1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
15 #include "xfs_quota.h"
16 #include "xfs_da_format.h"
17 #include "xfs_da_btree.h"
19 #include "xfs_trans.h"
20 #include "xfs_trace.h"
21 #include "xfs_icache.h"
22 #include "xfs_symlink.h"
24 #include "xfs_iomap.h"
25 #include "xfs_error.h"
26 #include "xfs_ioctl.h"
27 #include "xfs_xattr.h"
29 #include <linux/posix_acl.h>
30 #include <linux/security.h>
31 #include <linux/iversion.h>
32 #include <linux/fiemap.h>
35 * Directories have different lock order w.r.t. mmap_lock compared to regular
36 * files. This is due to readdir potentially triggering page faults on a user
37 * buffer inside filldir(), and this happens with the ilock on the directory
38 * held. For regular files, the lock order is the other way around - the
39 * mmap_lock is taken during the page fault, and then we lock the ilock to do
40 * block mapping. Hence we need a different class for the directory ilock so
41 * that lockdep can tell them apart.
43 static struct lock_class_key xfs_nondir_ilock_class;
44 static struct lock_class_key xfs_dir_ilock_class;
49 const struct xattr *xattr_array,
52 const struct xattr *xattr;
53 struct xfs_inode *ip = XFS_I(inode);
56 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
57 struct xfs_da_args args = {
59 .attr_filter = XFS_ATTR_SECURE,
61 .namelen = strlen(xattr->name),
62 .value = xattr->value,
63 .valuelen = xattr->value_len,
65 error = xfs_attr_change(&args);
73 * Hook in SELinux. This is not quite correct yet, what we really need
74 * here (as we do for default ACLs) is a mechanism by which creation of
75 * these attrs can be journalled at inode creation time (along with the
76 * inode, of course, such that log replay can't cause these to be lost).
83 const struct qstr *qstr)
85 return security_inode_init_security(inode, dir, qstr,
86 &xfs_initxattrs, NULL);
91 struct xfs_name *namep,
92 struct dentry *dentry)
94 namep->name = dentry->d_name.name;
95 namep->len = dentry->d_name.len;
96 namep->type = XFS_DIR3_FT_UNKNOWN;
100 xfs_dentry_mode_to_name(
101 struct xfs_name *namep,
102 struct dentry *dentry,
105 namep->name = dentry->d_name.name;
106 namep->len = dentry->d_name.len;
107 namep->type = xfs_mode_to_ftype(mode);
109 if (unlikely(namep->type == XFS_DIR3_FT_UNKNOWN))
110 return -EFSCORRUPTED;
119 struct dentry *dentry)
121 struct xfs_name teardown;
124 * If we can't add the ACL or we fail in
125 * xfs_init_security we must back out.
126 * ENOSPC can hit here, among other things.
128 xfs_dentry_to_name(&teardown, dentry);
130 xfs_remove(XFS_I(dir), &teardown, XFS_I(inode));
134 * Check to see if we are likely to need an extended attribute to be added to
135 * the inode we are about to allocate. This allows the attribute fork to be
136 * created during the inode allocation, reducing the number of transactions we
137 * need to do in this fast path.
139 * The security checks are optimistic, but not guaranteed. The two LSMs that
140 * require xattrs to be added here (selinux and smack) are also the only two
141 * LSMs that add a sb->s_security structure to the superblock. Hence if security
142 * is enabled and sb->s_security is set, we have a pretty good idea that we are
143 * going to be asked to add a security xattr immediately after allocating the
144 * xfs inode and instantiating the VFS inode.
147 xfs_create_need_xattr(
149 struct posix_acl *default_acl,
150 struct posix_acl *acl)
156 #if IS_ENABLED(CONFIG_SECURITY)
157 if (dir->i_sb->s_security)
166 struct user_namespace *mnt_userns,
168 struct dentry *dentry,
171 bool tmpfile) /* unnamed file */
174 struct xfs_inode *ip = NULL;
175 struct posix_acl *default_acl, *acl;
176 struct xfs_name name;
180 * Irix uses Missed'em'V split, but doesn't want to see
181 * the upper 5 bits of (14bit) major.
