1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
6 #include <linux/iversion.h>
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
19 #include "xfs_trans_space.h"
20 #include "xfs_trans.h"
21 #include "xfs_buf_item.h"
22 #include "xfs_inode_item.h"
23 #include "xfs_ialloc.h"
25 #include "xfs_bmap_util.h"
26 #include "xfs_errortag.h"
27 #include "xfs_error.h"
28 #include "xfs_quota.h"
29 #include "xfs_filestream.h"
30 #include "xfs_trace.h"
31 #include "xfs_icache.h"
32 #include "xfs_symlink.h"
33 #include "xfs_trans_priv.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_reflink.h"
38 #include "xfs_log_priv.h"
40 struct kmem_cache *xfs_inode_cache;
43 * Used in xfs_itruncate_extents(). This is the maximum number of extents
44 * freed from a file in a single transaction.
46 #define XFS_ITRUNC_MAX_EXTENTS 2
48 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
49 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
53 * helper function to extract extent size hint from inode
60 * No point in aligning allocations if we need to COW to actually
63 if (xfs_is_always_cow_inode(ip))
65 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
67 if (XFS_IS_REALTIME_INODE(ip))
68 return ip->i_mount->m_sb.sb_rextsize;
73 * Helper function to extract CoW extent size hint from inode.
74 * Between the extent size hint and the CoW extent size hint, we
75 * return the greater of the two. If the value is zero (automatic),
76 * use the default size.
79 xfs_get_cowextsz_hint(
85 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
87 b = xfs_get_extsz_hint(ip);
91 return XFS_DEFAULT_COWEXTSZ_HINT;
96 * These two are wrapper routines around the xfs_ilock() routine used to
97 * centralize some grungy code. They are used in places that wish to lock the
98 * inode solely for reading the extents. The reason these places can't just
99 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
100 * bringing in of the extents from disk for a file in b-tree format. If the
101 * inode is in b-tree format, then we need to lock the inode exclusively until
102 * the extents are read in. Locking it exclusively all the time would limit
103 * our parallelism unnecessarily, though. What we do instead is check to see
104 * if the extents have been read in yet, and only lock the inode exclusively
107 * The functions return a value which should be given to the corresponding
108 * xfs_iunlock() call.
111 xfs_ilock_data_map_shared(
112 struct xfs_inode *ip)
114 uint lock_mode = XFS_ILOCK_SHARED;
116 if (xfs_need_iread_extents(&ip->i_df))
117 lock_mode = XFS_ILOCK_EXCL;
118 xfs_ilock(ip, lock_mode);
123 xfs_ilock_attr_map_shared(
124 struct xfs_inode *ip)
126 uint lock_mode = XFS_ILOCK_SHARED;
128 if (ip->i_afp && xfs_need_iread_extents(ip->i_afp))
129 lock_mode = XFS_ILOCK_EXCL;
130 xfs_ilock(ip, lock_mode);
135 * You can't set both SHARED and EXCL for the same lock,
136 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
137 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
138 * to set in lock_flags.
141 xfs_lock_flags_assert(
144 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
145 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
146 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
147 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
148 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
149 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
150 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
151 ASSERT(lock_flags != 0);
155 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
156 * multi-reader locks: invalidate_lock and the i_lock. This routine allows
157 * various combinations of the locks to be obtained.
159 * The 3 locks should always be ordered so that the IO lock is obtained first,
160 * the mmap lock second and the ilock last in order to prevent deadlock.
162 * Basic locking order:
164 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
166 * mmap_lock locking order:
168 * i_rwsem -> page lock -> mmap_lock
169 * mmap_lock -> invalidate_lock -> page_lock
171 * The difference in mmap_lock locking order mean that we cannot hold the
172 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
173 * can fault in pages during copy in/out (for buffered IO) or require the
174 * mmap_lock in get_user_pages() to map the user pages into the kernel address
175 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
176 * fault because page faults already hold the mmap_lock.
178 * Hence to serialise fully against both syscall and mmap based IO, we need to
179 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
180 * both taken in places where we need to invalidate the page cache in a race
181 * free manner (e.g. truncate, hole punch and other extent manipulation
189 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
191 xfs_lock_flags_assert(lock_flags);
193 if (lock_flags & XFS_IOLOCK_EXCL) {
194 down_write_nested(&VFS_I(ip)->i_rwsem,
195 XFS_IOLOCK_DEP(lock_flags));
196 } else if (lock_flags & XFS_IOLOCK_SHARED) {
197 down_read_nested(&VFS_I(ip)->i_rwsem,
198 XFS_IOLOCK_DEP(lock_flags));
201 if (lock_flags & XFS_MMAPLOCK_EXCL) {
202 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
203 XFS_MMAPLOCK_DEP(lock_flags));
204 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
205 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
206 XFS_MMAPLOCK_DEP(lock_flags));
209 if (lock_flags & XFS_ILOCK_EXCL)
210 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
211 else if (lock_flags & XFS_ILOCK_SHARED)
212 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
216 * This is just like xfs_ilock(), except that the caller
217 * is guaranteed not to sleep. It returns 1 if it gets
218 * the requested locks and 0 otherwise. If the IO lock is
219 * obtained but the inode lock cannot be, then the IO lock
220 * is dropped before returning.
222 * ip -- the inode being locked
223 * lock_flags -- this parameter indicates the inode's locks to be
224 * to be locked. See the comment for xfs_ilock() for a list
232 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
234 xfs_lock_flags_assert(lock_flags);
236 if (lock_flags & XFS_IOLOCK_EXCL) {
237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
239 } else if (lock_flags & XFS_IOLOCK_SHARED) {
240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
244 if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
246 goto out_undo_iolock;
247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
249 goto out_undo_iolock;
252 if (lock_flags & XFS_ILOCK_EXCL) {
253 if (!mrtryupdate(&ip->i_lock))
254 goto out_undo_mmaplock;
255 } else if (lock_flags & XFS_ILOCK_SHARED) {
256 if (!mrtryaccess(&ip->i_lock))
257 goto out_undo_mmaplock;
262 if (lock_flags & XFS_MMAPLOCK_EXCL)
263 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
264 else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
267 if (lock_flags & XFS_IOLOCK_EXCL)
268 up_write(&VFS_I(ip)->i_rwsem);
269 else if (lock_flags & XFS_IOLOCK_SHARED)
270 up_read(&VFS_I(ip)->i_rwsem);
276 * xfs_iunlock() is used to drop the inode locks acquired with
277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279 * that we know which locks to drop.
281 * ip -- the inode being unlocked
282 * lock_flags -- this parameter indicates the inode's locks to be
283 * to be unlocked. See the comment for xfs_ilock() for a list
284 * of valid values for this parameter.
292 xfs_lock_flags_assert(lock_flags);
294 if (lock_flags & XFS_IOLOCK_EXCL)
295 up_write(&VFS_I(ip)->i_rwsem);
296 else if (lock_flags & XFS_IOLOCK_SHARED)
297 up_read(&VFS_I(ip)->i_rwsem);
299 if (lock_flags & XFS_MMAPLOCK_EXCL)
300 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
301 else if (lock_flags & XFS_MMAPLOCK_SHARED)
302 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
304 if (lock_flags & XFS_ILOCK_EXCL)
305 mrunlock_excl(&ip->i_lock);
306 else if (lock_flags & XFS_ILOCK_SHARED)
307 mrunlock_shared(&ip->i_lock);
309 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
313 * give up write locks. the i/o lock cannot be held nested
314 * if it is being demoted.
321 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
323 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
325 if (lock_flags & XFS_ILOCK_EXCL)
326 mrdemote(&ip->i_lock);
327 if (lock_flags & XFS_MMAPLOCK_EXCL)
328 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
329 if (lock_flags & XFS_IOLOCK_EXCL)
330 downgrade_write(&VFS_I(ip)->i_rwsem);
332 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
335 #if defined(DEBUG) || defined(XFS_WARN)
337 __xfs_rwsem_islocked(
338 struct rw_semaphore *rwsem,
342 return rwsem_is_locked(rwsem);
345 return lockdep_is_held_type(rwsem, 0);
348 * We are checking that the lock is held at least in shared
349 * mode but don't care that it might be held exclusively
350 * (i.e. shared | excl). Hence we check if the lock is held
351 * in any mode rather than an explicit shared mode.
353 return lockdep_is_held_type(rwsem, -1);
358 struct xfs_inode *ip,
361 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
362 if (!(lock_flags & XFS_ILOCK_SHARED))
363 return !!ip->i_lock.mr_writer;
364 return rwsem_is_locked(&ip->i_lock.mr_lock);
367 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
368 return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock,
369 (lock_flags & XFS_MMAPLOCK_SHARED));
372 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
373 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
374 (lock_flags & XFS_IOLOCK_SHARED));
383 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
384 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
385 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
386 * errors and warnings.
388 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
390 xfs_lockdep_subclass_ok(
393 return subclass < MAX_LOCKDEP_SUBCLASSES;
396 #define xfs_lockdep_subclass_ok(subclass) (true)
400 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
401 * value. This can be called for any type of inode lock combination, including
402 * parent locking. Care must be taken to ensure we don't overrun the subclass
403 * storage fields in the class mask we build.
412 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
414 ASSERT(xfs_lockdep_subclass_ok(subclass));
416 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
417 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
418 class += subclass << XFS_IOLOCK_SHIFT;
421 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
422 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
423 class += subclass << XFS_MMAPLOCK_SHIFT;
426 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
427 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
428 class += subclass << XFS_ILOCK_SHIFT;
431 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
435 * The following routine will lock n inodes in exclusive mode. We assume the
436 * caller calls us with the inodes in i_ino order.
438 * We need to detect deadlock where an inode that we lock is in the AIL and we
439 * start waiting for another inode that is locked by a thread in a long running
440 * transaction (such as truncate). This can result in deadlock since the long
441 * running trans might need to wait for the inode we just locked in order to
442 * push the tail and free space in the log.
444 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
445 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
446 * lock more than one at a time, lockdep will report false positives saying we
447 * have violated locking orders.
451 struct xfs_inode **ips,
459 struct xfs_log_item *lp;
462 * Currently supports between 2 and 5 inodes with exclusive locking. We
463 * support an arbitrary depth of locking here, but absolute limits on
464 * inodes depend on the type of locking and the limits placed by
465 * lockdep annotations in xfs_lock_inumorder. These are all checked by
468 ASSERT(ips && inodes >= 2 && inodes <= 5);
469 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
471 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
473 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
474 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
475 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
476 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
478 if (lock_mode & XFS_IOLOCK_EXCL) {
479 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
480 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
481 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
486 for (; i < inodes; i++) {
489 if (i && (ips[i] == ips[i - 1])) /* Already locked */
493 * If try_lock is not set yet, make sure all locked inodes are
494 * not in the AIL. If any are, set try_lock to be used later.
