2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
36 #include "xfs_reflink.h"
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
42 * Allocate and initialise an xfs_inode.
52 * if this didn't occur in transactions, we could use
53 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
54 * code up to do this anyway.
56 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
59 if (inode_init_always(mp->m_super, VFS_I(ip))) {
60 kmem_zone_free(xfs_inode_zone, ip);
64 /* VFS doesn't initialise i_mode! */
65 VFS_I(ip)->i_mode = 0;
67 XFS_STATS_INC(mp, vn_active);
68 ASSERT(atomic_read(&ip->i_pincount) == 0);
69 ASSERT(!xfs_isiflocked(ip));
70 ASSERT(ip->i_ino == 0);
72 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
74 /* initialise the xfs inode */
77 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
81 ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
82 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
84 ip->i_delayed_blks = 0;
85 memset(&ip->i_d, 0, sizeof(ip->i_d));
91 xfs_inode_free_callback(
92 struct rcu_head *head)
94 struct inode *inode = container_of(head, struct inode, i_rcu);
95 struct xfs_inode *ip = XFS_I(inode);
97 switch (VFS_I(ip)->i_mode & S_IFMT) {
101 xfs_idestroy_fork(ip, XFS_DATA_FORK);
106 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
108 xfs_idestroy_fork(ip, XFS_COW_FORK);
111 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
112 xfs_inode_item_destroy(ip);
116 kmem_zone_free(xfs_inode_zone, ip);
121 struct xfs_inode *ip)
123 /* asserts to verify all state is correct here */
124 ASSERT(atomic_read(&ip->i_pincount) == 0);
125 XFS_STATS_DEC(ip->i_mount, vn_active);
127 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
132 struct xfs_inode *ip)
134 ASSERT(!xfs_isiflocked(ip));
137 * Because we use RCU freeing we need to ensure the inode always
138 * appears to be reclaimed with an invalid inode number when in the
139 * free state. The ip->i_flags_lock provides the barrier against lookup
142 spin_lock(&ip->i_flags_lock);
143 ip->i_flags = XFS_IRECLAIM;
145 spin_unlock(&ip->i_flags_lock);
147 __xfs_inode_free(ip);
151 * Queue a new inode reclaim pass if there are reclaimable inodes and there
152 * isn't a reclaim pass already in progress. By default it runs every 5s based
153 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
154 * tunable, but that can be done if this method proves to be ineffective or too
158 xfs_reclaim_work_queue(
159 struct xfs_mount *mp)
163 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
164 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
165 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
171 * This is a fast pass over the inode cache to try to get reclaim moving on as
172 * many inodes as possible in a short period of time. It kicks itself every few
173 * seconds, as well as being kicked by the inode cache shrinker when memory
174 * goes low. It scans as quickly as possible avoiding locked inodes or those
175 * already being flushed, and once done schedules a future pass.
179 struct work_struct *work)
181 struct xfs_mount *mp = container_of(to_delayed_work(work),
182 struct xfs_mount, m_reclaim_work);
184 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
185 xfs_reclaim_work_queue(mp);
189 xfs_perag_set_reclaim_tag(
190 struct xfs_perag *pag)
192 struct xfs_mount *mp = pag->pag_mount;
194 lockdep_assert_held(&pag->pag_ici_lock);
195 if (pag->pag_ici_reclaimable++)
198 /* propagate the reclaim tag up into the perag radix tree */
199 spin_lock(&mp->m_perag_lock);
200 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
201 XFS_ICI_RECLAIM_TAG);
202 spin_unlock(&mp->m_perag_lock);
204 /* schedule periodic background inode reclaim */
205 xfs_reclaim_work_queue(mp);
207 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
211 xfs_perag_clear_reclaim_tag(
212 struct xfs_perag *pag)
214 struct xfs_mount *mp = pag->pag_mount;
216 lockdep_assert_held(&pag->pag_ici_lock);
217 if (--pag->pag_ici_reclaimable)
220 /* clear the reclaim tag from the perag radix tree */
221 spin_lock(&mp->m_perag_lock);
222 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
223 XFS_ICI_RECLAIM_TAG);
224 spin_unlock(&mp->m_perag_lock);
225 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
230 * We set the inode flag atomically with the radix tree tag.
