2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
27 #include "xfs_mount.h"
28 #include "xfs_defer.h"
29 #include "xfs_inode.h"
30 #include "xfs_da_format.h"
31 #include "xfs_da_btree.h"
33 #include "xfs_attr_sf.h"
35 #include "xfs_trans_space.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_ialloc.h"
41 #include "xfs_bmap_util.h"
42 #include "xfs_error.h"
43 #include "xfs_quota.h"
44 #include "xfs_filestream.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
48 #include "xfs_symlink.h"
49 #include "xfs_trans_priv.h"
51 #include "xfs_bmap_btree.h"
52 #include "xfs_reflink.h"
53 #include "xfs_dir2_priv.h"
55 kmem_zone_t *xfs_inode_zone;
58 * Used in xfs_itruncate_extents(). This is the maximum number of extents
59 * freed from a file in a single transaction.
61 #define XFS_ITRUNC_MAX_EXTENTS 2
63 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
64 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
65 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
68 * helper function to extract extent size hint from inode
74 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
75 return ip->i_d.di_extsize;
76 if (XFS_IS_REALTIME_INODE(ip))
77 return ip->i_mount->m_sb.sb_rextsize;
82 * Helper function to extract CoW extent size hint from inode.
83 * Between the extent size hint and the CoW extent size hint, we
84 * return the greater of the two. If the value is zero (automatic),
85 * use the default size.
88 xfs_get_cowextsz_hint(
94 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
95 a = ip->i_d.di_cowextsize;
96 b = xfs_get_extsz_hint(ip);
100 return XFS_DEFAULT_COWEXTSZ_HINT;
105 * These two are wrapper routines around the xfs_ilock() routine used to
106 * centralize some grungy code. They are used in places that wish to lock the
107 * inode solely for reading the extents. The reason these places can't just
108 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
109 * bringing in of the extents from disk for a file in b-tree format. If the
110 * inode is in b-tree format, then we need to lock the inode exclusively until
111 * the extents are read in. Locking it exclusively all the time would limit
112 * our parallelism unnecessarily, though. What we do instead is check to see
113 * if the extents have been read in yet, and only lock the inode exclusively
116 * The functions return a value which should be given to the corresponding
117 * xfs_iunlock() call.
120 xfs_ilock_data_map_shared(
121 struct xfs_inode *ip)
123 uint lock_mode = XFS_ILOCK_SHARED;
125 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
126 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
127 lock_mode = XFS_ILOCK_EXCL;
128 xfs_ilock(ip, lock_mode);
133 xfs_ilock_attr_map_shared(
134 struct xfs_inode *ip)
136 uint lock_mode = XFS_ILOCK_SHARED;
138 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
139 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
140 lock_mode = XFS_ILOCK_EXCL;
141 xfs_ilock(ip, lock_mode);
146 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
147 * the i_lock. This routine allows various combinations of the locks to be
150 * The 3 locks should always be ordered so that the IO lock is obtained first,
151 * the mmap lock second and the ilock last in order to prevent deadlock.
153 * Basic locking order:
155 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
157 * mmap_sem locking order:
159 * i_iolock -> page lock -> mmap_sem
160 * mmap_sem -> i_mmap_lock -> page_lock
162 * The difference in mmap_sem locking order mean that we cannot hold the
163 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
164 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
165 * in get_user_pages() to map the user pages into the kernel address space for
166 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
167 * page faults already hold the mmap_sem.
169 * Hence to serialise fully against both syscall and mmap based IO, we need to
170 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
171 * taken in places where we need to invalidate the page cache in a race
172 * free manner (e.g. truncate, hole punch and other extent manipulation
180 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
183 * You can't set both SHARED and EXCL for the same lock,
184 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
185 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
187 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
188 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
189 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
190 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
191 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
192 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
193 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
195 if (lock_flags & XFS_IOLOCK_EXCL)
196 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
197 else if (lock_flags & XFS_IOLOCK_SHARED)
198 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
200 if (lock_flags & XFS_MMAPLOCK_EXCL)
201 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
202 else if (lock_flags & XFS_MMAPLOCK_SHARED)
203 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
205 if (lock_flags & XFS_ILOCK_EXCL)
206 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
207 else if (lock_flags & XFS_ILOCK_SHARED)
208 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212 * This is just like xfs_ilock(), except that the caller
213 * is guaranteed not to sleep. It returns 1 if it gets
214 * the requested locks and 0 otherwise. If the IO lock is
215 * obtained but the inode lock cannot be, then the IO lock
216 * is dropped before returning.
218 * ip -- the inode being locked
219 * lock_flags -- this parameter indicates the inode's locks to be
220 * to be locked. See the comment for xfs_ilock() for a list
228 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
231 * You can't set both SHARED and EXCL for the same lock,
232 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
233 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
235 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
236 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
237 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
238 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
239 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
240 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
241 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
243 if (lock_flags & XFS_IOLOCK_EXCL) {
244 if (!mrtryupdate(&ip->i_iolock))
246 } else if (lock_flags & XFS_IOLOCK_SHARED) {
247 if (!mrtryaccess(&ip->i_iolock))
251 if (lock_flags & XFS_MMAPLOCK_EXCL) {
252 if (!mrtryupdate(&ip->i_mmaplock))
253 goto out_undo_iolock;
254 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
255 if (!mrtryaccess(&ip->i_mmaplock))
256 goto out_undo_iolock;
259 if (lock_flags & XFS_ILOCK_EXCL) {
260 if (!mrtryupdate(&ip->i_lock))
261 goto out_undo_mmaplock;
262 } else if (lock_flags & XFS_ILOCK_SHARED) {
263 if (!mrtryaccess(&ip->i_lock))
264 goto out_undo_mmaplock;
269 if (lock_flags & XFS_MMAPLOCK_EXCL)
270 mrunlock_excl(&ip->i_mmaplock);
271 else if (lock_flags & XFS_MMAPLOCK_SHARED)
272 mrunlock_shared(&ip->i_mmaplock);
274 if (lock_flags & XFS_IOLOCK_EXCL)
275 mrunlock_excl(&ip->i_iolock);
276 else if (lock_flags & XFS_IOLOCK_SHARED)
277 mrunlock_shared(&ip->i_iolock);
283 * xfs_iunlock() is used to drop the inode locks acquired with
284 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
285 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
286 * that we know which locks to drop.
288 * ip -- the inode being unlocked
289 * lock_flags -- this parameter indicates the inode's locks to be
290 * to be unlocked. See the comment for xfs_ilock() for a list
291 * of valid values for this parameter.
300 * You can't set both SHARED and EXCL for the same lock,
301 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
302 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
304 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
305 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
306 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
307 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
308 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
309 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
310 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
311 ASSERT(lock_flags != 0);
313 if (lock_flags & XFS_IOLOCK_EXCL)
314 mrunlock_excl(&ip->i_iolock);
315 else if (lock_flags & XFS_IOLOCK_SHARED)
316 mrunlock_shared(&ip->i_iolock);
318 if (lock_flags & XFS_MMAPLOCK_EXCL)
319 mrunlock_excl(&ip->i_mmaplock);
320 else if (lock_flags & XFS_MMAPLOCK_SHARED)
321 mrunlock_shared(&ip->i_mmaplock);
323 if (lock_flags & XFS_ILOCK_EXCL)
324 mrunlock_excl(&ip->i_lock);
325 else if (lock_flags & XFS_ILOCK_SHARED)
326 mrunlock_shared(&ip->i_lock);
328 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
332 * give up write locks. the i/o lock cannot be held nested
333 * if it is being demoted.
340 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
342 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
344 if (lock_flags & XFS_ILOCK_EXCL)
345 mrdemote(&ip->i_lock);
346 if (lock_flags & XFS_MMAPLOCK_EXCL)
347 mrdemote(&ip->i_mmaplock);
348 if (lock_flags & XFS_IOLOCK_EXCL)
349 mrdemote(&ip->i_iolock);
351 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
354 #if defined(DEBUG) || defined(XFS_WARN)
360 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
361 if (!(lock_flags & XFS_ILOCK_SHARED))
362 return !!ip->i_lock.mr_writer;
363 return rwsem_is_locked(&ip->i_lock.mr_lock);
366 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
367 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
368 return !!ip->i_mmaplock.mr_writer;
369 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
372 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
373 if (!(lock_flags & XFS_IOLOCK_SHARED))
374 return !!ip->i_iolock.mr_writer;
375 return rwsem_is_locked(&ip->i_iolock.mr_lock);
385 int xfs_small_retries;
386 int xfs_middle_retries;
387 int xfs_lots_retries;
392 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
393 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
394 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
395 * errors and warnings.
397 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
399 xfs_lockdep_subclass_ok(
402 return subclass < MAX_LOCKDEP_SUBCLASSES;
405 #define xfs_lockdep_subclass_ok(subclass) (true)
409 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
410 * value. This can be called for any type of inode lock combination, including
411 * parent locking. Care must be taken to ensure we don't overrun the subclass
412 * storage fields in the class mask we build.
415 xfs_lock_inumorder(int lock_mode, int subclass)
419 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
421 ASSERT(xfs_lockdep_subclass_ok(subclass));
423 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
424 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
425 ASSERT(xfs_lockdep_subclass_ok(subclass +
426 XFS_IOLOCK_PARENT_VAL));
427 class += subclass << XFS_IOLOCK_SHIFT;
428 if (lock_mode & XFS_IOLOCK_PARENT)
429 class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
432 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
433 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
434 class += subclass << XFS_MMAPLOCK_SHIFT;
437 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
438 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
439 class += subclass << XFS_ILOCK_SHIFT;
442 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
446 * The following routine will lock n inodes in exclusive mode. We assume the
447 * caller calls us with the inodes in i_ino order.
449 * We need to detect deadlock where an inode that we lock is in the AIL and we
450 * start waiting for another inode that is locked by a thread in a long running
451 * transaction (such as truncate). This can result in deadlock since the long
452 * running trans might need to wait for the inode we just locked in order to
453 * push the tail and free space in the log.
455 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
456 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
457 * lock more than one at a time, lockdep will report false positives saying we
458 * have violated locking orders.
