1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2017 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_btree.h"
16 #include "xfs_rmap_btree.h"
17 #include "xfs_trace.h"
19 #include "xfs_alloc.h"
21 #include <linux/fsmap.h>
22 #include "xfs_fsmap.h"
23 #include "xfs_refcount.h"
24 #include "xfs_refcount_btree.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_rtalloc.h"
29 /* Convert an xfs_fsmap to an fsmap. */
31 xfs_fsmap_from_internal(
33 struct xfs_fsmap *src)
35 dest->fmr_device = src->fmr_device;
36 dest->fmr_flags = src->fmr_flags;
37 dest->fmr_physical = BBTOB(src->fmr_physical);
38 dest->fmr_owner = src->fmr_owner;
39 dest->fmr_offset = BBTOB(src->fmr_offset);
40 dest->fmr_length = BBTOB(src->fmr_length);
41 dest->fmr_reserved[0] = 0;
42 dest->fmr_reserved[1] = 0;
43 dest->fmr_reserved[2] = 0;
46 /* Convert an fsmap to an xfs_fsmap. */
48 xfs_fsmap_to_internal(
49 struct xfs_fsmap *dest,
52 dest->fmr_device = src->fmr_device;
53 dest->fmr_flags = src->fmr_flags;
54 dest->fmr_physical = BTOBBT(src->fmr_physical);
55 dest->fmr_owner = src->fmr_owner;
56 dest->fmr_offset = BTOBBT(src->fmr_offset);
57 dest->fmr_length = BTOBBT(src->fmr_length);
60 /* Convert an fsmap owner into an rmapbt owner. */
62 xfs_fsmap_owner_to_rmap(
63 struct xfs_rmap_irec *dest,
64 const struct xfs_fsmap *src)
66 if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) {
67 dest->rm_owner = src->fmr_owner;
71 switch (src->fmr_owner) {
72 case 0: /* "lowest owner id possible" */
73 case -1ULL: /* "highest owner id possible" */
76 case XFS_FMR_OWN_FREE:
77 dest->rm_owner = XFS_RMAP_OWN_NULL;
79 case XFS_FMR_OWN_UNKNOWN:
80 dest->rm_owner = XFS_RMAP_OWN_UNKNOWN;
83 dest->rm_owner = XFS_RMAP_OWN_FS;
86 dest->rm_owner = XFS_RMAP_OWN_LOG;
89 dest->rm_owner = XFS_RMAP_OWN_AG;
91 case XFS_FMR_OWN_INOBT:
92 dest->rm_owner = XFS_RMAP_OWN_INOBT;
94 case XFS_FMR_OWN_INODES:
95 dest->rm_owner = XFS_RMAP_OWN_INODES;
97 case XFS_FMR_OWN_REFC:
98 dest->rm_owner = XFS_RMAP_OWN_REFC;
100 case XFS_FMR_OWN_COW:
101 dest->rm_owner = XFS_RMAP_OWN_COW;
103 case XFS_FMR_OWN_DEFECTIVE: /* not implemented */
111 /* Convert an rmapbt owner into an fsmap owner. */
113 xfs_fsmap_owner_from_rmap(
114 struct xfs_fsmap *dest,
115 const struct xfs_rmap_irec *src)
118 if (!XFS_RMAP_NON_INODE_OWNER(src->rm_owner)) {
119 dest->fmr_owner = src->rm_owner;
122 dest->fmr_flags |= FMR_OF_SPECIAL_OWNER;
124 switch (src->rm_owner) {
125 case XFS_RMAP_OWN_FS:
126 dest->fmr_owner = XFS_FMR_OWN_FS;
128 case XFS_RMAP_OWN_LOG:
129 dest->fmr_owner = XFS_FMR_OWN_LOG;
131 case XFS_RMAP_OWN_AG:
132 dest->fmr_owner = XFS_FMR_OWN_AG;
134 case XFS_RMAP_OWN_INOBT:
135 dest->fmr_owner = XFS_FMR_OWN_INOBT;
137 case XFS_RMAP_OWN_INODES:
138 dest->fmr_owner = XFS_FMR_OWN_INODES;
140 case XFS_RMAP_OWN_REFC:
141 dest->fmr_owner = XFS_FMR_OWN_REFC;
143 case XFS_RMAP_OWN_COW:
144 dest->fmr_owner = XFS_FMR_OWN_COW;
146 case XFS_RMAP_OWN_NULL: /* "free" */