183 if (S_ISCHR(mode) || S_ISBLK(mode)) {
184 if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff))
190 error = posix_acl_create(dir, &mode, &default_acl, &acl);
194 /* Verify mode is valid also for tmpfile case */
195 error = xfs_dentry_mode_to_name(&name, dentry, mode);
200 error = xfs_create(mnt_userns, XFS_I(dir), &name, mode, rdev,
201 xfs_create_need_xattr(dir, default_acl, acl),
204 error = xfs_create_tmpfile(mnt_userns, XFS_I(dir), mode, &ip);
211 error = xfs_init_security(inode, dir, &dentry->d_name);
213 goto out_cleanup_inode;
216 error = __xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
218 goto out_cleanup_inode;
221 error = __xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
223 goto out_cleanup_inode;
230 * The VFS requires that any inode fed to d_tmpfile must have
231 * nlink == 1 so that it can decrement the nlink in d_tmpfile.
232 * However, we created the temp file with nlink == 0 because
233 * we're not allowed to put an inode with nlink > 0 on the
234 * unlinked list. Therefore we have to set nlink to 1 so that
235 * d_tmpfile can immediately set it back to zero.
238 d_tmpfile(dentry, inode);
240 d_instantiate(dentry, inode);
242 xfs_finish_inode_setup(ip);
245 posix_acl_release(default_acl);
246 posix_acl_release(acl);
250 xfs_finish_inode_setup(ip);
252 xfs_cleanup_inode(dir, inode, dentry);
259 struct user_namespace *mnt_userns,
261 struct dentry *dentry,
265 return xfs_generic_create(mnt_userns, dir, dentry, mode, rdev, false);
270 struct user_namespace *mnt_userns,
272 struct dentry *dentry,
276 return xfs_generic_create(mnt_userns, dir, dentry, mode, 0, false);
281 struct user_namespace *mnt_userns,
283 struct dentry *dentry,
286 return xfs_generic_create(mnt_userns, dir, dentry, mode | S_IFDIR, 0,
290 STATIC struct dentry *
293 struct dentry *dentry,
297 struct xfs_inode *cip;
298 struct xfs_name name;
301 if (dentry->d_name.len >= MAXNAMELEN)
302 return ERR_PTR(-ENAMETOOLONG);
304 xfs_dentry_to_name(&name, dentry);
305 error = xfs_lookup(XFS_I(dir), &name, &cip, NULL);
308 else if (likely(error == -ENOENT))
311 inode = ERR_PTR(error);
312 return d_splice_alias(inode, dentry);
315 STATIC struct dentry *
318 struct dentry *dentry,
321 struct xfs_inode *ip;
322 struct xfs_name xname;
323 struct xfs_name ci_name;
327 if (dentry->d_name.len >= MAXNAMELEN)
328 return ERR_PTR(-ENAMETOOLONG);
330 xfs_dentry_to_name(&xname, dentry);
331 error = xfs_lookup(XFS_I(dir), &xname, &ip, &ci_name);
332 if (unlikely(error)) {
333 if (unlikely(error != -ENOENT))
334 return ERR_PTR(error);
336 * call d_add(dentry, NULL) here when d_drop_negative_children
337 * is called in xfs_vn_mknod (ie. allow negative dentries
338 * with CI filesystems).
343 /* if exact match, just splice and exit */
345 return d_splice_alias(VFS_I(ip), dentry);
347 /* else case-insensitive match... */
348 dname.name = ci_name.name;
349 dname.len = ci_name.len;
350 dentry = d_add_ci(dentry, VFS_I(ip), &dname);
351 kmem_free(ci_name.name);
357 struct dentry *old_dentry,
359 struct dentry *dentry)
361 struct inode *inode = d_inode(old_dentry);
362 struct xfs_name name;
365 error = xfs_dentry_mode_to_name(&name, dentry, inode->i_mode);
369 error = xfs_link(XFS_I(dir), XFS_I(inode), &name);
374 d_instantiate(dentry, inode);
381 struct dentry *dentry)
383 struct xfs_name name;
386 xfs_dentry_to_name(&name, dentry);
388 error = xfs_remove(XFS_I(dir), &name, XFS_I(d_inode(dentry)));
393 * With unlink, the VFS makes the dentry "negative": no inode,
394 * but still hashed. This is incompatible with case-insensitive
395 * mode, so invalidate (unhash) the dentry in CI-mode.