466 int attempts = 0, i, j, try_lock;
470 * Currently supports between 2 and 5 inodes with exclusive locking. We
471 * support an arbitrary depth of locking here, but absolute limits on
472 * inodes depend on the the type of locking and the limits placed by
473 * lockdep annotations in xfs_lock_inumorder. These are all checked by
476 ASSERT(ips && inodes >= 2 && inodes <= 5);
477 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
479 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
481 ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
482 inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
483 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
484 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
485 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
486 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
488 if (lock_mode & XFS_IOLOCK_EXCL) {
489 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
490 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
491 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
496 for (; i < inodes; i++) {
499 if (i && (ips[i] == ips[i - 1])) /* Already locked */
503 * If try_lock is not set yet, make sure all locked inodes are
504 * not in the AIL. If any are, set try_lock to be used later.
507 for (j = (i - 1); j >= 0 && !try_lock; j--) {
508 lp = (xfs_log_item_t *)ips[j]->i_itemp;
509 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
515 * If any of the previous locks we have locked is in the AIL,
516 * we must TRY to get the second and subsequent locks. If
517 * we can't get any, we must release all we have
521 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
525 /* try_lock means we have an inode locked that is in the AIL. */
527 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
531 * Unlock all previous guys and try again. xfs_iunlock will try
532 * to push the tail if the inode is in the AIL.
535 for (j = i - 1; j >= 0; j--) {
537 * Check to see if we've already unlocked this one. Not
538 * the first one going back, and the inode ptr is the
541 if (j != (i - 1) && ips[j] == ips[j + 1])
544 xfs_iunlock(ips[j], lock_mode);
547 if ((attempts % 5) == 0) {
548 delay(1); /* Don't just spin the CPU */
560 if (attempts < 5) xfs_small_retries++;
561 else if (attempts < 100) xfs_middle_retries++;
562 else xfs_lots_retries++;
570 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
571 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
572 * lock more than one at a time, lockdep will report false positives saying we
573 * have violated locking orders.
585 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
586 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
587 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
588 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
589 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
591 ASSERT(ip0->i_ino != ip1->i_ino);
593 if (ip0->i_ino > ip1->i_ino) {
600 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
603 * If the first lock we have locked is in the AIL, we must TRY to get
604 * the second lock. If we can't get it, we must release the first one
607 lp = (xfs_log_item_t *)ip0->i_itemp;
608 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
609 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
610 xfs_iunlock(ip0, lock_mode);
611 if ((++attempts % 5) == 0)
612 delay(1); /* Don't just spin the CPU */
616 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
623 struct xfs_inode *ip)
625 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
626 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
629 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
630 if (xfs_isiflocked(ip))
632 } while (!xfs_iflock_nowait(ip));
634 finish_wait(wq, &wait.wait);
645 if (di_flags & XFS_DIFLAG_ANY) {
646 if (di_flags & XFS_DIFLAG_REALTIME)
647 flags |= FS_XFLAG_REALTIME;
648 if (di_flags & XFS_DIFLAG_PREALLOC)
649 flags |= FS_XFLAG_PREALLOC;
650 if (di_flags & XFS_DIFLAG_IMMUTABLE)
651 flags |= FS_XFLAG_IMMUTABLE;
652 if (di_flags & XFS_DIFLAG_APPEND)
653 flags |= FS_XFLAG_APPEND;
654 if (di_flags & XFS_DIFLAG_SYNC)
655 flags |= FS_XFLAG_SYNC;
656 if (di_flags & XFS_DIFLAG_NOATIME)
657 flags |= FS_XFLAG_NOATIME;
658 if (di_flags & XFS_DIFLAG_NODUMP)
659 flags |= FS_XFLAG_NODUMP;
660 if (di_flags & XFS_DIFLAG_RTINHERIT)
661 flags |= FS_XFLAG_RTINHERIT;
662 if (di_flags & XFS_DIFLAG_PROJINHERIT)
663 flags |= FS_XFLAG_PROJINHERIT;
664 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
665 flags |= FS_XFLAG_NOSYMLINKS;
666 if (di_flags & XFS_DIFLAG_EXTSIZE)
667 flags |= FS_XFLAG_EXTSIZE;
668 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
669 flags |= FS_XFLAG_EXTSZINHERIT;
670 if (di_flags & XFS_DIFLAG_NODEFRAG)
671 flags |= FS_XFLAG_NODEFRAG;
672 if (di_flags & XFS_DIFLAG_FILESTREAM)
673 flags |= FS_XFLAG_FILESTREAM;
676 if (di_flags2 & XFS_DIFLAG2_ANY) {
677 if (di_flags2 & XFS_DIFLAG2_DAX)
678 flags |= FS_XFLAG_DAX;
679 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
680 flags |= FS_XFLAG_COWEXTSIZE;
684 flags |= FS_XFLAG_HASATTR;
691 struct xfs_inode *ip)
693 struct xfs_icdinode *dic = &ip->i_d;
695 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
699 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
700 * is allowed, otherwise it has to be an exact match. If a CI match is found,
701 * ci_name->name will point to a the actual name (caller must free) or
702 * will be set to NULL if an exact match is found.
707 struct xfs_name *name,
709 struct xfs_name *ci_name)
714 trace_xfs_lookup(dp, name);
716 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
719 xfs_ilock(dp, XFS_IOLOCK_SHARED);
720 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
724 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
728 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
733 kmem_free(ci_name->name);
735 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
741 * Allocate an inode on disk and return a copy of its in-core version.
742 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
743 * appropriately within the inode. The uid and gid for the inode are
744 * set according to the contents of the given cred structure.
746 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
747 * has a free inode available, call xfs_iget() to obtain the in-core
748 * version of the allocated inode. Finally, fill in the inode and
749 * log its initial contents. In this case, ialloc_context would be
752 * If xfs_dialloc() does not have an available inode, it will replenish
753 * its supply by doing an allocation. Since we can only do one
754 * allocation within a transaction without deadlocks, we must commit
755 * the current transaction before returning the inode itself.
756 * In this case, therefore, we will set ialloc_context and return.
757 * The caller should then commit the current transaction, start a new
758 * transaction, and call xfs_ialloc() again to actually get the inode.
760 * To ensure that some other process does not grab the inode that
761 * was allocated during the first call to xfs_ialloc(), this routine
762 * also returns the [locked] bp pointing to the head of the freelist
763 * as ialloc_context. The caller should hold this buffer across
764 * the commit and pass it back into this routine on the second call.
766 * If we are allocating quota inodes, we do not have a parent inode
767 * to attach to or associate with (i.e. pip == NULL) because they
768 * are not linked into the directory structure - they are attached
769 * directly to the superblock - and so have no parent.
780 xfs_buf_t **ialloc_context,
783 struct xfs_mount *mp = tp->t_mountp;
792 * Call the space management code to pick
793 * the on-disk inode to be allocated.
795 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
796 ialloc_context, &ino);
799 if (*ialloc_context || ino == NULLFSINO) {
803 ASSERT(*ialloc_context == NULL);
806 * Get the in-core inode with the lock held exclusively.
807 * This is because we're setting fields here we need
808 * to prevent others from looking at until we're done.
810 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
811 XFS_ILOCK_EXCL, &ip);
818 * We always convert v1 inodes to v2 now - we only support filesystems
819 * with >= v2 inode capability, so there is no reason for ever leaving
820 * an inode in v1 format.
822 if (ip->i_d.di_version == 1)
823 ip->i_d.di_version = 2;
825 inode->i_mode = mode;
826 set_nlink(inode, nlink);
827 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
828 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
829 xfs_set_projid(ip, prid);
831 if (pip && XFS_INHERIT_GID(pip)) {
832 ip->i_d.di_gid = pip->i_d.di_gid;
833 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
834 inode->i_mode |= S_ISGID;
838 * If the group ID of the new file does not match the effective group
839 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
840 * (and only if the irix_sgid_inherit compatibility variable is set).
842 if ((irix_sgid_inherit) &&
843 (inode->i_mode & S_ISGID) &&
844 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
845 inode->i_mode &= ~S_ISGID;
848 ip->i_d.di_nextents = 0;
849 ASSERT(ip->i_d.di_nblocks == 0);
851 tv = current_time(inode);
856 ip->i_d.di_extsize = 0;
857 ip->i_d.di_dmevmask = 0;
858 ip->i_d.di_dmstate = 0;
859 ip->i_d.di_flags = 0;
861 if (ip->i_d.di_version == 3) {
862 inode->i_version = 1;
863 ip->i_d.di_flags2 = 0;
864 ip->i_d.di_cowextsize = 0;
865 ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
866 ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
870 flags = XFS_ILOG_CORE;
871 switch (mode & S_IFMT) {
876 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
877 ip->i_df.if_u2.if_rdev = rdev;
878 ip->i_df.if_flags = 0;
879 flags |= XFS_ILOG_DEV;
883 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
887 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
888 di_flags |= XFS_DIFLAG_RTINHERIT;
889 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
890 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
891 ip->i_d.di_extsize = pip->i_d.di_extsize;
893 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
894 di_flags |= XFS_DIFLAG_PROJINHERIT;
895 } else if (S_ISREG(mode)) {
896 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
897 di_flags |= XFS_DIFLAG_REALTIME;
898 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
899 di_flags |= XFS_DIFLAG_EXTSIZE;
900 ip->i_d.di_extsize = pip->i_d.di_extsize;
903 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
905 di_flags |= XFS_DIFLAG_NOATIME;
906 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
908 di_flags |= XFS_DIFLAG_NODUMP;
909 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
911 di_flags |= XFS_DIFLAG_SYNC;
912 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
913 xfs_inherit_nosymlinks)
914 di_flags |= XFS_DIFLAG_NOSYMLINKS;
915 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
916 xfs_inherit_nodefrag)
917 di_flags |= XFS_DIFLAG_NODEFRAG;
918 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
919 di_flags |= XFS_DIFLAG_FILESTREAM;
921 ip->i_d.di_flags |= di_flags;
924 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
925 pip->i_d.di_version == 3 &&
926 ip->i_d.di_version == 3) {
927 uint64_t di_flags2 = 0;
929 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
930 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
931 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
933 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
934 di_flags2 |= XFS_DIFLAG2_DAX;
936 ip->i_d.di_flags2 |= di_flags2;
940 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
941 ip->i_df.if_flags = XFS_IFEXTENTS;
942 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
943 ip->i_df.if_u1.if_extents = NULL;
949 * Attribute fork settings for new inode.
