_ticket      *ticket,
1574         struct xlog_in_core     **iclog,
1575         xfs_lsn_t               *commitlsnp)
1576 {
1577         struct xfs_mount *mp = log->l_mp;
1578         int     error;
1579         struct xfs_log_iovec reg = {
1580                 .i_addr = NULL,
1581                 .i_len = 0,
1582                 .i_type = XLOG_REG_TYPE_COMMIT,
1583         };
1584         struct xfs_log_vec vec = {
1585                 .lv_niovecs = 1,
1586                 .lv_iovecp = &reg,
1587         };
1588
1589         ASSERT_ALWAYS(iclog);
1590         error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1591                                         XLOG_COMMIT_TRANS);
1592         if (error)
1593                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1594         return error;
1595 }
1596
1597 /*
1598  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1599  * log space.  This code pushes on the lsn which would supposedly free up
1600  * the 25% which we want to leave free.  We may need to adopt a policy which
1601  * pushes on an lsn which is further along in the log once we reach the high
1602  * water mark.  In this manner, we would be creating a low water mark.
1603  */
1604 STATIC void
1605 xlog_grant_push_ail(
1606         struct xlog     *log,
1607         int             need_bytes)
1608 {
1609         xfs_lsn_t       threshold_lsn = 0;
1610         xfs_lsn_t       last_sync_lsn;
1611         int             free_blocks;
1612         int             free_bytes;
1613         int             threshold_block;
1614         int             threshold_cycle;
1615         int             free_threshold;
1616
1617         ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1618
1619         free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1620         free_blocks = BTOBBT(free_bytes);
1621
1622         /*
1623          * Set the threshold for the minimum number of free blocks in the
1624          * log to the maximum of what the caller needs, one quarter of the
1625          * log, and 256 blocks.
1626          */
1627         free_threshold = BTOBB(need_bytes);
1628         free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1629         free_threshold = MAX(free_threshold, 256);
1630         if (free_blocks >= free_threshold)
1631                 return;
1632
1633         xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1634                                                 &threshold_block);
1635         threshold_block += free_threshold;
1636         if (threshold_block >= log->l_logBBsize) {
1637                 threshold_block -= log->l_logBBsize;
1638                 threshold_cycle += 1;
1639         }
1640         threshold_lsn = xlog_assign_lsn(threshold_cycle,
1641                                         threshold_block);
1642         /*
1643          * Don't pass in an lsn greater than the lsn of the last
1644          * log record known to be on disk. Use a snapshot of the last sync lsn
1645          * so that it doesn't change between the compare and the set.
1646          */
1647         last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1648         if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1649                 threshold_lsn = last_sync_lsn;
1650
1651         /*
1652          * Get the transaction layer to kick the dirty buffers out to
1653          * disk asynchronously. No point in trying to do this if
1654          * the filesystem is shutting down.
1655          */
1656         if (!XLOG_FORCED_SHUTDOWN(log))
1657                 xfs_ail_push(log->l_ailp, threshold_lsn);
1658 }
1659
1660 /*
1661  * Stamp cycle number in every block
1662  */
1663 STATIC void
1664 xlog_pack_data(
1665         struct xlog             *log,
1666         struct xlog_in_core     *iclog,
1667         int                     roundoff)
1668 {
1669         int                     i, j, k;
1670         int                     size = iclog->ic_offset + roundoff;
1671         __be32                  cycle_lsn;
1672         char                    *dp;
1673
1674         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1675
1676         dp = iclog->ic_datap;
1677         for (i = 0; i < BTOBB(size); i++) {
1678                 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1679                         break;
1680                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1681                 *(__be32 *)dp = cycle_lsn;
1682                 dp += BBSIZE;
1683         }
1684
1685         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1686                 xlog_in_core_2_t *xhdr = iclog->ic_data;
1687
1688                 for ( ; i < BTOBB(size); i++) {
1689                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1690                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1691                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1692                         *(__be32 *)dp = cycle_lsn;
1693                         dp += BBSIZE;
1694                 }
1695
1696                 for (i = 1; i < log->l_iclog_heads; i++)
1697                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1698         }
1699 }
1700
1701 /*
1702  * Calculate the checksum for a log buffer.
1703  *
1704  * This is a little more complicated than it should be because the various
1705  * headers and the actual data are non-contiguous.
1706  */
1707 __le32
1708 xlog_cksum(
1709         struct xlog             *log,
1710         struct xlog_rec_header  *rhead,
1711         char                    *dp,
1712         int                     size)
1713 {
1714         uint32_t                crc;
1715
1716         /* first generate the crc for the record header ... */
1717         crc = xfs_start_cksum_update((char *)rhead,
1718                               sizeof(struct xlog_rec_header),
1719                               offsetof(struct xlog_rec_header, h_crc));
1720
1721         /* ... then for additional cycle data for v2 logs ... */
1722         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1723                 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1724                 int             i;
1725                 int             xheads;
1726
1727                 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1728                 if (size % XLOG_HEADER_CYCLE_SIZE)
1729                         xheads++;
1730
1731                 for (i = 1; i < xheads; i++) {
1732                         crc = crc32c(crc, &xhdr[i].hic_xheader,
1733                                      sizeof(struct xlog_rec_ext_header));
1734                 }
1735         }
1736
1737         /* ... and finally for the payload */
1738         crc = crc32c(crc, dp, size);
1739
1740         return xfs_end_cksum(crc);
1741 }
1742
1743 /*
1744  * The bdstrat callback function for log bufs. This gives us a central
1745  * place to trap bufs in case we get hit by a log I/O error and need to
1746  * shutdown. Actually, in practice, even when we didn't get a log error,
1747  * we transition the iclogs to IOERROR state *after* flushing all existing
1748  * iclogs to disk. This is because we don't want anymore new transactions to be
1749  * started or completed afterwards.
1750  *
1751  * We lock the iclogbufs here so that we can serialise against IO completion
1752  * during unmount. We might be processing a shutdown triggered during unmount,
1753  * and that can occur asynchronously to the unmount thread, and hence we need to
1754  * ensure that completes before tearing down the iclogbufs. Hence we need to
1755  * hold the buffer lock across the log IO to acheive that.
1756  */
1757 STATIC int
1758 xlog_bdstrat(
1759         struct xfs_buf          *bp)
1760 {
1761         struct xlog_in_core     *iclog = bp->b_fspriv;
1762
1763         xfs_buf_lock(bp);
1764         if (iclog->ic_state & XLOG_STATE_IOERROR) {
1765                 xfs_buf_ioerror(bp, -EIO);
1766                 xfs_buf_stale(bp);
1767                 xfs_buf_ioend(bp);
1768                 /*
1769                  * It would seem logical to return EIO here, but we rely on
1770                  * the log state machine to propagate I/O errors instead of
1771                  * doing it here. Similarly, IO completion will unlock the
1772                  * buffer, so we don't do it here.
1773                  */
1774                 return 0;
1775         }
1776
1777         xfs_buf_submit(bp);
1778         return 0;
1779 }
1780
1781 /*
1782  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1783  * fashion.  Previously, we should have moved the current iclog
1784  * ptr in the log to point to the next available iclog.  This allows further
1785  * write to continue while this code syncs out an iclog ready to go.
1786  * Before an in-core log can be written out, the data section must be scanned
1787  * to save away the 1st word of each BBSIZE block into the header.  We replace
1788  * it with the current cycle count.  Each BBSIZE block is tagged with the
1789  * cycle count because there in an implicit assumption that drives will
1790  * guarantee that entire 512 byte blocks get written at once.  In other words,
1791  * we can't have part of a 512 byte block written and part not written.  By
1792  * tagging each block, we will know which blocks are valid when recovering
1793  * after an unclean shutdown.
1794  *
1795  * This routine is single threaded on the iclog.  No other thread can be in
1796  * this routine with the same iclog.  Changing contents of iclog can there-
1797  * fore be done without grabbing the state machine lock.  Updating the global
1798  * log will require grabbing the lock though.
1799  *
1800  * The entire log manager uses a logical block numbering scheme.  Only
1801  * log_sync (and then only bwrite()) know about the fact that the log may
1802  * not start with block zero on a given device.  The log block start offset
1803  * is added immediately before calling bwrite().
1804  */
1805
1806 STATIC int
1807 xlog_sync(
1808         struct xlog             *log,
1809         struct xlog_in_core     *iclog)
1810 {
1811         xfs_buf_t       *bp;
1812         int             i;
1813         uint            count;          /* byte count of bwrite */
1814         uint            count_init;     /* initial count before roundup */
1815         int             roundoff;       /* roundoff to BB or stripe */
1816         int             split = 0;      /* split write into two regions */
1817         int             error;
1818         int             v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1819         int             size;
1820
1821         XFS_STATS_INC(log->l_mp, xs_log_writes);
1822         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1823
1824         /* Add for LR header */
1825         count_init = log->l_iclog_hsize + iclog->ic_offset;
1826
1827         /* Round out the log write size */
1828         if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1829                 /* we have a v2 stripe unit to use */
1830                 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1831         } else {
1832                 count = BBTOB(BTOBB(count_init));
1833         }
1834         roundoff = count - count_init;
1835         ASSERT(roundoff >= 0);
1836         ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1837                 roundoff < log->l_mp->m_sb.sb_logsunit)
1838                 || 
1839                 (log->l_mp->m_sb.sb_logsunit <= 1 && 
1840                  roundoff < BBTOB(1)));
1841
1842         /* move grant heads by roundoff in sync */
1843         xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1844         xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1845
1846         /* put cycle number in every block */
1847         xlog_pack_data(log, iclog, roundoff); 
1848
1849         /* real byte length */
1850         size = iclog->ic_offset;
1851         if (v2)
1852                 size += roundoff;
1853         iclog->ic_header.h_len = cpu_to_be32(size);
1854
1855         bp = iclog->ic_bp;
1856         XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1857
1858         XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1859
1860         /* Do we need to split this write into 2 parts? */
1861         if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1862                 char            *dptr;
1863
1864                 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1865                 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1866                 iclog->ic_bwritecnt = 2;
1867
1868                 /*
1869                  * Bump the cycle numbers at the start of each block in the
1870                  * part of the iclog that ends up in the buffer that gets
1871                  * written to the start of the log.
1872                  *
1873                  * Watch out for the header magic number case, though.
1874                  */
1875                 dptr = (char *)&iclog->ic_header + count;
1876                 for (i = 0; i < split; i += BBSIZE) {
1877                         uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1878                         if (++cycle == XLOG_HEADER_MAGIC_NUM)
1879                                 cycle++;
1880                         *(__be32 *)dptr = cpu_to_be32(cycle);
1881
1882                         dptr += BBSIZE;
1883                 }
1884         } else {
1885                 iclog->ic_bwritecnt = 1;
1886         }
1887
1888         /* calculcate the checksum */
1889         iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1890                                             iclog->ic_datap, size);
1891         /*
1892          * Intentionally corrupt the log record CRC based on the error injection
1893          * frequency, if defined. This facilitates testing log recovery in the
1894          * event of torn writes. Hence, set the IOABORT state to abort the log
1895          * write on I/O completion and shutdown the fs. The subsequent mount
1896          * detects the bad CRC and attempts to recover.
