GNU Linux-libre 5.19-rc6-gnu
[releases.git] / fs / xfs / libxfs / xfs_btree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 #include "xfs_ag.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_ialloc_btree.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_rmap_btree.h"
29 #include "xfs_refcount_btree.h"
30
31 /*
32  * Btree magic numbers.
33  */
34 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
35         { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
36           XFS_FIBT_MAGIC, 0 },
37         { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
38           XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
39           XFS_REFC_CRC_MAGIC }
40 };
41
42 uint32_t
43 xfs_btree_magic(
44         int                     crc,
45         xfs_btnum_t             btnum)
46 {
47         uint32_t                magic = xfs_magics[crc][btnum];
48
49         /* Ensure we asked for crc for crc-only magics. */
50         ASSERT(magic != 0);
51         return magic;
52 }
53
54 /*
55  * These sibling pointer checks are optimised for null sibling pointers. This
56  * happens a lot, and we don't need to byte swap at runtime if the sibling
57  * pointer is NULL.
58  *
59  * These are explicitly marked at inline because the cost of calling them as
60  * functions instead of inlining them is about 36 bytes extra code per call site
61  * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
62  * two sibling check functions reduces the compiled code size by over 300
63  * bytes.
64  */
65 static inline xfs_failaddr_t
66 xfs_btree_check_lblock_siblings(
67         struct xfs_mount        *mp,
68         struct xfs_btree_cur    *cur,
69         int                     level,
70         xfs_fsblock_t           fsb,
71         __be64                  dsibling)
72 {
73         xfs_fsblock_t           sibling;
74
75         if (dsibling == cpu_to_be64(NULLFSBLOCK))
76                 return NULL;
77
78         sibling = be64_to_cpu(dsibling);
79         if (sibling == fsb)
80                 return __this_address;
81         if (level >= 0) {
82                 if (!xfs_btree_check_lptr(cur, sibling, level + 1))
83                         return __this_address;
84         } else {
85                 if (!xfs_verify_fsbno(mp, sibling))
86                         return __this_address;
87         }
88
89         return NULL;
90 }
91
92 static inline xfs_failaddr_t
93 xfs_btree_check_sblock_siblings(
94         struct xfs_mount        *mp,
95         struct xfs_btree_cur    *cur,
96         int                     level,
97         xfs_agnumber_t          agno,
98         xfs_agblock_t           agbno,
99         __be32                  dsibling)
100 {
101         xfs_agblock_t           sibling;
102
103         if (dsibling == cpu_to_be32(NULLAGBLOCK))
104                 return NULL;
105
106         sibling = be32_to_cpu(dsibling);
107         if (sibling == agbno)
108                 return __this_address;
109         if (level >= 0) {
110                 if (!xfs_btree_check_sptr(cur, sibling, level + 1))
111                         return __this_address;
112         } else {
113                 if (!xfs_verify_agbno(mp, agno, sibling))
114                         return __this_address;
115         }
116         return NULL;
117 }
118
119 /*
120  * Check a long btree block header.  Return the address of the failing check,
121  * or NULL if everything is ok.
122  */
123 xfs_failaddr_t
124 __xfs_btree_check_lblock(
125         struct xfs_btree_cur    *cur,
126         struct xfs_btree_block  *block,
127         int                     level,
128         struct xfs_buf          *bp)
129 {
130         struct xfs_mount        *mp = cur->bc_mp;
131         xfs_btnum_t             btnum = cur->bc_btnum;
132         int                     crc = xfs_has_crc(mp);
133         xfs_failaddr_t          fa;
134         xfs_fsblock_t           fsb = NULLFSBLOCK;
135
136         if (crc) {
137                 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
138                         return __this_address;
139                 if (block->bb_u.l.bb_blkno !=
140                     cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
141                         return __this_address;
142                 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
143                         return __this_address;
144         }
145
146         if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
147                 return __this_address;
148         if (be16_to_cpu(block->bb_level) != level)
149                 return __this_address;
150         if (be16_to_cpu(block->bb_numrecs) >
151             cur->bc_ops->get_maxrecs(cur, level))
152                 return __this_address;
153
154         if (bp)
155                 fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
156
157         fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
158                         block->bb_u.l.bb_leftsib);
159         if (!fa)
160                 fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
161                                 block->bb_u.l.bb_rightsib);
162         return fa;
163 }
164
165 /* Check a long btree block header. */
166 static int
167 xfs_btree_check_lblock(
168         struct xfs_btree_cur    *cur,
169         struct xfs_btree_block  *block,
170         int                     level,
171         struct xfs_buf          *bp)
172 {
173         struct xfs_mount        *mp = cur->bc_mp;
174         xfs_failaddr_t          fa;
175
176         fa = __xfs_btree_check_lblock(cur, block, level, bp);
177         if (XFS_IS_CORRUPT(mp, fa != NULL) ||
178             XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
179                 if (bp)
180                         trace_xfs_btree_corrupt(bp, _RET_IP_);
181                 return -EFSCORRUPTED;
182         }
183         return 0;
184 }
185
186 /*
187  * Check a short btree block header.  Return the address of the failing check,
188  * or NULL if everything is ok.