231 * Once we get tag lookups on the radix tree, this inode flag
235 xfs_inode_set_reclaim_tag(
236 struct xfs_inode *ip)
238 struct xfs_mount *mp = ip->i_mount;
239 struct xfs_perag *pag;
241 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
242 spin_lock(&pag->pag_ici_lock);
243 spin_lock(&ip->i_flags_lock);
245 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
246 XFS_ICI_RECLAIM_TAG);
247 xfs_perag_set_reclaim_tag(pag);
248 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
250 spin_unlock(&ip->i_flags_lock);
251 spin_unlock(&pag->pag_ici_lock);
256 xfs_inode_clear_reclaim_tag(
257 struct xfs_perag *pag,
260 radix_tree_tag_clear(&pag->pag_ici_root,
261 XFS_INO_TO_AGINO(pag->pag_mount, ino),
262 XFS_ICI_RECLAIM_TAG);
263 xfs_perag_clear_reclaim_tag(pag);
268 struct xfs_inode *ip)
270 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
271 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
274 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
275 if (!xfs_iflags_test(ip, XFS_INEW))
279 finish_wait(wq, &wait.wait);
283 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
284 * part of the structure. This is made more complex by the fact we store
285 * information about the on-disk values in the VFS inode and so we can't just
286 * overwrite the values unconditionally. Hence we save the parameters we
287 * need to retain across reinitialisation, and rewrite them into the VFS inode
288 * after reinitialisation even if it fails.
292 struct xfs_mount *mp,
296 uint32_t nlink = inode->i_nlink;
297 uint32_t generation = inode->i_generation;
298 uint64_t version = inode->i_version;
299 umode_t mode = inode->i_mode;
301 error = inode_init_always(mp->m_super, inode);
303 set_nlink(inode, nlink);
304 inode->i_generation = generation;
305 inode->i_version = version;
306 inode->i_mode = mode;
311 * If we are allocating a new inode, then check what was returned is
312 * actually a free, empty inode. If we are not allocating an inode,
313 * then check we didn't find a free inode.
316 * 0 if the inode free state matches the lookup context
317 * -ENOENT if the inode is free and we are not allocating
318 * -EFSCORRUPTED if there is any state mismatch at all
321 xfs_iget_check_free_state(
322 struct xfs_inode *ip,
325 if (flags & XFS_IGET_CREATE) {
326 /* should be a free inode */
327 if (VFS_I(ip)->i_mode != 0) {
328 xfs_warn(ip->i_mount,
329 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
330 ip->i_ino, VFS_I(ip)->i_mode);
331 return -EFSCORRUPTED;
334 if (ip->i_d.di_nblocks != 0) {
335 xfs_warn(ip->i_mount,
336 "Corruption detected! Free inode 0x%llx has blocks allocated!",
338 return -EFSCORRUPTED;
343 /* should be an allocated inode */
344 if (VFS_I(ip)->i_mode == 0)
351 * Check the validity of the inode we just found it the cache
355 struct xfs_perag *pag,
356 struct xfs_inode *ip,
359 int lock_flags) __releases(RCU)
361 struct inode *inode = VFS_I(ip);
362 struct xfs_mount *mp = ip->i_mount;
366 * check for re-use of an inode within an RCU grace period due to the
367 * radix tree nodes not being updated yet. We monitor for this by
368 * setting the inode number to zero before freeing the inode structure.
369 * If the inode has been reallocated and set up, then the inode number
370 * will not match, so check for that, too.
372 spin_lock(&ip->i_flags_lock);
373 if (ip->i_ino != ino) {
374 trace_xfs_iget_skip(ip);
375 XFS_STATS_INC(mp, xs_ig_frecycle);
382 * If we are racing with another cache hit that is currently
383 * instantiating this inode or currently recycling it out of
384 * reclaimabe state, wait for the initialisation to complete
387 * XXX(hch): eventually we should do something equivalent to
388 * wait_on_inode to wait for these flags to be cleared
389 * instead of polling for it.
391 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
392 trace_xfs_iget_skip(ip);
393 XFS_STATS_INC(mp, xs_ig_frecycle);
399 * Check the inode free state is valid. This also detects lookup
400 * racing with unlinks.
402 error = xfs_iget_check_free_state(ip, flags);
407 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
408 * Need to carefully get it back into useable state.
410 if (ip->i_flags & XFS_IRECLAIMABLE) {
411 trace_xfs_iget_reclaim(ip);
414 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
415 * from stomping over us while we recycle the inode. We can't
416 * clear the radix tree reclaimable tag yet as it requires
417 * pag_ici_lock to be held exclusive.
419 ip->i_flags |= XFS_IRECLAIM;
421 spin_unlock(&ip->i_flags_lock);
424 error = xfs_reinit_inode(mp, inode);
428 * Re-initializing the inode failed, and we are in deep
429 * trouble. Try to re-add it to the reclaim list.