397 if (xfs_has_asciici(XFS_M(dir->i_sb)))
398 d_invalidate(dentry);
404 struct user_namespace *mnt_userns,
406 struct dentry *dentry,
410 struct xfs_inode *cip = NULL;
411 struct xfs_name name;
416 (irix_symlink_mode ? 0777 & ~current_umask() : S_IRWXUGO);
417 error = xfs_dentry_mode_to_name(&name, dentry, mode);
421 error = xfs_symlink(mnt_userns, XFS_I(dir), &name, symname, mode, &cip);
427 error = xfs_init_security(inode, dir, &dentry->d_name);
429 goto out_cleanup_inode;
433 d_instantiate(dentry, inode);
434 xfs_finish_inode_setup(cip);
438 xfs_finish_inode_setup(cip);
439 xfs_cleanup_inode(dir, inode, dentry);
447 struct user_namespace *mnt_userns,
449 struct dentry *odentry,
451 struct dentry *ndentry,
454 struct inode *new_inode = d_inode(ndentry);
457 struct xfs_name oname;
458 struct xfs_name nname;
460 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
463 /* if we are exchanging files, we need to set i_mode of both files */
464 if (flags & RENAME_EXCHANGE)
465 omode = d_inode(ndentry)->i_mode;
467 error = xfs_dentry_mode_to_name(&oname, odentry, omode);
468 if (omode && unlikely(error))
471 error = xfs_dentry_mode_to_name(&nname, ndentry,
472 d_inode(odentry)->i_mode);
476 return xfs_rename(mnt_userns, XFS_I(odir), &oname,
477 XFS_I(d_inode(odentry)), XFS_I(ndir), &nname,
478 new_inode ? XFS_I(new_inode) : NULL, flags);
482 * careful here - this function can get called recursively, so
483 * we need to be very careful about how much stack we use.
484 * uio is kmalloced for this reason...
488 struct dentry *dentry,
490 struct delayed_call *done)
496 return ERR_PTR(-ECHILD);
498 link = kmalloc(XFS_SYMLINK_MAXLEN+1, GFP_KERNEL);
502 error = xfs_readlink(XFS_I(d_inode(dentry)), link);
506 set_delayed_call(done, kfree_link, link);
512 return ERR_PTR(error);
517 struct xfs_inode *ip)
519 struct xfs_mount *mp = ip->i_mount;
522 * If the file blocks are being allocated from a realtime volume, then
523 * always return the realtime extent size.
525 if (XFS_IS_REALTIME_INODE(ip))
526 return XFS_FSB_TO_B(mp, xfs_get_extsz_hint(ip));
529 * Allow large block sizes to be reported to userspace programs if the
530 * "largeio" mount option is used.
532 * If compatibility mode is specified, simply return the basic unit of
533 * caching so that we don't get inefficient read/modify/write I/O from
534 * user apps. Otherwise....
536 * If the underlying volume is a stripe, then return the stripe width in
537 * bytes as the recommended I/O size. It is not a stripe and we've set a
538 * default buffered I/O size, return that, otherwise return the compat
541 if (xfs_has_large_iosize(mp)) {
543 return XFS_FSB_TO_B(mp, mp->m_swidth);
544 if (xfs_has_allocsize(mp))
545 return 1U << mp->m_allocsize_log;
553 struct user_namespace *mnt_userns,
554 const struct path *path,
557 unsigned int query_flags)
559 struct inode *inode = d_inode(path->dentry);
560 struct xfs_inode *ip = XFS_I(inode);
561 struct xfs_mount *mp = ip->i_mount;
563 trace_xfs_getattr(ip);
565 if (xfs_is_shutdown(mp))
568 stat->size = XFS_ISIZE(ip);
569 stat->dev = inode->i_sb->s_dev;
570 stat->mode = inode->i_mode;
571 stat->nlink = inode->i_nlink;
572 stat->uid = i_uid_into_mnt(mnt_userns, inode);
573 stat->gid = i_gid_into_mnt(mnt_userns, inode);
574 stat->ino = ip->i_ino;
575 stat->atime = inode->i_atime;
576 stat->mtime = inode->i_mtime;
577 stat->ctime = inode->i_ctime;
578 stat->blocks = XFS_FSB_TO_BB(mp, ip->i_nblocks + ip->i_delayed_blks);
580 if (xfs_has_v3inodes(mp)) {
581 if (request_mask & STATX_BTIME) {
582 stat->result_mask |= STATX_BTIME;
583 stat->btime = ip->i_crtime;
588 * Note: If you add another clause to set an attribute flag, please
589 * update attributes_mask below.