147 dest->fmr_owner = XFS_FMR_OWN_FREE;
151 return -EFSCORRUPTED;
156 /* getfsmap query state */
157 struct xfs_getfsmap_info {
158 struct xfs_fsmap_head *head;
159 struct fsmap *fsmap_recs; /* mapping records */
160 struct xfs_buf *agf_bp; /* AGF, for refcount queries */
161 struct xfs_perag *pag; /* AG info, if applicable */
162 xfs_daddr_t next_daddr; /* next daddr we expect */
163 u64 missing_owner; /* owner of holes */
164 u32 dev; /* device id */
165 struct xfs_rmap_irec low; /* low rmap key */
166 struct xfs_rmap_irec high; /* high rmap key */
167 bool last; /* last extent? */
170 /* Associate a device with a getfsmap handler. */
171 struct xfs_getfsmap_dev {
173 int (*fn)(struct xfs_trans *tp,
174 const struct xfs_fsmap *keys,
175 struct xfs_getfsmap_info *info);
178 /* Compare two getfsmap device handlers. */
180 xfs_getfsmap_dev_compare(
184 const struct xfs_getfsmap_dev *d1 = p1;
185 const struct xfs_getfsmap_dev *d2 = p2;
187 return d1->dev - d2->dev;
190 /* Decide if this mapping is shared. */
192 xfs_getfsmap_is_shared(
193 struct xfs_trans *tp,
194 struct xfs_getfsmap_info *info,
195 const struct xfs_rmap_irec *rec,
198 struct xfs_mount *mp = tp->t_mountp;
199 struct xfs_btree_cur *cur;
205 if (!xfs_has_reflink(mp))
207 /* rt files will have no perag structure */
211 /* Are there any shared blocks here? */
213 cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp, info->pag);
215 error = xfs_refcount_find_shared(cur, rec->rm_startblock,
216 rec->rm_blockcount, &fbno, &flen, false);
218 xfs_btree_del_cursor(cur, error);
228 struct xfs_mount *mp,
229 struct xfs_fsmap *xfm,
230 struct xfs_getfsmap_info *info)
234 trace_xfs_getfsmap_mapping(mp, xfm);
236 rec = &info->fsmap_recs[info->head->fmh_entries++];
237 xfs_fsmap_from_internal(rec, xfm);
241 * Format a reverse mapping for getfsmap, having translated rm_startblock
242 * into the appropriate daddr units.
246 struct xfs_trans *tp,
247 struct xfs_getfsmap_info *info,
248 const struct xfs_rmap_irec *rec,
249 xfs_daddr_t rec_daddr)
251 struct xfs_fsmap fmr;
252 struct xfs_mount *mp = tp->t_mountp;
256 if (fatal_signal_pending(current))
260 * Filter out records that start before our startpoint, if the
261 * caller requested that.
263 if (xfs_rmap_compare(rec, &info->low) < 0) {
264 rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount);
265 if (info->next_daddr < rec_daddr)
266 info->next_daddr = rec_daddr;
270 /* Are we just counting mappings? */
271 if (info->head->fmh_count == 0) {
272 if (info->head->fmh_entries == UINT_MAX)
275 if (rec_daddr > info->next_daddr)
276 info->head->fmh_entries++;
281 info->head->fmh_entries++;
283 rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount);
284 if (info->next_daddr < rec_daddr)
285 info->next_daddr = rec_daddr;
290 * If the record starts past the last physical block we saw,
291 * then we've found a gap. Report the gap as being owned by
292 * whatever the caller specified is the missing owner.