189  */
190 xfs_failaddr_t
191 __xfs_btree_check_sblock(
192         struct xfs_btree_cur    *cur,
193         struct xfs_btree_block  *block,
194         int                     level,
195         struct xfs_buf          *bp)
196 {
197         struct xfs_mount        *mp = cur->bc_mp;
198         xfs_btnum_t             btnum = cur->bc_btnum;
199         int                     crc = xfs_has_crc(mp);
200         xfs_failaddr_t          fa;
201         xfs_agblock_t           agbno = NULLAGBLOCK;
202         xfs_agnumber_t          agno = NULLAGNUMBER;
203
204         if (crc) {
205                 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
206                         return __this_address;
207                 if (block->bb_u.s.bb_blkno !=
208                     cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
209                         return __this_address;
210         }
211
212         if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
213                 return __this_address;
214         if (be16_to_cpu(block->bb_level) != level)
215                 return __this_address;
216         if (be16_to_cpu(block->bb_numrecs) >
217             cur->bc_ops->get_maxrecs(cur, level))
218                 return __this_address;
219
220         if (bp) {
221                 agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
222                 agno = xfs_daddr_to_agno(mp, xfs_buf_daddr(bp));
223         }
224
225         fa = xfs_btree_check_sblock_siblings(mp, cur, level, agno, agbno,
226                         block->bb_u.s.bb_leftsib);
227         if (!fa)
228                 fa = xfs_btree_check_sblock_siblings(mp, cur, level, agno,
229                                  agbno, block->bb_u.s.bb_rightsib);
230         return fa;
231 }
232
233 /* Check a short btree block header. */
234 STATIC int
235 xfs_btree_check_sblock(
236         struct xfs_btree_cur    *cur,
237         struct xfs_btree_block  *block,
238         int                     level,
239         struct xfs_buf          *bp)
240 {
241         struct xfs_mount        *mp = cur->bc_mp;
242         xfs_failaddr_t          fa;
243
244         fa = __xfs_btree_check_sblock(cur, block, level, bp);
245         if (XFS_IS_CORRUPT(mp, fa != NULL) ||
246             XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
247                 if (bp)
248                         trace_xfs_btree_corrupt(bp, _RET_IP_);
249                 return -EFSCORRUPTED;
250         }
251         return 0;
252 }
253
254 /*
255  * Debug routine: check that block header is ok.
256  */
257 int
258 xfs_btree_check_block(
259         struct xfs_btree_cur    *cur,   /* btree cursor */
260         struct xfs_btree_block  *block, /* generic btree block pointer */
261         int                     level,  /* level of the btree block */
262         struct xfs_buf          *bp)    /* buffer containing block, if any */
263 {
264         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
265                 return xfs_btree_check_lblock(cur, block, level, bp);
266         else
267                 return xfs_btree_check_sblock(cur, block, level, bp);
268 }
269
270 /* Check that this long pointer is valid and points within the fs. */
271 bool
272 xfs_btree_check_lptr(
273         struct xfs_btree_cur    *cur,
274         xfs_fsblock_t           fsbno,
275         int                     level)
276 {
277         if (level <= 0)
278                 return false;
279         return xfs_verify_fsbno(cur->bc_mp, fsbno);
280 }
281
282 /* Check that this short pointer is valid and points within the AG. */
283 bool
284 xfs_btree_check_sptr(
285         struct xfs_btree_cur    *cur,
286         xfs_agblock_t           agbno,
287         int                     level)
288 {
289         if (level <= 0)
290                 return false;
291         return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.pag->pag_agno, agbno);
292 }
293
294 /*
295  * Check that a given (indexed) btree pointer at a certain level of a
296  * btree is valid and doesn't point past where it should.
297  */
298 static int
299 xfs_btree_check_ptr(
300         struct xfs_btree_cur            *cur,
301         const union xfs_btree_ptr       *ptr,
302         int                             index,
303         int                             level)
304 {
305         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
306                 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
307                                 level))
308                         return 0;
309                 xfs_err(cur->bc_mp,
310 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
311                                 cur->bc_ino.ip->i_ino,
312                                 cur->bc_ino.whichfork, cur->bc_btnum,
313                                 level, index);
314         } else {
315                 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
316                                 level))
317                         return 0;
318                 xfs_err(cur->bc_mp,
319 "AG %u: Corrupt btree %d pointer at level %d index %d.",
320                                 cur->bc_ag.pag->pag_agno, cur->bc_btnum,
321                                 level, index);
322         }
323
324         return -EFSCORRUPTED;
325 }
326
327 #ifdef DEBUG
328 # define xfs_btree_debug_check_ptr      xfs_btree_check_ptr
329 #else
330 # define xfs_btree_debug_check_ptr(...) (0)
331 #endif
332
333 /*
334  * Calculate CRC on the whole btree block and stuff it into the
335  * long-form btree header.
336  *
337  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
338  * it into the buffer so recovery knows what the last modification was that made
339  * it to disk.
340  */
341 void
342 xfs_btree_lblock_calc_crc(
343         struct xfs_buf          *bp)
344 {
345         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
346         struct xfs_buf_log_item *bip = bp->b_log_item;
347
348         if (!xfs_has_crc(bp->b_mount))
349                 return;
350         if (bip)
351                 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
352         xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
353 }
354
355 bool
356 xfs_btree_lblock_verify_crc(
357         struct xfs_buf          *bp)
358 {
359         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
360         struct xfs_mount        *mp = bp->b_mount;
361
362         if (xfs_has_crc(mp)) {
363                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
364                         return false;
365                 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
366         }
367
368         return true;
369 }
370
371 /*
372  * Calculate CRC on the whole btree block and stuff it into the
373  * short-form btree header.