591 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
592 stat->attributes |= STATX_ATTR_IMMUTABLE;
593 if (ip->i_diflags & XFS_DIFLAG_APPEND)
594 stat->attributes |= STATX_ATTR_APPEND;
595 if (ip->i_diflags & XFS_DIFLAG_NODUMP)
596 stat->attributes |= STATX_ATTR_NODUMP;
598 stat->attributes_mask |= (STATX_ATTR_IMMUTABLE |
602 switch (inode->i_mode & S_IFMT) {
605 stat->blksize = BLKDEV_IOSIZE;
606 stat->rdev = inode->i_rdev;
609 stat->blksize = xfs_stat_blksize(ip);
619 struct user_namespace *mnt_userns,
620 struct dentry *dentry,
623 struct xfs_mount *mp = XFS_I(d_inode(dentry))->i_mount;
625 if (xfs_is_readonly(mp))
628 if (xfs_is_shutdown(mp))
631 return setattr_prepare(mnt_userns, dentry, iattr);
635 * Set non-size attributes of an inode.
637 * Caution: The caller of this function is responsible for calling
638 * setattr_prepare() or otherwise verifying the change is fine.
642 struct user_namespace *mnt_userns,
643 struct xfs_inode *ip,
646 xfs_mount_t *mp = ip->i_mount;
647 struct inode *inode = VFS_I(ip);
648 int mask = iattr->ia_valid;
651 kuid_t uid = GLOBAL_ROOT_UID;
652 kgid_t gid = GLOBAL_ROOT_GID;
653 struct xfs_dquot *udqp = NULL, *gdqp = NULL;
654 struct xfs_dquot *old_udqp = NULL, *old_gdqp = NULL;
656 ASSERT((mask & ATTR_SIZE) == 0);
659 * If disk quotas is on, we make sure that the dquots do exist on disk,
660 * before we start any other transactions. Trying to do this later
661 * is messy. We don't care to take a readlock to look at the ids
662 * in inode here, because we can't hold it across the trans_reserve.
663 * If the IDs do change before we take the ilock, we're covered
664 * because the i_*dquot fields will get updated anyway.
666 if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
669 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
671 qflags |= XFS_QMOPT_UQUOTA;
675 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
677 qflags |= XFS_QMOPT_GQUOTA;
683 * We take a reference when we initialize udqp and gdqp,
684 * so it is important that we never blindly double trip on
685 * the same variable. See xfs_create() for an example.
687 ASSERT(udqp == NULL);
688 ASSERT(gdqp == NULL);
689 error = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_projid,
690 qflags, &udqp, &gdqp, NULL);
695 error = xfs_trans_alloc_ichange(ip, udqp, gdqp, NULL,
696 has_capability_noaudit(current, CAP_FOWNER), &tp);
701 * Register quota modifications in the transaction. Must be the owner
702 * or privileged. These IDs could have changed since we last looked at
703 * them. But, we're assured that if the ownership did change while we
704 * didn't have the inode locked, inode's dquot(s) would have changed
707 if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp) &&
708 !uid_eq(inode->i_uid, iattr->ia_uid)) {
710 old_udqp = xfs_qm_vop_chown(tp, ip, &ip->i_udquot, udqp);
712 if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp) &&
713 !gid_eq(inode->i_gid, iattr->ia_gid)) {
714 ASSERT(xfs_has_pquotino(mp) || !XFS_IS_PQUOTA_ON(mp));
716 old_gdqp = xfs_qm_vop_chown(tp, ip, &ip->i_gdquot, gdqp);
719 setattr_copy(mnt_userns, inode, iattr);
720 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
722 XFS_STATS_INC(mp, xs_ig_attrchg);
724 if (xfs_has_wsync(mp))
725 xfs_trans_set_sync(tp);
726 error = xfs_trans_commit(tp);
729 * Release any dquot(s) the inode had kept before chown.
731 xfs_qm_dqrele(old_udqp);
732 xfs_qm_dqrele(old_gdqp);
740 * XXX(hch): Updating the ACL entries is not atomic vs the i_mode
741 * update. We could avoid this with linked transactions
742 * and passing down the transaction pointer all the way
743 * to attr_set. No previous user of the generic
744 * Posix ACL code seems to care about this issue either.