951 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
952 ip->i_d.di_anextents = 0;
955 * Log the new values stuffed into the inode.
957 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
958 xfs_trans_log_inode(tp, ip, flags);
960 /* now that we have an i_mode we can setup the inode structure */
968 * Allocates a new inode from disk and return a pointer to the
969 * incore copy. This routine will internally commit the current
970 * transaction and allocate a new one if the Space Manager needed
971 * to do an allocation to replenish the inode free-list.
973 * This routine is designed to be called from xfs_create and
979 xfs_trans_t **tpp, /* input: current transaction;
980 output: may be a new transaction. */
981 xfs_inode_t *dp, /* directory within whose allocate
986 prid_t prid, /* project id */
987 int okalloc, /* ok to allocate new space */
988 xfs_inode_t **ipp, /* pointer to inode; it will be
995 xfs_buf_t *ialloc_context = NULL;
1001 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1004 * xfs_ialloc will return a pointer to an incore inode if
1005 * the Space Manager has an available inode on the free
1006 * list. Otherwise, it will do an allocation and replenish
1007 * the freelist. Since we can only do one allocation per
1008 * transaction without deadlocks, we will need to commit the
1009 * current transaction and start a new one. We will then
1010 * need to call xfs_ialloc again to get the inode.
1012 * If xfs_ialloc did an allocation to replenish the freelist,
1013 * it returns the bp containing the head of the freelist as
1014 * ialloc_context. We will hold a lock on it across the
1015 * transaction commit so that no other process can steal
1016 * the inode(s) that we've just allocated.
1018 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
1019 &ialloc_context, &ip);
1022 * Return an error if we were unable to allocate a new inode.
1023 * This should only happen if we run out of space on disk or
1024 * encounter a disk error.
1030 if (!ialloc_context && !ip) {
1036 * If the AGI buffer is non-NULL, then we were unable to get an
1037 * inode in one operation. We need to commit the current
1038 * transaction and call xfs_ialloc() again. It is guaranteed
1039 * to succeed the second time.
1041 if (ialloc_context) {
1043 * Normally, xfs_trans_commit releases all the locks.
1044 * We call bhold to hang on to the ialloc_context across
1045 * the commit. Holding this buffer prevents any other
1046 * processes from doing any allocations in this
1049 xfs_trans_bhold(tp, ialloc_context);
1052 * We want the quota changes to be associated with the next
1053 * transaction, NOT this one. So, detach the dqinfo from this
1054 * and attach it to the next transaction.
1059 dqinfo = (void *)tp->t_dqinfo;
1060 tp->t_dqinfo = NULL;
1061 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1062 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1065 code = xfs_trans_roll(&tp, NULL);
1066 if (committed != NULL)
1070 * Re-attach the quota info that we detached from prev trx.
1073 tp->t_dqinfo = dqinfo;
1074 tp->t_flags |= tflags;
1078 xfs_buf_relse(ialloc_context);
1083 xfs_trans_bjoin(tp, ialloc_context);
1086 * Call ialloc again. Since we've locked out all
1087 * other allocations in this allocation group,
1088 * this call should always succeed.
1090 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1091 okalloc, &ialloc_context, &ip);
1094 * If we get an error at this point, return to the caller
1095 * so that the current transaction can be aborted.
1102 ASSERT(!ialloc_context && ip);
1105 if (committed != NULL)
1116 * Decrement the link count on an inode & log the change. If this causes the
1117 * link count to go to zero, move the inode to AGI unlinked list so that it can
1118 * be freed when the last active reference goes away via xfs_inactive().
1120 static int /* error */
1125 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1127 drop_nlink(VFS_I(ip));
1128 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1130 if (VFS_I(ip)->i_nlink)
1133 return xfs_iunlink(tp, ip);
1137 * Increment the link count on an inode & log the change.
1144 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1146 ASSERT(ip->i_d.di_version > 1);
1147 inc_nlink(VFS_I(ip));
1148 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1155 struct xfs_name *name,
1160 int is_dir = S_ISDIR(mode);
1161 struct xfs_mount *mp = dp->i_mount;
1162 struct xfs_inode *ip = NULL;
1163 struct xfs_trans *tp = NULL;
1165 struct xfs_defer_ops dfops;
1166 xfs_fsblock_t first_block;
1167 bool unlock_dp_on_error = false;
1169 struct xfs_dquot *udqp = NULL;
1170 struct xfs_dquot *gdqp = NULL;
1171 struct xfs_dquot *pdqp = NULL;
1172 struct xfs_trans_res *tres;
1175 trace_xfs_create(dp, name);
1177 if (XFS_FORCED_SHUTDOWN(mp))
1180 prid = xfs_get_initial_prid(dp);
1183 * Make sure that we have allocated dquot(s) on disk.
1185 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1186 xfs_kgid_to_gid(current_fsgid()), prid,
1187 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1188 &udqp, &gdqp, &pdqp);
1194 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1195 tres = &M_RES(mp)->tr_mkdir;
1197 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1198 tres = &M_RES(mp)->tr_create;
1202 * Initially assume that the file does not exist and
1203 * reserve the resources for that case. If that is not
1204 * the case we'll drop the one we have and get a more
1205 * appropriate transaction later.
1207 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1208 if (error == -ENOSPC) {
1209 /* flush outstanding delalloc blocks and retry */
1210 xfs_flush_inodes(mp);
1211 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1213 if (error == -ENOSPC) {
1214 /* No space at all so try a "no-allocation" reservation */
1216 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1219 goto out_release_inode;
1221 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1222 XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1223 unlock_dp_on_error = true;
1225 xfs_defer_init(&dfops, &first_block);
1228 * Reserve disk quota and the inode.
1230 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1231 pdqp, resblks, 1, 0);
1233 goto out_trans_cancel;
1236 error = xfs_dir_canenter(tp, dp, name);
1238 goto out_trans_cancel;
1242 * A newly created regular or special file just has one directory
1243 * entry pointing to them, but a directory also the "." entry
1244 * pointing to itself.
1246 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1247 prid, resblks > 0, &ip, NULL);
1249 goto out_trans_cancel;
1252 * Now we join the directory inode to the transaction. We do not do it
1253 * earlier because xfs_dir_ialloc might commit the previous transaction
1254 * (and release all the locks). An error from here on will result in
1255 * the transaction cancel unlocking dp so don't do it explicitly in the
1258 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1259 unlock_dp_on_error = false;
1261 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1262 &first_block, &dfops, resblks ?
1263 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1265 ASSERT(error != -ENOSPC);
1266 goto out_trans_cancel;
1268 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1269 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1272 error = xfs_dir_init(tp, ip, dp);
1274 goto out_bmap_cancel;
1276 error = xfs_bumplink(tp, dp);
1278 goto out_bmap_cancel;
1282 * If this is a synchronous mount, make sure that the
1283 * create transaction goes to disk before returning to
1286 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1287 xfs_trans_set_sync(tp);
1290 * Attach the dquot(s) to the inodes and modify them incore.
1291 * These ids of the inode couldn't have changed since the new
1292 * inode has been locked ever since it was created.
1294 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1296 error = xfs_defer_finish(&tp, &dfops, NULL);
1298 goto out_bmap_cancel;
1300 error = xfs_trans_commit(tp);
1302 goto out_release_inode;
1304 xfs_qm_dqrele(udqp);
1305 xfs_qm_dqrele(gdqp);
1306 xfs_qm_dqrele(pdqp);
1312 xfs_defer_cancel(&dfops);
1314 xfs_trans_cancel(tp);
1317 * Wait until after the current transaction is aborted to finish the
1318 * setup of the inode and release the inode. This prevents recursive
1319 * transactions and deadlocks from xfs_inactive.
1322 xfs_finish_inode_setup(ip);
1326 xfs_qm_dqrele(udqp);
1327 xfs_qm_dqrele(gdqp);
1328 xfs_qm_dqrele(pdqp);
1330 if (unlock_dp_on_error)
1331 xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1337 struct xfs_inode *dp,
1338 struct dentry *dentry,
1340 struct xfs_inode **ipp)
1342 struct xfs_mount *mp = dp->i_mount;
1343 struct xfs_inode *ip = NULL;
1344 struct xfs_trans *tp = NULL;
1347 struct xfs_dquot *udqp = NULL;
1348 struct xfs_dquot *gdqp = NULL;
1349 struct xfs_dquot *pdqp = NULL;
1350 struct xfs_trans_res *tres;
1353 if (XFS_FORCED_SHUTDOWN(mp))
1356 prid = xfs_get_initial_prid(dp);
1359 * Make sure that we have allocated dquot(s) on disk.
1361 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1362 xfs_kgid_to_gid(current_fsgid()), prid,
1363 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1364 &udqp, &gdqp, &pdqp);
1368 resblks = XFS_IALLOC_SPACE_RES(mp);
1369 tres = &M_RES(mp)->tr_create_tmpfile;
1371 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1372 if (error == -ENOSPC) {
1373 /* No space at all so try a "no-allocation" reservation */
1375 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1378 goto out_release_inode;
1380 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1381 pdqp, resblks, 1, 0);
1383 goto out_trans_cancel;
1385 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1386 prid, resblks > 0, &ip, NULL);
1388 goto out_trans_cancel;
1390 if (mp->m_flags & XFS_MOUNT_WSYNC)
1391 xfs_trans_set_sync(tp);
1394 * Attach the dquot(s) to the inodes and modify them incore.
1395 * These ids of the inode couldn't have changed since the new
1396 * inode has been locked ever since it was created.