1897          */
1898         if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1899                 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1900                 iclog->ic_state |= XLOG_STATE_IOABORT;
1901                 xfs_warn(log->l_mp,
1902         "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1903                          be64_to_cpu(iclog->ic_header.h_lsn));
1904         }
1905
1906         bp->b_io_length = BTOBB(count);
1907         bp->b_fspriv = iclog;
1908         bp->b_flags &= ~XBF_FLUSH;
1909         bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1910
1911         /*
1912          * Flush the data device before flushing the log to make sure all meta
1913          * data written back from the AIL actually made it to disk before
1914          * stamping the new log tail LSN into the log buffer.  For an external
1915          * log we need to issue the flush explicitly, and unfortunately
1916          * synchronously here; for an internal log we can simply use the block
1917          * layer state machine for preflushes.
1918          */
1919         if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1920                 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1921         else
1922                 bp->b_flags |= XBF_FLUSH;
1923
1924         ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1925         ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1926
1927         xlog_verify_iclog(log, iclog, count, true);
1928
1929         /* account for log which doesn't start at block #0 */
1930         XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1931
1932         /*
1933          * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1934          * is shutting down.
1935          */
1936         error = xlog_bdstrat(bp);
1937         if (error) {
1938                 xfs_buf_ioerror_alert(bp, "xlog_sync");
1939                 return error;
1940         }
1941         if (split) {
1942                 bp = iclog->ic_log->l_xbuf;
1943                 XFS_BUF_SET_ADDR(bp, 0);             /* logical 0 */
1944                 xfs_buf_associate_memory(bp,
1945                                 (char *)&iclog->ic_header + count, split);
1946                 bp->b_fspriv = iclog;
1947                 bp->b_flags &= ~XBF_FLUSH;
1948                 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1949
1950                 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1951                 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1952
1953                 /* account for internal log which doesn't start at block #0 */
1954                 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1955                 error = xlog_bdstrat(bp);
1956                 if (error) {
1957                         xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1958                         return error;
1959                 }
1960         }
1961         return 0;
1962 }       /* xlog_sync */
1963
1964 /*
1965  * Deallocate a log structure
1966  */
1967 STATIC void
1968 xlog_dealloc_log(
1969         struct xlog     *log)
1970 {
1971         xlog_in_core_t  *iclog, *next_iclog;
1972         int             i;
1973
1974         xlog_cil_destroy(log);
1975
1976         /*
1977          * Cycle all the iclogbuf locks to make sure all log IO completion
1978          * is done before we tear down these buffers.
1979          */
1980         iclog = log->l_iclog;
1981         for (i = 0; i < log->l_iclog_bufs; i++) {
1982                 xfs_buf_lock(iclog->ic_bp);
1983                 xfs_buf_unlock(iclog->ic_bp);
1984                 iclog = iclog->ic_next;
1985         }
1986
1987         /*
1988          * Always need to ensure that the extra buffer does not point to memory
1989          * owned by another log buffer before we free it. Also, cycle the lock
1990          * first to ensure we've completed IO on it.
1991          */
1992         xfs_buf_lock(log->l_xbuf);
1993         xfs_buf_unlock(log->l_xbuf);
1994         xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1995         xfs_buf_free(log->l_xbuf);
1996
1997         iclog = log->l_iclog;
1998         for (i = 0; i < log->l_iclog_bufs; i++) {
1999                 xfs_buf_free(iclog->ic_bp);
2000                 next_iclog = iclog->ic_next;
2001                 kmem_free(iclog);
2002                 iclog = next_iclog;
2003         }
2004         spinlock_destroy(&log->l_icloglock);
2005
2006         log->l_mp->m_log = NULL;
2007         kmem_free(log);
2008 }       /* xlog_dealloc_log */
2009
2010 /*
2011  * Update counters atomically now that memcpy is done.
2012  */
2013 /* ARGSUSED */
2014 static inline void
2015 xlog_state_finish_copy(
2016         struct xlog             *log,
2017         struct xlog_in_core     *iclog,
2018         int                     record_cnt,
2019         int                     copy_bytes)
2020 {
2021         spin_lock(&log->l_icloglock);
2022
2023         be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2024         iclog->ic_offset += copy_bytes;
2025
2026         spin_unlock(&log->l_icloglock);
2027 }       /* xlog_state_finish_copy */
2028
2029
2030
2031
2032 /*
2033  * print out info relating to regions written which consume
2034  * the reservation
2035  */
2036 void
2037 xlog_print_tic_res(
2038         struct xfs_mount        *mp,
2039         struct xlog_ticket      *ticket)
2040 {
2041         uint i;
2042         uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2043
2044         /* match with XLOG_REG_TYPE_* in xfs_log.h */
2045 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2046         static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2047             REG_TYPE_STR(BFORMAT, "bformat"),
2048             REG_TYPE_STR(BCHUNK, "bchunk"),
2049             REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2050             REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2051             REG_TYPE_STR(IFORMAT, "iformat"),
2052             REG_TYPE_STR(ICORE, "icore"),
2053             REG_TYPE_STR(IEXT, "iext"),
2054             REG_TYPE_STR(IBROOT, "ibroot"),
2055             REG_TYPE_STR(ILOCAL, "ilocal"),
2056             REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2057             REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2058             REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2059             REG_TYPE_STR(QFORMAT, "qformat"),
2060             REG_TYPE_STR(DQUOT, "dquot"),
2061             REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2062             REG_TYPE_STR(LRHEADER, "LR header"),
2063             REG_TYPE_STR(UNMOUNT, "unmount"),
2064             REG_TYPE_STR(COMMIT, "commit"),
2065             REG_TYPE_STR(TRANSHDR, "trans header"),
2066             REG_TYPE_STR(ICREATE, "inode create")
2067         };
2068 #undef REG_TYPE_STR
2069
2070         xfs_warn(mp, "ticket reservation summary:");
2071         xfs_warn(mp, "  unit res    = %d bytes",
2072                  ticket->t_unit_res);
2073         xfs_warn(mp, "  current res = %d bytes",
2074                  ticket->t_curr_res);
2075         xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2076                  ticket->t_res_arr_sum, ticket->t_res_o_flow);
2077         xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2078                  ticket->t_res_num_ophdrs, ophdr_spc);
2079         xfs_warn(mp, "  ophdr + reg = %u bytes",
2080                  ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2081         xfs_warn(mp, "  num regions = %u",
2082                  ticket->t_res_num);
2083
2084         for (i = 0; i < ticket->t_res_num; i++) {
2085                 uint r_type = ticket->t_res_arr[i].r_type;
2086                 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2087                             ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2088                             "bad-rtype" : res_type_str[r_type]),
2089                             ticket->t_res_arr[i].r_len);
2090         }
2091 }
2092
2093 /*
2094  * Print a summary of the transaction.
2095  */
2096 void
2097 xlog_print_trans(
2098         struct xfs_trans                *tp)
2099 {
2100         struct xfs_mount                *mp = tp->t_mountp;
2101         struct xfs_log_item_desc        *lidp;
2102
2103         /* dump core transaction and ticket info */
2104         xfs_warn(mp, "transaction summary:");
2105         xfs_warn(mp, "  flags   = 0x%x", tp->t_flags);
2106
2107         xlog_print_tic_res(mp, tp->t_ticket);
2108
2109         /* dump each log item */
2110         list_for_each_entry(lidp, &tp->t_items, lid_trans) {
2111                 struct xfs_log_item     *lip = lidp->lid_item;
2112                 struct xfs_log_vec      *lv = lip->li_lv;
2113                 struct xfs_log_iovec    *vec;
2114                 int                     i;
2115
2116                 xfs_warn(mp, "log item: ");
2117                 xfs_warn(mp, "  type    = 0x%x", lip->li_type);
2118                 xfs_warn(mp, "  flags   = 0x%x", lip->li_flags);
2119                 if (!lv)
2120                         continue;
2121                 xfs_warn(mp, "  niovecs = %d", lv->lv_niovecs);
2122                 xfs_warn(mp, "  size    = %d", lv->lv_size);
2123                 xfs_warn(mp, "  bytes   = %d", lv->lv_bytes);
2124                 xfs_warn(mp, "  buf len = %d", lv->lv_buf_len);
2125
2126                 /* dump each iovec for the log item */
2127                 vec = lv->lv_iovecp;
2128                 for (i = 0; i < lv->lv_niovecs; i++) {
2129                         int dumplen = min(vec->i_len, 32);
2130
2131                         xfs_warn(mp, "  iovec[%d]", i);
2132                         xfs_warn(mp, "    type  = 0x%x", vec->i_type);
2133                         xfs_warn(mp, "    len   = %d", vec->i_len);
2134                         xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2135                         xfs_hex_dump(vec->i_addr, dumplen);
2136
2137                         vec++;
2138                 }
2139         }
2140 }
2141
2142 /*
2143  * Calculate the potential space needed by the log vector.  Each region gets
2144  * its own xlog_op_header_t and may need to be double word aligned.
2145  */
2146 static int
2147 xlog_write_calc_vec_length(
2148         struct xlog_ticket      *ticket,
2149         struct xfs_log_vec      *log_vector)
2150 {
2151         struct xfs_log_vec      *lv;
2152         int                     headers = 0;
2153         int                     len = 0;
2154         int                     i;
2155
2156         /* acct for start rec of xact */
2157         if (ticket->t_flags & XLOG_TIC_INITED)
2158                 headers++;
2159
2160         for (lv = log_vector; lv; lv = lv->lv_next) {
2161                 /* we don't write ordered log vectors */
2162                 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2163                         continue;
2164
2165                 headers += lv->lv_niovecs;
2166
2167                 for (i = 0; i < lv->lv_niovecs; i++) {
2168                         struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2169
2170                         len += vecp->i_len;
2171                         xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2172                 }
2173         }
2174
2175         ticket->t_res_num_ophdrs += headers;
2176         len += headers * sizeof(struct xlog_op_header);
2177
2178         return len;
2179 }
2180
2181 /*
2182  * If first write for transaction, insert start record  We can't be trying to
2183  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2184  */
2185 static int
2186 xlog_write_start_rec(
2187         struct xlog_op_header   *ophdr,
2188         struct xlog_ticket      *ticket)
2189 {
2190         if (!(ticket->t_flags & XLOG_TIC_INITED))
2191                 return 0;
2192
2193         ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2194         ophdr->oh_clientid = ticket->t_clientid;
2195         ophdr->oh_len = 0;
2196         ophdr->oh_flags = XLOG_START_TRANS;
2197         ophdr->oh_res2 = 0;
2198
2199         ticket->t_flags &= ~XLOG_TIC_INITED;
2200
2201         return sizeof(struct xlog_op_header);
2202 }
2203
2204 static xlog_op_header_t *
2205 xlog_write_setup_ophdr(
2206         struct xlog             *log,
2207         struct xlog_op_header   *ophdr,
2208         struct xlog_ticket      *ticket,
2209         uint                    flags)
2210 {
2211         ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2212         ophdr->oh_clientid = ticket->t_clientid;
2213         ophdr->oh_res2 = 0;
2214
2215         /* are we copying a commit or unmount record? */
2216         ophdr->oh_flags = flags;
2217
2218         /*
2219          * We've seen logs corrupted with bad transaction client ids.  This
2220          * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2221          * and shut down the filesystem.