746 if (mask & ATTR_MODE) {
747 error = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
761 * Truncate file. Must have write permission and not be a directory.
763 * Caution: The caller of this function is responsible for calling
764 * setattr_prepare() or otherwise verifying the change is fine.
768 struct user_namespace *mnt_userns,
769 struct xfs_inode *ip,
772 struct xfs_mount *mp = ip->i_mount;
773 struct inode *inode = VFS_I(ip);
774 xfs_off_t oldsize, newsize;
775 struct xfs_trans *tp;
778 bool did_zeroing = false;
780 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
781 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
782 ASSERT(S_ISREG(inode->i_mode));
783 ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
784 ATTR_MTIME_SET|ATTR_TIMES_SET)) == 0);
786 oldsize = inode->i_size;
787 newsize = iattr->ia_size;
790 * Short circuit the truncate case for zero length files.
792 if (newsize == 0 && oldsize == 0 && ip->i_df.if_nextents == 0) {
793 if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
797 * Use the regular setattr path to update the timestamps.
799 iattr->ia_valid &= ~ATTR_SIZE;
800 return xfs_setattr_nonsize(mnt_userns, ip, iattr);
804 * Make sure that the dquots are attached to the inode.
806 error = xfs_qm_dqattach(ip);
811 * Wait for all direct I/O to complete.
813 inode_dio_wait(inode);
816 * File data changes must be complete before we start the transaction to
817 * modify the inode. This needs to be done before joining the inode to
818 * the transaction because the inode cannot be unlocked once it is a
819 * part of the transaction.
821 * Start with zeroing any data beyond EOF that we may expose on file
822 * extension, or zeroing out the rest of the block on a downward
825 if (newsize > oldsize) {
826 trace_xfs_zero_eof(ip, oldsize, newsize - oldsize);
827 error = xfs_zero_range(ip, oldsize, newsize - oldsize,
831 * iomap won't detect a dirty page over an unwritten block (or a
832 * cow block over a hole) and subsequently skips zeroing the
833 * newly post-EOF portion of the page. Flush the new EOF to
834 * convert the block before the pagecache truncate.
836 error = filemap_write_and_wait_range(inode->i_mapping, newsize,
840 error = xfs_truncate_page(ip, newsize, &did_zeroing);
847 * We've already locked out new page faults, so now we can safely remove
848 * pages from the page cache knowing they won't get refaulted until we
849 * drop the XFS_MMAP_EXCL lock after the extent manipulations are
850 * complete. The truncate_setsize() call also cleans partial EOF page
851 * PTEs on extending truncates and hence ensures sub-page block size
852 * filesystems are correctly handled, too.
854 * We have to do all the page cache truncate work outside the
855 * transaction context as the "lock" order is page lock->log space
856 * reservation as defined by extent allocation in the writeback path.
857 * Hence a truncate can fail with ENOMEM from xfs_trans_alloc(), but
858 * having already truncated the in-memory version of the file (i.e. made
859 * user visible changes). There's not much we can do about this, except
860 * to hope that the caller sees ENOMEM and retries the truncate
863 * And we update in-core i_size and truncate page cache beyond newsize
864 * before writeback the [i_disk_size, newsize] range, so we're
865 * guaranteed not to write stale data past the new EOF on truncate down.
867 truncate_setsize(inode, newsize);
870 * We are going to log the inode size change in this transaction so
871 * any previous writes that are beyond the on disk EOF and the new
872 * EOF that have not been written out need to be written here. If we
873 * do not write the data out, we expose ourselves to the null files
874 * problem. Note that this includes any block zeroing we did above;
875 * otherwise those blocks may not be zeroed after a crash.
878 (newsize > ip->i_disk_size && oldsize != ip->i_disk_size)) {
879 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
880 ip->i_disk_size, newsize - 1);
885 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
889 lock_flags |= XFS_ILOCK_EXCL;
890 xfs_ilock(ip, XFS_ILOCK_EXCL);
891 xfs_trans_ijoin(tp, ip, 0);
894 * Only change the c/mtime if we are changing the size or we are
895 * explicitly asked to change it. This handles the semantic difference
896 * between truncate() and ftruncate() as implemented in the VFS.