497 for (j = (i - 1); j >= 0 && !try_lock; j--) {
498 lp = &ips[j]->i_itemp->ili_item;
499 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
505 * If any of the previous locks we have locked is in the AIL,
506 * we must TRY to get the second and subsequent locks. If
507 * we can't get any, we must release all we have
511 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
515 /* try_lock means we have an inode locked that is in the AIL. */
517 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
521 * Unlock all previous guys and try again. xfs_iunlock will try
522 * to push the tail if the inode is in the AIL.
525 for (j = i - 1; j >= 0; j--) {
527 * Check to see if we've already unlocked this one. Not
528 * the first one going back, and the inode ptr is the
531 if (j != (i - 1) && ips[j] == ips[j + 1])
534 xfs_iunlock(ips[j], lock_mode);
537 if ((attempts % 5) == 0) {
538 delay(1); /* Don't just spin the CPU */
545 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
546 * mmaplock must be double-locked separately since we use i_rwsem and
547 * invalidate_lock for that. We now support taking one lock EXCL and the
552 struct xfs_inode *ip0,
554 struct xfs_inode *ip1,
558 struct xfs_log_item *lp;
560 ASSERT(hweight32(ip0_mode) == 1);
561 ASSERT(hweight32(ip1_mode) == 1);
562 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
563 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
564 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
565 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
566 ASSERT(ip0->i_ino != ip1->i_ino);
568 if (ip0->i_ino > ip1->i_ino) {
570 swap(ip0_mode, ip1_mode);
574 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
577 * If the first lock we have locked is in the AIL, we must TRY to get
578 * the second lock. If we can't get it, we must release the first one
581 lp = &ip0->i_itemp->ili_item;
582 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
583 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
584 xfs_iunlock(ip0, ip0_mode);
585 if ((++attempts % 5) == 0)
586 delay(1); /* Don't just spin the CPU */
590 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
596 struct xfs_inode *ip)
600 if (ip->i_diflags & XFS_DIFLAG_ANY) {
601 if (ip->i_diflags & XFS_DIFLAG_REALTIME)
602 flags |= FS_XFLAG_REALTIME;
603 if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
604 flags |= FS_XFLAG_PREALLOC;
605 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
606 flags |= FS_XFLAG_IMMUTABLE;
607 if (ip->i_diflags & XFS_DIFLAG_APPEND)
608 flags |= FS_XFLAG_APPEND;
609 if (ip->i_diflags & XFS_DIFLAG_SYNC)
610 flags |= FS_XFLAG_SYNC;
611 if (ip->i_diflags & XFS_DIFLAG_NOATIME)
612 flags |= FS_XFLAG_NOATIME;
613 if (ip->i_diflags & XFS_DIFLAG_NODUMP)
614 flags |= FS_XFLAG_NODUMP;
615 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
616 flags |= FS_XFLAG_RTINHERIT;
617 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
618 flags |= FS_XFLAG_PROJINHERIT;
619 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
620 flags |= FS_XFLAG_NOSYMLINKS;
621 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
622 flags |= FS_XFLAG_EXTSIZE;
623 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
624 flags |= FS_XFLAG_EXTSZINHERIT;
625 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
626 flags |= FS_XFLAG_NODEFRAG;
627 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
628 flags |= FS_XFLAG_FILESTREAM;
631 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
632 if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
633 flags |= FS_XFLAG_DAX;
634 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
635 flags |= FS_XFLAG_COWEXTSIZE;
639 flags |= FS_XFLAG_HASATTR;
644 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
645 * is allowed, otherwise it has to be an exact match. If a CI match is found,
646 * ci_name->name will point to a the actual name (caller must free) or
647 * will be set to NULL if an exact match is found.
651 struct xfs_inode *dp,
652 const struct xfs_name *name,
653 struct xfs_inode **ipp,
654 struct xfs_name *ci_name)
659 trace_xfs_lookup(dp, name);
661 if (xfs_is_shutdown(dp->i_mount))
664 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
668 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
676 kmem_free(ci_name->name);
682 /* Propagate di_flags from a parent inode to a child inode. */
684 xfs_inode_inherit_flags(
685 struct xfs_inode *ip,
686 const struct xfs_inode *pip)
688 unsigned int di_flags = 0;
689 xfs_failaddr_t failaddr;
690 umode_t mode = VFS_I(ip)->i_mode;
693 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
694 di_flags |= XFS_DIFLAG_RTINHERIT;
695 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
696 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
697 ip->i_extsize = pip->i_extsize;
699 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
700 di_flags |= XFS_DIFLAG_PROJINHERIT;
701 } else if (S_ISREG(mode)) {
702 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
703 xfs_has_realtime(ip->i_mount))
704 di_flags |= XFS_DIFLAG_REALTIME;
705 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
706 di_flags |= XFS_DIFLAG_EXTSIZE;
707 ip->i_extsize = pip->i_extsize;
710 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
712 di_flags |= XFS_DIFLAG_NOATIME;
713 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
715 di_flags |= XFS_DIFLAG_NODUMP;
716 if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
718 di_flags |= XFS_DIFLAG_SYNC;
719 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
720 xfs_inherit_nosymlinks)
721 di_flags |= XFS_DIFLAG_NOSYMLINKS;
722 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
723 xfs_inherit_nodefrag)
724 di_flags |= XFS_DIFLAG_NODEFRAG;
725 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
726 di_flags |= XFS_DIFLAG_FILESTREAM;
728 ip->i_diflags |= di_flags;
731 * Inode verifiers on older kernels only check that the extent size
732 * hint is an integer multiple of the rt extent size on realtime files.
733 * They did not check the hint alignment on a directory with both
734 * rtinherit and extszinherit flags set. If the misaligned hint is
735 * propagated from a directory into a new realtime file, new file
736 * allocations will fail due to math errors in the rt allocator and/or
737 * trip the verifiers. Validate the hint settings in the new file so
738 * that we don't let broken hints propagate.
740 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
741 VFS_I(ip)->i_mode, ip->i_diflags);
743 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
744 XFS_DIFLAG_EXTSZINHERIT);
749 /* Propagate di_flags2 from a parent inode to a child inode. */
751 xfs_inode_inherit_flags2(
752 struct xfs_inode *ip,
753 const struct xfs_inode *pip)
755 xfs_failaddr_t failaddr;
757 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
758 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
759 ip->i_cowextsize = pip->i_cowextsize;
761 if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
762 ip->i_diflags2 |= XFS_DIFLAG2_DAX;
764 /* Don't let invalid cowextsize hints propagate. */
765 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
766 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
768 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
769 ip->i_cowextsize = 0;
774 * Initialise a newly allocated inode and return the in-core inode to the
775 * caller locked exclusively.
779 struct user_namespace *mnt_userns,
780 struct xfs_trans *tp,
781 struct xfs_inode *pip,
788 struct xfs_inode **ipp)
790 struct inode *dir = pip ? VFS_I(pip) : NULL;
791 struct xfs_mount *mp = tp->t_mountp;
792 struct xfs_inode *ip;
795 struct timespec64 tv;
799 * Protect against obviously corrupt allocation btree records. Later
800 * xfs_iget checks will catch re-allocation of other active in-memory
801 * and on-disk inodes. If we don't catch reallocating the parent inode
802 * here we will deadlock in xfs_iget() so we have to do these checks
805 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
806 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
807 return -EFSCORRUPTED;
811 * Get the in-core inode with the lock held exclusively to prevent
812 * others from looking at until we're done.
814 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
820 set_nlink(inode, nlink);
821 inode->i_rdev = rdev;
824 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
825 inode_fsuid_set(inode, mnt_userns);
826 inode->i_gid = dir->i_gid;
827 inode->i_mode = mode;
829 inode_init_owner(mnt_userns, inode, dir, mode);
833 * If the group ID of the new file does not match the effective group
834 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
835 * (and only if the irix_sgid_inherit compatibility variable is set).
837 if (irix_sgid_inherit &&
838 (inode->i_mode & S_ISGID) &&
839 !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
840 inode->i_mode &= ~S_ISGID;
843 ip->i_df.if_nextents = 0;
844 ASSERT(ip->i_nblocks == 0);
846 tv = current_time(inode);
854 if (xfs_has_v3inodes(mp)) {
855 inode_set_iversion(inode, 1);
856 ip->i_cowextsize = 0;
860 flags = XFS_ILOG_CORE;
861 switch (mode & S_IFMT) {
866 ip->i_df.if_format = XFS_DINODE_FMT_DEV;
867 flags |= XFS_ILOG_DEV;
871 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
872 xfs_inode_inherit_flags(ip, pip);
873 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
874 xfs_inode_inherit_flags2(ip, pip);
877 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
878 ip->i_df.if_bytes = 0;
879 ip->i_df.if_u1.if_root = NULL;
886 * If we need to create attributes immediately after allocating the
887 * inode, initialise an empty attribute fork right now. We use the
888 * default fork offset for attributes here as we don't know exactly what
889 * size or how many attributes we might be adding. We can do this
890 * safely here because we know the data fork is completely empty and
891 * this saves us from needing to run a separate transaction to set the
892 * fork offset in the immediate future.
894 if (init_xattrs && xfs_has_attr(mp)) {
895 ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
896 ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0);
900 * Log the new values stuffed into the inode.
902 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
903 xfs_trans_log_inode(tp, ip, flags);
905 /* now that we have an i_mode we can setup the inode structure */
913 * Decrement the link count on an inode & log the change. If this causes the
914 * link count to go to zero, move the inode to AGI unlinked list so that it can
915 * be freed when the last active reference goes away via xfs_inactive().
917 static int /* error */
922 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
924 drop_nlink(VFS_I(ip));
925 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
927 if (VFS_I(ip)->i_nlink)
930 return xfs_iunlink(tp, ip);
934 * Increment the link count on an inode & log the change.
941 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
943 inc_nlink(VFS_I(ip));
944 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
949 struct user_namespace *mnt_userns,
951 struct xfs_name *name,
957 int is_dir = S_ISDIR(mode);
958 struct xfs_mount *mp = dp->i_mount;
959 struct xfs_inode *ip = NULL;
960 struct xfs_trans *tp = NULL;
962 bool unlock_dp_on_error = false;
964 struct xfs_dquot *udqp = NULL;
965 struct xfs_dquot *gdqp = NULL;
966 struct xfs_dquot *pdqp = NULL;
967 struct xfs_trans_res *tres;
971 trace_xfs_create(dp, name);
973 if (xfs_is_shutdown(mp))
976 prid = xfs_get_initial_prid(dp);
979 * Make sure that we have allocated dquot(s) on disk.