2222          */
2223         switch (ophdr->oh_clientid)  {
2224         case XFS_TRANSACTION:
2225         case XFS_VOLUME:
2226         case XFS_LOG:
2227                 break;
2228         default:
2229                 xfs_warn(log->l_mp,
2230                         "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2231                         ophdr->oh_clientid, ticket);
2232                 return NULL;
2233         }
2234
2235         return ophdr;
2236 }
2237
2238 /*
2239  * Set up the parameters of the region copy into the log. This has
2240  * to handle region write split across multiple log buffers - this
2241  * state is kept external to this function so that this code can
2242  * be written in an obvious, self documenting manner.
2243  */
2244 static int
2245 xlog_write_setup_copy(
2246         struct xlog_ticket      *ticket,
2247         struct xlog_op_header   *ophdr,
2248         int                     space_available,
2249         int                     space_required,
2250         int                     *copy_off,
2251         int                     *copy_len,
2252         int                     *last_was_partial_copy,
2253         int                     *bytes_consumed)
2254 {
2255         int                     still_to_copy;
2256
2257         still_to_copy = space_required - *bytes_consumed;
2258         *copy_off = *bytes_consumed;
2259
2260         if (still_to_copy <= space_available) {
2261                 /* write of region completes here */
2262                 *copy_len = still_to_copy;
2263                 ophdr->oh_len = cpu_to_be32(*copy_len);
2264                 if (*last_was_partial_copy)
2265                         ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2266                 *last_was_partial_copy = 0;
2267                 *bytes_consumed = 0;
2268                 return 0;
2269         }
2270
2271         /* partial write of region, needs extra log op header reservation */
2272         *copy_len = space_available;
2273         ophdr->oh_len = cpu_to_be32(*copy_len);
2274         ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2275         if (*last_was_partial_copy)
2276                 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2277         *bytes_consumed += *copy_len;
2278         (*last_was_partial_copy)++;
2279
2280         /* account for new log op header */
2281         ticket->t_curr_res -= sizeof(struct xlog_op_header);
2282         ticket->t_res_num_ophdrs++;
2283
2284         return sizeof(struct xlog_op_header);
2285 }
2286
2287 static int
2288 xlog_write_copy_finish(
2289         struct xlog             *log,
2290         struct xlog_in_core     *iclog,
2291         uint                    flags,
2292         int                     *record_cnt,
2293         int                     *data_cnt,
2294         int                     *partial_copy,
2295         int                     *partial_copy_len,
2296         int                     log_offset,
2297         struct xlog_in_core     **commit_iclog)
2298 {
2299         if (*partial_copy) {
2300                 /*
2301                  * This iclog has already been marked WANT_SYNC by
2302                  * xlog_state_get_iclog_space.
2303                  */
2304                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2305                 *record_cnt = 0;
2306                 *data_cnt = 0;
2307                 return xlog_state_release_iclog(log, iclog);
2308         }
2309
2310         *partial_copy = 0;
2311         *partial_copy_len = 0;
2312
2313         if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2314                 /* no more space in this iclog - push it. */
2315                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2316                 *record_cnt = 0;
2317                 *data_cnt = 0;
2318
2319                 spin_lock(&log->l_icloglock);
2320                 xlog_state_want_sync(log, iclog);
2321                 spin_unlock(&log->l_icloglock);
2322
2323                 if (!commit_iclog)
2324                         return xlog_state_release_iclog(log, iclog);
2325                 ASSERT(flags & XLOG_COMMIT_TRANS);
2326                 *commit_iclog = iclog;
2327         }
2328
2329         return 0;
2330 }
2331
2332 /*
2333  * Write some region out to in-core log
2334  *
2335  * This will be called when writing externally provided regions or when
2336  * writing out a commit record for a given transaction.
2337  *
2338  * General algorithm:
2339  *      1. Find total length of this write.  This may include adding to the
2340  *              lengths passed in.
2341  *      2. Check whether we violate the tickets reservation.
2342  *      3. While writing to this iclog
2343  *          A. Reserve as much space in this iclog as can get
2344  *          B. If this is first write, save away start lsn
2345  *          C. While writing this region:
2346  *              1. If first write of transaction, write start record
2347  *              2. Write log operation header (header per region)
2348  *              3. Find out if we can fit entire region into this iclog
2349  *              4. Potentially, verify destination memcpy ptr
2350  *              5. Memcpy (partial) region
2351  *              6. If partial copy, release iclog; otherwise, continue
2352  *                      copying more regions into current iclog
2353  *      4. Mark want sync bit (in simulation mode)
2354  *      5. Release iclog for potential flush to on-disk log.
2355  *
2356  * ERRORS:
2357  * 1.   Panic if reservation is overrun.  This should never happen since
2358  *      reservation amounts are generated internal to the filesystem.
2359  * NOTES:
2360  * 1. Tickets are single threaded data structures.
2361  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2362  *      syncing routine.  When a single log_write region needs to span
2363  *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2364  *      on all log operation writes which don't contain the end of the
2365  *      region.  The XLOG_END_TRANS bit is used for the in-core log
2366  *      operation which contains the end of the continued log_write region.
2367  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2368  *      we don't really know exactly how much space will be used.  As a result,
2369  *      we don't update ic_offset until the end when we know exactly how many
2370  *      bytes have been written out.
2371  */
2372 int
2373 xlog_write(
2374         struct xlog             *log,
2375         struct xfs_log_vec      *log_vector,
2376         struct xlog_ticket      *ticket,
2377         xfs_lsn_t               *start_lsn,
2378         struct xlog_in_core     **commit_iclog,
2379         uint                    flags)
2380 {
2381         struct xlog_in_core     *iclog = NULL;
2382         struct xfs_log_iovec    *vecp;
2383         struct xfs_log_vec      *lv;
2384         int                     len;
2385         int                     index;
2386         int                     partial_copy = 0;
2387         int                     partial_copy_len = 0;
2388         int                     contwr = 0;
2389         int                     record_cnt = 0;
2390         int                     data_cnt = 0;
2391         int                     error;
2392
2393         *start_lsn = 0;
2394
2395         len = xlog_write_calc_vec_length(ticket, log_vector);
2396
2397         /*
2398          * Region headers and bytes are already accounted for.
2399          * We only need to take into account start records and
2400          * split regions in this function.
2401          */
2402         if (ticket->t_flags & XLOG_TIC_INITED)
2403                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2404
2405         /*
2406          * Commit record headers need to be accounted for. These
2407          * come in as separate writes so are easy to detect.
2408          */
2409         if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2410                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2411
2412         if (ticket->t_curr_res < 0) {
2413                 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2414                      "ctx ticket reservation ran out. Need to up reservation");
2415                 xlog_print_tic_res(log->l_mp, ticket);
2416                 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2417         }
2418
2419         index = 0;
2420         lv = log_vector;
2421         vecp = lv->lv_iovecp;
2422         while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2423                 void            *ptr;
2424                 int             log_offset;
2425
2426                 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2427                                                    &contwr, &log_offset);
2428                 if (error)
2429                         return error;
2430
2431                 ASSERT(log_offset <= iclog->ic_size - 1);
2432                 ptr = iclog->ic_datap + log_offset;
2433
2434                 /* start_lsn is the first lsn written to. That's all we need. */
2435                 if (!*start_lsn)
2436                         *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2437
2438                 /*
2439                  * This loop writes out as many regions as can fit in the amount
2440                  * of space which was allocated by xlog_state_get_iclog_space().
2441                  */
2442                 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2443                         struct xfs_log_iovec    *reg;
2444                         struct xlog_op_header   *ophdr;
2445                         int                     start_rec_copy;
2446                         int                     copy_len;
2447                         int                     copy_off;
2448                         bool                    ordered = false;
2449
2450                         /* ordered log vectors have no regions to write */
2451                         if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2452                                 ASSERT(lv->lv_niovecs == 0);
2453                                 ordered = true;
2454                                 goto next_lv;
2455                         }
2456
2457                         reg = &vecp[index];
2458                         ASSERT(reg->i_len % sizeof(int32_t) == 0);
2459                         ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2460
2461                         start_rec_copy = xlog_write_start_rec(ptr, ticket);
2462                         if (start_rec_copy) {
2463                                 record_cnt++;
2464                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2465                                                    start_rec_copy);
2466                         }
2467
2468                         ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2469                         if (!ophdr)
2470                                 return -EIO;
2471
2472                         xlog_write_adv_cnt(&ptr, &len, &log_offset,
2473                                            sizeof(struct xlog_op_header));
2474
2475                         len += xlog_write_setup_copy(ticket, ophdr,
2476                                                      iclog->ic_size-log_offset,
2477                                                      reg->i_len,
2478                                                      &copy_off, &copy_len,
2479                                                      &partial_copy,
2480                                                      &partial_copy_len);
2481                         xlog_verify_dest_ptr(log, ptr);
2482
2483                         /*
2484                          * Copy region.
2485                          *
2486                          * Unmount records just log an opheader, so can have
2487                          * empty payloads with no data region to copy. Hence we
2488                          * only copy the payload if the vector says it has data
2489                          * to copy.
2490                          */
2491                         ASSERT(copy_len >= 0);
2492                         if (copy_len > 0) {
2493                                 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2494                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2495                                                    copy_len);
2496                         }
2497                         copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2498                         record_cnt++;
2499                         data_cnt += contwr ? copy_len : 0;
2500
2501                         error = xlog_write_copy_finish(log, iclog, flags,
2502                                                        &record_cnt, &data_cnt,
2503                                                        &partial_copy,
2504                                                        &partial_copy_len,
2505                                                        log_offset,
2506                                                        commit_iclog);
2507                         if (error)
2508                                 return error;
2509
2510                         /*
2511                          * if we had a partial copy, we need to get more iclog
2512                          * space but we don't want to increment the region
2513                          * index because there is still more is this region to
2514                          * write.
2515                          *
2516                          * If we completed writing this region, and we flushed
2517                          * the iclog (indicated by resetting of the record
2518                          * count), then we also need to get more log space. If
2519                          * this was the last record, though, we are done and
2520                          * can just return.