1398 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1400 error = xfs_iunlink(tp, ip);
1402 goto out_trans_cancel;
1404 error = xfs_trans_commit(tp);
1406 goto out_release_inode;
1408 xfs_qm_dqrele(udqp);
1409 xfs_qm_dqrele(gdqp);
1410 xfs_qm_dqrele(pdqp);
1416 xfs_trans_cancel(tp);
1419 * Wait until after the current transaction is aborted to finish the
1420 * setup of the inode and release the inode. This prevents recursive
1421 * transactions and deadlocks from xfs_inactive.
1424 xfs_finish_inode_setup(ip);
1428 xfs_qm_dqrele(udqp);
1429 xfs_qm_dqrele(gdqp);
1430 xfs_qm_dqrele(pdqp);
1439 struct xfs_name *target_name)
1441 xfs_mount_t *mp = tdp->i_mount;
1444 struct xfs_defer_ops dfops;
1445 xfs_fsblock_t first_block;
1448 trace_xfs_link(tdp, target_name);
1450 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1452 if (XFS_FORCED_SHUTDOWN(mp))
1455 error = xfs_qm_dqattach(sip, 0);
1459 error = xfs_qm_dqattach(tdp, 0);
1463 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1464 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1465 if (error == -ENOSPC) {
1467 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1472 xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1473 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1475 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1476 xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1479 * If we are using project inheritance, we only allow hard link
1480 * creation in our tree when the project IDs are the same; else
1481 * the tree quota mechanism could be circumvented.
1483 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1484 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1490 error = xfs_dir_canenter(tp, tdp, target_name);
1495 xfs_defer_init(&dfops, &first_block);
1498 * Handle initial link state of O_TMPFILE inode
1500 if (VFS_I(sip)->i_nlink == 0) {
1501 error = xfs_iunlink_remove(tp, sip);
1506 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1507 &first_block, &dfops, resblks);
1510 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1511 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1513 error = xfs_bumplink(tp, sip);
1518 * If this is a synchronous mount, make sure that the
1519 * link transaction goes to disk before returning to
1522 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1523 xfs_trans_set_sync(tp);
1525 error = xfs_defer_finish(&tp, &dfops, NULL);
1527 xfs_defer_cancel(&dfops);
1531 return xfs_trans_commit(tp);
1534 xfs_trans_cancel(tp);
1540 * Free up the underlying blocks past new_size. The new size must be smaller
1541 * than the current size. This routine can be used both for the attribute and
1542 * data fork, and does not modify the inode size, which is left to the caller.
1544 * The transaction passed to this routine must have made a permanent log
1545 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1546 * given transaction and start new ones, so make sure everything involved in
1547 * the transaction is tidy before calling here. Some transaction will be
1548 * returned to the caller to be committed. The incoming transaction must
1549 * already include the inode, and both inode locks must be held exclusively.
1550 * The inode must also be "held" within the transaction. On return the inode
1551 * will be "held" within the returned transaction. This routine does NOT
1552 * require any disk space to be reserved for it within the transaction.
1554 * If we get an error, we must return with the inode locked and linked into the
1555 * current transaction. This keeps things simple for the higher level code,
1556 * because it always knows that the inode is locked and held in the transaction
1557 * that returns to it whether errors occur or not. We don't mark the inode
1558 * dirty on error so that transactions can be easily aborted if possible.
1561 xfs_itruncate_extents(
1562 struct xfs_trans **tpp,
1563 struct xfs_inode *ip,
1565 xfs_fsize_t new_size)
1567 struct xfs_mount *mp = ip->i_mount;
1568 struct xfs_trans *tp = *tpp;
1569 struct xfs_defer_ops dfops;
1570 xfs_fsblock_t first_block;
1571 xfs_fileoff_t first_unmap_block;
1572 xfs_fileoff_t last_block;
1573 xfs_filblks_t unmap_len;
1577 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1578 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1579 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1580 ASSERT(new_size <= XFS_ISIZE(ip));
1581 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1582 ASSERT(ip->i_itemp != NULL);
1583 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1584 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1586 trace_xfs_itruncate_extents_start(ip, new_size);
1589 * Since it is possible for space to become allocated beyond
1590 * the end of the file (in a crash where the space is allocated
1591 * but the inode size is not yet updated), simply remove any
1592 * blocks which show up between the new EOF and the maximum
1593 * possible file size. If the first block to be removed is
1594 * beyond the maximum file size (ie it is the same as last_block),
1595 * then there is nothing to do.
1597 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1598 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1599 if (first_unmap_block == last_block)
1602 ASSERT(first_unmap_block < last_block);
1603 unmap_len = last_block - first_unmap_block + 1;
1605 xfs_defer_init(&dfops, &first_block);
1606 error = xfs_bunmapi(tp, ip,
1607 first_unmap_block, unmap_len,
1608 xfs_bmapi_aflag(whichfork),
1609 XFS_ITRUNC_MAX_EXTENTS,
1610 &first_block, &dfops,
1613 goto out_bmap_cancel;
1616 * Duplicate the transaction that has the permanent
1617 * reservation and commit the old transaction.
1619 error = xfs_defer_finish(&tp, &dfops, ip);
1621 goto out_bmap_cancel;
1623 error = xfs_trans_roll(&tp, ip);
1628 /* Remove all pending CoW reservations. */
1629 error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block,
1635 * Clear the reflink flag if there are no data fork blocks and
1636 * there are no extents staged in the cow fork.
1638 if (xfs_is_reflink_inode(ip) && ip->i_cnextents == 0) {
1639 if (ip->i_d.di_nblocks == 0)
1640 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1641 xfs_inode_clear_cowblocks_tag(ip);
1645 * Always re-log the inode so that our permanent transaction can keep
1646 * on rolling it forward in the log.
1648 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1650 trace_xfs_itruncate_extents_end(ip, new_size);
1657 * If the bunmapi call encounters an error, return to the caller where
1658 * the transaction can be properly aborted. We just need to make sure
1659 * we're not holding any resources that we were not when we came in.
1661 xfs_defer_cancel(&dfops);
1669 xfs_mount_t *mp = ip->i_mount;
1672 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1675 /* If this is a read-only mount, don't do this (would generate I/O) */
1676 if (mp->m_flags & XFS_MOUNT_RDONLY)
1679 if (!XFS_FORCED_SHUTDOWN(mp)) {
1683 * If we previously truncated this file and removed old data
1684 * in the process, we want to initiate "early" writeout on
1685 * the last close. This is an attempt to combat the notorious
1686 * NULL files problem which is particularly noticeable from a
1687 * truncate down, buffered (re-)write (delalloc), followed by
1688 * a crash. What we are effectively doing here is
1689 * significantly reducing the time window where we'd otherwise
1690 * be exposed to that problem.
1692 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1694 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1695 if (ip->i_delayed_blks > 0) {
1696 error = filemap_flush(VFS_I(ip)->i_mapping);
1703 if (VFS_I(ip)->i_nlink == 0)
1706 if (xfs_can_free_eofblocks(ip, false)) {
1709 * Check if the inode is being opened, written and closed
1710 * frequently and we have delayed allocation blocks outstanding
1711 * (e.g. streaming writes from the NFS server), truncating the
1712 * blocks past EOF will cause fragmentation to occur.
1714 * In this case don't do the truncation, but we have to be
1715 * careful how we detect this case. Blocks beyond EOF show up as
1716 * i_delayed_blks even when the inode is clean, so we need to
1717 * truncate them away first before checking for a dirty release.
1718 * Hence on the first dirty close we will still remove the
1719 * speculative allocation, but after that we will leave it in
1722 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1725 * If we can't get the iolock just skip truncating the blocks
1726 * past EOF because we could deadlock with the mmap_sem
1727 * otherwise. We'll get another chance to drop them once the
1728 * last reference to the inode is dropped, so we'll never leak
1729 * blocks permanently.
1731 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1732 error = xfs_free_eofblocks(ip);
1733 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1738 /* delalloc blocks after truncation means it really is dirty */
1739 if (ip->i_delayed_blks)
1740 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1746 * xfs_inactive_truncate
1748 * Called to perform a truncate when an inode becomes unlinked.
1751 xfs_inactive_truncate(
1752 struct xfs_inode *ip)
1754 struct xfs_mount *mp = ip->i_mount;
1755 struct xfs_trans *tp;
1758 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1760 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1764 xfs_ilock(ip, XFS_ILOCK_EXCL);
1765 xfs_trans_ijoin(tp, ip, 0);
1768 * Log the inode size first to prevent stale data exposure in the event
1769 * of a system crash before the truncate completes. See the related
1770 * comment in xfs_vn_setattr_size() for details.
1772 ip->i_d.di_size = 0;
1773 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1775 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1777 goto error_trans_cancel;
1779 ASSERT(ip->i_d.di_nextents == 0);
1781 error = xfs_trans_commit(tp);
1785 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1789 xfs_trans_cancel(tp);
1791 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1796 * xfs_inactive_ifree()
1798 * Perform the inode free when an inode is unlinked.
1802 struct xfs_inode *ip)
1804 struct xfs_defer_ops dfops;
1805 xfs_fsblock_t first_block;
1806 struct xfs_mount *mp = ip->i_mount;
1807 struct xfs_trans *tp;
1811 * We try to use a per-AG reservation for any block needed by the finobt
1812 * tree, but as the finobt feature predates the per-AG reservation
1813 * support a degraded file system might not have enough space for the
1814 * reservation at mount time. In that case try to dip into the reserved
1817 * Send a warning if the reservation does happen to fail, as the inode
1818 * now remains allocated and sits on the unlinked list until the fs is
1821 if (unlikely(mp->m_inotbt_nores)) {
1822 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1823 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1826 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1829 if (error == -ENOSPC) {
1830 xfs_warn_ratelimited(mp,
1831 "Failed to remove inode(s) from unlinked list. "
1832 "Please free space, unmount and run xfs_repair.");
1834 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1839 xfs_ilock(ip, XFS_ILOCK_EXCL);
1840 xfs_trans_ijoin(tp, ip, 0);
1842 xfs_defer_init(&dfops, &first_block);
1843 error = xfs_ifree(tp, ip, &dfops);
1846 * If we fail to free the inode, shut down. The cancel
1847 * might do that, we need to make sure. Otherwise the
1848 * inode might be lost for a long time or forever.