898 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
899 * special case where we need to update the times despite not having
900 * these flags set. For all other operations the VFS set these flags
901 * explicitly if it wants a timestamp update.
903 if (newsize != oldsize &&
904 !(iattr->ia_valid & (ATTR_CTIME | ATTR_MTIME))) {
905 iattr->ia_ctime = iattr->ia_mtime =
907 iattr->ia_valid |= ATTR_CTIME | ATTR_MTIME;
911 * The first thing we do is set the size to new_size permanently on
912 * disk. This way we don't have to worry about anyone ever being able
913 * to look at the data being freed even in the face of a crash.
914 * What we're getting around here is the case where we free a block, it
915 * is allocated to another file, it is written to, and then we crash.
916 * If the new data gets written to the file but the log buffers
917 * containing the free and reallocation don't, then we'd end up with
918 * garbage in the blocks being freed. As long as we make the new size
919 * permanent before actually freeing any blocks it doesn't matter if
920 * they get written to.
922 ip->i_disk_size = newsize;
923 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
925 if (newsize <= oldsize) {
926 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, newsize);
928 goto out_trans_cancel;
931 * Truncated "down", so we're removing references to old data
932 * here - if we delay flushing for a long time, we expose
933 * ourselves unduly to the notorious NULL files problem. So,
934 * we mark this inode and flush it when the file is closed,
935 * and do not wait the usual (long) time for writeout.
937 xfs_iflags_set(ip, XFS_ITRUNCATED);
939 /* A truncate down always removes post-EOF blocks. */
940 xfs_inode_clear_eofblocks_tag(ip);
943 ASSERT(!(iattr->ia_valid & (ATTR_UID | ATTR_GID)));
944 setattr_copy(mnt_userns, inode, iattr);
945 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
947 XFS_STATS_INC(mp, xs_ig_attrchg);
949 if (xfs_has_wsync(mp))
950 xfs_trans_set_sync(tp);
952 error = xfs_trans_commit(tp);
955 xfs_iunlock(ip, lock_flags);
959 xfs_trans_cancel(tp);
965 struct user_namespace *mnt_userns,
966 struct dentry *dentry,
969 struct xfs_inode *ip = XFS_I(d_inode(dentry));
972 trace_xfs_setattr(ip);
974 error = xfs_vn_change_ok(mnt_userns, dentry, iattr);
977 return xfs_setattr_size(mnt_userns, ip, iattr);
982 struct user_namespace *mnt_userns,
983 struct dentry *dentry,
986 struct inode *inode = d_inode(dentry);
987 struct xfs_inode *ip = XFS_I(inode);
990 if (iattr->ia_valid & ATTR_SIZE) {
993 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
994 iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
996 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
998 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1002 error = xfs_vn_setattr_size(mnt_userns, dentry, iattr);
1003 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1005 trace_xfs_setattr(ip);
1007 error = xfs_vn_change_ok(mnt_userns, dentry, iattr);
1009 error = xfs_setattr_nonsize(mnt_userns, ip, iattr);
1017 struct inode *inode,
1018 struct timespec64 *now,
1021 struct xfs_inode *ip = XFS_I(inode);
1022 struct xfs_mount *mp = ip->i_mount;
1023 int log_flags = XFS_ILOG_TIMESTAMP;
1024 struct xfs_trans *tp;
1027 trace_xfs_update_time(ip);
1029 if (inode->i_sb->s_flags & SB_LAZYTIME) {
1030 if (!((flags & S_VERSION) &&
1031 inode_maybe_inc_iversion(inode, false)))
1032 return generic_update_time(inode, now, flags);
1034 /* Capture the iversion update that just occurred */
1035 log_flags |= XFS_ILOG_CORE;