294 if (rec_daddr > info->next_daddr) {
295 if (info->head->fmh_entries >= info->head->fmh_count)
298 fmr.fmr_device = info->dev;
299 fmr.fmr_physical = info->next_daddr;
300 fmr.fmr_owner = info->missing_owner;
302 fmr.fmr_length = rec_daddr - info->next_daddr;
303 fmr.fmr_flags = FMR_OF_SPECIAL_OWNER;
304 xfs_getfsmap_format(mp, &fmr, info);
310 /* Fill out the extent we found */
311 if (info->head->fmh_entries >= info->head->fmh_count)
314 trace_xfs_fsmap_mapping(mp, info->dev,
315 info->pag ? info->pag->pag_agno : NULLAGNUMBER, rec);
317 fmr.fmr_device = info->dev;
318 fmr.fmr_physical = rec_daddr;
319 error = xfs_fsmap_owner_from_rmap(&fmr, rec);
322 fmr.fmr_offset = XFS_FSB_TO_BB(mp, rec->rm_offset);
323 fmr.fmr_length = XFS_FSB_TO_BB(mp, rec->rm_blockcount);
324 if (rec->rm_flags & XFS_RMAP_UNWRITTEN)
325 fmr.fmr_flags |= FMR_OF_PREALLOC;
326 if (rec->rm_flags & XFS_RMAP_ATTR_FORK)
327 fmr.fmr_flags |= FMR_OF_ATTR_FORK;
328 if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK)
329 fmr.fmr_flags |= FMR_OF_EXTENT_MAP;
330 if (fmr.fmr_flags == 0) {
331 error = xfs_getfsmap_is_shared(tp, info, rec, &shared);
335 fmr.fmr_flags |= FMR_OF_SHARED;
338 xfs_getfsmap_format(mp, &fmr, info);
340 rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount);
341 if (info->next_daddr < rec_daddr)
342 info->next_daddr = rec_daddr;
346 /* Transform a rmapbt irec into a fsmap */
348 xfs_getfsmap_datadev_helper(
349 struct xfs_btree_cur *cur,
350 const struct xfs_rmap_irec *rec,
353 struct xfs_mount *mp = cur->bc_mp;
354 struct xfs_getfsmap_info *info = priv;
356 xfs_daddr_t rec_daddr;
358 fsb = XFS_AGB_TO_FSB(mp, cur->bc_ag.pag->pag_agno, rec->rm_startblock);
359 rec_daddr = XFS_FSB_TO_DADDR(mp, fsb);
361 return xfs_getfsmap_helper(cur->bc_tp, info, rec, rec_daddr);
364 /* Transform a bnobt irec into a fsmap */
366 xfs_getfsmap_datadev_bnobt_helper(
367 struct xfs_btree_cur *cur,
368 const struct xfs_alloc_rec_incore *rec,
371 struct xfs_mount *mp = cur->bc_mp;
372 struct xfs_getfsmap_info *info = priv;
373 struct xfs_rmap_irec irec;
374 xfs_daddr_t rec_daddr;
376 rec_daddr = XFS_AGB_TO_DADDR(mp, cur->bc_ag.pag->pag_agno,
379 irec.rm_startblock = rec->ar_startblock;
380 irec.rm_blockcount = rec->ar_blockcount;
381 irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */
385 return xfs_getfsmap_helper(cur->bc_tp, info, &irec, rec_daddr);
388 /* Set rmap flags based on the getfsmap flags */
390 xfs_getfsmap_set_irec_flags(
391 struct xfs_rmap_irec *irec,
392 const struct xfs_fsmap *fmr)
395 if (fmr->fmr_flags & FMR_OF_ATTR_FORK)
396 irec->rm_flags |= XFS_RMAP_ATTR_FORK;
397 if (fmr->fmr_flags & FMR_OF_EXTENT_MAP)
398 irec->rm_flags |= XFS_RMAP_BMBT_BLOCK;
399 if (fmr->fmr_flags & FMR_OF_PREALLOC)
400 irec->rm_flags |= XFS_RMAP_UNWRITTEN;
403 /* Execute a getfsmap query against the log device. */
406 struct xfs_trans *tp,
407 const struct xfs_fsmap *keys,
408 struct xfs_getfsmap_info *info)
410 struct xfs_mount *mp = tp->t_mountp;
411 struct xfs_rmap_irec rmap;
414 /* Set up search keys */
415 info->low.rm_startblock = XFS_BB_TO_FSBT(mp, keys[0].fmr_physical);
416 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
417 error = xfs_fsmap_owner_to_rmap(&info->low, keys);
420 info->low.rm_blockcount = 0;
421 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
423 error = xfs_fsmap_owner_to_rmap(&info->high, keys + 1);