432 spin_lock(&ip->i_flags_lock);
433 wake = !!__xfs_iflags_test(ip, XFS_INEW);
434 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
436 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
437 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
438 trace_xfs_iget_reclaim_fail(ip);
442 spin_lock(&pag->pag_ici_lock);
443 spin_lock(&ip->i_flags_lock);
446 * Clear the per-lifetime state in the inode as we are now
447 * effectively a new inode and need to return to the initial
448 * state before reuse occurs.
450 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
451 ip->i_flags |= XFS_INEW;
452 xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
453 inode->i_state = I_NEW;
455 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
456 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
458 spin_unlock(&ip->i_flags_lock);
459 spin_unlock(&pag->pag_ici_lock);
461 /* If the VFS inode is being torn down, pause and try again. */
463 trace_xfs_iget_skip(ip);
468 /* We've got a live one. */
469 spin_unlock(&ip->i_flags_lock);
471 trace_xfs_iget_hit(ip);
475 xfs_ilock(ip, lock_flags);
477 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
478 XFS_STATS_INC(mp, xs_ig_found);
483 spin_unlock(&ip->i_flags_lock);
491 struct xfs_mount *mp,
492 struct xfs_perag *pag,
495 struct xfs_inode **ipp,
499 struct xfs_inode *ip;
501 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
504 ip = xfs_inode_alloc(mp, ino);
508 error = xfs_iread(mp, tp, ip, flags);
512 trace_xfs_iget_miss(ip);
516 * Check the inode free state is valid. This also detects lookup
517 * racing with unlinks.
519 error = xfs_iget_check_free_state(ip, flags);
524 * Preload the radix tree so we can insert safely under the
525 * write spinlock. Note that we cannot sleep inside the preload
526 * region. Since we can be called from transaction context, don't
527 * recurse into the file system.
529 if (radix_tree_preload(GFP_NOFS)) {
535 * Because the inode hasn't been added to the radix-tree yet it can't
536 * be found by another thread, so we can do the non-sleeping lock here.
539 if (!xfs_ilock_nowait(ip, lock_flags))
544 * These values must be set before inserting the inode into the radix
545 * tree as the moment it is inserted a concurrent lookup (allowed by the
546 * RCU locking mechanism) can find it and that lookup must see that this
547 * is an inode currently under construction (i.e. that XFS_INEW is set).
548 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
549 * memory barrier that ensures this detection works correctly at lookup
553 if (flags & XFS_IGET_DONTCACHE)
554 iflags |= XFS_IDONTCACHE;
558 xfs_iflags_set(ip, iflags);
560 /* insert the new inode */
561 spin_lock(&pag->pag_ici_lock);
562 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
563 if (unlikely(error)) {
564 WARN_ON(error != -EEXIST);
565 XFS_STATS_INC(mp, xs_ig_dup);
567 goto out_preload_end;
569 spin_unlock(&pag->pag_ici_lock);
570 radix_tree_preload_end();
576 spin_unlock(&pag->pag_ici_lock);
577 radix_tree_preload_end();
579 xfs_iunlock(ip, lock_flags);
581 __destroy_inode(VFS_I(ip));
587 * Look up an inode by number in the given file system.
588 * The inode is looked up in the cache held in each AG.
589 * If the inode is found in the cache, initialise the vfs inode
592 * If it is not in core, read it in from the file system's device,
593 * add it to the cache and initialise the vfs inode.
595 * The inode is locked according to the value of the lock_flags parameter.
596 * This flag parameter indicates how and if the inode's IO lock and inode lock
599 * mp -- the mount point structure for the current file system. It points
600 * to the inode hash table.
601 * tp -- a pointer to the current transaction if there is one. This is
602 * simply passed through to the xfs_iread() call.
603 * ino -- the number of the inode desired. This is the unique identifier
604 * within the file system for the inode being requested.
605 * lock_flags -- flags indicating how to lock the inode. See the comment
606 * for xfs_ilock() for a list of valid values.
623 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
624 * doesn't get freed while it's being referenced during a
625 * radix tree traversal here. It assumes this function
626 * aqcuires only the ILOCK (and therefore it has no need to
627 * involve the IOLOCK in this synchronization).
629 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
631 /* reject inode numbers outside existing AGs */
632 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
635 XFS_STATS_INC(mp, xs_ig_attempts);
637 /* get the perag structure and ensure that it's inode capable */
638 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
639 agino = XFS_INO_TO_AGINO(mp, ino);
644 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
647 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
649 goto out_error_or_again;
652 XFS_STATS_INC(mp, xs_ig_missed);
654 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
657 goto out_error_or_again;
664 * If we have a real type for an on-disk inode, we can setup the inode
665 * now. If it's a new inode being created, xfs_ialloc will handle it.