1850 if (!XFS_FORCED_SHUTDOWN(mp)) {
1851 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1853 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1855 xfs_trans_cancel(tp);
1856 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1861 * Credit the quota account(s). The inode is gone.
1863 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1866 * Just ignore errors at this point. There is nothing we can do except
1867 * to try to keep going. Make sure it's not a silent error.
1869 error = xfs_defer_finish(&tp, &dfops, NULL);
1871 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1873 xfs_defer_cancel(&dfops);
1875 error = xfs_trans_commit(tp);
1877 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1880 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1887 * This is called when the vnode reference count for the vnode
1888 * goes to zero. If the file has been unlinked, then it must
1889 * now be truncated. Also, we clear all of the read-ahead state
1890 * kept for the inode here since the file is now closed.
1896 struct xfs_mount *mp;
1901 * If the inode is already free, then there can be nothing
1904 if (VFS_I(ip)->i_mode == 0) {
1905 ASSERT(ip->i_df.if_real_bytes == 0);
1906 ASSERT(ip->i_df.if_broot_bytes == 0);
1911 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1913 /* If this is a read-only mount, don't do this (would generate I/O) */
1914 if (mp->m_flags & XFS_MOUNT_RDONLY)
1917 if (VFS_I(ip)->i_nlink != 0) {
1919 * force is true because we are evicting an inode from the
1920 * cache. Post-eof blocks must be freed, lest we end up with
1921 * broken free space accounting.
1923 * Note: don't bother with iolock here since lockdep complains
1924 * about acquiring it in reclaim context. We have the only
1925 * reference to the inode at this point anyways.
1927 if (xfs_can_free_eofblocks(ip, true))
1928 xfs_free_eofblocks(ip);
1933 if (S_ISREG(VFS_I(ip)->i_mode) &&
1934 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1935 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1938 error = xfs_qm_dqattach(ip, 0);
1942 if (S_ISLNK(VFS_I(ip)->i_mode))
1943 error = xfs_inactive_symlink(ip);
1945 error = xfs_inactive_truncate(ip);
1950 * If there are attributes associated with the file then blow them away
1951 * now. The code calls a routine that recursively deconstructs the
1952 * attribute fork. If also blows away the in-core attribute fork.
1954 if (XFS_IFORK_Q(ip)) {
1955 error = xfs_attr_inactive(ip);
1961 ASSERT(ip->i_d.di_anextents == 0);
1962 ASSERT(ip->i_d.di_forkoff == 0);
1967 error = xfs_inactive_ifree(ip);
1972 * Release the dquots held by inode, if any.
1974 xfs_qm_dqdetach(ip);
1978 * This is called when the inode's link count goes to 0 or we are creating a
1979 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1980 * set to true as the link count is dropped to zero by the VFS after we've
1981 * created the file successfully, so we have to add it to the unlinked list
1982 * while the link count is non-zero.
1984 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1985 * list when the inode is freed.
1989 struct xfs_trans *tp,
1990 struct xfs_inode *ip)
1992 xfs_mount_t *mp = tp->t_mountp;
2002 ASSERT(VFS_I(ip)->i_mode != 0);
2005 * Get the agi buffer first. It ensures lock ordering
2008 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
2011 agi = XFS_BUF_TO_AGI(agibp);
2014 * Get the index into the agi hash table for the
2015 * list this inode will go on.
2017 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2019 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2020 ASSERT(agi->agi_unlinked[bucket_index]);
2021 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
2023 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2025 * There is already another inode in the bucket we need
2026 * to add ourselves to. Add us at the front of the list.
2027 * Here we put the head pointer into our next pointer,
2028 * and then we fall through to point the head at us.
2030 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2035 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2036 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2037 offset = ip->i_imap.im_boffset +
2038 offsetof(xfs_dinode_t, di_next_unlinked);
2040 /* need to recalc the inode CRC if appropriate */
2041 xfs_dinode_calc_crc(mp, dip);
2043 xfs_trans_inode_buf(tp, ibp);
2044 xfs_trans_log_buf(tp, ibp, offset,
2045 (offset + sizeof(xfs_agino_t) - 1));
2046 xfs_inobp_check(mp, ibp);
2050 * Point the bucket head pointer at the inode being inserted.
2053 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2054 offset = offsetof(xfs_agi_t, agi_unlinked) +
2055 (sizeof(xfs_agino_t) * bucket_index);
2056 xfs_trans_log_buf(tp, agibp, offset,
2057 (offset + sizeof(xfs_agino_t) - 1));
2062 * Pull the on-disk inode from the AGI unlinked list.
2075 xfs_agnumber_t agno;
2077 xfs_agino_t next_agino;
2078 xfs_buf_t *last_ibp;
2079 xfs_dinode_t *last_dip = NULL;
2081 int offset, last_offset = 0;
2085 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2088 * Get the agi buffer first. It ensures lock ordering
2091 error = xfs_read_agi(mp, tp, agno, &agibp);
2095 agi = XFS_BUF_TO_AGI(agibp);
2098 * Get the index into the agi hash table for the
2099 * list this inode will go on.
2101 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2103 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2104 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2105 ASSERT(agi->agi_unlinked[bucket_index]);
2107 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2109 * We're at the head of the list. Get the inode's on-disk
2110 * buffer to see if there is anyone after us on the list.
2111 * Only modify our next pointer if it is not already NULLAGINO.
2112 * This saves us the overhead of dealing with the buffer when
2113 * there is no need to change it.
2115 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2118 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2122 next_agino = be32_to_cpu(dip->di_next_unlinked);
2123 ASSERT(next_agino != 0);
2124 if (next_agino != NULLAGINO) {
2125 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2126 offset = ip->i_imap.im_boffset +
2127 offsetof(xfs_dinode_t, di_next_unlinked);
2129 /* need to recalc the inode CRC if appropriate */
2130 xfs_dinode_calc_crc(mp, dip);
2132 xfs_trans_inode_buf(tp, ibp);
2133 xfs_trans_log_buf(tp, ibp, offset,
2134 (offset + sizeof(xfs_agino_t) - 1));
2135 xfs_inobp_check(mp, ibp);
2137 xfs_trans_brelse(tp, ibp);
2140 * Point the bucket head pointer at the next inode.
2142 ASSERT(next_agino != 0);
2143 ASSERT(next_agino != agino);
2144 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2145 offset = offsetof(xfs_agi_t, agi_unlinked) +
2146 (sizeof(xfs_agino_t) * bucket_index);
2147 xfs_trans_log_buf(tp, agibp, offset,
2148 (offset + sizeof(xfs_agino_t) - 1));
2151 * We need to search the list for the inode being freed.
2153 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2155 while (next_agino != agino) {
2156 struct xfs_imap imap;
2159 xfs_trans_brelse(tp, last_ibp);
2162 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2164 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2167 "%s: xfs_imap returned error %d.",
2172 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2176 "%s: xfs_imap_to_bp returned error %d.",
2181 last_offset = imap.im_boffset;
2182 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2183 ASSERT(next_agino != NULLAGINO);
2184 ASSERT(next_agino != 0);
2188 * Now last_ibp points to the buffer previous to us on the
2189 * unlinked list. Pull us from the list.
2191 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2194 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2198 next_agino = be32_to_cpu(dip->di_next_unlinked);
2199 ASSERT(next_agino != 0);
2200 ASSERT(next_agino != agino);
2201 if (next_agino != NULLAGINO) {
2202 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2203 offset = ip->i_imap.im_boffset +
2204 offsetof(xfs_dinode_t, di_next_unlinked);
2206 /* need to recalc the inode CRC if appropriate */
2207 xfs_dinode_calc_crc(mp, dip);
2209 xfs_trans_inode_buf(tp, ibp);
2210 xfs_trans_log_buf(tp, ibp, offset,
2211 (offset + sizeof(xfs_agino_t) - 1));
2212 xfs_inobp_check(mp, ibp);
2214 xfs_trans_brelse(tp, ibp);
2217 * Point the previous inode on the list to the next inode.
2219 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2220 ASSERT(next_agino != 0);
2221 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2223 /* need to recalc the inode CRC if appropriate */
2224 xfs_dinode_calc_crc(mp, last_dip);
2226 xfs_trans_inode_buf(tp, last_ibp);
2227 xfs_trans_log_buf(tp, last_ibp, offset,
2228 (offset + sizeof(xfs_agino_t) - 1));
2229 xfs_inobp_check(mp, last_ibp);
2235 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2236 * inodes that are in memory - they all must be marked stale and attached to
2237 * the cluster buffer.
2241 xfs_inode_t *free_ip,
2243 struct xfs_icluster *xic)
2245 xfs_mount_t *mp = free_ip->i_mount;
2246 int blks_per_cluster;
2247 int inodes_per_cluster;
2254 xfs_inode_log_item_t *iip;
2255 xfs_log_item_t *lip;
2256 struct xfs_perag *pag;
2259 inum = xic->first_ino;
2260 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2261 blks_per_cluster = xfs_icluster_size_fsb(mp);
2262 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2263 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2265 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2267 * The allocation bitmap tells us which inodes of the chunk were
2268 * physically allocated. Skip the cluster if an inode falls into
2271 ioffset = inum - xic->first_ino;
2272 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2273 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2277 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2278 XFS_INO_TO_AGBNO(mp, inum));
2281 * We obtain and lock the backing buffer first in the process
2282 * here, as we have to ensure that any dirty inode that we
2283 * can't get the flush lock on is attached to the buffer.
2284 * If we scan the in-memory inodes first, then buffer IO can
2285 * complete before we get a lock on it, and hence we may fail
2286 * to mark all the active inodes on the buffer stale.
2288 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2289 mp->m_bsize * blks_per_cluster,
2296 * This buffer may not have been correctly initialised as we
2297 * didn't read it from disk. That's not important because we are
2298 * only using to mark the buffer as stale in the log, and to
2299 * attach stale cached inodes on it. That means it will never be
2300 * dispatched for IO. If it is, we want to know about it, and we
2301 * want it to fail. We can acheive this by adding a write
2302 * verifier to the buffer.