426 info->high.rm_startblock = -1U;
427 info->high.rm_owner = ULLONG_MAX;
428 info->high.rm_offset = ULLONG_MAX;
429 info->high.rm_blockcount = 0;
430 info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
431 info->missing_owner = XFS_FMR_OWN_FREE;
433 trace_xfs_fsmap_low_key(mp, info->dev, NULLAGNUMBER, &info->low);
434 trace_xfs_fsmap_high_key(mp, info->dev, NULLAGNUMBER, &info->high);
436 if (keys[0].fmr_physical > 0)
439 /* Fabricate an rmap entry for the external log device. */
440 rmap.rm_startblock = 0;
441 rmap.rm_blockcount = mp->m_sb.sb_logblocks;
442 rmap.rm_owner = XFS_RMAP_OWN_LOG;
446 return xfs_getfsmap_helper(tp, info, &rmap, 0);
450 /* Transform a rtbitmap "record" into a fsmap */
452 xfs_getfsmap_rtdev_rtbitmap_helper(
453 struct xfs_mount *mp,
454 struct xfs_trans *tp,
455 const struct xfs_rtalloc_rec *rec,
458 struct xfs_getfsmap_info *info = priv;
459 struct xfs_rmap_irec irec;
460 xfs_daddr_t rec_daddr;
462 irec.rm_startblock = rec->ar_startext * mp->m_sb.sb_rextsize;
463 rec_daddr = XFS_FSB_TO_BB(mp, irec.rm_startblock);
464 irec.rm_blockcount = rec->ar_extcount * mp->m_sb.sb_rextsize;
465 irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */
469 return xfs_getfsmap_helper(tp, info, &irec, rec_daddr);
472 /* Execute a getfsmap query against the realtime device. */
474 __xfs_getfsmap_rtdev(
475 struct xfs_trans *tp,
476 const struct xfs_fsmap *keys,
477 int (*query_fn)(struct xfs_trans *,
478 struct xfs_getfsmap_info *),
479 struct xfs_getfsmap_info *info)
481 struct xfs_mount *mp = tp->t_mountp;
482 xfs_fsblock_t start_fsb;
483 xfs_fsblock_t end_fsb;
487 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
488 if (keys[0].fmr_physical >= eofs)
490 start_fsb = XFS_BB_TO_FSBT(mp, keys[0].fmr_physical);
491 end_fsb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
493 /* Set up search keys */
494 info->low.rm_startblock = start_fsb;
495 error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
498 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
499 info->low.rm_blockcount = 0;
500 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
502 info->high.rm_startblock = end_fsb;
503 error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
506 info->high.rm_offset = XFS_BB_TO_FSBT(mp, keys[1].fmr_offset);
507 info->high.rm_blockcount = 0;
508 xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
510 trace_xfs_fsmap_low_key(mp, info->dev, NULLAGNUMBER, &info->low);
511 trace_xfs_fsmap_high_key(mp, info->dev, NULLAGNUMBER, &info->high);
513 return query_fn(tp, info);
516 /* Actually query the realtime bitmap. */
518 xfs_getfsmap_rtdev_rtbitmap_query(
519 struct xfs_trans *tp,
520 struct xfs_getfsmap_info *info)
522 struct xfs_rtalloc_rec alow = { 0 };
523 struct xfs_rtalloc_rec ahigh = { 0 };
524 struct xfs_mount *mp = tp->t_mountp;
527 xfs_ilock(mp->m_rbmip, XFS_ILOCK_SHARED);
530 * Set up query parameters to return free rtextents covering the range
533 alow.ar_startext = info->low.rm_startblock;
534 ahigh.ar_startext = info->high.rm_startblock;
535 do_div(alow.ar_startext, mp->m_sb.sb_rextsize);
536 if (do_div(ahigh.ar_startext, mp->m_sb.sb_rextsize))
538 error = xfs_rtalloc_query_range(mp, tp, &alow, &ahigh,
539 xfs_getfsmap_rtdev_rtbitmap_helper, info);
544 * Report any gaps at the end of the rtbitmap by simulating a null
545 * rmap starting at the block after the end of the query range.