374  *
375  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
376  * it into the buffer so recovery knows what the last modification was that made
377  * it to disk.
378  */
379 void
380 xfs_btree_sblock_calc_crc(
381         struct xfs_buf          *bp)
382 {
383         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
384         struct xfs_buf_log_item *bip = bp->b_log_item;
385
386         if (!xfs_has_crc(bp->b_mount))
387                 return;
388         if (bip)
389                 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
390         xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
391 }
392
393 bool
394 xfs_btree_sblock_verify_crc(
395         struct xfs_buf          *bp)
396 {
397         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
398         struct xfs_mount        *mp = bp->b_mount;
399
400         if (xfs_has_crc(mp)) {
401                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
402                         return false;
403                 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
404         }
405
406         return true;
407 }
408
409 static int
410 xfs_btree_free_block(
411         struct xfs_btree_cur    *cur,
412         struct xfs_buf          *bp)
413 {
414         int                     error;
415
416         error = cur->bc_ops->free_block(cur, bp);
417         if (!error) {
418                 xfs_trans_binval(cur->bc_tp, bp);
419                 XFS_BTREE_STATS_INC(cur, free);
420         }
421         return error;
422 }
423
424 /*
425  * Delete the btree cursor.
426  */
427 void
428 xfs_btree_del_cursor(
429         struct xfs_btree_cur    *cur,           /* btree cursor */
430         int                     error)          /* del because of error */
431 {
432         int                     i;              /* btree level */
433
434         /*
435          * Clear the buffer pointers and release the buffers. If we're doing
436          * this because of an error, inspect all of the entries in the bc_bufs
437          * array for buffers to be unlocked. This is because some of the btree
438          * code works from level n down to 0, and if we get an error along the
439          * way we won't have initialized all the entries down to 0.
440          */
441         for (i = 0; i < cur->bc_nlevels; i++) {
442                 if (cur->bc_levels[i].bp)
443                         xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
444                 else if (!error)
445                         break;
446         }
447
448         /*
449          * If we are doing a BMBT update, the number of unaccounted blocks
450          * allocated during this cursor life time should be zero. If it's not
451          * zero, then we should be shut down or on our way to shutdown due to
452          * cancelling a dirty transaction on error.
453          */
454         ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
455                xfs_is_shutdown(cur->bc_mp) || error != 0);
456         if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
457                 kmem_free(cur->bc_ops);
458         if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
459                 xfs_perag_put(cur->bc_ag.pag);
460         kmem_cache_free(cur->bc_cache, cur);
461 }
462
463 /*
464  * Duplicate the btree cursor.
465  * Allocate a new one, copy the record, re-get the buffers.
466  */
467 int                                     /* error */
468 xfs_btree_dup_cursor(
469         struct xfs_btree_cur *cur,              /* input cursor */
470         struct xfs_btree_cur **ncur)            /* output cursor */
471 {
472         struct xfs_buf  *bp;            /* btree block's buffer pointer */
473         int             error;          /* error return value */
474         int             i;              /* level number of btree block */
475         xfs_mount_t     *mp;            /* mount structure for filesystem */
476         struct xfs_btree_cur *new;              /* new cursor value */
477         xfs_trans_t     *tp;            /* transaction pointer, can be NULL */
478
479         tp = cur->bc_tp;
480         mp = cur->bc_mp;
481
482         /*
483          * Allocate a new cursor like the old one.
484          */
485         new = cur->bc_ops->dup_cursor(cur);
486
487         /*
488          * Copy the record currently in the cursor.
489          */
490         new->bc_rec = cur->bc_rec;
491
492         /*
493          * For each level current, re-get the buffer and copy the ptr value.
494          */
495         for (i = 0; i < new->bc_nlevels; i++) {
496                 new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
497                 new->bc_levels[i].ra = cur->bc_levels[i].ra;
498                 bp = cur->bc_levels[i].bp;
499                 if (bp) {
500                         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
501                                                    xfs_buf_daddr(bp), mp->m_bsize,
502                                                    0, &bp,
503                                                    cur->bc_ops->buf_ops);
504                         if (error) {
505                                 xfs_btree_del_cursor(new, error);
506                                 *ncur = NULL;
507                                 return error;
508                         }
509                 }
510                 new->bc_levels[i].bp = bp;
511         }
512         *ncur = new;
513         return 0;
514 }
515
516 /*
517  * XFS btree block layout and addressing:
518  *
519  * There are two types of blocks in the btree: leaf and non-leaf blocks.
520  *
521  * The leaf record start with a header then followed by records containing
522  * the values.  A non-leaf block also starts with the same header, and
523  * then first contains lookup keys followed by an equal number of pointers
524  * to the btree blocks at the previous level.