667 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
668 xfs_setup_existing_inode(ip);
672 if (error == -EAGAIN) {
681 * The inode lookup is done in batches to keep the amount of lock traffic and
682 * radix tree lookups to a minimum. The batch size is a trade off between
683 * lookup reduction and stack usage. This is in the reclaim path, so we can't
686 #define XFS_LOOKUP_BATCH 32
689 xfs_inode_ag_walk_grab(
690 struct xfs_inode *ip,
693 struct inode *inode = VFS_I(ip);
694 bool newinos = !!(flags & XFS_AGITER_INEW_WAIT);
696 ASSERT(rcu_read_lock_held());
699 * check for stale RCU freed inode
701 * If the inode has been reallocated, it doesn't matter if it's not in
702 * the AG we are walking - we are walking for writeback, so if it
703 * passes all the "valid inode" checks and is dirty, then we'll write
704 * it back anyway. If it has been reallocated and still being
705 * initialised, the XFS_INEW check below will catch it.
707 spin_lock(&ip->i_flags_lock);
709 goto out_unlock_noent;
711 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
712 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
713 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
714 goto out_unlock_noent;
715 spin_unlock(&ip->i_flags_lock);
717 /* nothing to sync during shutdown */
718 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
719 return -EFSCORRUPTED;
721 /* If we can't grab the inode, it must on it's way to reclaim. */
729 spin_unlock(&ip->i_flags_lock);
735 struct xfs_mount *mp,
736 struct xfs_perag *pag,
737 int (*execute)(struct xfs_inode *ip, int flags,
744 uint32_t first_index;
756 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
763 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
764 (void **)batch, first_index,
767 nr_found = radix_tree_gang_lookup_tag(
769 (void **) batch, first_index,
770 XFS_LOOKUP_BATCH, tag);
778 * Grab the inodes before we drop the lock. if we found
779 * nothing, nr == 0 and the loop will be skipped.
781 for (i = 0; i < nr_found; i++) {
782 struct xfs_inode *ip = batch[i];
784 if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
788 * Update the index for the next lookup. Catch
789 * overflows into the next AG range which can occur if
790 * we have inodes in the last block of the AG and we
791 * are currently pointing to the last inode.
793 * Because we may see inodes that are from the wrong AG
794 * due to RCU freeing and reallocation, only update the
795 * index if it lies in this AG. It was a race that lead
796 * us to see this inode, so another lookup from the
797 * same index will not find it again.
799 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
801 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
802 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
806 /* unlock now we've grabbed the inodes. */
809 for (i = 0; i < nr_found; i++) {
812 if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
813 xfs_iflags_test(batch[i], XFS_INEW))
814 xfs_inew_wait(batch[i]);
815 error = execute(batch[i], flags, args);
817 if (error == -EAGAIN) {
821 if (error && last_error != -EFSCORRUPTED)
825 /* bail out if the filesystem is corrupted. */
826 if (error == -EFSCORRUPTED)
831 } while (nr_found && !done);
841 * Background scanning to trim post-EOF preallocated space. This is queued
842 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
846 struct xfs_mount *mp)
849 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
850 queue_delayed_work(mp->m_eofblocks_workqueue,
851 &mp->m_eofblocks_work,
852 msecs_to_jiffies(xfs_eofb_secs * 1000));
857 xfs_eofblocks_worker(
858 struct work_struct *work)
860 struct xfs_mount *mp = container_of(to_delayed_work(work),
861 struct xfs_mount, m_eofblocks_work);
862 xfs_icache_free_eofblocks(mp, NULL);
863 xfs_queue_eofblocks(mp);
867 * Background scanning to trim preallocated CoW space. This is queued
868 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
869 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
873 struct xfs_mount *mp)
876 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
877 queue_delayed_work(mp->m_eofblocks_workqueue,
878 &mp->m_cowblocks_work,
879 msecs_to_jiffies(xfs_cowb_secs * 1000));
884 xfs_cowblocks_worker(
885 struct work_struct *work)
887 struct xfs_mount *mp = container_of(to_delayed_work(work),
888 struct xfs_mount, m_cowblocks_work);
889 xfs_icache_free_cowblocks(mp, NULL);
890 xfs_queue_cowblocks(mp);
894 xfs_inode_ag_iterator_flags(
895 struct xfs_mount *mp,
896 int (*execute)(struct xfs_inode *ip, int flags,
902 struct xfs_perag *pag;
908 while ((pag = xfs_perag_get(mp, ag))) {
909 ag = pag->pag_agno + 1;
910 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
915 if (error == -EFSCORRUPTED)
923 xfs_inode_ag_iterator(
924 struct xfs_mount *mp,
925 int (*execute)(struct xfs_inode *ip, int flags,
930 return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
934 xfs_inode_ag_iterator_tag(
935 struct xfs_mount *mp,
936 int (*execute)(struct xfs_inode *ip, int flags,
942 struct xfs_perag *pag;
948 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
949 ag = pag->pag_agno + 1;
950 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
955 if (error == -EFSCORRUPTED)
963 * Grab the inode for reclaim exclusively.