1038 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
1042 xfs_ilock(ip, XFS_ILOCK_EXCL);
1043 if (flags & S_CTIME)
1044 inode->i_ctime = *now;
1045 if (flags & S_MTIME)
1046 inode->i_mtime = *now;
1047 if (flags & S_ATIME)
1048 inode->i_atime = *now;
1050 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1051 xfs_trans_log_inode(tp, ip, log_flags);
1052 return xfs_trans_commit(tp);
1057 struct inode *inode,
1058 struct fiemap_extent_info *fieinfo,
1064 xfs_ilock(XFS_I(inode), XFS_IOLOCK_SHARED);
1065 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1066 fieinfo->fi_flags &= ~FIEMAP_FLAG_XATTR;
1067 error = iomap_fiemap(inode, fieinfo, start, length,
1068 &xfs_xattr_iomap_ops);
1070 error = iomap_fiemap(inode, fieinfo, start, length,
1071 &xfs_read_iomap_ops);
1073 xfs_iunlock(XFS_I(inode), XFS_IOLOCK_SHARED);
1080 struct user_namespace *mnt_userns,
1082 struct dentry *dentry,
1085 return xfs_generic_create(mnt_userns, dir, dentry, mode, 0, true);
1088 static const struct inode_operations xfs_inode_operations = {
1089 .get_acl = xfs_get_acl,
1090 .set_acl = xfs_set_acl,
1091 .getattr = xfs_vn_getattr,
1092 .setattr = xfs_vn_setattr,
1093 .listxattr = xfs_vn_listxattr,
1094 .fiemap = xfs_vn_fiemap,
1095 .update_time = xfs_vn_update_time,
1096 .fileattr_get = xfs_fileattr_get,
1097 .fileattr_set = xfs_fileattr_set,
1100 static const struct inode_operations xfs_dir_inode_operations = {
1101 .create = xfs_vn_create,
1102 .lookup = xfs_vn_lookup,
1103 .link = xfs_vn_link,
1104 .unlink = xfs_vn_unlink,
1105 .symlink = xfs_vn_symlink,
1106 .mkdir = xfs_vn_mkdir,
1108 * Yes, XFS uses the same method for rmdir and unlink.
1110 * There are some subtile differences deeper in the code,
1111 * but we use S_ISDIR to check for those.
1113 .rmdir = xfs_vn_unlink,
1114 .mknod = xfs_vn_mknod,
1115 .rename = xfs_vn_rename,
1116 .get_acl = xfs_get_acl,
1117 .set_acl = xfs_set_acl,
1118 .getattr = xfs_vn_getattr,
1119 .setattr = xfs_vn_setattr,
1120 .listxattr = xfs_vn_listxattr,
1121 .update_time = xfs_vn_update_time,
1122 .tmpfile = xfs_vn_tmpfile,
1123 .fileattr_get = xfs_fileattr_get,
1124 .fileattr_set = xfs_fileattr_set,
1127 static const struct inode_operations xfs_dir_ci_inode_operations = {
1128 .create = xfs_vn_create,
1129 .lookup = xfs_vn_ci_lookup,
1130 .link = xfs_vn_link,
1131 .unlink = xfs_vn_unlink,
1132 .symlink = xfs_vn_symlink,
1133 .mkdir = xfs_vn_mkdir,
1135 * Yes, XFS uses the same method for rmdir and unlink.
1137 * There are some subtile differences deeper in the code,
1138 * but we use S_ISDIR to check for those.
1140 .rmdir = xfs_vn_unlink,
1141 .mknod = xfs_vn_mknod,
1142 .rename = xfs_vn_rename,
1143 .get_acl = xfs_get_acl,
1144 .set_acl = xfs_set_acl,
1145 .getattr = xfs_vn_getattr,
1146 .setattr = xfs_vn_setattr,
1147 .listxattr = xfs_vn_listxattr,
1148 .update_time = xfs_vn_update_time,
1149 .tmpfile = xfs_vn_tmpfile,
1150 .fileattr_get = xfs_fileattr_get,
1151 .fileattr_set = xfs_fileattr_set,
1154 static const struct inode_operations xfs_symlink_inode_operations = {
1155 .get_link = xfs_vn_get_link,
1156 .getattr = xfs_vn_getattr,
1157 .setattr = xfs_vn_setattr,
1158 .listxattr = xfs_vn_listxattr,
1159 .update_time = xfs_vn_update_time,
1162 /* Figure out if this file actually supports DAX. */
1164 xfs_inode_supports_dax(
1165 struct xfs_inode *ip)
1167 struct xfs_mount *mp = ip->i_mount;
1169 /* Only supported on regular files. */
1170 if (!S_ISREG(VFS_I(ip)->i_mode))
1173 /* Only supported on non-reflinked files. */
1174 if (xfs_is_reflink_inode(ip))