2521                          */
2522                         if (partial_copy)
2523                                 break;
2524
2525                         if (++index == lv->lv_niovecs) {
2526 next_lv:
2527                                 lv = lv->lv_next;
2528                                 index = 0;
2529                                 if (lv)
2530                                         vecp = lv->lv_iovecp;
2531                         }
2532                         if (record_cnt == 0 && !ordered) {
2533                                 if (!lv)
2534                                         return 0;
2535                                 break;
2536                         }
2537                 }
2538         }
2539
2540         ASSERT(len == 0);
2541
2542         xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2543         if (!commit_iclog)
2544                 return xlog_state_release_iclog(log, iclog);
2545
2546         ASSERT(flags & XLOG_COMMIT_TRANS);
2547         *commit_iclog = iclog;
2548         return 0;
2549 }
2550
2551
2552 /*****************************************************************************
2553  *
2554  *              State Machine functions
2555  *
2556  *****************************************************************************
2557  */
2558
2559 /* Clean iclogs starting from the head.  This ordering must be
2560  * maintained, so an iclog doesn't become ACTIVE beyond one that
2561  * is SYNCING.  This is also required to maintain the notion that we use
2562  * a ordered wait queue to hold off would be writers to the log when every
2563  * iclog is trying to sync to disk.
2564  *
2565  * State Change: DIRTY -> ACTIVE
2566  */
2567 STATIC void
2568 xlog_state_clean_log(
2569         struct xlog *log)
2570 {
2571         xlog_in_core_t  *iclog;
2572         int changed = 0;
2573
2574         iclog = log->l_iclog;
2575         do {
2576                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2577                         iclog->ic_state = XLOG_STATE_ACTIVE;
2578                         iclog->ic_offset       = 0;
2579                         ASSERT(iclog->ic_callback == NULL);
2580                         /*
2581                          * If the number of ops in this iclog indicate it just
2582                          * contains the dummy transaction, we can
2583                          * change state into IDLE (the second time around).
2584                          * Otherwise we should change the state into
2585                          * NEED a dummy.
2586                          * We don't need to cover the dummy.
2587                          */
2588                         if (!changed &&
2589                            (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2590                                         XLOG_COVER_OPS)) {
2591                                 changed = 1;
2592                         } else {
2593                                 /*
2594                                  * We have two dirty iclogs so start over
2595                                  * This could also be num of ops indicates
2596                                  * this is not the dummy going out.
2597                                  */
2598                                 changed = 2;
2599                         }
2600                         iclog->ic_header.h_num_logops = 0;
2601                         memset(iclog->ic_header.h_cycle_data, 0,
2602                               sizeof(iclog->ic_header.h_cycle_data));
2603                         iclog->ic_header.h_lsn = 0;
2604                 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2605                         /* do nothing */;
2606                 else
2607                         break;  /* stop cleaning */
2608                 iclog = iclog->ic_next;
2609         } while (iclog != log->l_iclog);
2610
2611         /* log is locked when we are called */
2612         /*
2613          * Change state for the dummy log recording.
2614          * We usually go to NEED. But we go to NEED2 if the changed indicates
2615          * we are done writing the dummy record.
2616          * If we are done with the second dummy recored (DONE2), then
2617          * we go to IDLE.
2618          */
2619         if (changed) {
2620                 switch (log->l_covered_state) {
2621                 case XLOG_STATE_COVER_IDLE:
2622                 case XLOG_STATE_COVER_NEED:
2623                 case XLOG_STATE_COVER_NEED2:
2624                         log->l_covered_state = XLOG_STATE_COVER_NEED;
2625                         break;
2626
2627                 case XLOG_STATE_COVER_DONE:
2628                         if (changed == 1)
2629                                 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2630                         else
2631                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2632                         break;
2633
2634                 case XLOG_STATE_COVER_DONE2:
2635                         if (changed == 1)
2636                                 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2637                         else
2638                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2639                         break;
2640
2641                 default:
2642                         ASSERT(0);
2643                 }
2644         }
2645 }       /* xlog_state_clean_log */
2646
2647 STATIC xfs_lsn_t
2648 xlog_get_lowest_lsn(
2649         struct xlog     *log)
2650 {
2651         xlog_in_core_t  *lsn_log;
2652         xfs_lsn_t       lowest_lsn, lsn;
2653
2654         lsn_log = log->l_iclog;
2655         lowest_lsn = 0;
2656         do {
2657             if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2658                 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2659                 if ((lsn && !lowest_lsn) ||
2660                     (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2661                         lowest_lsn = lsn;
2662                 }
2663             }
2664             lsn_log = lsn_log->ic_next;
2665         } while (lsn_log != log->l_iclog);
2666         return lowest_lsn;
2667 }
2668
2669
2670 STATIC void
2671 xlog_state_do_callback(
2672         struct xlog             *log,
2673         int                     aborted,
2674         struct xlog_in_core     *ciclog)
2675 {
2676         xlog_in_core_t     *iclog;
2677         xlog_in_core_t     *first_iclog;        /* used to know when we've
2678                                                  * processed all iclogs once */
2679         xfs_log_callback_t *cb, *cb_next;
2680         int                flushcnt = 0;
2681         xfs_lsn_t          lowest_lsn;
2682         int                ioerrors;    /* counter: iclogs with errors */
2683         int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2684         int                funcdidcallbacks; /* flag: function did callbacks */
2685         int                repeats;     /* for issuing console warnings if
2686                                          * looping too many times */
2687
2688         spin_lock(&log->l_icloglock);
2689         first_iclog = iclog = log->l_iclog;
2690         ioerrors = 0;
2691         funcdidcallbacks = 0;
2692         repeats = 0;
2693
2694         do {
2695                 /*
2696                  * Scan all iclogs starting with the one pointed to by the
2697                  * log.  Reset this starting point each time the log is
2698                  * unlocked (during callbacks).
2699                  *
2700                  * Keep looping through iclogs until one full pass is made
2701                  * without running any callbacks.
2702                  */
2703                 first_iclog = log->l_iclog;
2704                 iclog = log->l_iclog;
2705                 loopdidcallbacks = 0;
2706                 repeats++;
2707
2708                 do {
2709
2710                         /* skip all iclogs in the ACTIVE & DIRTY states */
2711                         if (iclog->ic_state &
2712                             (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2713                                 iclog = iclog->ic_next;
2714                                 continue;
2715                         }
2716
2717                         /*
2718                          * Between marking a filesystem SHUTDOWN and stopping
2719                          * the log, we do flush all iclogs to disk (if there
2720                          * wasn't a log I/O error). So, we do want things to
2721                          * go smoothly in case of just a SHUTDOWN  w/o a
2722                          * LOG_IO_ERROR.
2723                          */
2724                         if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2725                                 /*
2726                                  * Can only perform callbacks in order.  Since
2727                                  * this iclog is not in the DONE_SYNC/
2728                                  * DO_CALLBACK state, we skip the rest and
2729                                  * just try to clean up.  If we set our iclog
2730                                  * to DO_CALLBACK, we will not process it when
2731                                  * we retry since a previous iclog is in the
2732                                  * CALLBACK and the state cannot change since
2733                                  * we are holding the l_icloglock.
2734                                  */
2735                                 if (!(iclog->ic_state &
2736                                         (XLOG_STATE_DONE_SYNC |
2737                                                  XLOG_STATE_DO_CALLBACK))) {
2738                                         if (ciclog && (ciclog->ic_state ==
2739                                                         XLOG_STATE_DONE_SYNC)) {
2740                                                 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2741                                         }
2742                                         break;
2743                                 }
2744                                 /*
2745                                  * We now have an iclog that is in either the
2746                                  * DO_CALLBACK or DONE_SYNC states. The other
2747                                  * states (WANT_SYNC, SYNCING, or CALLBACK were
2748                                  * caught by the above if and are going to
2749                                  * clean (i.e. we aren't doing their callbacks)
2750                                  * see the above if.
2751                                  */
2752
2753                                 /*
2754                                  * We will do one more check here to see if we
2755                                  * have chased our tail around.
2756                                  */
2757
2758                                 lowest_lsn = xlog_get_lowest_lsn(log);
2759                                 if (lowest_lsn &&
2760                                     XFS_LSN_CMP(lowest_lsn,
2761                                                 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2762                                         iclog = iclog->ic_next;
2763                                         continue; /* Leave this iclog for
2764                                                    * another thread */
2765                                 }
2766
2767                                 iclog->ic_state = XLOG_STATE_CALLBACK;
2768
2769
2770                                 /*
2771                                  * Completion of a iclog IO does not imply that
2772                                  * a transaction has completed, as transactions
2773                                  * can be large enough to span many iclogs. We
2774                                  * cannot change the tail of the log half way
2775                                  * through a transaction as this may be the only
2776                                  * transaction in the log and moving th etail to
2777                                  * point to the middle of it will prevent
2778                                  * recovery from finding the start of the
2779                                  * transaction. Hence we should only update the
2780                                  * last_sync_lsn if this iclog contains
2781                                  * transaction completion callbacks on it.
2782                                  *
2783                                  * We have to do this before we drop the
2784                                  * icloglock to ensure we are the only one that
2785                                  * can update it.
2786                                  */
2787                                 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2788                                         be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2789                                 if (iclog->ic_callback)
2790                                         atomic64_set(&log->l_last_sync_lsn,
2791                                                 be64_to_cpu(iclog->ic_header.h_lsn));
2792
2793                         } else
2794                                 ioerrors++;
2795
2796                         spin_unlock(&log->l_icloglock);
2797
2798                         /*
2799                          * Keep processing entries in the callback list until
2800                          * we come around and it is empty.  We need to
2801                          * atomically see that the list is empty and change the
2802                          * state to DIRTY so that we don't miss any more
2803                          * callbacks being added.
2804                          */
2805                         spin_lock(&iclog->ic_callback_lock);
2806                         cb = iclog->ic_callback;
2807                         while (cb) {
2808                                 iclog->ic_callback_tail = &(iclog->ic_callback);
2809                                 iclog->ic_callback = NULL;
2810                                 spin_unlock(&iclog->ic_callback_lock);
2811
2812                                 /* perform callbacks in the order given */
2813                                 for (; cb; cb = cb_next) {
2814                                         cb_next = cb->cb_next;
2815                                         cb->cb_func(cb->cb_arg, aborted);
2816                                 }
2817                                 spin_lock(&iclog->ic_callback_lock);
2818                                 cb = iclog->ic_callback;
2819                         }
2820
2821                         loopdidcallbacks++;
2822                         funcdidcallbacks++;
2823
2824                         spin_lock(&log->l_icloglock);
2825                         ASSERT(iclog->ic_callback == NULL);
2826                         spin_unlock(&iclog->ic_callback_lock);
2827                         if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2828                                 iclog->ic_state = XLOG_STATE_DIRTY;
2829
2830                         /*
2831                          * Transition from DIRTY to ACTIVE if applicable.
2832                          * NOP if STATE_IOERROR.