964 * Return 0 if we grabbed it, non-zero otherwise.
967 xfs_reclaim_inode_grab(
968 struct xfs_inode *ip,
971 ASSERT(rcu_read_lock_held());
973 /* quick check for stale RCU freed inode */
978 * If we are asked for non-blocking operation, do unlocked checks to
979 * see if the inode already is being flushed or in reclaim to avoid
982 if ((flags & SYNC_TRYLOCK) &&
983 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
987 * The radix tree lock here protects a thread in xfs_iget from racing
988 * with us starting reclaim on the inode. Once we have the
989 * XFS_IRECLAIM flag set it will not touch us.
991 * Due to RCU lookup, we may find inodes that have been freed and only
992 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
993 * aren't candidates for reclaim at all, so we must check the
994 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
996 spin_lock(&ip->i_flags_lock);
997 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
998 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
999 /* not a reclaim candidate. */
1000 spin_unlock(&ip->i_flags_lock);
1003 __xfs_iflags_set(ip, XFS_IRECLAIM);
1004 spin_unlock(&ip->i_flags_lock);
1009 * Inodes in different states need to be treated differently. The following
1010 * table lists the inode states and the reclaim actions necessary:
1012 * inode state iflush ret required action
1013 * --------------- ---------- ---------------
1015 * shutdown EIO unpin and reclaim
1016 * clean, unpinned 0 reclaim
1017 * stale, unpinned 0 reclaim
1018 * clean, pinned(*) 0 requeue
1019 * stale, pinned EAGAIN requeue
1020 * dirty, async - requeue
1021 * dirty, sync 0 reclaim
1023 * (*) dgc: I don't think the clean, pinned state is possible but it gets
1024 * handled anyway given the order of checks implemented.
1026 * Also, because we get the flush lock first, we know that any inode that has
1027 * been flushed delwri has had the flush completed by the time we check that
1028 * the inode is clean.
1030 * Note that because the inode is flushed delayed write by AIL pushing, the
1031 * flush lock may already be held here and waiting on it can result in very
1032 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
1033 * the caller should push the AIL first before trying to reclaim inodes to
1034 * minimise the amount of time spent waiting. For background relaim, we only
1035 * bother to reclaim clean inodes anyway.
1037 * Hence the order of actions after gaining the locks should be:
1039 * shutdown => unpin and reclaim
1040 * pinned, async => requeue
1041 * pinned, sync => unpin
1044 * dirty, async => requeue
1045 * dirty, sync => flush, wait and reclaim
1049 struct xfs_inode *ip,
1050 struct xfs_perag *pag,
1053 struct xfs_buf *bp = NULL;
1054 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
1059 xfs_ilock(ip, XFS_ILOCK_EXCL);
1060 if (!xfs_iflock_nowait(ip)) {
1061 if (!(sync_mode & SYNC_WAIT))
1066 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1067 xfs_iunpin_wait(ip);
1068 /* xfs_iflush_abort() drops the flush lock */
1069 xfs_iflush_abort(ip, false);
1072 if (xfs_ipincount(ip)) {
1073 if (!(sync_mode & SYNC_WAIT))
1075 xfs_iunpin_wait(ip);
1077 if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1083 * Never flush out dirty data during non-blocking reclaim, as it would
1084 * just contend with AIL pushing trying to do the same job.
1086 if (!(sync_mode & SYNC_WAIT))
1090 * Now we have an inode that needs flushing.
1092 * Note that xfs_iflush will never block on the inode buffer lock, as
1093 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1094 * ip->i_lock, and we are doing the exact opposite here. As a result,
1095 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1096 * result in an ABBA deadlock with xfs_ifree_cluster().
1098 * As xfs_ifree_cluser() must gather all inodes that are active in the
1099 * cache to mark them stale, if we hit this case we don't actually want
1100 * to do IO here - we want the inode marked stale so we can simply
1101 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
1102 * inode, back off and try again. Hopefully the next pass through will
1103 * see the stale flag set on the inode.