525  *
526  *              +--------+-------+-------+-------+-------+-------+-------+
527  * Leaf:        | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
528  *              +--------+-------+-------+-------+-------+-------+-------+
529  *
530  *              +--------+-------+-------+-------+-------+-------+-------+
531  * Non-Leaf:    | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
532  *              +--------+-------+-------+-------+-------+-------+-------+
533  *
534  * The header is called struct xfs_btree_block for reasons better left unknown
535  * and comes in different versions for short (32bit) and long (64bit) block
536  * pointers.  The record and key structures are defined by the btree instances
537  * and opaque to the btree core.  The block pointers are simple disk endian
538  * integers, available in a short (32bit) and long (64bit) variant.
539  *
540  * The helpers below calculate the offset of a given record, key or pointer
541  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
542  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
543  * inside the btree block is done using indices starting at one, not zero!
544  *
545  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
546  * overlapping intervals.  In such a tree, records are still sorted lowest to
547  * highest and indexed by the smallest key value that refers to the record.
548  * However, nodes are different: each pointer has two associated keys -- one
549  * indexing the lowest key available in the block(s) below (the same behavior
550  * as the key in a regular btree) and another indexing the highest key
551  * available in the block(s) below.  Because records are /not/ sorted by the
552  * highest key, all leaf block updates require us to compute the highest key
553  * that matches any record in the leaf and to recursively update the high keys
554  * in the nodes going further up in the tree, if necessary.  Nodes look like
555  * this:
556  *
557  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
558  * Non-Leaf:    | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
559  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
560  *
561  * To perform an interval query on an overlapped tree, perform the usual
562  * depth-first search and use the low and high keys to decide if we can skip
563  * that particular node.  If a leaf node is reached, return the records that
564  * intersect the interval.  Note that an interval query may return numerous
565  * entries.  For a non-overlapped tree, simply search for the record associated
566  * with the lowest key and iterate forward until a non-matching record is
567  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
568  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
569  * more detail.
570  *
571  * Why do we care about overlapping intervals?  Let's say you have a bunch of
572  * reverse mapping records on a reflink filesystem:
573  *
574  * 1: +- file A startblock B offset C length D -----------+
575  * 2:      +- file E startblock F offset G length H --------------+
576  * 3:      +- file I startblock F offset J length K --+
577  * 4:                                                        +- file L... --+
578  *
579  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
580  * we'd simply increment the length of record 1.  But how do we find the record
581  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
582  * record 3 because the keys are ordered first by startblock.  An interval
583  * query would return records 1 and 2 because they both overlap (B+D-1), and
584  * from that we can pick out record 1 as the appropriate left neighbor.
585  *
586  * In the non-overlapped case you can do a LE lookup and decrement the cursor
587  * because a record's interval must end before the next record.
588  */
589
590 /*
591  * Return size of the btree block header for this btree instance.
592  */
593 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
594 {
595         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
596                 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
597                         return XFS_BTREE_LBLOCK_CRC_LEN;
598                 return XFS_BTREE_LBLOCK_LEN;
599         }
600         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
601                 return XFS_BTREE_SBLOCK_CRC_LEN;
602         return XFS_BTREE_SBLOCK_LEN;
603 }
604
605 /*
606  * Return size of btree block pointers for this btree instance.
607  */
608 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
609 {
610         return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
611                 sizeof(__be64) : sizeof(__be32);
612 }
613
614 /*
615  * Calculate offset of the n-th record in a btree block.
616  */
617 STATIC size_t
618 xfs_btree_rec_offset(
619         struct xfs_btree_cur    *cur,
620         int                     n)
621 {
622         return xfs_btree_block_len(cur) +
623                 (n - 1) * cur->bc_ops->rec_len;
624 }
625
626 /*
627  * Calculate offset of the n-th key in a btree block.
628  */
629 STATIC size_t
630 xfs_btree_key_offset(
631         struct xfs_btree_cur    *cur,
632         int                     n)
633 {
634         return xfs_btree_block_len(cur) +
635                 (n - 1) * cur->bc_ops->key_len;
636 }
637
638 /*
639  * Calculate offset of the n-th high key in a btree block.
640  */
641 STATIC size_t
642 xfs_btree_high_key_offset(
643         struct xfs_btree_cur    *cur,
644         int                     n)
645 {
646         return xfs_btree_block_len(cur) +
647                 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
648 }
649
650 /*
651  * Calculate offset of the n-th block pointer in a btree block.
652  */
653 STATIC size_t
654 xfs_btree_ptr_offset(
655         struct xfs_btree_cur    *cur,
656         int                     n,
657         int                     level)
658 {
659         return xfs_btree_block_len(cur) +
660                 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
661                 (n - 1) * xfs_btree_ptr_len(cur);
662 }
663
664 /*
665  * Return a pointer to the n-th record in the btree block.
666  */
667 union xfs_btree_rec *
668 xfs_btree_rec_addr(
669         struct xfs_btree_cur    *cur,
670         int                     n,
671         struct xfs_btree_block  *block)
672 {
673         return (union xfs_btree_rec *)
674                 ((char *)block + xfs_btree_rec_offset(cur, n));
675 }
676
677 /*
678  * Return a pointer to the n-th key in the btree block.
679  */
680 union xfs_btree_key *
681 xfs_btree_key_addr(
682         struct xfs_btree_cur    *cur,
683         int                     n,
684         struct xfs_btree_block  *block)
685 {
686         return (union xfs_btree_key *)
687                 ((char *)block + xfs_btree_key_offset(cur, n));
688 }
689
690 /*
691  * Return a pointer to the n-th high key in the btree block.