2833                          */
2834                         xlog_state_clean_log(log);
2835
2836                         /* wake up threads waiting in xfs_log_force() */
2837                         wake_up_all(&iclog->ic_force_wait);
2838
2839                         iclog = iclog->ic_next;
2840                 } while (first_iclog != iclog);
2841
2842                 if (repeats > 5000) {
2843                         flushcnt += repeats;
2844                         repeats = 0;
2845                         xfs_warn(log->l_mp,
2846                                 "%s: possible infinite loop (%d iterations)",
2847                                 __func__, flushcnt);
2848                 }
2849         } while (!ioerrors && loopdidcallbacks);
2850
2851 #ifdef DEBUG
2852         /*
2853          * Make one last gasp attempt to see if iclogs are being left in limbo.
2854          * If the above loop finds an iclog earlier than the current iclog and
2855          * in one of the syncing states, the current iclog is put into
2856          * DO_CALLBACK and the callbacks are deferred to the completion of the
2857          * earlier iclog. Walk the iclogs in order and make sure that no iclog
2858          * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2859          * states.
2860          *
2861          * Note that SYNCING|IOABORT is a valid state so we cannot just check
2862          * for ic_state == SYNCING.
2863          */
2864         if (funcdidcallbacks) {
2865                 first_iclog = iclog = log->l_iclog;
2866                 do {
2867                         ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2868                         /*
2869                          * Terminate the loop if iclogs are found in states
2870                          * which will cause other threads to clean up iclogs.
2871                          *
2872                          * SYNCING - i/o completion will go through logs
2873                          * DONE_SYNC - interrupt thread should be waiting for
2874                          *              l_icloglock
2875                          * IOERROR - give up hope all ye who enter here
2876                          */
2877                         if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2878                             iclog->ic_state & XLOG_STATE_SYNCING ||
2879                             iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2880                             iclog->ic_state == XLOG_STATE_IOERROR )
2881                                 break;
2882                         iclog = iclog->ic_next;
2883                 } while (first_iclog != iclog);
2884         }
2885 #endif
2886
2887         if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2888                 wake_up_all(&log->l_flush_wait);
2889
2890         spin_unlock(&log->l_icloglock);
2891 }
2892
2893
2894 /*
2895  * Finish transitioning this iclog to the dirty state.
2896  *
2897  * Make sure that we completely execute this routine only when this is
2898  * the last call to the iclog.  There is a good chance that iclog flushes,
2899  * when we reach the end of the physical log, get turned into 2 separate
2900  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2901  * routine.  By using the reference count bwritecnt, we guarantee that only
2902  * the second completion goes through.
2903  *
2904  * Callbacks could take time, so they are done outside the scope of the
2905  * global state machine log lock.
2906  */
2907 STATIC void
2908 xlog_state_done_syncing(
2909         xlog_in_core_t  *iclog,
2910         int             aborted)
2911 {
2912         struct xlog        *log = iclog->ic_log;
2913
2914         spin_lock(&log->l_icloglock);
2915
2916         ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2917                iclog->ic_state == XLOG_STATE_IOERROR);
2918         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2919         ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2920
2921
2922         /*
2923          * If we got an error, either on the first buffer, or in the case of
2924          * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2925          * and none should ever be attempted to be written to disk
2926          * again.
2927          */
2928         if (iclog->ic_state != XLOG_STATE_IOERROR) {
2929                 if (--iclog->ic_bwritecnt == 1) {
2930                         spin_unlock(&log->l_icloglock);
2931                         return;
2932                 }
2933                 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2934         }
2935
2936         /*
2937          * Someone could be sleeping prior to writing out the next
2938          * iclog buffer, we wake them all, one will get to do the
2939          * I/O, the others get to wait for the result.
2940          */
2941         wake_up_all(&iclog->ic_write_wait);
2942         spin_unlock(&log->l_icloglock);
2943         xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2944 }       /* xlog_state_done_syncing */
2945
2946
2947 /*
2948  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2949  * sleep.  We wait on the flush queue on the head iclog as that should be
2950  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2951  * we will wait here and all new writes will sleep until a sync completes.
2952  *
2953  * The in-core logs are used in a circular fashion. They are not used
2954  * out-of-order even when an iclog past the head is free.
2955  *
2956  * return:
2957  *      * log_offset where xlog_write() can start writing into the in-core
2958  *              log's data space.
2959  *      * in-core log pointer to which xlog_write() should write.
2960  *      * boolean indicating this is a continued write to an in-core log.
2961  *              If this is the last write, then the in-core log's offset field
2962  *              needs to be incremented, depending on the amount of data which
2963  *              is copied.
2964  */
2965 STATIC int
2966 xlog_state_get_iclog_space(
2967         struct xlog             *log,
2968         int                     len,
2969         struct xlog_in_core     **iclogp,
2970         struct xlog_ticket      *ticket,
2971         int                     *continued_write,
2972         int                     *logoffsetp)
2973 {
2974         int               log_offset;
2975         xlog_rec_header_t *head;
2976         xlog_in_core_t    *iclog;
2977         int               error;
2978
2979 restart:
2980         spin_lock(&log->l_icloglock);
2981         if (XLOG_FORCED_SHUTDOWN(log)) {
2982                 spin_unlock(&log->l_icloglock);
2983                 return -EIO;
2984         }
2985
2986         iclog = log->l_iclog;
2987         if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2988                 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2989
2990                 /* Wait for log writes to have flushed */
2991                 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2992                 goto restart;
2993         }
2994
2995         head = &iclog->ic_header;
2996
2997         atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
2998         log_offset = iclog->ic_offset;
2999
3000         /* On the 1st write to an iclog, figure out lsn.  This works
3001          * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3002          * committing to.  If the offset is set, that's how many blocks
3003          * must be written.
3004          */
3005         if (log_offset == 0) {
3006                 ticket->t_curr_res -= log->l_iclog_hsize;
3007                 xlog_tic_add_region(ticket,
3008                                     log->l_iclog_hsize,
3009                                     XLOG_REG_TYPE_LRHEADER);
3010                 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3011                 head->h_lsn = cpu_to_be64(
3012                         xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3013                 ASSERT(log->l_curr_block >= 0);
3014         }
3015
3016         /* If there is enough room to write everything, then do it.  Otherwise,
3017          * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3018          * bit is on, so this will get flushed out.  Don't update ic_offset
3019          * until you know exactly how many bytes get copied.  Therefore, wait
3020          * until later to update ic_offset.
3021          *
3022          * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3023          * can fit into remaining data section.
3024          */
3025         if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3026                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3027
3028                 /*
3029                  * If I'm the only one writing to this iclog, sync it to disk.
3030                  * We need to do an atomic compare and decrement here to avoid
3031                  * racing with concurrent atomic_dec_and_lock() calls in
3032                  * xlog_state_release_iclog() when there is more than one
3033                  * reference to the iclog.
3034                  */
3035                 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3036                         /* we are the only one */
3037                         spin_unlock(&log->l_icloglock);
3038                         error = xlog_state_release_iclog(log, iclog);
3039                         if (error)
3040                                 return error;
3041                 } else {
3042                         spin_unlock(&log->l_icloglock);
3043                 }
3044                 goto restart;
3045         }
3046
3047         /* Do we have enough room to write the full amount in the remainder
3048          * of this iclog?  Or must we continue a write on the next iclog and
3049          * mark this iclog as completely taken?  In the case where we switch
3050          * iclogs (to mark it taken), this particular iclog will release/sync
3051          * to disk in xlog_write().
3052          */
3053         if (len <= iclog->ic_size - iclog->ic_offset) {
3054                 *continued_write = 0;
3055                 iclog->ic_offset += len;
3056         } else {
3057                 *continued_write = 1;
3058                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3059         }
3060         *iclogp = iclog;
3061
3062         ASSERT(iclog->ic_offset <= iclog->ic_size);
3063         spin_unlock(&log->l_icloglock);
3064
3065         *logoffsetp = log_offset;
3066         return 0;
3067 }       /* xlog_state_get_iclog_space */
3068
3069 /* The first cnt-1 times through here we don't need to
3070  * move the grant write head because the permanent
3071  * reservation has reserved cnt times the unit amount.
3072  * Release part of current permanent unit reservation and
3073  * reset current reservation to be one units worth.  Also
3074  * move grant reservation head forward.
3075  */
3076 STATIC void
3077 xlog_regrant_reserve_log_space(
3078         struct xlog             *log,
3079         struct xlog_ticket      *ticket)
3080 {
3081         trace_xfs_log_regrant_reserve_enter(log, ticket);
3082
3083         if (ticket->t_cnt > 0)
3084                 ticket->t_cnt--;
3085
3086         xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3087                                         ticket->t_curr_res);
3088         xlog_grant_sub_space(log, &log->l_write_head.grant,
3089                                         ticket->t_curr_res);
3090         ticket->t_curr_res = ticket->t_unit_res;
3091         xlog_tic_reset_res(ticket);
3092
3093         trace_xfs_log_regrant_reserve_sub(log, ticket);
3094
3095         /* just return if we still have some of the pre-reserved space */
3096         if (ticket->t_cnt > 0)
3097                 return;
3098
3099         xlog_grant_add_space(log, &log->l_reserve_head.grant,
3100                                         ticket->t_unit_res);
3101
3102         trace_xfs_log_regrant_reserve_exit(log, ticket);
3103
3104         ticket->t_curr_res = ticket->t_unit_res;
3105         xlog_tic_reset_res(ticket);
3106 }       /* xlog_regrant_reserve_log_space */
3107
3108
3109 /*
3110  * Give back the space left from a reservation.
3111  *
3112  * All the information we need to make a correct determination of space left
3113  * is present.  For non-permanent reservations, things are quite easy.  The
3114  * count should have been decremented to zero.  We only need to deal with the
3115  * space remaining in the current reservation part of the ticket.  If the
3116  * ticket contains a permanent reservation, there may be left over space which
3117  * needs to be released.  A count of N means that N-1 refills of the current
3118  * reservation can be done before we need to ask for more space.  The first
3119  * one goes to fill up the first current reservation.  Once we run out of
3120  * space, the count will stay at zero and the only space remaining will be
3121  * in the current reservation field.
3122  */
3123 STATIC void
3124 xlog_ungrant_log_space(
3125         struct xlog             *log,
3126         struct xlog_ticket      *ticket)
3127 {
3128         int     bytes;
3129
3130         if (ticket->t_cnt > 0)
3131                 ticket->t_cnt--;
3132
3133         trace_xfs_log_ungrant_enter(log, ticket);
3134         trace_xfs_log_ungrant_sub(log, ticket);
3135
3136         /*
3137          * If this is a permanent reservation ticket, we may be able to free
3138          * up more space based on the remaining count.
3139          */
3140         bytes = ticket->t_curr_res;
3141         if (ticket->t_cnt > 0) {
3142                 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3143                 bytes += ticket->t_unit_res*ticket->t_cnt;
3144         }
3145
3146         xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3147         xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3148
3149         trace_xfs_log_ungrant_exit(log, ticket);
3150
3151         xfs_log_space_wake(log->l_mp);
3152 }
3153
3154 /*
3155  * Flush iclog to disk if this is the last reference to the given iclog and
3156  * the WANT_SYNC bit is set.