981 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
982 mapped_fsgid(mnt_userns, &init_user_ns), prid,
983 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
984 &udqp, &gdqp, &pdqp);
989 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
990 tres = &M_RES(mp)->tr_mkdir;
992 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
993 tres = &M_RES(mp)->tr_create;
997 * Initially assume that the file does not exist and
998 * reserve the resources for that case. If that is not
999 * the case we'll drop the one we have and get a more
1000 * appropriate transaction later.
1002 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1004 if (error == -ENOSPC) {
1005 /* flush outstanding delalloc blocks and retry */
1006 xfs_flush_inodes(mp);
1007 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1011 goto out_release_dquots;
1013 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1014 unlock_dp_on_error = true;
1017 * A newly created regular or special file just has one directory
1018 * entry pointing to them, but a directory also the "." entry
1019 * pointing to itself.
1021 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1023 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1024 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1026 goto out_trans_cancel;
1029 * Now we join the directory inode to the transaction. We do not do it
1030 * earlier because xfs_dialloc might commit the previous transaction
1031 * (and release all the locks). An error from here on will result in
1032 * the transaction cancel unlocking dp so don't do it explicitly in the
1035 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1036 unlock_dp_on_error = false;
1038 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1039 resblks - XFS_IALLOC_SPACE_RES(mp));
1041 ASSERT(error != -ENOSPC);
1042 goto out_trans_cancel;
1044 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1045 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1048 error = xfs_dir_init(tp, ip, dp);
1050 goto out_trans_cancel;
1052 xfs_bumplink(tp, dp);
1056 * If this is a synchronous mount, make sure that the
1057 * create transaction goes to disk before returning to
1060 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1061 xfs_trans_set_sync(tp);
1064 * Attach the dquot(s) to the inodes and modify them incore.
1065 * These ids of the inode couldn't have changed since the new
1066 * inode has been locked ever since it was created.
1068 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1070 error = xfs_trans_commit(tp);
1072 goto out_release_inode;
1074 xfs_qm_dqrele(udqp);
1075 xfs_qm_dqrele(gdqp);
1076 xfs_qm_dqrele(pdqp);
1082 xfs_trans_cancel(tp);
1085 * Wait until after the current transaction is aborted to finish the
1086 * setup of the inode and release the inode. This prevents recursive
1087 * transactions and deadlocks from xfs_inactive.
1090 xfs_finish_inode_setup(ip);
1094 xfs_qm_dqrele(udqp);
1095 xfs_qm_dqrele(gdqp);
1096 xfs_qm_dqrele(pdqp);
1098 if (unlock_dp_on_error)
1099 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1105 struct user_namespace *mnt_userns,
1106 struct xfs_inode *dp,
1108 struct xfs_inode **ipp)
1110 struct xfs_mount *mp = dp->i_mount;
1111 struct xfs_inode *ip = NULL;
1112 struct xfs_trans *tp = NULL;
1115 struct xfs_dquot *udqp = NULL;
1116 struct xfs_dquot *gdqp = NULL;
1117 struct xfs_dquot *pdqp = NULL;
1118 struct xfs_trans_res *tres;
1122 if (xfs_is_shutdown(mp))
1125 prid = xfs_get_initial_prid(dp);
1128 * Make sure that we have allocated dquot(s) on disk.
1130 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
1131 mapped_fsgid(mnt_userns, &init_user_ns), prid,
1132 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1133 &udqp, &gdqp, &pdqp);
1137 resblks = XFS_IALLOC_SPACE_RES(mp);
1138 tres = &M_RES(mp)->tr_create_tmpfile;
1140 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1143 goto out_release_dquots;
1145 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1147 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1148 0, 0, prid, false, &ip);
1150 goto out_trans_cancel;
1152 if (xfs_has_wsync(mp))
1153 xfs_trans_set_sync(tp);
1156 * Attach the dquot(s) to the inodes and modify them incore.
1157 * These ids of the inode couldn't have changed since the new
1158 * inode has been locked ever since it was created.
1160 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1162 error = xfs_iunlink(tp, ip);
1164 goto out_trans_cancel;
1166 error = xfs_trans_commit(tp);
1168 goto out_release_inode;
1170 xfs_qm_dqrele(udqp);
1171 xfs_qm_dqrele(gdqp);
1172 xfs_qm_dqrele(pdqp);
1178 xfs_trans_cancel(tp);
1181 * Wait until after the current transaction is aborted to finish the
1182 * setup of the inode and release the inode. This prevents recursive
1183 * transactions and deadlocks from xfs_inactive.
1186 xfs_finish_inode_setup(ip);
1190 xfs_qm_dqrele(udqp);
1191 xfs_qm_dqrele(gdqp);
1192 xfs_qm_dqrele(pdqp);
1201 struct xfs_name *target_name)
1203 xfs_mount_t *mp = tdp->i_mount;
1205 int error, nospace_error = 0;
1208 trace_xfs_link(tdp, target_name);
1210 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1212 if (xfs_is_shutdown(mp))
1215 error = xfs_qm_dqattach(sip);
1219 error = xfs_qm_dqattach(tdp);
1223 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1224 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1225 &tp, &nospace_error);
1230 * If we are using project inheritance, we only allow hard link
1231 * creation in our tree when the project IDs are the same; else
1232 * the tree quota mechanism could be circumvented.
1234 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1235 tdp->i_projid != sip->i_projid)) {
1241 error = xfs_dir_canenter(tp, tdp, target_name);
1247 * Handle initial link state of O_TMPFILE inode
1249 if (VFS_I(sip)->i_nlink == 0) {
1250 struct xfs_perag *pag;
1252 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1253 error = xfs_iunlink_remove(tp, pag, sip);
1259 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1263 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1264 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1266 xfs_bumplink(tp, sip);
1269 * If this is a synchronous mount, make sure that the
1270 * link transaction goes to disk before returning to
1273 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1274 xfs_trans_set_sync(tp);
1276 return xfs_trans_commit(tp);
1279 xfs_trans_cancel(tp);
1281 if (error == -ENOSPC && nospace_error)
1282 error = nospace_error;
1286 /* Clear the reflink flag and the cowblocks tag if possible. */
1288 xfs_itruncate_clear_reflink_flags(
1289 struct xfs_inode *ip)
1291 struct xfs_ifork *dfork;
1292 struct xfs_ifork *cfork;
1294 if (!xfs_is_reflink_inode(ip))
1296 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1297 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1298 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1299 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1300 if (cfork->if_bytes == 0)
1301 xfs_inode_clear_cowblocks_tag(ip);
1305 * Free up the underlying blocks past new_size. The new size must be smaller
1306 * than the current size. This routine can be used both for the attribute and
1307 * data fork, and does not modify the inode size, which is left to the caller.
1309 * The transaction passed to this routine must have made a permanent log
1310 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1311 * given transaction and start new ones, so make sure everything involved in
1312 * the transaction is tidy before calling here. Some transaction will be
1313 * returned to the caller to be committed. The incoming transaction must
1314 * already include the inode, and both inode locks must be held exclusively.
1315 * The inode must also be "held" within the transaction. On return the inode
1316 * will be "held" within the returned transaction. This routine does NOT
1317 * require any disk space to be reserved for it within the transaction.
1319 * If we get an error, we must return with the inode locked and linked into the
1320 * current transaction. This keeps things simple for the higher level code,
1321 * because it always knows that the inode is locked and held in the transaction
1322 * that returns to it whether errors occur or not. We don't mark the inode
1323 * dirty on error so that transactions can be easily aborted if possible.
1326 xfs_itruncate_extents_flags(
1327 struct xfs_trans **tpp,
1328 struct xfs_inode *ip,
1330 xfs_fsize_t new_size,
1333 struct xfs_mount *mp = ip->i_mount;
1334 struct xfs_trans *tp = *tpp;
1335 xfs_fileoff_t first_unmap_block;
1336 xfs_filblks_t unmap_len;
1339 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1340 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1341 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1342 ASSERT(new_size <= XFS_ISIZE(ip));
1343 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1344 ASSERT(ip->i_itemp != NULL);
1345 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1346 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1348 trace_xfs_itruncate_extents_start(ip, new_size);
1350 flags |= xfs_bmapi_aflag(whichfork);
1353 * Since it is possible for space to become allocated beyond
1354 * the end of the file (in a crash where the space is allocated
1355 * but the inode size is not yet updated), simply remove any
1356 * blocks which show up between the new EOF and the maximum
1357 * possible file size.
1359 * We have to free all the blocks to the bmbt maximum offset, even if
1360 * the page cache can't scale that far.
1362 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1363 if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1364 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1368 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1369 while (unmap_len > 0) {
1370 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1371 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1372 flags, XFS_ITRUNC_MAX_EXTENTS);
1376 /* free the just unmapped extents */
1377 error = xfs_defer_finish(&tp);
1382 if (whichfork == XFS_DATA_FORK) {
1383 /* Remove all pending CoW reservations. */
1384 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1385 first_unmap_block, XFS_MAX_FILEOFF, true);
1389 xfs_itruncate_clear_reflink_flags(ip);
1393 * Always re-log the inode so that our permanent transaction can keep
1394 * on rolling it forward in the log.
1396 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1398 trace_xfs_itruncate_extents_end(ip, new_size);
1409 xfs_mount_t *mp = ip->i_mount;
1412 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1415 /* If this is a read-only mount, don't do this (would generate I/O) */
1416 if (xfs_is_readonly(mp))
1419 if (!xfs_is_shutdown(mp)) {
1423 * If we previously truncated this file and removed old data
1424 * in the process, we want to initiate "early" writeout on
1425 * the last close. This is an attempt to combat the notorious
1426 * NULL files problem which is particularly noticeable from a
1427 * truncate down, buffered (re-)write (delalloc), followed by
1428 * a crash. What we are effectively doing here is
1429 * significantly reducing the time window where we'd otherwise
1430 * be exposed to that problem.
1432 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1434 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1435 if (ip->i_delayed_blks > 0) {
1436 error = filemap_flush(VFS_I(ip)->i_mapping);
1443 if (VFS_I(ip)->i_nlink == 0)
1447 * If we can't get the iolock just skip truncating the blocks past EOF
1448 * because we could deadlock with the mmap_lock otherwise. We'll get
1449 * another chance to drop them once the last reference to the inode is
1450 * dropped, so we'll never leak blocks permanently.
1452 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1455 if (xfs_can_free_eofblocks(ip, false)) {
1457 * Check if the inode is being opened, written and closed
1458 * frequently and we have delayed allocation blocks outstanding
1459 * (e.g. streaming writes from the NFS server), truncating the
1460 * blocks past EOF will cause fragmentation to occur.
1462 * In this case don't do the truncation, but we have to be
1463 * careful how we detect this case. Blocks beyond EOF show up as
1464 * i_delayed_blks even when the inode is clean, so we need to
1465 * truncate them away first before checking for a dirty release.