1105 error = xfs_iflush(ip, &bp);
1106 if (error == -EAGAIN) {
1107 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1108 /* backoff longer than in xfs_ifree_cluster */
1114 error = xfs_bwrite(bp);
1119 ASSERT(!xfs_isiflocked(ip));
1122 * Because we use RCU freeing we need to ensure the inode always appears
1123 * to be reclaimed with an invalid inode number when in the free state.
1124 * We do this as early as possible under the ILOCK so that
1125 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1126 * detect races with us here. By doing this, we guarantee that once
1127 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1128 * it will see either a valid inode that will serialise correctly, or it
1129 * will see an invalid inode that it can skip.
1131 spin_lock(&ip->i_flags_lock);
1132 ip->i_flags = XFS_IRECLAIM;
1134 spin_unlock(&ip->i_flags_lock);
1136 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1138 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1140 * Remove the inode from the per-AG radix tree.
1142 * Because radix_tree_delete won't complain even if the item was never
1143 * added to the tree assert that it's been there before to catch
1144 * problems with the inode life time early on.
1146 spin_lock(&pag->pag_ici_lock);
1147 if (!radix_tree_delete(&pag->pag_ici_root,
1148 XFS_INO_TO_AGINO(ip->i_mount, ino)))
1150 xfs_perag_clear_reclaim_tag(pag);
1151 spin_unlock(&pag->pag_ici_lock);
1154 * Here we do an (almost) spurious inode lock in order to coordinate
1155 * with inode cache radix tree lookups. This is because the lookup
1156 * can reference the inodes in the cache without taking references.
1158 * We make that OK here by ensuring that we wait until the inode is
1159 * unlocked after the lookup before we go ahead and free it.
1161 xfs_ilock(ip, XFS_ILOCK_EXCL);
1162 xfs_qm_dqdetach(ip);
1163 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1165 __xfs_inode_free(ip);
1171 xfs_iflags_clear(ip, XFS_IRECLAIM);
1172 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1174 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1175 * a short while. However, this just burns CPU time scanning the tree
1176 * waiting for IO to complete and the reclaim work never goes back to
1177 * the idle state. Instead, return 0 to let the next scheduled
1178 * background reclaim attempt to reclaim the inode again.
1184 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1185 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1186 * then a shut down during filesystem unmount reclaim walk leak all the
1187 * unreclaimed inodes.
1190 xfs_reclaim_inodes_ag(
1191 struct xfs_mount *mp,
1195 struct xfs_perag *pag;
1199 int trylock = flags & SYNC_TRYLOCK;
1205 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1206 unsigned long first_index = 0;
1210 ag = pag->pag_agno + 1;
1213 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1218 first_index = pag->pag_ici_reclaim_cursor;
1220 mutex_lock(&pag->pag_ici_reclaim_lock);
1223 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1227 nr_found = radix_tree_gang_lookup_tag(
1229 (void **)batch, first_index,
1231 XFS_ICI_RECLAIM_TAG);
1239 * Grab the inodes before we drop the lock. if we found
1240 * nothing, nr == 0 and the loop will be skipped.
1242 for (i = 0; i < nr_found; i++) {
1243 struct xfs_inode *ip = batch[i];
1245 if (done || xfs_reclaim_inode_grab(ip, flags))
1249 * Update the index for the next lookup. Catch
1250 * overflows into the next AG range which can
1251 * occur if we have inodes in the last block of
1252 * the AG and we are currently pointing to the
1255 * Because we may see inodes that are from the
1256 * wrong AG due to RCU freeing and
1257 * reallocation, only update the index if it
1258 * lies in this AG. It was a race that lead us
1259 * to see this inode, so another lookup from
1260 * the same index will not find it again.
1262 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1265 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1266 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1270 /* unlock now we've grabbed the inodes. */
1273 for (i = 0; i < nr_found; i++) {
1276 error = xfs_reclaim_inode(batch[i], pag, flags);
1277 if (error && last_error != -EFSCORRUPTED)
1281 *nr_to_scan -= XFS_LOOKUP_BATCH;
1285 } while (nr_found && !done && *nr_to_scan > 0);
1287 if (trylock && !done)
1288 pag->pag_ici_reclaim_cursor = first_index;
1290 pag->pag_ici_reclaim_cursor = 0;
1291 mutex_unlock(&pag->pag_ici_reclaim_lock);
1296 * if we skipped any AG, and we still have scan count remaining, do
1297 * another pass this time using blocking reclaim semantics (i.e
1298 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1299 * ensure that when we get more reclaimers than AGs we block rather
1300 * than spin trying to execute reclaim.