3157  *
3158  * When this function is entered, the iclog is not necessarily in the
3159  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3160  *
3161  *
3162  */
3163 STATIC int
3164 xlog_state_release_iclog(
3165         struct xlog             *log,
3166         struct xlog_in_core     *iclog)
3167 {
3168         int             sync = 0;       /* do we sync? */
3169
3170         if (iclog->ic_state & XLOG_STATE_IOERROR)
3171                 return -EIO;
3172
3173         ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3174         if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3175                 return 0;
3176
3177         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3178                 spin_unlock(&log->l_icloglock);
3179                 return -EIO;
3180         }
3181         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3182                iclog->ic_state == XLOG_STATE_WANT_SYNC);
3183
3184         if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3185                 /* update tail before writing to iclog */
3186                 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3187                 sync++;
3188                 iclog->ic_state = XLOG_STATE_SYNCING;
3189                 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3190                 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3191                 /* cycle incremented when incrementing curr_block */
3192         }
3193         spin_unlock(&log->l_icloglock);
3194
3195         /*
3196          * We let the log lock go, so it's possible that we hit a log I/O
3197          * error or some other SHUTDOWN condition that marks the iclog
3198          * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3199          * this iclog has consistent data, so we ignore IOERROR
3200          * flags after this point.
3201          */
3202         if (sync)
3203                 return xlog_sync(log, iclog);
3204         return 0;
3205 }       /* xlog_state_release_iclog */
3206
3207
3208 /*
3209  * This routine will mark the current iclog in the ring as WANT_SYNC
3210  * and move the current iclog pointer to the next iclog in the ring.
3211  * When this routine is called from xlog_state_get_iclog_space(), the
3212  * exact size of the iclog has not yet been determined.  All we know is
3213  * that every data block.  We have run out of space in this log record.
3214  */
3215 STATIC void
3216 xlog_state_switch_iclogs(
3217         struct xlog             *log,
3218         struct xlog_in_core     *iclog,
3219         int                     eventual_size)
3220 {
3221         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3222         if (!eventual_size)
3223                 eventual_size = iclog->ic_offset;
3224         iclog->ic_state = XLOG_STATE_WANT_SYNC;
3225         iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3226         log->l_prev_block = log->l_curr_block;
3227         log->l_prev_cycle = log->l_curr_cycle;
3228
3229         /* roll log?: ic_offset changed later */
3230         log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3231
3232         /* Round up to next log-sunit */
3233         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3234             log->l_mp->m_sb.sb_logsunit > 1) {
3235                 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3236                 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3237         }
3238
3239         if (log->l_curr_block >= log->l_logBBsize) {
3240                 /*
3241                  * Rewind the current block before the cycle is bumped to make
3242                  * sure that the combined LSN never transiently moves forward
3243                  * when the log wraps to the next cycle. This is to support the
3244                  * unlocked sample of these fields from xlog_valid_lsn(). Most
3245                  * other cases should acquire l_icloglock.
3246                  */
3247                 log->l_curr_block -= log->l_logBBsize;
3248                 ASSERT(log->l_curr_block >= 0);
3249                 smp_wmb();
3250                 log->l_curr_cycle++;
3251                 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3252                         log->l_curr_cycle++;
3253         }
3254         ASSERT(iclog == log->l_iclog);
3255         log->l_iclog = iclog->ic_next;
3256 }       /* xlog_state_switch_iclogs */
3257
3258 /*
3259  * Write out all data in the in-core log as of this exact moment in time.
3260  *
3261  * Data may be written to the in-core log during this call.  However,
3262  * we don't guarantee this data will be written out.  A change from past
3263  * implementation means this routine will *not* write out zero length LRs.
3264  *
3265  * Basically, we try and perform an intelligent scan of the in-core logs.
3266  * If we determine there is no flushable data, we just return.  There is no
3267  * flushable data if:
3268  *
3269  *      1. the current iclog is active and has no data; the previous iclog
3270  *              is in the active or dirty state.
3271  *      2. the current iclog is drity, and the previous iclog is in the
3272  *              active or dirty state.
3273  *
3274  * We may sleep if:
3275  *
3276  *      1. the current iclog is not in the active nor dirty state.
3277  *      2. the current iclog dirty, and the previous iclog is not in the
3278  *              active nor dirty state.
3279  *      3. the current iclog is active, and there is another thread writing
3280  *              to this particular iclog.
3281  *      4. a) the current iclog is active and has no other writers
3282  *         b) when we return from flushing out this iclog, it is still
3283  *              not in the active nor dirty state.
3284  */
3285 int
3286 _xfs_log_force(
3287         struct xfs_mount        *mp,
3288         uint                    flags,
3289         int                     *log_flushed)
3290 {
3291         struct xlog             *log = mp->m_log;
3292         struct xlog_in_core     *iclog;
3293         xfs_lsn_t               lsn;
3294
3295         XFS_STATS_INC(mp, xs_log_force);
3296
3297         xlog_cil_force(log);
3298
3299         spin_lock(&log->l_icloglock);
3300
3301         iclog = log->l_iclog;
3302         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3303                 spin_unlock(&log->l_icloglock);
3304                 return -EIO;
3305         }
3306
3307         /* If the head iclog is not active nor dirty, we just attach
3308          * ourselves to the head and go to sleep.
3309          */
3310         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3311             iclog->ic_state == XLOG_STATE_DIRTY) {
3312                 /*
3313                  * If the head is dirty or (active and empty), then
3314                  * we need to look at the previous iclog.  If the previous
3315                  * iclog is active or dirty we are done.  There is nothing
3316                  * to sync out.  Otherwise, we attach ourselves to the
3317                  * previous iclog and go to sleep.
3318                  */
3319                 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3320                     (atomic_read(&iclog->ic_refcnt) == 0
3321                      && iclog->ic_offset == 0)) {
3322                         iclog = iclog->ic_prev;
3323                         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3324                             iclog->ic_state == XLOG_STATE_DIRTY)
3325                                 goto no_sleep;
3326                         else
3327                                 goto maybe_sleep;
3328                 } else {
3329                         if (atomic_read(&iclog->ic_refcnt) == 0) {
3330                                 /* We are the only one with access to this
3331                                  * iclog.  Flush it out now.  There should
3332                                  * be a roundoff of zero to show that someone
3333                                  * has already taken care of the roundoff from
3334                                  * the previous sync.
3335                                  */
3336                                 atomic_inc(&iclog->ic_refcnt);
3337                                 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3338                                 xlog_state_switch_iclogs(log, iclog, 0);
3339                                 spin_unlock(&log->l_icloglock);
3340
3341                                 if (xlog_state_release_iclog(log, iclog))
3342                                         return -EIO;
3343
3344                                 if (log_flushed)
3345                                         *log_flushed = 1;
3346                                 spin_lock(&log->l_icloglock);
3347                                 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3348                                     iclog->ic_state != XLOG_STATE_DIRTY)
3349                                         goto maybe_sleep;
3350                                 else
3351                                         goto no_sleep;
3352                         } else {
3353                                 /* Someone else is writing to this iclog.
3354                                  * Use its call to flush out the data.  However,
3355                                  * the other thread may not force out this LR,
3356                                  * so we mark it WANT_SYNC.
3357                                  */
3358                                 xlog_state_switch_iclogs(log, iclog, 0);
3359                                 goto maybe_sleep;
3360                         }
3361                 }
3362         }
3363
3364         /* By the time we come around again, the iclog could've been filled
3365          * which would give it another lsn.  If we have a new lsn, just
3366          * return because the relevant data has been flushed.
3367          */
3368 maybe_sleep:
3369         if (flags & XFS_LOG_SYNC) {
3370                 /*
3371                  * We must check if we're shutting down here, before
3372                  * we wait, while we're holding the l_icloglock.
3373                  * Then we check again after waking up, in case our
3374                  * sleep was disturbed by a bad news.
3375                  */
3376                 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3377                         spin_unlock(&log->l_icloglock);
3378                         return -EIO;
3379                 }
3380                 XFS_STATS_INC(mp, xs_log_force_sleep);
3381                 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3382                 /*
3383                  * No need to grab the log lock here since we're
3384                  * only deciding whether or not to return EIO
3385                  * and the memory read should be atomic.
3386                  */
3387                 if (iclog->ic_state & XLOG_STATE_IOERROR)
3388                         return -EIO;
3389         } else {
3390
3391 no_sleep:
3392                 spin_unlock(&log->l_icloglock);
3393         }
3394         return 0;
3395 }
3396
3397 /*
3398  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3399  * about errors or whether the log was flushed or not. This is the normal
3400  * interface to use when trying to unpin items or move the log forward.
3401  */
3402 void
3403 xfs_log_force(
3404         xfs_mount_t     *mp,
3405         uint            flags)
3406 {
3407         trace_xfs_log_force(mp, 0, _RET_IP_);
3408         _xfs_log_force(mp, flags, NULL);
3409 }
3410
3411 /*
3412  * Force the in-core log to disk for a specific LSN.
3413  *
3414  * Find in-core log with lsn.
3415  *      If it is in the DIRTY state, just return.
3416  *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3417  *              state and go to sleep or return.
3418  *      If it is in any other state, go to sleep or return.
3419  *
3420  * Synchronous forces are implemented with a signal variable. All callers
3421  * to force a given lsn to disk will wait on a the sv attached to the
3422  * specific in-core log.  When given in-core log finally completes its
3423  * write to disk, that thread will wake up all threads waiting on the
3424  * sv.
3425  */
3426 int
3427 _xfs_log_force_lsn(
3428         struct xfs_mount        *mp,
3429         xfs_lsn_t               lsn,
3430         uint                    flags,
3431         int                     *log_flushed)
3432 {
3433         struct xlog             *log = mp->m_log;
3434         struct xlog_in_core     *iclog;
3435         int                     already_slept = 0;
3436
3437         ASSERT(lsn != 0);
3438
3439         XFS_STATS_INC(mp, xs_log_force);
3440
3441         lsn = xlog_cil_force_lsn(log, lsn);
3442         if (lsn == NULLCOMMITLSN)
3443                 return 0;
3444
3445 try_again:
3446         spin_lock(&log->l_icloglock);
3447         iclog = log->l_iclog;
3448         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3449                 spin_unlock(&log->l_icloglock);
3450                 return -EIO;
3451         }
3452
3453         do {
3454                 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3455                         iclog = iclog->ic_next;
3456                         continue;
3457                 }
3458
3459                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3460                         spin_unlock(&log->l_icloglock);
3461                         return 0;
3462                 }
3463
3464                 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3465                         /*
3466                          * We sleep here if we haven't already slept (e.g.