1466 * Hence on the first dirty close we will still remove the
1467 * speculative allocation, but after that we will leave it in
1470 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1473 error = xfs_free_eofblocks(ip);
1477 /* delalloc blocks after truncation means it really is dirty */
1478 if (ip->i_delayed_blks)
1479 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1483 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1488 * xfs_inactive_truncate
1490 * Called to perform a truncate when an inode becomes unlinked.
1493 xfs_inactive_truncate(
1494 struct xfs_inode *ip)
1496 struct xfs_mount *mp = ip->i_mount;
1497 struct xfs_trans *tp;
1500 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1502 ASSERT(xfs_is_shutdown(mp));
1505 xfs_ilock(ip, XFS_ILOCK_EXCL);
1506 xfs_trans_ijoin(tp, ip, 0);
1509 * Log the inode size first to prevent stale data exposure in the event
1510 * of a system crash before the truncate completes. See the related
1511 * comment in xfs_vn_setattr_size() for details.
1513 ip->i_disk_size = 0;
1514 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1516 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1518 goto error_trans_cancel;
1520 ASSERT(ip->i_df.if_nextents == 0);
1522 error = xfs_trans_commit(tp);
1526 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1530 xfs_trans_cancel(tp);
1532 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1537 * xfs_inactive_ifree()
1539 * Perform the inode free when an inode is unlinked.
1543 struct xfs_inode *ip)
1545 struct xfs_mount *mp = ip->i_mount;
1546 struct xfs_trans *tp;
1550 * We try to use a per-AG reservation for any block needed by the finobt
1551 * tree, but as the finobt feature predates the per-AG reservation
1552 * support a degraded file system might not have enough space for the
1553 * reservation at mount time. In that case try to dip into the reserved
1556 * Send a warning if the reservation does happen to fail, as the inode
1557 * now remains allocated and sits on the unlinked list until the fs is
1560 if (unlikely(mp->m_finobt_nores)) {
1561 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1562 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1565 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1568 if (error == -ENOSPC) {
1569 xfs_warn_ratelimited(mp,
1570 "Failed to remove inode(s) from unlinked list. "
1571 "Please free space, unmount and run xfs_repair.");
1573 ASSERT(xfs_is_shutdown(mp));
1579 * We do not hold the inode locked across the entire rolling transaction
1580 * here. We only need to hold it for the first transaction that
1581 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1582 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1583 * here breaks the relationship between cluster buffer invalidation and
1584 * stale inode invalidation on cluster buffer item journal commit
1585 * completion, and can result in leaving dirty stale inodes hanging
1588 * We have no need for serialising this inode operation against other
1589 * operations - we freed the inode and hence reallocation is required
1590 * and that will serialise on reallocating the space the deferops need
1591 * to free. Hence we can unlock the inode on the first commit of
1592 * the transaction rather than roll it right through the deferops. This
1593 * avoids relogging the XFS_ISTALE inode.
1595 * We check that xfs_ifree() hasn't grown an internal transaction roll
1596 * by asserting that the inode is still locked when it returns.
1598 xfs_ilock(ip, XFS_ILOCK_EXCL);
1599 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1601 error = xfs_ifree(tp, ip);
1602 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1605 * If we fail to free the inode, shut down. The cancel
1606 * might do that, we need to make sure. Otherwise the
1607 * inode might be lost for a long time or forever.
1609 if (!xfs_is_shutdown(mp)) {
1610 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1612 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1614 xfs_trans_cancel(tp);
1619 * Credit the quota account(s). The inode is gone.
1621 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1624 * Just ignore errors at this point. There is nothing we can do except
1625 * to try to keep going. Make sure it's not a silent error.
1627 error = xfs_trans_commit(tp);
1629 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1636 * Returns true if we need to update the on-disk metadata before we can free
1637 * the memory used by this inode. Updates include freeing post-eof
1638 * preallocations; freeing COW staging extents; and marking the inode free in
1639 * the inobt if it is on the unlinked list.
1642 xfs_inode_needs_inactive(
1643 struct xfs_inode *ip)
1645 struct xfs_mount *mp = ip->i_mount;
1646 struct xfs_ifork *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1649 * If the inode is already free, then there can be nothing
1652 if (VFS_I(ip)->i_mode == 0)
1655 /* If this is a read-only mount, don't do this (would generate I/O) */
1656 if (xfs_is_readonly(mp))
1659 /* If the log isn't running, push inodes straight to reclaim. */
1660 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1663 /* Metadata inodes require explicit resource cleanup. */
1664 if (xfs_is_metadata_inode(ip))
1667 /* Want to clean out the cow blocks if there are any. */
1668 if (cow_ifp && cow_ifp->if_bytes > 0)
1671 /* Unlinked files must be freed. */
1672 if (VFS_I(ip)->i_nlink == 0)
1676 * This file isn't being freed, so check if there are post-eof blocks
1677 * to free. @force is true because we are evicting an inode from the
1678 * cache. Post-eof blocks must be freed, lest we end up with broken
1679 * free space accounting.
1681 * Note: don't bother with iolock here since lockdep complains about
1682 * acquiring it in reclaim context. We have the only reference to the
1683 * inode at this point anyways.
1685 return xfs_can_free_eofblocks(ip, true);
1691 * This is called when the vnode reference count for the vnode
1692 * goes to zero. If the file has been unlinked, then it must
1693 * now be truncated. Also, we clear all of the read-ahead state
1694 * kept for the inode here since the file is now closed.
1700 struct xfs_mount *mp;
1705 * If the inode is already free, then there can be nothing
1708 if (VFS_I(ip)->i_mode == 0) {
1709 ASSERT(ip->i_df.if_broot_bytes == 0);
1714 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1716 /* If this is a read-only mount, don't do this (would generate I/O) */
1717 if (xfs_is_readonly(mp))
1720 /* Metadata inodes require explicit resource cleanup. */
1721 if (xfs_is_metadata_inode(ip))
1724 /* Try to clean out the cow blocks if there are any. */
1725 if (xfs_inode_has_cow_data(ip))
1726 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1728 if (VFS_I(ip)->i_nlink != 0) {
1730 * force is true because we are evicting an inode from the
1731 * cache. Post-eof blocks must be freed, lest we end up with
1732 * broken free space accounting.
1734 * Note: don't bother with iolock here since lockdep complains
1735 * about acquiring it in reclaim context. We have the only
1736 * reference to the inode at this point anyways.
1738 if (xfs_can_free_eofblocks(ip, true))
1739 xfs_free_eofblocks(ip);
1744 if (S_ISREG(VFS_I(ip)->i_mode) &&
1745 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1746 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1749 error = xfs_qm_dqattach(ip);
1753 if (S_ISLNK(VFS_I(ip)->i_mode))
1754 error = xfs_inactive_symlink(ip);
1756 error = xfs_inactive_truncate(ip);
1761 * If there are attributes associated with the file then blow them away
1762 * now. The code calls a routine that recursively deconstructs the
1763 * attribute fork. If also blows away the in-core attribute fork.
1765 if (XFS_IFORK_Q(ip)) {
1766 error = xfs_attr_inactive(ip);
1772 ASSERT(ip->i_forkoff == 0);
1777 xfs_inactive_ifree(ip);
1781 * We're done making metadata updates for this inode, so we can release
1782 * the attached dquots.
1784 xfs_qm_dqdetach(ip);
1788 * In-Core Unlinked List Lookups
1789 * =============================
1791 * Every inode is supposed to be reachable from some other piece of metadata
1792 * with the exception of the root directory. Inodes with a connection to a
1793 * file descriptor but not linked from anywhere in the on-disk directory tree
1794 * are collectively known as unlinked inodes, though the filesystem itself
1795 * maintains links to these inodes so that on-disk metadata are consistent.
1797 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1798 * header contains a number of buckets that point to an inode, and each inode
1799 * record has a pointer to the next inode in the hash chain. This
1800 * singly-linked list causes scaling problems in the iunlink remove function
1801 * because we must walk that list to find the inode that points to the inode
1802 * being removed from the unlinked hash bucket list.
1804 * What if we modelled the unlinked list as a collection of records capturing
1805 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd
1806 * have a fast way to look up unlinked list predecessors, which avoids the
1807 * slow list walk. That's exactly what we do here (in-core) with a per-AG
1810 * Because this is a backref cache, we ignore operational failures since the
1811 * iunlink code can fall back to the slow bucket walk. The only errors that
1812 * should bubble out are for obviously incorrect situations.
1814 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1815 * access or have otherwise provided for concurrency control.
1818 /* Capture a "X.next_unlinked = Y" relationship. */
1819 struct xfs_iunlink {
1820 struct rhash_head iu_rhash_head;
1821 xfs_agino_t iu_agino; /* X */
1822 xfs_agino_t iu_next_unlinked; /* Y */
1825 /* Unlinked list predecessor lookup hashtable construction */
1827 xfs_iunlink_obj_cmpfn(
1828 struct rhashtable_compare_arg *arg,
1831 const xfs_agino_t *key = arg->key;
1832 const struct xfs_iunlink *iu = obj;
1834 if (iu->iu_next_unlinked != *key)
1839 static const struct rhashtable_params xfs_iunlink_hash_params = {
1840 .min_size = XFS_AGI_UNLINKED_BUCKETS,
1841 .key_len = sizeof(xfs_agino_t),
1842 .key_offset = offsetof(struct xfs_iunlink,
1844 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
1845 .automatic_shrinking = true,
1846 .obj_cmpfn = xfs_iunlink_obj_cmpfn,
1850 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
1851 * relation is found.
1854 xfs_iunlink_lookup_backref(
1855 struct xfs_perag *pag,
1858 struct xfs_iunlink *iu;
1860 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1861 xfs_iunlink_hash_params);
1862 return iu ? iu->iu_agino : NULLAGINO;
1866 * Take ownership of an iunlink cache entry and insert it into the hash table.
1867 * If successful, the entry will be owned by the cache; if not, it is freed.
1868 * Either way, the caller does not own @iu after this call.
1871 xfs_iunlink_insert_backref(
1872 struct xfs_perag *pag,
1873 struct xfs_iunlink *iu)
1877 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1878 &iu->iu_rhash_head, xfs_iunlink_hash_params);
1880 * Fail loudly if there already was an entry because that's a sign of
1881 * corruption of in-memory data. Also fail loudly if we see an error
1882 * code we didn't anticipate from the rhashtable code. Currently we
1883 * only anticipate ENOMEM.
1886 WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1890 * Absorb any runtime errors that aren't a result of corruption because
1891 * this is a cache and we can always fall back to bucket list scanning.