2304 bp->b_ops = &xfs_inode_buf_ops;
2307 * Walk the inodes already attached to the buffer and mark them
2308 * stale. These will all have the flush locks held, so an
2309 * in-memory inode walk can't lock them. By marking them all
2310 * stale first, we will not attempt to lock them in the loop
2311 * below as the XFS_ISTALE flag will be set.
2315 if (lip->li_type == XFS_LI_INODE) {
2316 iip = (xfs_inode_log_item_t *)lip;
2317 ASSERT(iip->ili_logged == 1);
2318 lip->li_cb = xfs_istale_done;
2319 xfs_trans_ail_copy_lsn(mp->m_ail,
2320 &iip->ili_flush_lsn,
2321 &iip->ili_item.li_lsn);
2322 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2324 lip = lip->li_bio_list;
2329 * For each inode in memory attempt to add it to the inode
2330 * buffer and set it up for being staled on buffer IO
2331 * completion. This is safe as we've locked out tail pushing
2332 * and flushing by locking the buffer.
2334 * We have already marked every inode that was part of a
2335 * transaction stale above, which means there is no point in
2336 * even trying to lock them.
2338 for (i = 0; i < inodes_per_cluster; i++) {
2341 ip = radix_tree_lookup(&pag->pag_ici_root,
2342 XFS_INO_TO_AGINO(mp, (inum + i)));
2344 /* Inode not in memory, nothing to do */
2351 * because this is an RCU protected lookup, we could
2352 * find a recently freed or even reallocated inode
2353 * during the lookup. We need to check under the
2354 * i_flags_lock for a valid inode here. Skip it if it
2355 * is not valid, the wrong inode or stale.
2357 spin_lock(&ip->i_flags_lock);
2358 if (ip->i_ino != inum + i ||
2359 __xfs_iflags_test(ip, XFS_ISTALE)) {
2360 spin_unlock(&ip->i_flags_lock);
2364 spin_unlock(&ip->i_flags_lock);
2367 * Don't try to lock/unlock the current inode, but we
2368 * _cannot_ skip the other inodes that we did not find
2369 * in the list attached to the buffer and are not
2370 * already marked stale. If we can't lock it, back off
2373 if (ip != free_ip) {
2374 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2381 * Check the inode number again in case we're
2382 * racing with freeing in xfs_reclaim_inode().
2383 * See the comments in that function for more
2384 * information as to why the initial check is
2387 if (ip->i_ino != inum + i) {
2388 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2396 xfs_iflags_set(ip, XFS_ISTALE);
2399 * we don't need to attach clean inodes or those only
2400 * with unlogged changes (which we throw away, anyway).
2403 if (!iip || xfs_inode_clean(ip)) {
2404 ASSERT(ip != free_ip);
2406 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2410 iip->ili_last_fields = iip->ili_fields;
2411 iip->ili_fields = 0;
2412 iip->ili_fsync_fields = 0;
2413 iip->ili_logged = 1;
2414 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2415 &iip->ili_item.li_lsn);
2417 xfs_buf_attach_iodone(bp, xfs_istale_done,
2421 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2424 xfs_trans_stale_inode_buf(tp, bp);
2425 xfs_trans_binval(tp, bp);
2433 * Free any local-format buffers sitting around before we reset to
2437 xfs_ifree_local_data(
2438 struct xfs_inode *ip,
2441 struct xfs_ifork *ifp;
2443 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2446 ifp = XFS_IFORK_PTR(ip, whichfork);
2447 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2451 * This is called to return an inode to the inode free list.
2452 * The inode should already be truncated to 0 length and have
2453 * no pages associated with it. This routine also assumes that
2454 * the inode is already a part of the transaction.
2456 * The on-disk copy of the inode will have been added to the list
2457 * of unlinked inodes in the AGI. We need to remove the inode from
2458 * that list atomically with respect to freeing it here.
2464 struct xfs_defer_ops *dfops)
2467 struct xfs_icluster xic = { 0 };
2469 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2470 ASSERT(VFS_I(ip)->i_nlink == 0);
2471 ASSERT(ip->i_d.di_nextents == 0);
2472 ASSERT(ip->i_d.di_anextents == 0);
2473 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2474 ASSERT(ip->i_d.di_nblocks == 0);
2477 * Pull the on-disk inode from the AGI unlinked list.
2479 error = xfs_iunlink_remove(tp, ip);
2483 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2487 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2488 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2490 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2491 ip->i_d.di_flags = 0;
2492 ip->i_d.di_dmevmask = 0;
2493 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2494 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2495 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2497 * Bump the generation count so no one will be confused
2498 * by reincarnations of this inode.
2500 VFS_I(ip)->i_generation++;
2501 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2504 error = xfs_ifree_cluster(ip, tp, &xic);
2510 * This is called to unpin an inode. The caller must have the inode locked
2511 * in at least shared mode so that the buffer cannot be subsequently pinned
2512 * once someone is waiting for it to be unpinned.
2516 struct xfs_inode *ip)
2518 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2520 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2522 /* Give the log a push to start the unpinning I/O */
2523 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2529 struct xfs_inode *ip)
2531 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2532 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2537 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2538 if (xfs_ipincount(ip))
2540 } while (xfs_ipincount(ip));
2541 finish_wait(wq, &wait.wait);
2546 struct xfs_inode *ip)
2548 if (xfs_ipincount(ip))
2549 __xfs_iunpin_wait(ip);
2553 * Removing an inode from the namespace involves removing the directory entry
2554 * and dropping the link count on the inode. Removing the directory entry can
2555 * result in locking an AGF (directory blocks were freed) and removing a link
2556 * count can result in placing the inode on an unlinked list which results in
2559 * The big problem here is that we have an ordering constraint on AGF and AGI
2560 * locking - inode allocation locks the AGI, then can allocate a new extent for
2561 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2562 * removes the inode from the unlinked list, requiring that we lock the AGI
2563 * first, and then freeing the inode can result in an inode chunk being freed
2564 * and hence freeing disk space requiring that we lock an AGF.
2566 * Hence the ordering that is imposed by other parts of the code is AGI before
2567 * AGF. This means we cannot remove the directory entry before we drop the inode
2568 * reference count and put it on the unlinked list as this results in a lock
2569 * order of AGF then AGI, and this can deadlock against inode allocation and
2570 * freeing. Therefore we must drop the link counts before we remove the
2573 * This is still safe from a transactional point of view - it is not until we
2574 * get to xfs_defer_finish() that we have the possibility of multiple
2575 * transactions in this operation. Hence as long as we remove the directory
2576 * entry and drop the link count in the first transaction of the remove
2577 * operation, there are no transactional constraints on the ordering here.
2582 struct xfs_name *name,
2585 xfs_mount_t *mp = dp->i_mount;
2586 xfs_trans_t *tp = NULL;
2587 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2589 struct xfs_defer_ops dfops;
2590 xfs_fsblock_t first_block;
2593 trace_xfs_remove(dp, name);
2595 if (XFS_FORCED_SHUTDOWN(mp))
2598 error = xfs_qm_dqattach(dp, 0);
2602 error = xfs_qm_dqattach(ip, 0);
2607 * We try to get the real space reservation first,
2608 * allowing for directory btree deletion(s) implying
2609 * possible bmap insert(s). If we can't get the space
2610 * reservation then we use 0 instead, and avoid the bmap
2611 * btree insert(s) in the directory code by, if the bmap
2612 * insert tries to happen, instead trimming the LAST
2613 * block from the directory.
2615 resblks = XFS_REMOVE_SPACE_RES(mp);
2616 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2617 if (error == -ENOSPC) {
2619 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2623 ASSERT(error != -ENOSPC);
2627 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2628 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2630 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2631 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2634 * If we're removing a directory perform some additional validation.
2637 ASSERT(VFS_I(ip)->i_nlink >= 2);
2638 if (VFS_I(ip)->i_nlink != 2) {
2640 goto out_trans_cancel;
2642 if (!xfs_dir_isempty(ip)) {
2644 goto out_trans_cancel;
2647 /* Drop the link from ip's "..". */
2648 error = xfs_droplink(tp, dp);
2650 goto out_trans_cancel;
2652 /* Drop the "." link from ip to self. */
2653 error = xfs_droplink(tp, ip);
2655 goto out_trans_cancel;
2658 * When removing a non-directory we need to log the parent
2659 * inode here. For a directory this is done implicitly
2660 * by the xfs_droplink call for the ".." entry.
2662 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2664 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2666 /* Drop the link from dp to ip. */
2667 error = xfs_droplink(tp, ip);
2669 goto out_trans_cancel;
2671 xfs_defer_init(&dfops, &first_block);
2672 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2673 &first_block, &dfops, resblks);
2675 ASSERT(error != -ENOENT);
2676 goto out_bmap_cancel;
2680 * If this is a synchronous mount, make sure that the
2681 * remove transaction goes to disk before returning to
2684 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2685 xfs_trans_set_sync(tp);
2687 error = xfs_defer_finish(&tp, &dfops, NULL);
2689 goto out_bmap_cancel;
2691 error = xfs_trans_commit(tp);
2695 if (is_dir && xfs_inode_is_filestream(ip))
2696 xfs_filestream_deassociate(ip);
2701 xfs_defer_cancel(&dfops);
2703 xfs_trans_cancel(tp);
2709 * Enter all inodes for a rename transaction into a sorted array.
2711 #define __XFS_SORT_INODES 5
2713 xfs_sort_for_rename(
2714 struct xfs_inode *dp1, /* in: old (source) directory inode */
2715 struct xfs_inode *dp2, /* in: new (target) directory inode */
2716 struct xfs_inode *ip1, /* in: inode of old entry */
2717 struct xfs_inode *ip2, /* in: inode of new entry */
2718 struct xfs_inode *wip, /* in: whiteout inode */
2719 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2720 int *num_inodes) /* in/out: inodes in array */
2724 ASSERT(*num_inodes == __XFS_SORT_INODES);
2725 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2728 * i_tab contains a list of pointers to inodes. We initialize
2729 * the table here & we'll sort it. We will then use it to
2730 * order the acquisition of the inode locks.