3467                          * this is the first time we've looked at the correct
3468                          * iclog buf) and the buffer before us is going to
3469                          * be sync'ed. The reason for this is that if we
3470                          * are doing sync transactions here, by waiting for
3471                          * the previous I/O to complete, we can allow a few
3472                          * more transactions into this iclog before we close
3473                          * it down.
3474                          *
3475                          * Otherwise, we mark the buffer WANT_SYNC, and bump
3476                          * up the refcnt so we can release the log (which
3477                          * drops the ref count).  The state switch keeps new
3478                          * transaction commits from using this buffer.  When
3479                          * the current commits finish writing into the buffer,
3480                          * the refcount will drop to zero and the buffer will
3481                          * go out then.
3482                          */
3483                         if (!already_slept &&
3484                             (iclog->ic_prev->ic_state &
3485                              (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3486                                 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3487
3488                                 XFS_STATS_INC(mp, xs_log_force_sleep);
3489
3490                                 xlog_wait(&iclog->ic_prev->ic_write_wait,
3491                                                         &log->l_icloglock);
3492                                 already_slept = 1;
3493                                 goto try_again;
3494                         }
3495                         atomic_inc(&iclog->ic_refcnt);
3496                         xlog_state_switch_iclogs(log, iclog, 0);
3497                         spin_unlock(&log->l_icloglock);
3498                         if (xlog_state_release_iclog(log, iclog))
3499                                 return -EIO;
3500                         if (log_flushed)
3501                                 *log_flushed = 1;
3502                         spin_lock(&log->l_icloglock);
3503                 }
3504
3505                 if ((flags & XFS_LOG_SYNC) && /* sleep */
3506                     !(iclog->ic_state &
3507                       (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3508                         /*
3509                          * Don't wait on completion if we know that we've
3510                          * gotten a log write error.
3511                          */
3512                         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3513                                 spin_unlock(&log->l_icloglock);
3514                                 return -EIO;
3515                         }
3516                         XFS_STATS_INC(mp, xs_log_force_sleep);
3517                         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3518                         /*
3519                          * No need to grab the log lock here since we're
3520                          * only deciding whether or not to return EIO
3521                          * and the memory read should be atomic.
3522                          */
3523                         if (iclog->ic_state & XLOG_STATE_IOERROR)
3524                                 return -EIO;
3525                 } else {                /* just return */
3526                         spin_unlock(&log->l_icloglock);
3527                 }
3528
3529                 return 0;
3530         } while (iclog != log->l_iclog);
3531
3532         spin_unlock(&log->l_icloglock);
3533         return 0;
3534 }
3535
3536 /*
3537  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3538  * about errors or whether the log was flushed or not. This is the normal
3539  * interface to use when trying to unpin items or move the log forward.
3540  */
3541 void
3542 xfs_log_force_lsn(
3543         xfs_mount_t     *mp,
3544         xfs_lsn_t       lsn,
3545         uint            flags)
3546 {
3547         trace_xfs_log_force(mp, lsn, _RET_IP_);
3548         _xfs_log_force_lsn(mp, lsn, flags, NULL);
3549 }
3550
3551 /*
3552  * Called when we want to mark the current iclog as being ready to sync to
3553  * disk.
3554  */
3555 STATIC void
3556 xlog_state_want_sync(
3557         struct xlog             *log,
3558         struct xlog_in_core     *iclog)
3559 {
3560         assert_spin_locked(&log->l_icloglock);
3561
3562         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3563                 xlog_state_switch_iclogs(log, iclog, 0);
3564         } else {
3565                 ASSERT(iclog->ic_state &
3566                         (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3567         }
3568 }
3569
3570
3571 /*****************************************************************************
3572  *
3573  *              TICKET functions
3574  *
3575  *****************************************************************************
3576  */
3577
3578 /*
3579  * Free a used ticket when its refcount falls to zero.
3580  */
3581 void
3582 xfs_log_ticket_put(
3583         xlog_ticket_t   *ticket)
3584 {
3585         ASSERT(atomic_read(&ticket->t_ref) > 0);
3586         if (atomic_dec_and_test(&ticket->t_ref))
3587                 kmem_zone_free(xfs_log_ticket_zone, ticket);
3588 }
3589
3590 xlog_ticket_t *
3591 xfs_log_ticket_get(
3592         xlog_ticket_t   *ticket)
3593 {
3594         ASSERT(atomic_read(&ticket->t_ref) > 0);
3595         atomic_inc(&ticket->t_ref);
3596         return ticket;
3597 }
3598
3599 /*
3600  * Figure out the total log space unit (in bytes) that would be
3601  * required for a log ticket.
3602  */
3603 int
3604 xfs_log_calc_unit_res(
3605         struct xfs_mount        *mp,
3606         int                     unit_bytes)
3607 {
3608         struct xlog             *log = mp->m_log;
3609         int                     iclog_space;
3610         uint                    num_headers;
3611
3612         /*
3613          * Permanent reservations have up to 'cnt'-1 active log operations
3614          * in the log.  A unit in this case is the amount of space for one
3615          * of these log operations.  Normal reservations have a cnt of 1
3616          * and their unit amount is the total amount of space required.
3617          *
3618          * The following lines of code account for non-transaction data
3619          * which occupy space in the on-disk log.
3620          *
3621          * Normal form of a transaction is:
3622          * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3623          * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3624          *
3625          * We need to account for all the leadup data and trailer data
3626          * around the transaction data.
3627          * And then we need to account for the worst case in terms of using
3628          * more space.
3629          * The worst case will happen if:
3630          * - the placement of the transaction happens to be such that the
3631          *   roundoff is at its maximum
3632          * - the transaction data is synced before the commit record is synced
3633          *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3634          *   Therefore the commit record is in its own Log Record.
3635          *   This can happen as the commit record is called with its
3636          *   own region to xlog_write().
3637          *   This then means that in the worst case, roundoff can happen for
3638          *   the commit-rec as well.
3639          *   The commit-rec is smaller than padding in this scenario and so it is
3640          *   not added separately.
3641          */
3642
3643         /* for trans header */
3644         unit_bytes += sizeof(xlog_op_header_t);
3645         unit_bytes += sizeof(xfs_trans_header_t);
3646
3647         /* for start-rec */
3648         unit_bytes += sizeof(xlog_op_header_t);
3649
3650         /*
3651          * for LR headers - the space for data in an iclog is the size minus
3652          * the space used for the headers. If we use the iclog size, then we
3653          * undercalculate the number of headers required.
3654          *
3655          * Furthermore - the addition of op headers for split-recs might
3656          * increase the space required enough to require more log and op
3657          * headers, so take that into account too.
3658          *
3659          * IMPORTANT: This reservation makes the assumption that if this
3660          * transaction is the first in an iclog and hence has the LR headers
3661          * accounted to it, then the remaining space in the iclog is
3662          * exclusively for this transaction.  i.e. if the transaction is larger
3663          * than the iclog, it will be the only thing in that iclog.
3664          * Fundamentally, this means we must pass the entire log vector to
3665          * xlog_write to guarantee this.
3666          */
3667         iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3668         num_headers = howmany(unit_bytes, iclog_space);
3669
3670         /* for split-recs - ophdrs added when data split over LRs */
3671         unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3672
3673         /* add extra header reservations if we overrun */
3674         while (!num_headers ||
3675                howmany(unit_bytes, iclog_space) > num_headers) {
3676                 unit_bytes += sizeof(xlog_op_header_t);
3677                 num_headers++;
3678         }
3679         unit_bytes += log->l_iclog_hsize * num_headers;
3680
3681         /* for commit-rec LR header - note: padding will subsume the ophdr */
3682         unit_bytes += log->l_iclog_hsize;
3683
3684         /* for roundoff padding for transaction data and one for commit record */
3685         if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3686                 /* log su roundoff */
3687                 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3688         } else {
3689                 /* BB roundoff */
3690                 unit_bytes += 2 * BBSIZE;
3691         }
3692
3693         return unit_bytes;
3694 }
3695
3696 /*
3697  * Allocate and initialise a new log ticket.
3698  */
3699 struct xlog_ticket *
3700 xlog_ticket_alloc(
3701         struct xlog             *log,
3702         int                     unit_bytes,
3703         int                     cnt,
3704         char                    client,
3705         bool                    permanent,
3706         xfs_km_flags_t          alloc_flags)
3707 {
3708         struct xlog_ticket      *tic;
3709         int                     unit_res;
3710
3711         tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3712         if (!tic)
3713                 return NULL;
3714
3715         unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3716
3717         atomic_set(&tic->t_ref, 1);
3718         tic->t_task             = current;
3719         INIT_LIST_HEAD(&tic->t_queue);
3720         tic->t_unit_res         = unit_res;
3721         tic->t_curr_res         = unit_res;
3722         tic->t_cnt              = cnt;
3723         tic->t_ocnt             = cnt;
3724         tic->t_tid              = prandom_u32();
3725         tic->t_clientid         = client;
3726         tic->t_flags            = XLOG_TIC_INITED;
3727         if (permanent)
3728                 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3729
3730         xlog_tic_reset_res(tic);
3731
3732         return tic;
3733 }
3734
3735
3736 /******************************************************************************
3737  *
3738  *              Log debug routines
3739  *
3740  ******************************************************************************
3741  */
3742 #if defined(DEBUG)
3743 /*
3744  * Make sure that the destination ptr is within the valid data region of
3745  * one of the iclogs.  This uses backup pointers stored in a different
3746  * part of the log in case we trash the log structure.
3747  */
3748 void
3749 xlog_verify_dest_ptr(
3750         struct xlog     *log,
3751         void            *ptr)
3752 {
3753         int i;
3754         int good_ptr = 0;
3755
3756         for (i = 0; i < log->l_iclog_bufs; i++) {
3757                 if (ptr >= log->l_iclog_bak[i] &&
3758                     ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3759                         good_ptr++;
3760         }
3761
3762         if (!good_ptr)
3763                 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3764 }
3765
3766 /*
3767  * Check to make sure the grant write head didn't just over lap the tail.  If
3768  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3769  * the cycles differ by exactly one and check the byte count.
3770  *
3771  * This check is run unlocked, so can give false positives. Rather than assert
3772  * on failures, use a warn-once flag and a panic tag to allow the admin to
3773  * determine if they want to panic the machine when such an error occurs. For
3774  * debug kernels this will have the same effect as using an assert but, unlinke
3775  * an assert, it can be turned off at runtime.