1893 if (error != 0 && error != -EEXIST)
1898 /* Remember that @prev_agino.next_unlinked = @this_agino. */
1900 xfs_iunlink_add_backref(
1901 struct xfs_perag *pag,
1902 xfs_agino_t prev_agino,
1903 xfs_agino_t this_agino)
1905 struct xfs_iunlink *iu;
1907 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1910 iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1911 iu->iu_agino = prev_agino;
1912 iu->iu_next_unlinked = this_agino;
1914 return xfs_iunlink_insert_backref(pag, iu);
1918 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1919 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
1920 * wasn't any such entry then we don't bother.
1923 xfs_iunlink_change_backref(
1924 struct xfs_perag *pag,
1926 xfs_agino_t next_unlinked)
1928 struct xfs_iunlink *iu;
1931 /* Look up the old entry; if there wasn't one then exit. */
1932 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1933 xfs_iunlink_hash_params);
1938 * Remove the entry. This shouldn't ever return an error, but if we
1939 * couldn't remove the old entry we don't want to add it again to the
1940 * hash table, and if the entry disappeared on us then someone's
1941 * violated the locking rules and we need to fail loudly. Either way
1942 * we cannot remove the inode because internal state is or would have
1945 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1946 &iu->iu_rhash_head, xfs_iunlink_hash_params);
1950 /* If there is no new next entry just free our item and return. */
1951 if (next_unlinked == NULLAGINO) {
1956 /* Update the entry and re-add it to the hash table. */
1957 iu->iu_next_unlinked = next_unlinked;
1958 return xfs_iunlink_insert_backref(pag, iu);
1961 /* Set up the in-core predecessor structures. */
1964 struct xfs_perag *pag)
1966 return rhashtable_init(&pag->pagi_unlinked_hash,
1967 &xfs_iunlink_hash_params);
1970 /* Free the in-core predecessor structures. */
1972 xfs_iunlink_free_item(
1976 struct xfs_iunlink *iu = ptr;
1977 bool *freed_anything = arg;
1979 *freed_anything = true;
1984 xfs_iunlink_destroy(
1985 struct xfs_perag *pag)
1987 bool freed_anything = false;
1989 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
1990 xfs_iunlink_free_item, &freed_anything);
1992 ASSERT(freed_anything == false || xfs_is_shutdown(pag->pag_mount));
1996 * Point the AGI unlinked bucket at an inode and log the results. The caller
1997 * is responsible for validating the old value.
2000 xfs_iunlink_update_bucket(
2001 struct xfs_trans *tp,
2002 struct xfs_perag *pag,
2003 struct xfs_buf *agibp,
2004 unsigned int bucket_index,
2005 xfs_agino_t new_agino)
2007 struct xfs_agi *agi = agibp->b_addr;
2008 xfs_agino_t old_value;
2011 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino));
2013 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2014 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
2015 old_value, new_agino);
2018 * We should never find the head of the list already set to the value
2019 * passed in because either we're adding or removing ourselves from the
2022 if (old_value == new_agino) {
2023 xfs_buf_mark_corrupt(agibp);
2024 return -EFSCORRUPTED;
2027 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2028 offset = offsetof(struct xfs_agi, agi_unlinked) +
2029 (sizeof(xfs_agino_t) * bucket_index);
2030 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2034 /* Set an on-disk inode's next_unlinked pointer. */
2036 xfs_iunlink_update_dinode(
2037 struct xfs_trans *tp,
2038 struct xfs_perag *pag,
2040 struct xfs_buf *ibp,
2041 struct xfs_dinode *dip,
2042 struct xfs_imap *imap,
2043 xfs_agino_t next_agino)
2045 struct xfs_mount *mp = tp->t_mountp;
2048 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2050 trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino,
2051 be32_to_cpu(dip->di_next_unlinked), next_agino);
2053 dip->di_next_unlinked = cpu_to_be32(next_agino);
2054 offset = imap->im_boffset +
2055 offsetof(struct xfs_dinode, di_next_unlinked);
2057 /* need to recalc the inode CRC if appropriate */
2058 xfs_dinode_calc_crc(mp, dip);
2059 xfs_trans_inode_buf(tp, ibp);
2060 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2063 /* Set an in-core inode's unlinked pointer and return the old value. */
2065 xfs_iunlink_update_inode(
2066 struct xfs_trans *tp,
2067 struct xfs_inode *ip,
2068 struct xfs_perag *pag,
2069 xfs_agino_t next_agino,
2070 xfs_agino_t *old_next_agino)
2072 struct xfs_mount *mp = tp->t_mountp;
2073 struct xfs_dinode *dip;
2074 struct xfs_buf *ibp;
2075 xfs_agino_t old_value;
2078 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2080 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp);
2083 dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2085 /* Make sure the old pointer isn't garbage. */
2086 old_value = be32_to_cpu(dip->di_next_unlinked);
2087 if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) {
2088 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2089 sizeof(*dip), __this_address);
2090 error = -EFSCORRUPTED;
2095 * Since we're updating a linked list, we should never find that the
2096 * current pointer is the same as the new value, unless we're
2097 * terminating the list.
2099 *old_next_agino = old_value;
2100 if (old_value == next_agino) {
2101 if (next_agino != NULLAGINO) {
2102 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2103 dip, sizeof(*dip), __this_address);
2104 error = -EFSCORRUPTED;
2109 /* Ok, update the new pointer. */
2110 xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
2111 ibp, dip, &ip->i_imap, next_agino);
2114 xfs_trans_brelse(tp, ibp);
2119 * This is called when the inode's link count has gone to 0 or we are creating
2120 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
2122 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2123 * list when the inode is freed.
2127 struct xfs_trans *tp,
2128 struct xfs_inode *ip)
2130 struct xfs_mount *mp = tp->t_mountp;
2131 struct xfs_perag *pag;
2132 struct xfs_agi *agi;
2133 struct xfs_buf *agibp;
2134 xfs_agino_t next_agino;
2135 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2136 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2139 ASSERT(VFS_I(ip)->i_nlink == 0);
2140 ASSERT(VFS_I(ip)->i_mode != 0);
2141 trace_xfs_iunlink(ip);
2143 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2145 /* Get the agi buffer first. It ensures lock ordering on the list. */
2146 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2149 agi = agibp->b_addr;
2152 * Get the index into the agi hash table for the list this inode will
2153 * go on. Make sure the pointer isn't garbage and that this inode
2154 * isn't already on the list.
2156 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2157 if (next_agino == agino ||
2158 !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) {
2159 xfs_buf_mark_corrupt(agibp);
2160 error = -EFSCORRUPTED;
2164 if (next_agino != NULLAGINO) {
2165 xfs_agino_t old_agino;
2168 * There is already another inode in the bucket, so point this
2169 * inode to the current head of the list.
2171 error = xfs_iunlink_update_inode(tp, ip, pag, next_agino,
2175 ASSERT(old_agino == NULLAGINO);
2178 * agino has been unlinked, add a backref from the next inode
2181 error = xfs_iunlink_add_backref(pag, agino, next_agino);
2186 /* Point the head of the list to point to this inode. */
2187 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2193 /* Return the imap, dinode pointer, and buffer for an inode. */
2195 xfs_iunlink_map_ino(
2196 struct xfs_trans *tp,
2197 xfs_agnumber_t agno,
2199 struct xfs_imap *imap,
2200 struct xfs_dinode **dipp,
2201 struct xfs_buf **bpp)
2203 struct xfs_mount *mp = tp->t_mountp;
2207 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2209 xfs_warn(mp, "%s: xfs_imap returned error %d.",
2214 error = xfs_imap_to_bp(mp, tp, imap, bpp);
2216 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2221 *dipp = xfs_buf_offset(*bpp, imap->im_boffset);
2226 * Walk the unlinked chain from @head_agino until we find the inode that
2227 * points to @target_agino. Return the inode number, map, dinode pointer,
2228 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2230 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2231 * @agino, @imap, @dipp, and @bpp are all output parameters.
2233 * Do not call this function if @target_agino is the head of the list.
2236 xfs_iunlink_map_prev(
2237 struct xfs_trans *tp,
2238 struct xfs_perag *pag,
2239 xfs_agino_t head_agino,
2240 xfs_agino_t target_agino,
2242 struct xfs_imap *imap,
2243 struct xfs_dinode **dipp,
2244 struct xfs_buf **bpp)
2246 struct xfs_mount *mp = tp->t_mountp;
2247 xfs_agino_t next_agino;
2250 ASSERT(head_agino != target_agino);
2253 /* See if our backref cache can find it faster. */
2254 *agino = xfs_iunlink_lookup_backref(pag, target_agino);
2255 if (*agino != NULLAGINO) {
2256 error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap,
2261 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2265 * If we get here the cache contents were corrupt, so drop the
2266 * buffer and fall back to walking the bucket list.
2268 xfs_trans_brelse(tp, *bpp);
2273 trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno);
2275 /* Otherwise, walk the entire bucket until we find it. */
2276 next_agino = head_agino;
2277 while (next_agino != target_agino) {
2278 xfs_agino_t unlinked_agino;
2281 xfs_trans_brelse(tp, *bpp);
2283 *agino = next_agino;
2284 error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap,
2289 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2291 * Make sure this pointer is valid and isn't an obvious
2294 if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) ||
2295 next_agino == unlinked_agino) {
2296 XFS_CORRUPTION_ERROR(__func__,
2297 XFS_ERRLEVEL_LOW, mp,
2298 *dipp, sizeof(**dipp));
2299 error = -EFSCORRUPTED;
2302 next_agino = unlinked_agino;
2309 * Pull the on-disk inode from the AGI unlinked list.
2313 struct xfs_trans *tp,
2314 struct xfs_perag *pag,
2315 struct xfs_inode *ip)
2317 struct xfs_mount *mp = tp->t_mountp;
2318 struct xfs_agi *agi;
2319 struct xfs_buf *agibp;
2320 struct xfs_buf *last_ibp;
2321 struct xfs_dinode *last_dip = NULL;
2322 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2323 xfs_agino_t next_agino;
2324 xfs_agino_t head_agino;
2325 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2328 trace_xfs_iunlink_remove(ip);
2330 /* Get the agi buffer first. It ensures lock ordering on the list. */
2331 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2334 agi = agibp->b_addr;
2337 * Get the index into the agi hash table for the list this inode will
2338 * go on. Make sure the head pointer isn't garbage.
2340 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2341 if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) {
2342 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2344 return -EFSCORRUPTED;
2348 * Set our inode's next_unlinked pointer to NULL and then return
2349 * the old pointer value so that we can update whatever was previous
2350 * to us in the list to point to whatever was next in the list.
2352 error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino);
2357 * If there was a backref pointing from the next inode back to this
2358 * one, remove it because we've removed this inode from the list.
2360 * Later, if this inode was in the middle of the list we'll update
2361 * this inode's backref to point from the next inode.