692  */
693 union xfs_btree_key *
694 xfs_btree_high_key_addr(
695         struct xfs_btree_cur    *cur,
696         int                     n,
697         struct xfs_btree_block  *block)
698 {
699         return (union xfs_btree_key *)
700                 ((char *)block + xfs_btree_high_key_offset(cur, n));
701 }
702
703 /*
704  * Return a pointer to the n-th block pointer in the btree block.
705  */
706 union xfs_btree_ptr *
707 xfs_btree_ptr_addr(
708         struct xfs_btree_cur    *cur,
709         int                     n,
710         struct xfs_btree_block  *block)
711 {
712         int                     level = xfs_btree_get_level(block);
713
714         ASSERT(block->bb_level != 0);
715
716         return (union xfs_btree_ptr *)
717                 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
718 }
719
720 struct xfs_ifork *
721 xfs_btree_ifork_ptr(
722         struct xfs_btree_cur    *cur)
723 {
724         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
725
726         if (cur->bc_flags & XFS_BTREE_STAGING)
727                 return cur->bc_ino.ifake->if_fork;
728         return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork);
729 }
730
731 /*
732  * Get the root block which is stored in the inode.
733  *
734  * For now this btree implementation assumes the btree root is always
735  * stored in the if_broot field of an inode fork.
736  */
737 STATIC struct xfs_btree_block *
738 xfs_btree_get_iroot(
739         struct xfs_btree_cur    *cur)
740 {
741         struct xfs_ifork        *ifp = xfs_btree_ifork_ptr(cur);
742
743         return (struct xfs_btree_block *)ifp->if_broot;
744 }
745
746 /*
747  * Retrieve the block pointer from the cursor at the given level.
748  * This may be an inode btree root or from a buffer.
749  */
750 struct xfs_btree_block *                /* generic btree block pointer */
751 xfs_btree_get_block(
752         struct xfs_btree_cur    *cur,   /* btree cursor */
753         int                     level,  /* level in btree */
754         struct xfs_buf          **bpp)  /* buffer containing the block */
755 {
756         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
757             (level == cur->bc_nlevels - 1)) {
758                 *bpp = NULL;
759                 return xfs_btree_get_iroot(cur);
760         }
761
762         *bpp = cur->bc_levels[level].bp;
763         return XFS_BUF_TO_BLOCK(*bpp);
764 }
765
766 /*
767  * Change the cursor to point to the first record at the given level.
768  * Other levels are unaffected.
769  */
770 STATIC int                              /* success=1, failure=0 */
771 xfs_btree_firstrec(
772         struct xfs_btree_cur    *cur,   /* btree cursor */
773         int                     level)  /* level to change */
774 {
775         struct xfs_btree_block  *block; /* generic btree block pointer */
776         struct xfs_buf          *bp;    /* buffer containing block */
777
778         /*
779          * Get the block pointer for this level.
780          */
781         block = xfs_btree_get_block(cur, level, &bp);
782         if (xfs_btree_check_block(cur, block, level, bp))
783                 return 0;
784         /*
785          * It's empty, there is no such record.
786          */
787         if (!block->bb_numrecs)
788                 return 0;
789         /*
790          * Set the ptr value to 1, that's the first record/key.
791          */
792         cur->bc_levels[level].ptr = 1;
793         return 1;
794 }
795
796 /*
797  * Change the cursor to point to the last record in the current block
798  * at the given level.  Other levels are unaffected.
799  */
800 STATIC int                              /* success=1, failure=0 */
801 xfs_btree_lastrec(
802         struct xfs_btree_cur    *cur,   /* btree cursor */
803         int                     level)  /* level to change */
804 {
805         struct xfs_btree_block  *block; /* generic btree block pointer */
806         struct xfs_buf          *bp;    /* buffer containing block */
807
808         /*
809          * Get the block pointer for this level.
810          */
811         block = xfs_btree_get_block(cur, level, &bp);
812         if (xfs_btree_check_block(cur, block, level, bp))
813                 return 0;
814         /*
815          * It's empty, there is no such record.
816          */
817         if (!block->bb_numrecs)
818                 return 0;
819         /*
820          * Set the ptr value to numrecs, that's the last record/key.
821          */
822         cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
823         return 1;
824 }
825
826 /*
827  * Compute first and last byte offsets for the fields given.
828  * Interprets the offsets table, which contains struct field offsets.
829  */
830 void
831 xfs_btree_offsets(
832         uint32_t        fields,         /* bitmask of fields */
833         const short     *offsets,       /* table of field offsets */
834         int             nbits,          /* number of bits to inspect */
835         int             *first,         /* output: first byte offset */
836         int             *last)          /* output: last byte offset */
837 {
838         int             i;              /* current bit number */
839         uint32_t        imask;          /* mask for current bit number */
840
841         ASSERT(fields != 0);
842         /*
843          * Find the lowest bit, so the first byte offset.
844          */
845         for (i = 0, imask = 1u; ; i++, imask <<= 1) {
846                 if (imask & fields) {
847                         *first = offsets[i];
848                         break;
849                 }
850         }
851         /*
852          * Find the highest bit, so the last byte offset.
853          */
854         for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
855                 if (imask & fields) {
856                         *last = offsets[i + 1] - 1;
857                         break;
858                 }
859         }
860 }
861
862 /*
863  * Get a buffer for the block, return it read in.