2732 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2745 * Sort the elements via bubble sort. (Remember, there are at
2746 * most 5 elements to sort, so this is adequate.)
2748 for (i = 0; i < *num_inodes; i++) {
2749 for (j = 1; j < *num_inodes; j++) {
2750 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2751 struct xfs_inode *temp = i_tab[j];
2752 i_tab[j] = i_tab[j-1];
2761 struct xfs_trans *tp,
2762 struct xfs_defer_ops *dfops)
2767 * If this is a synchronous mount, make sure that the rename transaction
2768 * goes to disk before returning to the user.
2770 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2771 xfs_trans_set_sync(tp);
2773 error = xfs_defer_finish(&tp, dfops, NULL);
2775 xfs_defer_cancel(dfops);
2776 xfs_trans_cancel(tp);
2780 return xfs_trans_commit(tp);
2784 * xfs_cross_rename()
2786 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2790 struct xfs_trans *tp,
2791 struct xfs_inode *dp1,
2792 struct xfs_name *name1,
2793 struct xfs_inode *ip1,
2794 struct xfs_inode *dp2,
2795 struct xfs_name *name2,
2796 struct xfs_inode *ip2,
2797 struct xfs_defer_ops *dfops,
2798 xfs_fsblock_t *first_block,
2806 /* Swap inode number for dirent in first parent */
2807 error = xfs_dir_replace(tp, dp1, name1,
2809 first_block, dfops, spaceres);
2811 goto out_trans_abort;
2813 /* Swap inode number for dirent in second parent */
2814 error = xfs_dir_replace(tp, dp2, name2,
2816 first_block, dfops, spaceres);
2818 goto out_trans_abort;
2821 * If we're renaming one or more directories across different parents,
2822 * update the respective ".." entries (and link counts) to match the new
2826 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2828 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2829 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2830 dp1->i_ino, first_block,
2833 goto out_trans_abort;
2835 /* transfer ip2 ".." reference to dp1 */
2836 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2837 error = xfs_droplink(tp, dp2);
2839 goto out_trans_abort;
2840 error = xfs_bumplink(tp, dp1);
2842 goto out_trans_abort;
2846 * Although ip1 isn't changed here, userspace needs
2847 * to be warned about the change, so that applications
2848 * relying on it (like backup ones), will properly
2851 ip1_flags |= XFS_ICHGTIME_CHG;
2852 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2855 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2856 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2857 dp2->i_ino, first_block,
2860 goto out_trans_abort;
2862 /* transfer ip1 ".." reference to dp2 */
2863 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2864 error = xfs_droplink(tp, dp1);
2866 goto out_trans_abort;
2867 error = xfs_bumplink(tp, dp2);
2869 goto out_trans_abort;
2873 * Although ip2 isn't changed here, userspace needs
2874 * to be warned about the change, so that applications
2875 * relying on it (like backup ones), will properly
2878 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2879 ip2_flags |= XFS_ICHGTIME_CHG;
2884 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2885 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2888 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2889 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2892 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2893 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2895 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2896 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2897 return xfs_finish_rename(tp, dfops);
2900 xfs_defer_cancel(dfops);
2901 xfs_trans_cancel(tp);
2906 * xfs_rename_alloc_whiteout()
2908 * Return a referenced, unlinked, unlocked inode that that can be used as a
2909 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2910 * crash between allocating the inode and linking it into the rename transaction
2911 * recovery will free the inode and we won't leak it.
2914 xfs_rename_alloc_whiteout(
2915 struct xfs_inode *dp,
2916 struct xfs_inode **wip)
2918 struct xfs_inode *tmpfile;
2921 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2926 * Prepare the tmpfile inode as if it were created through the VFS.
2927 * Otherwise, the link increment paths will complain about nlink 0->1.
2928 * Drop the link count as done by d_tmpfile(), complete the inode setup
2929 * and flag it as linkable.
2931 drop_nlink(VFS_I(tmpfile));
2932 xfs_setup_iops(tmpfile);
2933 xfs_finish_inode_setup(tmpfile);
2934 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2945 struct xfs_inode *src_dp,
2946 struct xfs_name *src_name,
2947 struct xfs_inode *src_ip,
2948 struct xfs_inode *target_dp,
2949 struct xfs_name *target_name,
2950 struct xfs_inode *target_ip,
2953 struct xfs_mount *mp = src_dp->i_mount;
2954 struct xfs_trans *tp;
2955 struct xfs_defer_ops dfops;
2956 xfs_fsblock_t first_block;
2957 struct xfs_inode *wip = NULL; /* whiteout inode */
2958 struct xfs_inode *inodes[__XFS_SORT_INODES];
2959 int num_inodes = __XFS_SORT_INODES;
2960 bool new_parent = (src_dp != target_dp);
2961 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2965 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2967 if ((flags & RENAME_EXCHANGE) && !target_ip)
2971 * If we are doing a whiteout operation, allocate the whiteout inode
2972 * we will be placing at the target and ensure the type is set
2975 if (flags & RENAME_WHITEOUT) {
2976 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2977 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2981 /* setup target dirent info as whiteout */
2982 src_name->type = XFS_DIR3_FT_CHRDEV;
2985 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2986 inodes, &num_inodes);
2988 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2989 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2990 if (error == -ENOSPC) {
2992 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2996 goto out_release_wip;
2999 * Attach the dquots to the inodes
3001 error = xfs_qm_vop_rename_dqattach(inodes);
3003 goto out_trans_cancel;
3006 * Lock all the participating inodes. Depending upon whether
3007 * the target_name exists in the target directory, and
3008 * whether the target directory is the same as the source
3009 * directory, we can lock from 2 to 4 inodes.
3012 xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
3014 xfs_lock_two_inodes(src_dp, target_dp,
3015 XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
3017 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3020 * Join all the inodes to the transaction. From this point on,
3021 * we can rely on either trans_commit or trans_cancel to unlock
3024 xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
3026 xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
3027 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3029 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3031 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3034 * If we are using project inheritance, we only allow renames
3035 * into our tree when the project IDs are the same; else the
3036 * tree quota mechanism would be circumvented.
3038 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3039 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3041 goto out_trans_cancel;
3044 xfs_defer_init(&dfops, &first_block);
3046 /* RENAME_EXCHANGE is unique from here on. */
3047 if (flags & RENAME_EXCHANGE)
3048 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3049 target_dp, target_name, target_ip,
3050 &dfops, &first_block, spaceres);
3053 * Set up the target.
3055 if (target_ip == NULL) {
3057 * If there's no space reservation, check the entry will
3058 * fit before actually inserting it.
3061 error = xfs_dir_canenter(tp, target_dp, target_name);
3063 goto out_trans_cancel;
3066 * If target does not exist and the rename crosses
3067 * directories, adjust the target directory link count
3068 * to account for the ".." reference from the new entry.
3070 error = xfs_dir_createname(tp, target_dp, target_name,
3071 src_ip->i_ino, &first_block,
3074 goto out_bmap_cancel;
3076 xfs_trans_ichgtime(tp, target_dp,
3077 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3079 if (new_parent && src_is_directory) {
3080 error = xfs_bumplink(tp, target_dp);
3082 goto out_bmap_cancel;
3084 } else { /* target_ip != NULL */
3086 * If target exists and it's a directory, check that both
3087 * target and source are directories and that target can be
3088 * destroyed, or that neither is a directory.
3090 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3092 * Make sure target dir is empty.
3094 if (!(xfs_dir_isempty(target_ip)) ||
3095 (VFS_I(target_ip)->i_nlink > 2)) {
3097 goto out_trans_cancel;
3102 * Link the source inode under the target name.
3103 * If the source inode is a directory and we are moving
3104 * it across directories, its ".." entry will be
3105 * inconsistent until we replace that down below.
3107 * In case there is already an entry with the same
3108 * name at the destination directory, remove it first.
3110 error = xfs_dir_replace(tp, target_dp, target_name,
3112 &first_block, &dfops, spaceres);
3114 goto out_bmap_cancel;
3116 xfs_trans_ichgtime(tp, target_dp,
3117 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3120 * Decrement the link count on the target since the target
3121 * dir no longer points to it.
3123 error = xfs_droplink(tp, target_ip);
3125 goto out_bmap_cancel;
3127 if (src_is_directory) {
3129 * Drop the link from the old "." entry.
3131 error = xfs_droplink(tp, target_ip);
3133 goto out_bmap_cancel;
3135 } /* target_ip != NULL */
3138 * Remove the source.
3140 if (new_parent && src_is_directory) {
3142 * Rewrite the ".." entry to point to the new
3145 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3147 &first_block, &dfops, spaceres);
3148 ASSERT(error != -EEXIST);
3150 goto out_bmap_cancel;
3154 * We always want to hit the ctime on the source inode.
3156 * This isn't strictly required by the standards since the source
3157 * inode isn't really being changed, but old unix file systems did
3158 * it and some incremental backup programs won't work without it.
3160 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3161 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3164 * Adjust the link count on src_dp. This is necessary when
3165 * renaming a directory, either within one parent when
3166 * the target existed, or across two parent directories.
3168 if (src_is_directory && (new_parent || target_ip != NULL)) {
3171 * Decrement link count on src_directory since the
3172 * entry that's moved no longer points to it.
3174 error = xfs_droplink(tp, src_dp);
3176 goto out_bmap_cancel;
3180 * For whiteouts, we only need to update the source dirent with the
3181 * inode number of the whiteout inode rather than removing it
3185 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3186 &first_block, &dfops, spaceres);
3188 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3189 &first_block, &dfops, spaceres);
3191 goto out_bmap_cancel;
3194 * For whiteouts, we need to bump the link count on the whiteout inode.
3195 * This means that failures all the way up to this point leave the inode
3196 * on the unlinked list and so cleanup is a simple matter of dropping
3197 * the remaining reference to it. If we fail here after bumping the link
3198 * count, we're shutting down the filesystem so we'll never see the
3199 * intermediate state on disk.