2363 if (next_agino != NULLAGINO) {
2364 error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO);
2369 if (head_agino != agino) {
2370 struct xfs_imap imap;
2371 xfs_agino_t prev_agino;
2373 /* We need to search the list for the inode being freed. */
2374 error = xfs_iunlink_map_prev(tp, pag, head_agino, agino,
2375 &prev_agino, &imap, &last_dip, &last_ibp);
2379 /* Point the previous inode on the list to the next inode. */
2380 xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp,
2381 last_dip, &imap, next_agino);
2384 * Now we deal with the backref for this inode. If this inode
2385 * pointed at a real inode, change the backref that pointed to
2386 * us to point to our old next. If this inode was the end of
2387 * the list, delete the backref that pointed to us. Note that
2388 * change_backref takes care of deleting the backref if
2389 * next_agino is NULLAGINO.
2391 return xfs_iunlink_change_backref(agibp->b_pag, agino,
2395 /* Point the head of the list to the next unlinked inode. */
2396 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2401 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2402 * mark it stale. We should only find clean inodes in this lookup that aren't
2406 xfs_ifree_mark_inode_stale(
2407 struct xfs_perag *pag,
2408 struct xfs_inode *free_ip,
2411 struct xfs_mount *mp = pag->pag_mount;
2412 struct xfs_inode_log_item *iip;
2413 struct xfs_inode *ip;
2417 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2419 /* Inode not in memory, nothing to do */
2426 * because this is an RCU protected lookup, we could find a recently
2427 * freed or even reallocated inode during the lookup. We need to check
2428 * under the i_flags_lock for a valid inode here. Skip it if it is not
2429 * valid, the wrong inode or stale.
2431 spin_lock(&ip->i_flags_lock);
2432 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2433 goto out_iflags_unlock;
2436 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2437 * other inodes that we did not find in the list attached to the buffer
2438 * and are not already marked stale. If we can't lock it, back off and
2441 if (ip != free_ip) {
2442 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2443 spin_unlock(&ip->i_flags_lock);
2449 ip->i_flags |= XFS_ISTALE;
2452 * If the inode is flushing, it is already attached to the buffer. All
2453 * we needed to do here is mark the inode stale so buffer IO completion
2454 * will remove it from the AIL.
2457 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2458 ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2459 ASSERT(iip->ili_last_fields);
2464 * Inodes not attached to the buffer can be released immediately.
2465 * Everything else has to go through xfs_iflush_abort() on journal
2466 * commit as the flock synchronises removal of the inode from the
2467 * cluster buffer against inode reclaim.
2469 if (!iip || list_empty(&iip->ili_item.li_bio_list))
2472 __xfs_iflags_set(ip, XFS_IFLUSHING);
2473 spin_unlock(&ip->i_flags_lock);
2476 /* we have a dirty inode in memory that has not yet been flushed. */
2477 spin_lock(&iip->ili_lock);
2478 iip->ili_last_fields = iip->ili_fields;
2479 iip->ili_fields = 0;
2480 iip->ili_fsync_fields = 0;
2481 spin_unlock(&iip->ili_lock);
2482 ASSERT(iip->ili_last_fields);
2485 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2490 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2492 spin_unlock(&ip->i_flags_lock);
2497 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2498 * inodes that are in memory - they all must be marked stale and attached to
2499 * the cluster buffer.
2503 struct xfs_trans *tp,
2504 struct xfs_perag *pag,
2505 struct xfs_inode *free_ip,
2506 struct xfs_icluster *xic)
2508 struct xfs_mount *mp = free_ip->i_mount;
2509 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2512 xfs_ino_t inum = xic->first_ino;
2518 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2520 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2522 * The allocation bitmap tells us which inodes of the chunk were
2523 * physically allocated. Skip the cluster if an inode falls into
2526 ioffset = inum - xic->first_ino;
2527 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2528 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2532 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2533 XFS_INO_TO_AGBNO(mp, inum));
2536 * We obtain and lock the backing buffer first in the process
2537 * here to ensure dirty inodes attached to the buffer remain in
2538 * the flushing state while we mark them stale.
2540 * If we scan the in-memory inodes first, then buffer IO can
2541 * complete before we get a lock on it, and hence we may fail
2542 * to mark all the active inodes on the buffer stale.
2544 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2545 mp->m_bsize * igeo->blocks_per_cluster,
2551 * This buffer may not have been correctly initialised as we
2552 * didn't read it from disk. That's not important because we are
2553 * only using to mark the buffer as stale in the log, and to
2554 * attach stale cached inodes on it. That means it will never be
2555 * dispatched for IO. If it is, we want to know about it, and we
2556 * want it to fail. We can acheive this by adding a write
2557 * verifier to the buffer.
2559 bp->b_ops = &xfs_inode_buf_ops;
2562 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2563 * too. This requires lookups, and will skip inodes that we've
2564 * already marked XFS_ISTALE.
2566 for (i = 0; i < igeo->inodes_per_cluster; i++)
2567 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2569 xfs_trans_stale_inode_buf(tp, bp);
2570 xfs_trans_binval(tp, bp);
2576 * This is called to return an inode to the inode free list. The inode should
2577 * already be truncated to 0 length and have no pages associated with it. This
2578 * routine also assumes that the inode is already a part of the transaction.
2580 * The on-disk copy of the inode will have been added to the list of unlinked
2581 * inodes in the AGI. We need to remove the inode from that list atomically with
2582 * respect to freeing it here.
2586 struct xfs_trans *tp,
2587 struct xfs_inode *ip)
2589 struct xfs_mount *mp = ip->i_mount;
2590 struct xfs_perag *pag;
2591 struct xfs_icluster xic = { 0 };
2592 struct xfs_inode_log_item *iip = ip->i_itemp;
2595 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2596 ASSERT(VFS_I(ip)->i_nlink == 0);
2597 ASSERT(ip->i_df.if_nextents == 0);
2598 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2599 ASSERT(ip->i_nblocks == 0);
2601 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2604 * Free the inode first so that we guarantee that the AGI lock is going
2605 * to be taken before we remove the inode from the unlinked list. This
2606 * makes the AGI lock -> unlinked list modification order the same as
2607 * used in O_TMPFILE creation.
2609 error = xfs_difree(tp, pag, ip->i_ino, &xic);
2613 error = xfs_iunlink_remove(tp, pag, ip);
2618 * Free any local-format data sitting around before we reset the
2619 * data fork to extents format. Note that the attr fork data has
2620 * already been freed by xfs_attr_inactive.
2622 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2623 kmem_free(ip->i_df.if_u1.if_data);
2624 ip->i_df.if_u1.if_data = NULL;
2625 ip->i_df.if_bytes = 0;
2628 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2630 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2631 ip->i_forkoff = 0; /* mark the attr fork not in use */
2632 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2633 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2634 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2636 /* Don't attempt to replay owner changes for a deleted inode */
2637 spin_lock(&iip->ili_lock);
2638 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2639 spin_unlock(&iip->ili_lock);
2642 * Bump the generation count so no one will be confused
2643 * by reincarnations of this inode.
2645 VFS_I(ip)->i_generation++;
2646 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2649 error = xfs_ifree_cluster(tp, pag, ip, &xic);
2656 * This is called to unpin an inode. The caller must have the inode locked
2657 * in at least shared mode so that the buffer cannot be subsequently pinned
2658 * once someone is waiting for it to be unpinned.
2662 struct xfs_inode *ip)
2664 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2666 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2668 /* Give the log a push to start the unpinning I/O */
2669 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2675 struct xfs_inode *ip)
2677 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2678 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2683 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2684 if (xfs_ipincount(ip))
2686 } while (xfs_ipincount(ip));
2687 finish_wait(wq, &wait.wq_entry);
2692 struct xfs_inode *ip)
2694 if (xfs_ipincount(ip))
2695 __xfs_iunpin_wait(ip);
2699 * Removing an inode from the namespace involves removing the directory entry
2700 * and dropping the link count on the inode. Removing the directory entry can
2701 * result in locking an AGF (directory blocks were freed) and removing a link
2702 * count can result in placing the inode on an unlinked list which results in
2705 * The big problem here is that we have an ordering constraint on AGF and AGI
2706 * locking - inode allocation locks the AGI, then can allocate a new extent for
2707 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2708 * removes the inode from the unlinked list, requiring that we lock the AGI
2709 * first, and then freeing the inode can result in an inode chunk being freed
2710 * and hence freeing disk space requiring that we lock an AGF.
2712 * Hence the ordering that is imposed by other parts of the code is AGI before
2713 * AGF. This means we cannot remove the directory entry before we drop the inode
2714 * reference count and put it on the unlinked list as this results in a lock
2715 * order of AGF then AGI, and this can deadlock against inode allocation and
2716 * freeing. Therefore we must drop the link counts before we remove the
2719 * This is still safe from a transactional point of view - it is not until we
2720 * get to xfs_defer_finish() that we have the possibility of multiple
2721 * transactions in this operation. Hence as long as we remove the directory
2722 * entry and drop the link count in the first transaction of the remove
2723 * operation, there are no transactional constraints on the ordering here.
2728 struct xfs_name *name,
2731 xfs_mount_t *mp = dp->i_mount;
2732 xfs_trans_t *tp = NULL;
2733 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2738 trace_xfs_remove(dp, name);
2740 if (xfs_is_shutdown(mp))
2743 error = xfs_qm_dqattach(dp);
2747 error = xfs_qm_dqattach(ip);
2752 * We try to get the real space reservation first, allowing for
2753 * directory btree deletion(s) implying possible bmap insert(s). If we
2754 * can't get the space reservation then we use 0 instead, and avoid the
2755 * bmap btree insert(s) in the directory code by, if the bmap insert
2756 * tries to happen, instead trimming the LAST block from the directory.
2758 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2759 * the directory code can handle a reservationless update and we don't
2760 * want to prevent a user from trying to free space by deleting things.
2762 resblks = XFS_REMOVE_SPACE_RES(mp);
2763 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2766 ASSERT(error != -ENOSPC);
2771 * If we're removing a directory perform some additional validation.
2774 ASSERT(VFS_I(ip)->i_nlink >= 2);
2775 if (VFS_I(ip)->i_nlink != 2) {
2777 goto out_trans_cancel;
2779 if (!xfs_dir_isempty(ip)) {
2781 goto out_trans_cancel;
2784 /* Drop the link from ip's "..". */
2785 error = xfs_droplink(tp, dp);
2787 goto out_trans_cancel;
2789 /* Drop the "." link from ip to self. */
2790 error = xfs_droplink(tp, ip);
2792 goto out_trans_cancel;
2795 * Point the unlinked child directory's ".." entry to the root
2796 * directory to eliminate back-references to inodes that may
2797 * get freed before the child directory is closed. If the fs
2798 * gets shrunk, this can lead to dirent inode validation errors.