864  * Long-form addressing.
865  */
866 int
867 xfs_btree_read_bufl(
868         struct xfs_mount        *mp,            /* file system mount point */
869         struct xfs_trans        *tp,            /* transaction pointer */
870         xfs_fsblock_t           fsbno,          /* file system block number */
871         struct xfs_buf          **bpp,          /* buffer for fsbno */
872         int                     refval,         /* ref count value for buffer */
873         const struct xfs_buf_ops *ops)
874 {
875         struct xfs_buf          *bp;            /* return value */
876         xfs_daddr_t             d;              /* real disk block address */
877         int                     error;
878
879         if (!xfs_verify_fsbno(mp, fsbno))
880                 return -EFSCORRUPTED;
881         d = XFS_FSB_TO_DADDR(mp, fsbno);
882         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
883                                    mp->m_bsize, 0, &bp, ops);
884         if (error)
885                 return error;
886         if (bp)
887                 xfs_buf_set_ref(bp, refval);
888         *bpp = bp;
889         return 0;
890 }
891
892 /*
893  * Read-ahead the block, don't wait for it, don't return a buffer.
894  * Long-form addressing.
895  */
896 /* ARGSUSED */
897 void
898 xfs_btree_reada_bufl(
899         struct xfs_mount        *mp,            /* file system mount point */
900         xfs_fsblock_t           fsbno,          /* file system block number */
901         xfs_extlen_t            count,          /* count of filesystem blocks */
902         const struct xfs_buf_ops *ops)
903 {
904         xfs_daddr_t             d;
905
906         ASSERT(fsbno != NULLFSBLOCK);
907         d = XFS_FSB_TO_DADDR(mp, fsbno);
908         xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
909 }
910
911 /*
912  * Read-ahead the block, don't wait for it, don't return a buffer.
913  * Short-form addressing.
914  */
915 /* ARGSUSED */
916 void
917 xfs_btree_reada_bufs(
918         struct xfs_mount        *mp,            /* file system mount point */
919         xfs_agnumber_t          agno,           /* allocation group number */
920         xfs_agblock_t           agbno,          /* allocation group block number */
921         xfs_extlen_t            count,          /* count of filesystem blocks */
922         const struct xfs_buf_ops *ops)
923 {
924         xfs_daddr_t             d;
925
926         ASSERT(agno != NULLAGNUMBER);
927         ASSERT(agbno != NULLAGBLOCK);
928         d = XFS_AGB_TO_DADDR(mp, agno, agbno);
929         xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
930 }
931
932 STATIC int
933 xfs_btree_readahead_lblock(
934         struct xfs_btree_cur    *cur,
935         int                     lr,
936         struct xfs_btree_block  *block)
937 {
938         int                     rval = 0;
939         xfs_fsblock_t           left = be64_to_cpu(block->bb_u.l.bb_leftsib);
940         xfs_fsblock_t           right = be64_to_cpu(block->bb_u.l.bb_rightsib);
941
942         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
943                 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
944                                      cur->bc_ops->buf_ops);
945                 rval++;
946         }
947
948         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
949                 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
950                                      cur->bc_ops->buf_ops);
951                 rval++;
952         }
953
954         return rval;
955 }
956
957 STATIC int
958 xfs_btree_readahead_sblock(
959         struct xfs_btree_cur    *cur,
960         int                     lr,
961         struct xfs_btree_block *block)
962 {
963         int                     rval = 0;
964         xfs_agblock_t           left = be32_to_cpu(block->bb_u.s.bb_leftsib);
965         xfs_agblock_t           right = be32_to_cpu(block->bb_u.s.bb_rightsib);
966
967
968         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
969                 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
970                                      left, 1, cur->bc_ops->buf_ops);
971                 rval++;
972         }
973
974         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
975                 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
976                                      right, 1, cur->bc_ops->buf_ops);
977                 rval++;
978         }
979
980         return rval;
981 }
982
983 /*
984  * Read-ahead btree blocks, at the given level.
985  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
986  */
987 STATIC int
988 xfs_btree_readahead(
989         struct xfs_btree_cur    *cur,           /* btree cursor */
990         int                     lev,            /* level in btree */
991         int                     lr)             /* left/right bits */
992 {
993         struct xfs_btree_block  *block;
994
995         /*
996          * No readahead needed if we are at the root level and the
997          * btree root is stored in the inode.
998          */
999         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1000             (lev == cur->bc_nlevels - 1))
1001                 return 0;
1002
1003         if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1004                 return 0;
1005
1006         cur->bc_levels[lev].ra |= lr;
1007         block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1008
1009         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1010                 return xfs_btree_readahead_lblock(cur, lr, block);
1011         return xfs_btree_readahead_sblock(cur, lr, block);
1012 }
1013
1014 STATIC int
1015 xfs_btree_ptr_to_daddr(
1016         struct xfs_btree_cur            *cur,
1017         const union xfs_btree_ptr       *ptr,
1018         xfs_daddr_t                     *daddr)
1019 {
1020         xfs_fsblock_t           fsbno;
1021         xfs_agblock_t           agbno;
1022         int                     error;
1023
1024         error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1025         if (error)
1026                 return error;
1027
1028         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1029                 fsbno = be64_to_cpu(ptr->l);
1030                 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1031         } else {
1032                 agbno = be32_to_cpu(ptr->s);
1033                 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1034                                 agbno);
1035         }
1036
1037         return 0;
1038 }
1039
1040 /*
1041  * Readahead @count btree blocks at the given @ptr location.