548 ahigh.ar_startext = min(mp->m_sb.sb_rextents, ahigh.ar_startext);
550 error = xfs_getfsmap_rtdev_rtbitmap_helper(mp, tp, &ahigh, info);
554 xfs_iunlock(mp->m_rbmip, XFS_ILOCK_SHARED);
558 /* Execute a getfsmap query against the realtime device rtbitmap. */
560 xfs_getfsmap_rtdev_rtbitmap(
561 struct xfs_trans *tp,
562 const struct xfs_fsmap *keys,
563 struct xfs_getfsmap_info *info)
565 info->missing_owner = XFS_FMR_OWN_UNKNOWN;
566 return __xfs_getfsmap_rtdev(tp, keys, xfs_getfsmap_rtdev_rtbitmap_query,
569 #endif /* CONFIG_XFS_RT */
571 /* Execute a getfsmap query against the regular data device. */
573 __xfs_getfsmap_datadev(
574 struct xfs_trans *tp,
575 const struct xfs_fsmap *keys,
576 struct xfs_getfsmap_info *info,
577 int (*query_fn)(struct xfs_trans *,
578 struct xfs_getfsmap_info *,
579 struct xfs_btree_cur **,
583 struct xfs_mount *mp = tp->t_mountp;
584 struct xfs_perag *pag;
585 struct xfs_btree_cur *bt_cur = NULL;
586 xfs_fsblock_t start_fsb;
587 xfs_fsblock_t end_fsb;
588 xfs_agnumber_t start_ag;
589 xfs_agnumber_t end_ag;
593 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
594 if (keys[0].fmr_physical >= eofs)
596 start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical);
597 end_fsb = XFS_DADDR_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
600 * Convert the fsmap low/high keys to AG based keys. Initialize
601 * low to the fsmap low key and max out the high key to the end
604 info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb);
605 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
606 error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
609 info->low.rm_blockcount = 0;
610 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
612 info->high.rm_startblock = -1U;
613 info->high.rm_owner = ULLONG_MAX;
614 info->high.rm_offset = ULLONG_MAX;
615 info->high.rm_blockcount = 0;
616 info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
618 start_ag = XFS_FSB_TO_AGNO(mp, start_fsb);
619 end_ag = XFS_FSB_TO_AGNO(mp, end_fsb);
621 for_each_perag_range(mp, start_ag, end_ag, pag) {
623 * Set the AG high key from the fsmap high key if this
624 * is the last AG that we're querying.
627 if (pag->pag_agno == end_ag) {
628 info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp,
630 info->high.rm_offset = XFS_BB_TO_FSBT(mp,
632 error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
635 xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
639 xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
641 xfs_trans_brelse(tp, info->agf_bp);
645 error = xfs_alloc_read_agf(mp, tp, pag->pag_agno, 0,
650 trace_xfs_fsmap_low_key(mp, info->dev, pag->pag_agno,
652 trace_xfs_fsmap_high_key(mp, info->dev, pag->pag_agno,
655 error = query_fn(tp, info, &bt_cur, priv);
660 * Set the AG low key to the start of the AG prior to
661 * moving on to the next AG.