1177 /* Block size must match page size */
1178 if (mp->m_sb.sb_blocksize != PAGE_SIZE)
1181 /* Device has to support DAX too. */
1182 return xfs_inode_buftarg(ip)->bt_daxdev != NULL;
1186 xfs_inode_should_enable_dax(
1187 struct xfs_inode *ip)
1189 if (!IS_ENABLED(CONFIG_FS_DAX))
1191 if (xfs_has_dax_never(ip->i_mount))
1193 if (!xfs_inode_supports_dax(ip))
1195 if (xfs_has_dax_always(ip->i_mount))
1197 if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
1203 xfs_diflags_to_iflags(
1204 struct xfs_inode *ip,
1207 struct inode *inode = VFS_I(ip);
1208 unsigned int xflags = xfs_ip2xflags(ip);
1209 unsigned int flags = 0;
1211 ASSERT(!(IS_DAX(inode) && init));
1213 if (xflags & FS_XFLAG_IMMUTABLE)
1214 flags |= S_IMMUTABLE;
1215 if (xflags & FS_XFLAG_APPEND)
1217 if (xflags & FS_XFLAG_SYNC)
1219 if (xflags & FS_XFLAG_NOATIME)
1221 if (init && xfs_inode_should_enable_dax(ip))
1225 * S_DAX can only be set during inode initialization and is never set by
1226 * the VFS, so we cannot mask off S_DAX in i_flags.
1228 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND | S_SYNC | S_NOATIME);
1229 inode->i_flags |= flags;
1233 * Initialize the Linux inode.
1235 * When reading existing inodes from disk this is called directly from xfs_iget,
1236 * when creating a new inode it is called from xfs_init_new_inode after setting
1237 * up the inode. These callers have different criteria for clearing XFS_INEW, so
1238 * leave it up to the caller to deal with unlocking the inode appropriately.
1242 struct xfs_inode *ip)
1244 struct inode *inode = &ip->i_vnode;
1247 inode->i_ino = ip->i_ino;
1248 inode->i_state |= I_NEW;
1250 inode_sb_list_add(inode);
1251 /* make the inode look hashed for the writeback code */
1252 inode_fake_hash(inode);
1254 i_size_write(inode, ip->i_disk_size);
1255 xfs_diflags_to_iflags(ip, true);
1257 if (S_ISDIR(inode->i_mode)) {
1259 * We set the i_rwsem class here to avoid potential races with
1260 * lockdep_annotate_inode_mutex_key() reinitialising the lock
1261 * after a filehandle lookup has already found the inode in
1262 * cache before it has been unlocked via unlock_new_inode().
1264 lockdep_set_class(&inode->i_rwsem,
1265 &inode->i_sb->s_type->i_mutex_dir_key);
1266 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_dir_ilock_class);
1268 lockdep_set_class(&ip->i_lock.mr_lock, &xfs_nondir_ilock_class);
1272 * Ensure all page cache allocations are done from GFP_NOFS context to
1273 * prevent direct reclaim recursion back into the filesystem and blowing
1274 * stacks or deadlocking.
1276 gfp_mask = mapping_gfp_mask(inode->i_mapping);
1277 mapping_set_gfp_mask(inode->i_mapping, (gfp_mask & ~(__GFP_FS)));
1280 * If there is no attribute fork no ACL can exist on this inode,
1281 * and it can't have any file capabilities attached to it either.
1283 if (!XFS_IFORK_Q(ip)) {
1284 inode_has_no_xattr(inode);
1285 cache_no_acl(inode);
1291 struct xfs_inode *ip)
1293 struct inode *inode = &ip->i_vnode;
1295 switch (inode->i_mode & S_IFMT) {
1297 inode->i_op = &xfs_inode_operations;
1298 inode->i_fop = &xfs_file_operations;
1300 inode->i_mapping->a_ops = &xfs_dax_aops;
1302 inode->i_mapping->a_ops = &xfs_address_space_operations;
1305 if (xfs_has_asciici(XFS_M(inode->i_sb)))
1306 inode->i_op = &xfs_dir_ci_inode_operations;
1308 inode->i_op = &xfs_dir_inode_operations;
1309 inode->i_fop = &xfs_dir_file_operations;
1312 inode->i_op = &xfs_symlink_inode_operations;
1315 inode->i_op = &xfs_inode_operations;
1316 init_special_inode(inode, inode->i_mode, inode->i_rdev);