1042  *
1043  * We don't need to care about long or short form btrees here as we have a
1044  * method of converting the ptr directly to a daddr available to us.
1045  */
1046 STATIC void
1047 xfs_btree_readahead_ptr(
1048         struct xfs_btree_cur    *cur,
1049         union xfs_btree_ptr     *ptr,
1050         xfs_extlen_t            count)
1051 {
1052         xfs_daddr_t             daddr;
1053
1054         if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1055                 return;
1056         xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1057                           cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1058 }
1059
1060 /*
1061  * Set the buffer for level "lev" in the cursor to bp, releasing
1062  * any previous buffer.
1063  */
1064 STATIC void
1065 xfs_btree_setbuf(
1066         struct xfs_btree_cur    *cur,   /* btree cursor */
1067         int                     lev,    /* level in btree */
1068         struct xfs_buf          *bp)    /* new buffer to set */
1069 {
1070         struct xfs_btree_block  *b;     /* btree block */
1071
1072         if (cur->bc_levels[lev].bp)
1073                 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1074         cur->bc_levels[lev].bp = bp;
1075         cur->bc_levels[lev].ra = 0;
1076
1077         b = XFS_BUF_TO_BLOCK(bp);
1078         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1079                 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1080                         cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1081                 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1082                         cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1083         } else {
1084                 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1085                         cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1086                 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1087                         cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1088         }
1089 }
1090
1091 bool
1092 xfs_btree_ptr_is_null(
1093         struct xfs_btree_cur            *cur,
1094         const union xfs_btree_ptr       *ptr)
1095 {
1096         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1097                 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1098         else
1099                 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1100 }
1101
1102 void
1103 xfs_btree_set_ptr_null(
1104         struct xfs_btree_cur    *cur,
1105         union xfs_btree_ptr     *ptr)
1106 {
1107         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1108                 ptr->l = cpu_to_be64(NULLFSBLOCK);
1109         else
1110                 ptr->s = cpu_to_be32(NULLAGBLOCK);
1111 }
1112
1113 /*
1114  * Get/set/init sibling pointers
1115  */
1116 void
1117 xfs_btree_get_sibling(
1118         struct xfs_btree_cur    *cur,
1119         struct xfs_btree_block  *block,
1120         union xfs_btree_ptr     *ptr,
1121         int                     lr)
1122 {
1123         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1124
1125         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1126                 if (lr == XFS_BB_RIGHTSIB)
1127                         ptr->l = block->bb_u.l.bb_rightsib;
1128                 else
1129                         ptr->l = block->bb_u.l.bb_leftsib;
1130         } else {
1131                 if (lr == XFS_BB_RIGHTSIB)
1132                         ptr->s = block->bb_u.s.bb_rightsib;
1133                 else
1134                         ptr->s = block->bb_u.s.bb_leftsib;
1135         }
1136 }
1137
1138 void
1139 xfs_btree_set_sibling(
1140         struct xfs_btree_cur            *cur,
1141         struct xfs_btree_block          *block,
1142         const union xfs_btree_ptr       *ptr,
1143         int                             lr)
1144 {
1145         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1146
1147         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1148                 if (lr == XFS_BB_RIGHTSIB)
1149                         block->bb_u.l.bb_rightsib = ptr->l;
1150                 else
1151                         block->bb_u.l.bb_leftsib = ptr->l;
1152         } else {
1153                 if (lr == XFS_BB_RIGHTSIB)
1154                         block->bb_u.s.bb_rightsib = ptr->s;
1155                 else
1156                         block->bb_u.s.bb_leftsib = ptr->s;
1157         }
1158 }
1159
1160 void
1161 xfs_btree_init_block_int(
1162         struct xfs_mount        *mp,
1163         struct xfs_btree_block  *buf,
1164         xfs_daddr_t             blkno,
1165         xfs_btnum_t             btnum,
1166         __u16                   level,
1167         __u16                   numrecs,
1168         __u64                   owner,
1169         unsigned int            flags)
1170 {
1171         int                     crc = xfs_has_crc(mp);
1172         __u32                   magic = xfs_btree_magic(crc, btnum);
1173
1174         buf->bb_magic = cpu_to_be32(magic);
1175         buf->bb_level = cpu_to_be16(level);
1176         buf->bb_numrecs = cpu_to_be16(numrecs);
1177
1178         if (flags & XFS_BTREE_LONG_PTRS) {
1179                 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1180                 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1181                 if (crc) {
1182                         buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1183                         buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1184                         uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1185                         buf->bb_u.l.bb_pad = 0;
1186                         buf->bb_u.l.bb_lsn = 0;
1187                 }
1188         } else {
1189                 /* owner is a 32 bit value on short blocks */
1190                 __u32 __owner = (__u32)owner;
1191
1192                 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1193                 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1194                 if (crc) {
1195                         buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1196                         buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1197                         uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1198                         buf->bb_u.s.bb_lsn = 0;
1199                 }
1200         }
1201 }
1202
1203 void
1204 xfs_btree_init_block(
1205         struct xfs_mount *mp,
1206         struct xfs_buf  *bp,
1207         xfs_btnum_t     btnum,
1208         __u16           level,
1209         __u16           numrecs,
1210         __u64           owner)
1211 {
1212         xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp),
1213                                  btnum, level, numrecs, owner, 0);
1214 }
1215
1216 void
1217 xfs_btree_init_block_cur(
1218         struct xfs_btree_cur    *cur,
1219         struct xfs_buf          *bp,
1220         int                     level,
1221         int                     numrecs)
1222 {
1223         __u64                   owner;
1224
1225         /*
1226          * we can pull the owner from the cursor right now as the different
1227          * owners align directly with the pointer size of the btree. This may
1228          * change in future, but is safe for current users of the generic btree
1229          * code.