663 if (pag->pag_agno == start_ag) {
664 info->low.rm_startblock = 0;
665 info->low.rm_owner = 0;
666 info->low.rm_offset = 0;
667 info->low.rm_flags = 0;
671 * If this is the last AG, report any gap at the end of it
672 * before we drop the reference to the perag when the loop
675 if (pag->pag_agno == end_ag) {
677 error = query_fn(tp, info, &bt_cur, priv);
685 xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
688 xfs_trans_brelse(tp, info->agf_bp);
692 xfs_perag_put(info->pag);
695 /* loop termination case */
702 /* Actually query the rmap btree. */
704 xfs_getfsmap_datadev_rmapbt_query(
705 struct xfs_trans *tp,
706 struct xfs_getfsmap_info *info,
707 struct xfs_btree_cur **curpp,
710 /* Report any gap at the end of the last AG. */
712 return xfs_getfsmap_datadev_helper(*curpp, &info->high, info);
714 /* Allocate cursor for this AG and query_range it. */
715 *curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
717 return xfs_rmap_query_range(*curpp, &info->low, &info->high,
718 xfs_getfsmap_datadev_helper, info);
721 /* Execute a getfsmap query against the regular data device rmapbt. */
723 xfs_getfsmap_datadev_rmapbt(
724 struct xfs_trans *tp,
725 const struct xfs_fsmap *keys,
726 struct xfs_getfsmap_info *info)
728 info->missing_owner = XFS_FMR_OWN_FREE;
729 return __xfs_getfsmap_datadev(tp, keys, info,
730 xfs_getfsmap_datadev_rmapbt_query, NULL);
733 /* Actually query the bno btree. */
735 xfs_getfsmap_datadev_bnobt_query(
736 struct xfs_trans *tp,
737 struct xfs_getfsmap_info *info,
738 struct xfs_btree_cur **curpp,
741 struct xfs_alloc_rec_incore *key = priv;
743 /* Report any gap at the end of the last AG. */
745 return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info);
747 /* Allocate cursor for this AG and query_range it. */
748 *curpp = xfs_allocbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
749 info->pag, XFS_BTNUM_BNO);
750 key->ar_startblock = info->low.rm_startblock;
751 key[1].ar_startblock = info->high.rm_startblock;
752 return xfs_alloc_query_range(*curpp, key, &key[1],
753 xfs_getfsmap_datadev_bnobt_helper, info);
756 /* Execute a getfsmap query against the regular data device's bnobt. */
758 xfs_getfsmap_datadev_bnobt(
759 struct xfs_trans *tp,
760 const struct xfs_fsmap *keys,
761 struct xfs_getfsmap_info *info)
763 struct xfs_alloc_rec_incore akeys[2];
765 info->missing_owner = XFS_FMR_OWN_UNKNOWN;
766 return __xfs_getfsmap_datadev(tp, keys, info,
767 xfs_getfsmap_datadev_bnobt_query, &akeys[0]);
770 /* Do we recognize the device? */
772 xfs_getfsmap_is_valid_device(
773 struct xfs_mount *mp,
774 struct xfs_fsmap *fm)
776 if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX ||
777 fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev))
779 if (mp->m_logdev_targp &&
780 fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev))
782 if (mp->m_rtdev_targp &&
783 fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev))
788 /* Ensure that the low key is less than the high key. */
790 xfs_getfsmap_check_keys(
791 struct xfs_fsmap *low_key,
792 struct xfs_fsmap *high_key)
794 if (low_key->fmr_device > high_key->fmr_device)
796 if (low_key->fmr_device < high_key->fmr_device)
799 if (low_key->fmr_physical > high_key->fmr_physical)
801 if (low_key->fmr_physical < high_key->fmr_physical)
804 if (low_key->fmr_owner > high_key->fmr_owner)
806 if (low_key->fmr_owner < high_key->fmr_owner)
809 if (low_key->fmr_offset > high_key->fmr_offset)
811 if (low_key->fmr_offset < high_key->fmr_offset)
818 * There are only two devices if we didn't configure RT devices at build time.
821 #define XFS_GETFSMAP_DEVS 3
823 #define XFS_GETFSMAP_DEVS 2
824 #endif /* CONFIG_XFS_RT */
827 * Get filesystem's extents as described in head, and format for output. Fills
828 * in the supplied records array until there are no more reverse mappings to
829 * return or head.fmh_entries == head.fmh_count. In the second case, this
830 * function returns -ECANCELED to indicate that more records would have been
835 * There are multiple levels of keys and counters at work here:
836 * xfs_fsmap_head.fmh_keys -- low and high fsmap keys passed in;
837 * these reflect fs-wide sector addrs.
838 * dkeys -- fmh_keys used to query each device;
839 * these are fmh_keys but w/ the low key
840 * bumped up by fmr_length.
841 * xfs_getfsmap_info.next_daddr -- next disk addr we expect to see; this
842 * is how we detect gaps in the fsmap
843 records and report them.