2800 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2801 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2802 tp->t_mountp->m_sb.sb_rootino, 0);
2808 * When removing a non-directory we need to log the parent
2809 * inode here. For a directory this is done implicitly
2810 * by the xfs_droplink call for the ".." entry.
2812 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2814 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2816 /* Drop the link from dp to ip. */
2817 error = xfs_droplink(tp, ip);
2819 goto out_trans_cancel;
2821 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2823 ASSERT(error != -ENOENT);
2824 goto out_trans_cancel;
2828 * If this is a synchronous mount, make sure that the
2829 * remove transaction goes to disk before returning to
2832 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2833 xfs_trans_set_sync(tp);
2835 error = xfs_trans_commit(tp);
2839 if (is_dir && xfs_inode_is_filestream(ip))
2840 xfs_filestream_deassociate(ip);
2845 xfs_trans_cancel(tp);
2851 * Enter all inodes for a rename transaction into a sorted array.
2853 #define __XFS_SORT_INODES 5
2855 xfs_sort_for_rename(
2856 struct xfs_inode *dp1, /* in: old (source) directory inode */
2857 struct xfs_inode *dp2, /* in: new (target) directory inode */
2858 struct xfs_inode *ip1, /* in: inode of old entry */
2859 struct xfs_inode *ip2, /* in: inode of new entry */
2860 struct xfs_inode *wip, /* in: whiteout inode */
2861 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2862 int *num_inodes) /* in/out: inodes in array */
2866 ASSERT(*num_inodes == __XFS_SORT_INODES);
2867 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2870 * i_tab contains a list of pointers to inodes. We initialize
2871 * the table here & we'll sort it. We will then use it to
2872 * order the acquisition of the inode locks.
2874 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2887 * Sort the elements via bubble sort. (Remember, there are at
2888 * most 5 elements to sort, so this is adequate.)
2890 for (i = 0; i < *num_inodes; i++) {
2891 for (j = 1; j < *num_inodes; j++) {
2892 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2893 struct xfs_inode *temp = i_tab[j];
2894 i_tab[j] = i_tab[j-1];
2903 struct xfs_trans *tp)
2906 * If this is a synchronous mount, make sure that the rename transaction
2907 * goes to disk before returning to the user.
2909 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2910 xfs_trans_set_sync(tp);
2912 return xfs_trans_commit(tp);
2916 * xfs_cross_rename()
2918 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2922 struct xfs_trans *tp,
2923 struct xfs_inode *dp1,
2924 struct xfs_name *name1,
2925 struct xfs_inode *ip1,
2926 struct xfs_inode *dp2,
2927 struct xfs_name *name2,
2928 struct xfs_inode *ip2,
2936 /* Swap inode number for dirent in first parent */
2937 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2939 goto out_trans_abort;
2941 /* Swap inode number for dirent in second parent */
2942 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2944 goto out_trans_abort;
2947 * If we're renaming one or more directories across different parents,
2948 * update the respective ".." entries (and link counts) to match the new
2952 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2954 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2955 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2956 dp1->i_ino, spaceres);
2958 goto out_trans_abort;
2960 /* transfer ip2 ".." reference to dp1 */
2961 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2962 error = xfs_droplink(tp, dp2);
2964 goto out_trans_abort;
2965 xfs_bumplink(tp, dp1);
2969 * Although ip1 isn't changed here, userspace needs
2970 * to be warned about the change, so that applications
2971 * relying on it (like backup ones), will properly
2974 ip1_flags |= XFS_ICHGTIME_CHG;
2975 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2978 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2979 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2980 dp2->i_ino, spaceres);
2982 goto out_trans_abort;
2984 /* transfer ip1 ".." reference to dp2 */
2985 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2986 error = xfs_droplink(tp, dp1);
2988 goto out_trans_abort;
2989 xfs_bumplink(tp, dp2);
2993 * Although ip2 isn't changed here, userspace needs
2994 * to be warned about the change, so that applications
2995 * relying on it (like backup ones), will properly
2998 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2999 ip2_flags |= XFS_ICHGTIME_CHG;
3004 xfs_trans_ichgtime(tp, ip1, ip1_flags);
3005 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3008 xfs_trans_ichgtime(tp, ip2, ip2_flags);
3009 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3012 xfs_trans_ichgtime(tp, dp2, dp2_flags);
3013 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3015 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3016 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3017 return xfs_finish_rename(tp);
3020 xfs_trans_cancel(tp);
3025 * xfs_rename_alloc_whiteout()
3027 * Return a referenced, unlinked, unlocked inode that can be used as a
3028 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3029 * crash between allocating the inode and linking it into the rename transaction
3030 * recovery will free the inode and we won't leak it.
3033 xfs_rename_alloc_whiteout(
3034 struct user_namespace *mnt_userns,
3035 struct xfs_inode *dp,
3036 struct xfs_inode **wip)
3038 struct xfs_inode *tmpfile;
3041 error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
3047 * Prepare the tmpfile inode as if it were created through the VFS.
3048 * Complete the inode setup and flag it as linkable. nlink is already
3049 * zero, so we can skip the drop_nlink.
3051 xfs_setup_iops(tmpfile);
3052 xfs_finish_inode_setup(tmpfile);
3053 VFS_I(tmpfile)->i_state |= I_LINKABLE;
3064 struct user_namespace *mnt_userns,
3065 struct xfs_inode *src_dp,
3066 struct xfs_name *src_name,
3067 struct xfs_inode *src_ip,
3068 struct xfs_inode *target_dp,
3069 struct xfs_name *target_name,
3070 struct xfs_inode *target_ip,
3073 struct xfs_mount *mp = src_dp->i_mount;
3074 struct xfs_trans *tp;
3075 struct xfs_inode *wip = NULL; /* whiteout inode */
3076 struct xfs_inode *inodes[__XFS_SORT_INODES];
3078 int num_inodes = __XFS_SORT_INODES;
3079 bool new_parent = (src_dp != target_dp);
3080 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3082 bool retried = false;
3083 int error, nospace_error = 0;
3085 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3087 if ((flags & RENAME_EXCHANGE) && !target_ip)
3091 * If we are doing a whiteout operation, allocate the whiteout inode
3092 * we will be placing at the target and ensure the type is set
3095 if (flags & RENAME_WHITEOUT) {
3096 error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip);
3100 /* setup target dirent info as whiteout */
3101 src_name->type = XFS_DIR3_FT_CHRDEV;
3104 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3105 inodes, &num_inodes);
3109 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3110 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3111 if (error == -ENOSPC) {
3112 nospace_error = error;
3114 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3118 goto out_release_wip;
3121 * Attach the dquots to the inodes
3123 error = xfs_qm_vop_rename_dqattach(inodes);
3125 goto out_trans_cancel;
3128 * Lock all the participating inodes. Depending upon whether
3129 * the target_name exists in the target directory, and
3130 * whether the target directory is the same as the source
3131 * directory, we can lock from 2 to 4 inodes.
3133 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3136 * Join all the inodes to the transaction. From this point on,
3137 * we can rely on either trans_commit or trans_cancel to unlock
3140 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3142 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3143 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3145 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3147 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3150 * If we are using project inheritance, we only allow renames
3151 * into our tree when the project IDs are the same; else the
3152 * tree quota mechanism would be circumvented.
3154 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3155 target_dp->i_projid != src_ip->i_projid)) {
3157 goto out_trans_cancel;
3160 /* RENAME_EXCHANGE is unique from here on. */
3161 if (flags & RENAME_EXCHANGE)
3162 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3163 target_dp, target_name, target_ip,
3167 * Try to reserve quota to handle an expansion of the target directory.
3168 * We'll allow the rename to continue in reservationless mode if we hit
3169 * a space usage constraint. If we trigger reservationless mode, save
3170 * the errno if there isn't any free space in the target directory.
3172 if (spaceres != 0) {
3173 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
3175 if (error == -EDQUOT || error == -ENOSPC) {
3177 xfs_trans_cancel(tp);
3178 xfs_blockgc_free_quota(target_dp, 0);
3183 nospace_error = error;
3188 goto out_trans_cancel;
3192 * Check for expected errors before we dirty the transaction
3193 * so we can return an error without a transaction abort.
3195 if (target_ip == NULL) {
3197 * If there's no space reservation, check the entry will
3198 * fit before actually inserting it.
3201 error = xfs_dir_canenter(tp, target_dp, target_name);
3203 goto out_trans_cancel;
3207 * If target exists and it's a directory, check that whether
3208 * it can be destroyed.
3210 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3211 (!xfs_dir_isempty(target_ip) ||
3212 (VFS_I(target_ip)->i_nlink > 2))) {
3214 goto out_trans_cancel;
3219 * Lock the AGI buffers we need to handle bumping the nlink of the
3220 * whiteout inode off the unlinked list and to handle dropping the
3221 * nlink of the target inode. Per locking order rules, do this in
3222 * increasing AG order and before directory block allocation tries to
3223 * grab AGFs because we grab AGIs before AGFs.
3225 * The (vfs) caller must ensure that if src is a directory then
3226 * target_ip is either null or an empty directory.
3228 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3229 if (inodes[i] == wip ||
3230 (inodes[i] == target_ip &&
3231 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3233 xfs_agnumber_t agno;
3235 agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3236 error = xfs_read_agi(mp, tp, agno, &bp);
3238 goto out_trans_cancel;
3243 * Directory entry creation below may acquire the AGF. Remove
3244 * the whiteout from the unlinked list first to preserve correct
3245 * AGI/AGF locking order. This dirties the transaction so failures
3246 * after this point will abort and log recovery will clean up the
3249 * For whiteouts, we need to bump the link count on the whiteout
3250 * inode. After this point, we have a real link, clear the tmpfile
3251 * state flag from the inode so it doesn't accidentally get misused
3255 struct xfs_perag *pag;
3257 ASSERT(VFS_I(wip)->i_nlink == 0);
3259 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3260 error = xfs_iunlink_remove(tp, pag, wip);
3263 goto out_trans_cancel;
3265 xfs_bumplink(tp, wip);
3266 VFS_I(wip)->i_state &= ~I_LINKABLE;
3270 * Set up the target.
3272 if (target_ip == NULL) {
3274 * If target does not exist and the rename crosses
3275 * directories, adjust the target directory link count
3276 * to account for the ".." reference from the new entry.
3278 error = xfs_dir_createname(tp, target_dp, target_name,
3279 src_ip->i_ino, spaceres);
3281 goto out_trans_cancel;
3283 xfs_trans_ichgtime(tp, target_dp,
3284 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3286 if (new_parent && src_is_directory) {
3287 xfs_bumplink(tp, target_dp);
3289 } else { /* target_ip != NULL */
3291 * Link the source inode under the target name.