3202 ASSERT(VFS_I(wip)->i_nlink == 0);
3203 error = xfs_bumplink(tp, wip);
3205 goto out_bmap_cancel;
3206 error = xfs_iunlink_remove(tp, wip);
3208 goto out_bmap_cancel;
3209 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3212 * Now we have a real link, clear the "I'm a tmpfile" state
3213 * flag from the inode so it doesn't accidentally get misused in
3216 VFS_I(wip)->i_state &= ~I_LINKABLE;
3219 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3220 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3222 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3224 error = xfs_finish_rename(tp, &dfops);
3230 xfs_defer_cancel(&dfops);
3232 xfs_trans_cancel(tp);
3241 struct xfs_inode *ip,
3244 struct xfs_mount *mp = ip->i_mount;
3245 struct xfs_perag *pag;
3246 unsigned long first_index, mask;
3247 unsigned long inodes_per_cluster;
3249 struct xfs_inode **cilist;
3250 struct xfs_inode *cip;
3256 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3258 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3259 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3260 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3264 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3265 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3267 /* really need a gang lookup range call here */
3268 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3269 first_index, inodes_per_cluster);
3273 for (i = 0; i < nr_found; i++) {
3279 * because this is an RCU protected lookup, we could find a
3280 * recently freed or even reallocated inode during the lookup.
3281 * We need to check under the i_flags_lock for a valid inode
3282 * here. Skip it if it is not valid or the wrong inode.
3284 spin_lock(&cip->i_flags_lock);
3286 __xfs_iflags_test(cip, XFS_ISTALE)) {
3287 spin_unlock(&cip->i_flags_lock);
3292 * Once we fall off the end of the cluster, no point checking
3293 * any more inodes in the list because they will also all be
3294 * outside the cluster.
3296 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3297 spin_unlock(&cip->i_flags_lock);
3300 spin_unlock(&cip->i_flags_lock);
3303 * Do an un-protected check to see if the inode is dirty and
3304 * is a candidate for flushing. These checks will be repeated
3305 * later after the appropriate locks are acquired.
3307 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3311 * Try to get locks. If any are unavailable or it is pinned,
3312 * then this inode cannot be flushed and is skipped.
3315 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3317 if (!xfs_iflock_nowait(cip)) {
3318 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3321 if (xfs_ipincount(cip)) {
3323 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3329 * Check the inode number again, just to be certain we are not
3330 * racing with freeing in xfs_reclaim_inode(). See the comments
3331 * in that function for more information as to why the initial
3332 * check is not sufficient.
3336 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3341 * arriving here means that this inode can be flushed. First
3342 * re-check that it's dirty before flushing.
3344 if (!xfs_inode_clean(cip)) {
3346 error = xfs_iflush_int(cip, bp);
3348 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3349 goto cluster_corrupt_out;
3355 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3359 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3360 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3371 cluster_corrupt_out:
3373 * Corruption detected in the clustering loop. Invalidate the
3374 * inode buffer and shut down the filesystem.
3378 * Clean up the buffer. If it was delwri, just release it --
3379 * brelse can handle it with no problems. If not, shut down the
3380 * filesystem before releasing the buffer.
3382 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3386 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3388 if (!bufwasdelwri) {
3390 * Just like incore_relse: if we have b_iodone functions,
3391 * mark the buffer as an error and call them. Otherwise
3392 * mark it as stale and brelse.
3395 bp->b_flags &= ~XBF_DONE;
3397 xfs_buf_ioerror(bp, -EIO);
3406 * Unlocks the flush lock
3408 xfs_iflush_abort(cip, false);
3411 return -EFSCORRUPTED;
3415 * Flush dirty inode metadata into the backing buffer.
3417 * The caller must have the inode lock and the inode flush lock held. The
3418 * inode lock will still be held upon return to the caller, and the inode
3419 * flush lock will be released after the inode has reached the disk.
3421 * The caller must write out the buffer returned in *bpp and release it.
3425 struct xfs_inode *ip,
3426 struct xfs_buf **bpp)
3428 struct xfs_mount *mp = ip->i_mount;
3429 struct xfs_buf *bp = NULL;
3430 struct xfs_dinode *dip;
3433 XFS_STATS_INC(mp, xs_iflush_count);
3435 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3436 ASSERT(xfs_isiflocked(ip));
3437 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3438 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3442 xfs_iunpin_wait(ip);
3445 * For stale inodes we cannot rely on the backing buffer remaining
3446 * stale in cache for the remaining life of the stale inode and so
3447 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3448 * inodes below. We have to check this after ensuring the inode is
3449 * unpinned so that it is safe to reclaim the stale inode after the
3452 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3458 * This may have been unpinned because the filesystem is shutting
3459 * down forcibly. If that's the case we must not write this inode
3460 * to disk, because the log record didn't make it to disk.
3462 * We also have to remove the log item from the AIL in this case,
3463 * as we wait for an empty AIL as part of the unmount process.
3465 if (XFS_FORCED_SHUTDOWN(mp)) {
3471 * Get the buffer containing the on-disk inode. We are doing a try-lock
3472 * operation here, so we may get an EAGAIN error. In that case, we
3473 * simply want to return with the inode still dirty.
3475 * If we get any other error, we effectively have a corruption situation
3476 * and we cannot flush the inode, so we treat it the same as failing
3479 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3481 if (error == -EAGAIN) {
3489 * First flush out the inode that xfs_iflush was called with.
3491 error = xfs_iflush_int(ip, bp);
3496 * If the buffer is pinned then push on the log now so we won't
3497 * get stuck waiting in the write for too long.
3499 if (xfs_buf_ispinned(bp))
3500 xfs_log_force(mp, 0);
3504 * see if other inodes can be gathered into this write
3506 error = xfs_iflush_cluster(ip, bp);
3508 goto cluster_corrupt_out;
3516 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3517 cluster_corrupt_out:
3518 error = -EFSCORRUPTED;
3521 * Unlocks the flush lock
3523 xfs_iflush_abort(ip, false);
3529 struct xfs_inode *ip,
3532 struct xfs_inode_log_item *iip = ip->i_itemp;
3533 struct xfs_dinode *dip;
3534 struct xfs_mount *mp = ip->i_mount;
3536 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3537 ASSERT(xfs_isiflocked(ip));
3538 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3539 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3540 ASSERT(iip != NULL && iip->ili_fields != 0);
3541 ASSERT(ip->i_d.di_version > 1);
3543 /* set *dip = inode's place in the buffer */
3544 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3546 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3547 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3548 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3549 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3550 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3553 if (S_ISREG(VFS_I(ip)->i_mode)) {
3555 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3556 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3557 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3558 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3559 "%s: Bad regular inode %Lu, ptr 0x%p",
3560 __func__, ip->i_ino, ip);
3563 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3565 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3566 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3567 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3568 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3569 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3570 "%s: Bad directory inode %Lu, ptr 0x%p",
3571 __func__, ip->i_ino, ip);
3575 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3576 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3577 XFS_RANDOM_IFLUSH_5)) {
3578 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3579 "%s: detected corrupt incore inode %Lu, "
3580 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3581 __func__, ip->i_ino,
3582 ip->i_d.di_nextents + ip->i_d.di_anextents,
3583 ip->i_d.di_nblocks, ip);
3586 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3587 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3588 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3589 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3590 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3595 * Inode item log recovery for v2 inodes are dependent on the
3596 * di_flushiter count for correct sequencing. We bump the flush
3597 * iteration count so we can detect flushes which postdate a log record
3598 * during recovery. This is redundant as we now log every change and
3599 * hence this can't happen but we need to still do it to ensure
3600 * backwards compatibility with old kernels that predate logging all
3603 if (ip->i_d.di_version < 3)
3604 ip->i_d.di_flushiter++;
3606 /* Check the inline directory data. */
3607 if (S_ISDIR(VFS_I(ip)->i_mode) &&
3608 ip->i_d.di_format == XFS_DINODE_FMT_LOCAL &&
3609 xfs_dir2_sf_verify(ip))
3613 * Copy the dirty parts of the inode into the on-disk inode. We always
3614 * copy out the core of the inode, because if the inode is dirty at all
3617 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3619 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3620 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3621 ip->i_d.di_flushiter = 0;
3623 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3624 if (XFS_IFORK_Q(ip))
3625 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3626 xfs_inobp_check(mp, bp);
3629 * We've recorded everything logged in the inode, so we'd like to clear
3630 * the ili_fields bits so we don't log and flush things unnecessarily.
3631 * However, we can't stop logging all this information until the data
3632 * we've copied into the disk buffer is written to disk. If we did we
3633 * might overwrite the copy of the inode in the log with all the data
3634 * after re-logging only part of it, and in the face of a crash we
3635 * wouldn't have all the data we need to recover.
3637 * What we do is move the bits to the ili_last_fields field. When
3638 * logging the inode, these bits are moved back to the ili_fields field.
3639 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3640 * know that the information those bits represent is permanently on
3641 * disk. As long as the flush completes before the inode is logged
3642 * again, then both ili_fields and ili_last_fields will be cleared.
3644 * We can play with the ili_fields bits here, because the inode lock
3645 * must be held exclusively in order to set bits there and the flush
3646 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3647 * done routine can tell whether or not to look in the AIL. Also, store
3648 * the current LSN of the inode so that we can tell whether the item has
3649 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3650 * need the AIL lock, because it is a 64 bit value that cannot be read
3653 iip->ili_last_fields = iip->ili_fields;
3654 iip->ili_fields = 0;
3655 iip->ili_fsync_fields = 0;
3656 iip->ili_logged = 1;
3658 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3659 &iip->ili_item.li_lsn);
3662 * Attach the function xfs_iflush_done to the inode's
3663 * buffer. This will remove the inode from the AIL
3664 * and unlock the inode's flush lock when the inode is
3665 * completely written to disk.
3667 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3669 /* generate the checksum. */
3670 xfs_dinode_calc_crc(mp, dip);
3672 ASSERT(bp->b_fspriv != NULL);
3673 ASSERT(bp->b_iodone != NULL);
3677 return -EFSCORRUPTED;