1302 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1314 int nr_to_scan = INT_MAX;
1316 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
1320 * Scan a certain number of inodes for reclaim.
1322 * When called we make sure that there is a background (fast) inode reclaim in
1323 * progress, while we will throttle the speed of reclaim via doing synchronous
1324 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1325 * them to be cleaned, which we hope will not be very long due to the
1326 * background walker having already kicked the IO off on those dirty inodes.
1329 xfs_reclaim_inodes_nr(
1330 struct xfs_mount *mp,
1333 /* kick background reclaimer and push the AIL */
1334 xfs_reclaim_work_queue(mp);
1335 xfs_ail_push_all(mp->m_ail);
1337 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1341 * Return the number of reclaimable inodes in the filesystem for
1342 * the shrinker to determine how much to reclaim.
1345 xfs_reclaim_inodes_count(
1346 struct xfs_mount *mp)
1348 struct xfs_perag *pag;
1349 xfs_agnumber_t ag = 0;
1350 int reclaimable = 0;
1352 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1353 ag = pag->pag_agno + 1;
1354 reclaimable += pag->pag_ici_reclaimable;
1362 struct xfs_inode *ip,
1363 struct xfs_eofblocks *eofb)
1365 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1366 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1369 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1370 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1373 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1374 xfs_get_projid(ip) != eofb->eof_prid)
1381 * A union-based inode filtering algorithm. Process the inode if any of the
1382 * criteria match. This is for global/internal scans only.
1385 xfs_inode_match_id_union(
1386 struct xfs_inode *ip,
1387 struct xfs_eofblocks *eofb)
1389 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1390 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1393 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1394 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1397 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1398 xfs_get_projid(ip) == eofb->eof_prid)
1405 xfs_inode_free_eofblocks(
1406 struct xfs_inode *ip,
1411 struct xfs_eofblocks *eofb = args;
1414 if (!xfs_can_free_eofblocks(ip, false)) {
1415 /* inode could be preallocated or append-only */
1416 trace_xfs_inode_free_eofblocks_invalid(ip);
1417 xfs_inode_clear_eofblocks_tag(ip);
1422 * If the mapping is dirty the operation can block and wait for some
1423 * time. Unless we are waiting, skip it.
1425 if (!(flags & SYNC_WAIT) &&
1426 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1430 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1431 match = xfs_inode_match_id_union(ip, eofb);
1433 match = xfs_inode_match_id(ip, eofb);
1437 /* skip the inode if the file size is too small */
1438 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1439 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1444 * If the caller is waiting, return -EAGAIN to keep the background
1445 * scanner moving and revisit the inode in a subsequent pass.
1447 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1448 if (flags & SYNC_WAIT)
1452 ret = xfs_free_eofblocks(ip);
1453 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1459 __xfs_icache_free_eofblocks(
1460 struct xfs_mount *mp,
1461 struct xfs_eofblocks *eofb,
1462 int (*execute)(struct xfs_inode *ip, int flags,
1466 int flags = SYNC_TRYLOCK;
1468 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1471 return xfs_inode_ag_iterator_tag(mp, execute, flags,
1476 xfs_icache_free_eofblocks(
1477 struct xfs_mount *mp,
1478 struct xfs_eofblocks *eofb)
1480 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1481 XFS_ICI_EOFBLOCKS_TAG);
1485 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1486 * multiple quotas, we don't know exactly which quota caused an allocation
1487 * failure. We make a best effort by including each quota under low free space
1488 * conditions (less than 1% free space) in the scan.
1491 __xfs_inode_free_quota_eofblocks(
1492 struct xfs_inode *ip,
1493 int (*execute)(struct xfs_mount *mp,
1494 struct xfs_eofblocks *eofb))
1497 struct xfs_eofblocks eofb = {0};
1498 struct xfs_dquot *dq;
1501 * Run a sync scan to increase effectiveness and use the union filter to
1502 * cover all applicable quotas in a single scan.
1504 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1506 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1507 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1508 if (dq && xfs_dquot_lowsp(dq)) {
1509 eofb.eof_uid = VFS_I(ip)->i_uid;
1510 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1515 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1516 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1517 if (dq && xfs_dquot_lowsp(dq)) {
1518 eofb.eof_gid = VFS_I(ip)->i_gid;
1519 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1525 execute(ip->i_mount, &eofb);
1531 xfs_inode_free_quota_eofblocks(
1532 struct xfs_inode *ip)
1534 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1538 __xfs_inode_set_eofblocks_tag(
1540 void (*execute)(struct xfs_mount *mp),
1541 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1542 int error, unsigned long caller_ip),
1545 struct xfs_mount *mp = ip->i_mount;
1546 struct xfs_perag *pag;
1550 * Don't bother locking the AG and looking up in the radix trees
1551 * if we already know that we have the tag set.