3292 * If the source inode is a directory and we are moving
3293 * it across directories, its ".." entry will be
3294 * inconsistent until we replace that down below.
3296 * In case there is already an entry with the same
3297 * name at the destination directory, remove it first.
3299 error = xfs_dir_replace(tp, target_dp, target_name,
3300 src_ip->i_ino, spaceres);
3302 goto out_trans_cancel;
3304 xfs_trans_ichgtime(tp, target_dp,
3305 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3308 * Decrement the link count on the target since the target
3309 * dir no longer points to it.
3311 error = xfs_droplink(tp, target_ip);
3313 goto out_trans_cancel;
3315 if (src_is_directory) {
3317 * Drop the link from the old "." entry.
3319 error = xfs_droplink(tp, target_ip);
3321 goto out_trans_cancel;
3323 } /* target_ip != NULL */
3326 * Remove the source.
3328 if (new_parent && src_is_directory) {
3330 * Rewrite the ".." entry to point to the new
3333 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3334 target_dp->i_ino, spaceres);
3335 ASSERT(error != -EEXIST);
3337 goto out_trans_cancel;
3341 * We always want to hit the ctime on the source inode.
3343 * This isn't strictly required by the standards since the source
3344 * inode isn't really being changed, but old unix file systems did
3345 * it and some incremental backup programs won't work without it.
3347 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3348 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3351 * Adjust the link count on src_dp. This is necessary when
3352 * renaming a directory, either within one parent when
3353 * the target existed, or across two parent directories.
3355 if (src_is_directory && (new_parent || target_ip != NULL)) {
3358 * Decrement link count on src_directory since the
3359 * entry that's moved no longer points to it.
3361 error = xfs_droplink(tp, src_dp);
3363 goto out_trans_cancel;
3367 * For whiteouts, we only need to update the source dirent with the
3368 * inode number of the whiteout inode rather than removing it
3372 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3375 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3379 goto out_trans_cancel;
3381 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3382 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3384 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3386 error = xfs_finish_rename(tp);
3392 xfs_trans_cancel(tp);
3396 if (error == -ENOSPC && nospace_error)
3397 error = nospace_error;
3403 struct xfs_inode *ip,
3406 struct xfs_inode_log_item *iip = ip->i_itemp;
3407 struct xfs_dinode *dip;
3408 struct xfs_mount *mp = ip->i_mount;
3411 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3412 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3413 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3414 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3415 ASSERT(iip->ili_item.li_buf == bp);
3417 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3420 * We don't flush the inode if any of the following checks fail, but we
3421 * do still update the log item and attach to the backing buffer as if
3422 * the flush happened. This is a formality to facilitate predictable
3423 * error handling as the caller will shutdown and fail the buffer.
3425 error = -EFSCORRUPTED;
3426 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3427 mp, XFS_ERRTAG_IFLUSH_1)) {
3428 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3429 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3430 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3433 if (S_ISREG(VFS_I(ip)->i_mode)) {
3435 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3436 ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3437 mp, XFS_ERRTAG_IFLUSH_3)) {
3438 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3439 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3440 __func__, ip->i_ino, ip);
3443 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3445 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3446 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3447 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3448 mp, XFS_ERRTAG_IFLUSH_4)) {
3449 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3450 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3451 __func__, ip->i_ino, ip);
3455 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3456 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3457 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3458 "%s: detected corrupt incore inode %llu, "
3459 "total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3460 __func__, ip->i_ino,
3461 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3465 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3466 mp, XFS_ERRTAG_IFLUSH_6)) {
3467 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3468 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3469 __func__, ip->i_ino, ip->i_forkoff, ip);
3474 * Inode item log recovery for v2 inodes are dependent on the flushiter
3475 * count for correct sequencing. We bump the flush iteration count so
3476 * we can detect flushes which postdate a log record during recovery.
3477 * This is redundant as we now log every change and hence this can't
3478 * happen but we need to still do it to ensure backwards compatibility
3479 * with old kernels that predate logging all inode changes.
3481 if (!xfs_has_v3inodes(mp))
3485 * If there are inline format data / attr forks attached to this inode,
3486 * make sure they are not corrupt.
3488 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3489 xfs_ifork_verify_local_data(ip))
3491 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3492 xfs_ifork_verify_local_attr(ip))
3496 * Copy the dirty parts of the inode into the on-disk inode. We always
3497 * copy out the core of the inode, because if the inode is dirty at all
3500 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3502 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3503 if (!xfs_has_v3inodes(mp)) {
3504 if (ip->i_flushiter == DI_MAX_FLUSH)
3505 ip->i_flushiter = 0;
3508 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3509 if (XFS_IFORK_Q(ip))
3510 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3513 * We've recorded everything logged in the inode, so we'd like to clear
3514 * the ili_fields bits so we don't log and flush things unnecessarily.
3515 * However, we can't stop logging all this information until the data
3516 * we've copied into the disk buffer is written to disk. If we did we
3517 * might overwrite the copy of the inode in the log with all the data
3518 * after re-logging only part of it, and in the face of a crash we
3519 * wouldn't have all the data we need to recover.
3521 * What we do is move the bits to the ili_last_fields field. When
3522 * logging the inode, these bits are moved back to the ili_fields field.
3523 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3524 * we know that the information those bits represent is permanently on
3525 * disk. As long as the flush completes before the inode is logged
3526 * again, then both ili_fields and ili_last_fields will be cleared.
3530 spin_lock(&iip->ili_lock);
3531 iip->ili_last_fields = iip->ili_fields;
3532 iip->ili_fields = 0;
3533 iip->ili_fsync_fields = 0;
3534 spin_unlock(&iip->ili_lock);
3537 * Store the current LSN of the inode so that we can tell whether the
3538 * item has moved in the AIL from xfs_buf_inode_iodone().
3540 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3541 &iip->ili_item.li_lsn);
3543 /* generate the checksum. */
3544 xfs_dinode_calc_crc(mp, dip);
3549 * Non-blocking flush of dirty inode metadata into the backing buffer.
3551 * The caller must have a reference to the inode and hold the cluster buffer
3552 * locked. The function will walk across all the inodes on the cluster buffer it
3553 * can find and lock without blocking, and flush them to the cluster buffer.
3555 * On successful flushing of at least one inode, the caller must write out the
3556 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3557 * the caller needs to release the buffer. On failure, the filesystem will be
3558 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3565 struct xfs_mount *mp = bp->b_mount;
3566 struct xfs_log_item *lip, *n;
3567 struct xfs_inode *ip;
3568 struct xfs_inode_log_item *iip;
3573 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3574 * will remove itself from the list.
3576 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3577 iip = (struct xfs_inode_log_item *)lip;
3578 ip = iip->ili_inode;
3581 * Quick and dirty check to avoid locks if possible.
3583 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3585 if (xfs_ipincount(ip))
3589 * The inode is still attached to the buffer, which means it is
3590 * dirty but reclaim might try to grab it. Check carefully for
3591 * that, and grab the ilock while still holding the i_flags_lock
3592 * to guarantee reclaim will not be able to reclaim this inode
3593 * once we drop the i_flags_lock.
3595 spin_lock(&ip->i_flags_lock);
3596 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3597 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3598 spin_unlock(&ip->i_flags_lock);
3603 * ILOCK will pin the inode against reclaim and prevent
3604 * concurrent transactions modifying the inode while we are
3605 * flushing the inode. If we get the lock, set the flushing
3606 * state before we drop the i_flags_lock.
3608 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3609 spin_unlock(&ip->i_flags_lock);
3612 __xfs_iflags_set(ip, XFS_IFLUSHING);
3613 spin_unlock(&ip->i_flags_lock);
3616 * Abort flushing this inode if we are shut down because the
3617 * inode may not currently be in the AIL. This can occur when
3618 * log I/O failure unpins the inode without inserting into the
3619 * AIL, leaving a dirty/unpinned inode attached to the buffer
3620 * that otherwise looks like it should be flushed.
3622 if (xlog_is_shutdown(mp->m_log)) {
3623 xfs_iunpin_wait(ip);
3624 xfs_iflush_abort(ip);
3625 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3630 /* don't block waiting on a log force to unpin dirty inodes */
3631 if (xfs_ipincount(ip)) {
3632 xfs_iflags_clear(ip, XFS_IFLUSHING);
3633 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3637 if (!xfs_inode_clean(ip))
3638 error = xfs_iflush(ip, bp);
3640 xfs_iflags_clear(ip, XFS_IFLUSHING);
3641 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3649 * Shutdown first so we kill the log before we release this
3650 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3651 * of the log, failing it before the _log_ is shut down can
3652 * result in the log tail being moved forward in the journal
3653 * on disk because log writes can still be taking place. Hence
3654 * unpinning the tail will allow the ICREATE intent to be
3655 * removed from the log an recovery will fail with uninitialised
3656 * inode cluster buffers.
3658 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3659 bp->b_flags |= XBF_ASYNC;
3660 xfs_buf_ioend_fail(bp);
3667 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3668 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3673 /* Release an inode. */
3676 struct xfs_inode *ip)
3678 trace_xfs_irele(ip, _RET_IP_);
3683 * Ensure all commited transactions touching the inode are written to the log.
3686 xfs_log_force_inode(
3687 struct xfs_inode *ip)
3691 xfs_ilock(ip, XFS_ILOCK_SHARED);
3692 if (xfs_ipincount(ip))
3693 seq = ip->i_itemp->ili_commit_seq;
3694 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3698 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3702 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3703 * abide vfs locking order (lowest pointer value goes first) and breaking the
3704 * layout leases before proceeding. The loop is needed because we cannot call
3705 * the blocking break_layout() with the iolocks held, and therefore have to
3706 * back out both locks.
3709 xfs_iolock_two_inodes_and_break_layout(
3719 /* Wait to break both inodes' layouts before we start locking. */
3720 error = break_layout(src, true);
3724 error = break_layout(dest, true);
3729 /* Lock one inode and make sure nobody got in and leased it. */
3731 error = break_layout(src, false);
3734 if (error == -EWOULDBLOCK)
3742 /* Lock the other inode and make sure nobody got in and leased it. */
3743 inode_lock_nested(dest, I_MUTEX_NONDIR2);
3744 error = break_layout(dest, false);
3748 if (error == -EWOULDBLOCK)
3757 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3762 struct xfs_inode *ip1,
3763 struct xfs_inode *ip2)
3767 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3770 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3771 VFS_I(ip2)->i_mapping);
3775 /* Unlock both inodes to allow IO and mmap activity. */
3777 xfs_iunlock2_io_mmap(
3778 struct xfs_inode *ip1,
3779 struct xfs_inode *ip2)
3781 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3782 VFS_I(ip2)->i_mapping);
3783 inode_unlock(VFS_I(ip2));
3785 inode_unlock(VFS_I(ip1));