3776  */
3777 STATIC void
3778 xlog_verify_grant_tail(
3779         struct xlog     *log)
3780 {
3781         int             tail_cycle, tail_blocks;
3782         int             cycle, space;
3783
3784         xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3785         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3786         if (tail_cycle != cycle) {
3787                 if (cycle - 1 != tail_cycle &&
3788                     !(log->l_flags & XLOG_TAIL_WARN)) {
3789                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3790                                 "%s: cycle - 1 != tail_cycle", __func__);
3791                         log->l_flags |= XLOG_TAIL_WARN;
3792                 }
3793
3794                 if (space > BBTOB(tail_blocks) &&
3795                     !(log->l_flags & XLOG_TAIL_WARN)) {
3796                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3797                                 "%s: space > BBTOB(tail_blocks)", __func__);
3798                         log->l_flags |= XLOG_TAIL_WARN;
3799                 }
3800         }
3801 }
3802
3803 /* check if it will fit */
3804 STATIC void
3805 xlog_verify_tail_lsn(
3806         struct xlog             *log,
3807         struct xlog_in_core     *iclog,
3808         xfs_lsn_t               tail_lsn)
3809 {
3810     int blocks;
3811
3812     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3813         blocks =
3814             log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3815         if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3816                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3817     } else {
3818         ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3819
3820         if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3821                 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3822
3823         blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3824         if (blocks < BTOBB(iclog->ic_offset) + 1)
3825                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3826     }
3827 }       /* xlog_verify_tail_lsn */
3828
3829 /*
3830  * Perform a number of checks on the iclog before writing to disk.
3831  *
3832  * 1. Make sure the iclogs are still circular
3833  * 2. Make sure we have a good magic number
3834  * 3. Make sure we don't have magic numbers in the data
3835  * 4. Check fields of each log operation header for:
3836  *      A. Valid client identifier
3837  *      B. tid ptr value falls in valid ptr space (user space code)
3838  *      C. Length in log record header is correct according to the
3839  *              individual operation headers within record.
3840  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3841  *      log, check the preceding blocks of the physical log to make sure all
3842  *      the cycle numbers agree with the current cycle number.
3843  */
3844 STATIC void
3845 xlog_verify_iclog(
3846         struct xlog             *log,
3847         struct xlog_in_core     *iclog,
3848         int                     count,
3849         bool                    syncing)
3850 {
3851         xlog_op_header_t        *ophead;
3852         xlog_in_core_t          *icptr;
3853         xlog_in_core_2_t        *xhdr;
3854         void                    *base_ptr, *ptr, *p;
3855         ptrdiff_t               field_offset;
3856         uint8_t                 clientid;
3857         int                     len, i, j, k, op_len;
3858         int                     idx;
3859
3860         /* check validity of iclog pointers */
3861         spin_lock(&log->l_icloglock);
3862         icptr = log->l_iclog;
3863         for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3864                 ASSERT(icptr);
3865
3866         if (icptr != log->l_iclog)
3867                 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3868         spin_unlock(&log->l_icloglock);
3869
3870         /* check log magic numbers */
3871         if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3872                 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3873
3874         base_ptr = ptr = &iclog->ic_header;
3875         p = &iclog->ic_header;
3876         for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3877                 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3878                         xfs_emerg(log->l_mp, "%s: unexpected magic num",
3879                                 __func__);
3880         }
3881
3882         /* check fields */
3883         len = be32_to_cpu(iclog->ic_header.h_num_logops);
3884         base_ptr = ptr = iclog->ic_datap;
3885         ophead = ptr;
3886         xhdr = iclog->ic_data;
3887         for (i = 0; i < len; i++) {
3888                 ophead = ptr;
3889
3890                 /* clientid is only 1 byte */
3891                 p = &ophead->oh_clientid;
3892                 field_offset = p - base_ptr;
3893                 if (!syncing || (field_offset & 0x1ff)) {
3894                         clientid = ophead->oh_clientid;
3895                 } else {
3896                         idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3897                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3898                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3899                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3900                                 clientid = xlog_get_client_id(
3901                                         xhdr[j].hic_xheader.xh_cycle_data[k]);
3902                         } else {
3903                                 clientid = xlog_get_client_id(
3904                                         iclog->ic_header.h_cycle_data[idx]);
3905                         }
3906                 }
3907                 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3908                         xfs_warn(log->l_mp,
3909                                 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3910                                 __func__, clientid, ophead,
3911                                 (unsigned long)field_offset);
3912
3913                 /* check length */
3914                 p = &ophead->oh_len;
3915                 field_offset = p - base_ptr;
3916                 if (!syncing || (field_offset & 0x1ff)) {
3917                         op_len = be32_to_cpu(ophead->oh_len);
3918                 } else {
3919                         idx = BTOBBT((uintptr_t)&ophead->oh_len -
3920                                     (uintptr_t)iclog->ic_datap);
3921                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3922                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3923                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3924                                 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3925                         } else {
3926                                 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3927                         }
3928                 }
3929                 ptr += sizeof(xlog_op_header_t) + op_len;
3930         }
3931 }       /* xlog_verify_iclog */
3932 #endif
3933
3934 /*
3935  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3936  */
3937 STATIC int
3938 xlog_state_ioerror(
3939         struct xlog     *log)
3940 {
3941         xlog_in_core_t  *iclog, *ic;
3942
3943         iclog = log->l_iclog;
3944         if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3945                 /*
3946                  * Mark all the incore logs IOERROR.
3947                  * From now on, no log flushes will result.
3948                  */
3949                 ic = iclog;
3950                 do {
3951                         ic->ic_state = XLOG_STATE_IOERROR;
3952                         ic = ic->ic_next;
3953                 } while (ic != iclog);
3954                 return 0;
3955         }
3956         /*
3957          * Return non-zero, if state transition has already happened.
3958          */
3959         return 1;
3960 }
3961
3962 /*
3963  * This is called from xfs_force_shutdown, when we're forcibly
3964  * shutting down the filesystem, typically because of an IO error.
3965  * Our main objectives here are to make sure that:
3966  *      a. if !logerror, flush the logs to disk. Anything modified
3967  *         after this is ignored.
3968  *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3969  *         parties to find out, 'atomically'.
3970  *      c. those who're sleeping on log reservations, pinned objects and
3971  *          other resources get woken up, and be told the bad news.
3972  *      d. nothing new gets queued up after (b) and (c) are done.
3973  *
3974  * Note: for the !logerror case we need to flush the regions held in memory out
3975  * to disk first. This needs to be done before the log is marked as shutdown,
3976  * otherwise the iclog writes will fail.
3977  */
3978 int
3979 xfs_log_force_umount(
3980         struct xfs_mount        *mp,
3981         int                     logerror)
3982 {
3983         struct xlog     *log;
3984         int             retval;
3985
3986         log = mp->m_log;
3987
3988         /*
3989          * If this happens during log recovery, don't worry about
3990          * locking; the log isn't open for business yet.
3991          */
3992         if (!log ||
3993             log->l_flags & XLOG_ACTIVE_RECOVERY) {
3994                 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3995                 if (mp->m_sb_bp)
3996                         mp->m_sb_bp->b_flags |= XBF_DONE;
3997                 return 0;
3998         }
3999
4000         /*
4001          * Somebody could've already done the hard work for us.
4002          * No need to get locks for this.
4003          */
4004         if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
4005                 ASSERT(XLOG_FORCED_SHUTDOWN(log));
4006                 return 1;
4007         }
4008
4009         /*
4010          * Flush all the completed transactions to disk before marking the log
4011          * being shut down. We need to do it in this order to ensure that
4012          * completed operations are safely on disk before we shut down, and that
4013          * we don't have to issue any buffer IO after the shutdown flags are set
4014          * to guarantee this.
4015          */
4016         if (!logerror)
4017                 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
4018
4019         /*
4020          * mark the filesystem and the as in a shutdown state and wake
4021          * everybody up to tell them the bad news.
4022          */
4023         spin_lock(&log->l_icloglock);
4024         mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
4025         if (mp->m_sb_bp)
4026                 mp->m_sb_bp->b_flags |= XBF_DONE;
4027
4028         /*
4029          * Mark the log and the iclogs with IO error flags to prevent any
4030          * further log IO from being issued or completed.
4031          */
4032         log->l_flags |= XLOG_IO_ERROR;
4033         retval = xlog_state_ioerror(log);
4034         spin_unlock(&log->l_icloglock);
4035
4036         /*
4037          * We don't want anybody waiting for log reservations after this. That
4038          * means we have to wake up everybody queued up on reserveq as well as
4039          * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
4040          * we don't enqueue anything once the SHUTDOWN flag is set, and this
4041          * action is protected by the grant locks.
4042          */
4043         xlog_grant_head_wake_all(&log->l_reserve_head);
4044         xlog_grant_head_wake_all(&log->l_write_head);
4045
4046         /*
4047          * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4048          * as if the log writes were completed. The abort handling in the log
4049          * item committed callback functions will do this again under lock to
4050          * avoid races.
4051          */
4052         spin_lock(&log->l_cilp->xc_push_lock);
4053         wake_up_all(&log->l_cilp->xc_commit_wait);
4054         spin_unlock(&log->l_cilp->xc_push_lock);
4055         xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4056
4057 #ifdef XFSERRORDEBUG
4058         {
4059                 xlog_in_core_t  *iclog;
4060
4061                 spin_lock(&log->l_icloglock);
4062                 iclog = log->l_iclog;
4063                 do {
4064                         ASSERT(iclog->ic_callback == 0);
4065                         iclog = iclog->ic_next;
4066                 } while (iclog != log->l_iclog);
4067                 spin_unlock(&log->l_icloglock);
4068         }
4069 #endif
4070         /* return non-zero if log IOERROR transition had already happened */
4071         return retval;
4072 }
4073
4074 STATIC int
4075 xlog_iclogs_empty(
4076         struct xlog     *log)
4077 {
4078         xlog_in_core_t  *iclog;
4079
4080         iclog = log->l_iclog;
4081         do {
4082                 /* endianness does not matter here, zero is zero in
4083                  * any language.
4084                  */
4085                 if (iclog->ic_header.h_num_logops)
4086                         return 0;
4087                 iclog = iclog->ic_next;
4088         } while (iclog != log->l_iclog);
4089         return 1;
4090 }
4091
4092 /*
4093  * Verify that an LSN stamped into a piece of metadata is valid. This is
4094  * intended for use in read verifiers on v5 superblocks.
4095  */
4096 bool
4097 xfs_log_check_lsn(
4098         struct xfs_mount        *mp,
4099         xfs_lsn_t               lsn)
4100 {
4101         struct xlog             *log = mp->m_log;
4102         bool                    valid;
4103
4104         /*
4105          * norecovery mode skips mount-time log processing and unconditionally
4106          * resets the in-core LSN. We can't validate in this mode, but
4107          * modifications are not allowed anyways so just return true.
4108          */
4109         if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4110                 return true;
4111
4112         /*
4113          * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4114          * handled by recovery and thus safe to ignore here.
4115          */
4116         if (lsn == NULLCOMMITLSN)
4117                 return true;
4118
4119         valid = xlog_valid_lsn(mp->m_log, lsn);
4120
4121         /* warn the user about what's gone wrong before verifier failure */
4122         if (!valid) {
4123                 spin_lock(&log->l_icloglock);
4124                 xfs_warn(mp,
4125 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4126 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4127                          CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4128                          log->l_curr_cycle, log->l_curr_block);
4129                 spin_unlock(&log->l_icloglock);
4130         }
4131
4132         return valid;
4133 }