1553 if (ip->i_flags & XFS_IEOFBLOCKS)
1555 spin_lock(&ip->i_flags_lock);
1556 ip->i_flags |= XFS_IEOFBLOCKS;
1557 spin_unlock(&ip->i_flags_lock);
1559 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1560 spin_lock(&pag->pag_ici_lock);
1562 tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1563 radix_tree_tag_set(&pag->pag_ici_root,
1564 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1566 /* propagate the eofblocks tag up into the perag radix tree */
1567 spin_lock(&ip->i_mount->m_perag_lock);
1568 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1569 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1571 spin_unlock(&ip->i_mount->m_perag_lock);
1573 /* kick off background trimming */
1574 execute(ip->i_mount);
1576 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1579 spin_unlock(&pag->pag_ici_lock);
1584 xfs_inode_set_eofblocks_tag(
1587 trace_xfs_inode_set_eofblocks_tag(ip);
1588 return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks,
1589 trace_xfs_perag_set_eofblocks,
1590 XFS_ICI_EOFBLOCKS_TAG);
1594 __xfs_inode_clear_eofblocks_tag(
1596 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1597 int error, unsigned long caller_ip),
1600 struct xfs_mount *mp = ip->i_mount;
1601 struct xfs_perag *pag;
1603 spin_lock(&ip->i_flags_lock);
1604 ip->i_flags &= ~XFS_IEOFBLOCKS;
1605 spin_unlock(&ip->i_flags_lock);
1607 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1608 spin_lock(&pag->pag_ici_lock);
1610 radix_tree_tag_clear(&pag->pag_ici_root,
1611 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1612 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1613 /* clear the eofblocks tag from the perag radix tree */
1614 spin_lock(&ip->i_mount->m_perag_lock);
1615 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1616 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1618 spin_unlock(&ip->i_mount->m_perag_lock);
1619 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1622 spin_unlock(&pag->pag_ici_lock);
1627 xfs_inode_clear_eofblocks_tag(
1630 trace_xfs_inode_clear_eofblocks_tag(ip);
1631 return __xfs_inode_clear_eofblocks_tag(ip,
1632 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1636 * Automatic CoW Reservation Freeing
1638 * These functions automatically garbage collect leftover CoW reservations
1639 * that were made on behalf of a cowextsize hint when we start to run out
1640 * of quota or when the reservations sit around for too long. If the file
1641 * has dirty pages or is undergoing writeback, its CoW reservations will
1644 * The actual garbage collection piggybacks off the same code that runs
1645 * the speculative EOF preallocation garbage collector.
1648 xfs_inode_free_cowblocks(
1649 struct xfs_inode *ip,
1654 struct xfs_eofblocks *eofb = args;
1656 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1659 * Just clear the tag if we have an empty cow fork or none at all. It's
1660 * possible the inode was fully unshared since it was originally tagged.
1662 if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
1663 trace_xfs_inode_free_cowblocks_invalid(ip);
1664 xfs_inode_clear_cowblocks_tag(ip);
1669 * If the mapping is dirty or under writeback we cannot touch the
1670 * CoW fork. Leave it alone if we're in the midst of a directio.
1672 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1673 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1674 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1675 atomic_read(&VFS_I(ip)->i_dio_count))
1679 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1680 match = xfs_inode_match_id_union(ip, eofb);
1682 match = xfs_inode_match_id(ip, eofb);
1686 /* skip the inode if the file size is too small */
1687 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1688 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1692 /* Free the CoW blocks */
1693 xfs_ilock(ip, XFS_IOLOCK_EXCL);
1694 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1696 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1698 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1699 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1705 xfs_icache_free_cowblocks(
1706 struct xfs_mount *mp,
1707 struct xfs_eofblocks *eofb)
1709 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1710 XFS_ICI_COWBLOCKS_TAG);
1714 xfs_inode_free_quota_cowblocks(
1715 struct xfs_inode *ip)
1717 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1721 xfs_inode_set_cowblocks_tag(
1724 trace_xfs_inode_set_cowblocks_tag(ip);
1725 return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks,
1726 trace_xfs_perag_set_cowblocks,
1727 XFS_ICI_COWBLOCKS_TAG);
1731 xfs_inode_clear_cowblocks_tag(
1734 trace_xfs_inode_clear_cowblocks_tag(ip);
1735 return __xfs_inode_clear_eofblocks_tag(ip,
1736 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);