844 * xfs_getfsmap_info.low/high -- per-AG low/high keys computed from
845 * dkeys; used to query the metadata.
849 struct xfs_mount *mp,
850 struct xfs_fsmap_head *head,
851 struct fsmap *fsmap_recs)
853 struct xfs_trans *tp = NULL;
854 struct xfs_fsmap dkeys[2]; /* per-dev keys */
855 struct xfs_getfsmap_dev handlers[XFS_GETFSMAP_DEVS];
856 struct xfs_getfsmap_info info = { NULL };
861 if (head->fmh_iflags & ~FMH_IF_VALID)
863 if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) ||
864 !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1]))
867 use_rmap = xfs_has_rmapbt(mp) &&
868 has_capability_noaudit(current, CAP_SYS_ADMIN);
869 head->fmh_entries = 0;
871 /* Set up our device handlers. */
872 memset(handlers, 0, sizeof(handlers));
873 handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev);
875 handlers[0].fn = xfs_getfsmap_datadev_rmapbt;
877 handlers[0].fn = xfs_getfsmap_datadev_bnobt;
878 if (mp->m_logdev_targp != mp->m_ddev_targp) {
879 handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev);
880 handlers[1].fn = xfs_getfsmap_logdev;
883 if (mp->m_rtdev_targp) {
884 handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev);
885 handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap;
887 #endif /* CONFIG_XFS_RT */
889 xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev),
890 xfs_getfsmap_dev_compare);
893 * To continue where we left off, we allow userspace to use the
894 * last mapping from a previous call as the low key of the next.
895 * This is identified by a non-zero length in the low key. We
896 * have to increment the low key in this scenario to ensure we
897 * don't return the same mapping again, and instead return the
900 * If the low key mapping refers to file data, the same physical
901 * blocks could be mapped to several other files/offsets.
902 * According to rmapbt record ordering, the minimal next
903 * possible record for the block range is the next starting
904 * offset in the same inode. Therefore, bump the file offset to
905 * continue the search appropriately. For all other low key
906 * mapping types (attr blocks, metadata), bump the physical
907 * offset as there can be no other mapping for the same physical
910 dkeys[0] = head->fmh_keys[0];
911 if (dkeys[0].fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) {
912 dkeys[0].fmr_physical += dkeys[0].fmr_length;
913 dkeys[0].fmr_owner = 0;
914 if (dkeys[0].fmr_offset)
917 dkeys[0].fmr_offset += dkeys[0].fmr_length;
918 dkeys[0].fmr_length = 0;
919 memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap));
921 if (!xfs_getfsmap_check_keys(dkeys, &head->fmh_keys[1]))
924 info.next_daddr = head->fmh_keys[0].fmr_physical +
925 head->fmh_keys[0].fmr_length;
926 info.fsmap_recs = fsmap_recs;
929 /* For each device we support... */
930 for (i = 0; i < XFS_GETFSMAP_DEVS; i++) {
931 /* Is this device within the range the user asked for? */
934 if (head->fmh_keys[0].fmr_device > handlers[i].dev)
936 if (head->fmh_keys[1].fmr_device < handlers[i].dev)
940 * If this device number matches the high key, we have
941 * to pass the high key to the handler to limit the
942 * query results. If the device number exceeds the
943 * low key, zero out the low key so that we get
944 * everything from the beginning.
946 if (handlers[i].dev == head->fmh_keys[1].fmr_device)
947 dkeys[1] = head->fmh_keys[1];
948 if (handlers[i].dev > head->fmh_keys[0].fmr_device)
949 memset(&dkeys[0], 0, sizeof(struct xfs_fsmap));
952 * Grab an empty transaction so that we can use its recursive
953 * buffer locking abilities to detect cycles in the rmapbt
954 * without deadlocking.
956 error = xfs_trans_alloc_empty(mp, &tp);
960 info.dev = handlers[i].dev;
963 error = handlers[i].fn(tp, dkeys, &info);
966 xfs_trans_cancel(tp);
972 xfs_trans_cancel(tp);
973 head->fmh_oflags = FMH_OF_DEV_T;