1230          */
1231         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1232                 owner = cur->bc_ino.ip->i_ino;
1233         else
1234                 owner = cur->bc_ag.pag->pag_agno;
1235
1236         xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp),
1237                                 xfs_buf_daddr(bp), cur->bc_btnum, level,
1238                                 numrecs, owner, cur->bc_flags);
1239 }
1240
1241 /*
1242  * Return true if ptr is the last record in the btree and
1243  * we need to track updates to this record.  The decision
1244  * will be further refined in the update_lastrec method.
1245  */
1246 STATIC int
1247 xfs_btree_is_lastrec(
1248         struct xfs_btree_cur    *cur,
1249         struct xfs_btree_block  *block,
1250         int                     level)
1251 {
1252         union xfs_btree_ptr     ptr;
1253
1254         if (level > 0)
1255                 return 0;
1256         if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1257                 return 0;
1258
1259         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1260         if (!xfs_btree_ptr_is_null(cur, &ptr))
1261                 return 0;
1262         return 1;
1263 }
1264
1265 STATIC void
1266 xfs_btree_buf_to_ptr(
1267         struct xfs_btree_cur    *cur,
1268         struct xfs_buf          *bp,
1269         union xfs_btree_ptr     *ptr)
1270 {
1271         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1272                 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1273                                         xfs_buf_daddr(bp)));
1274         else {
1275                 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1276                                         xfs_buf_daddr(bp)));
1277         }
1278 }
1279
1280 STATIC void
1281 xfs_btree_set_refs(
1282         struct xfs_btree_cur    *cur,
1283         struct xfs_buf          *bp)
1284 {
1285         switch (cur->bc_btnum) {
1286         case XFS_BTNUM_BNO:
1287         case XFS_BTNUM_CNT:
1288                 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1289                 break;
1290         case XFS_BTNUM_INO:
1291         case XFS_BTNUM_FINO:
1292                 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1293                 break;
1294         case XFS_BTNUM_BMAP:
1295                 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1296                 break;
1297         case XFS_BTNUM_RMAP:
1298                 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1299                 break;
1300         case XFS_BTNUM_REFC:
1301                 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1302                 break;
1303         default:
1304                 ASSERT(0);
1305         }
1306 }
1307
1308 int
1309 xfs_btree_get_buf_block(
1310         struct xfs_btree_cur            *cur,
1311         const union xfs_btree_ptr       *ptr,
1312         struct xfs_btree_block          **block,
1313         struct xfs_buf                  **bpp)
1314 {
1315         struct xfs_mount        *mp = cur->bc_mp;
1316         xfs_daddr_t             d;
1317         int                     error;
1318
1319         error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1320         if (error)
1321                 return error;
1322         error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1323                         0, bpp);
1324         if (error)
1325                 return error;
1326
1327         (*bpp)->b_ops = cur->bc_ops->buf_ops;
1328         *block = XFS_BUF_TO_BLOCK(*bpp);
1329         return 0;
1330 }
1331
1332 /*
1333  * Read in the buffer at the given ptr and return the buffer and
1334  * the block pointer within the buffer.
1335  */
1336 STATIC int
1337 xfs_btree_read_buf_block(
1338         struct xfs_btree_cur            *cur,
1339         const union xfs_btree_ptr       *ptr,
1340         int                             flags,
1341         struct xfs_btree_block          **block,
1342         struct xfs_buf                  **bpp)
1343 {
1344         struct xfs_mount        *mp = cur->bc_mp;
1345         xfs_daddr_t             d;
1346         int                     error;
1347
1348         /* need to sort out how callers deal with failures first */
1349         ASSERT(!(flags & XBF_TRYLOCK));
1350
1351         error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1352         if (error)
1353                 return error;
1354         error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1355                                    mp->m_bsize, flags, bpp,
1356                                    cur->bc_ops->buf_ops);
1357         if (error)
1358                 return error;
1359
1360         xfs_btree_set_refs(cur, *bpp);
1361         *block = XFS_BUF_TO_BLOCK(*bpp);
1362         return 0;
1363 }
1364
1365 /*
1366  * Copy keys from one btree block to another.
1367  */
1368 void
1369 xfs_btree_copy_keys(
1370         struct xfs_btree_cur            *cur,
1371         union xfs_btree_key             *dst_key,
1372         const union xfs_btree_key       *src_key,
1373         int                             numkeys)
1374 {
1375         ASSERT(numkeys >= 0);
1376         memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1377 }
1378
1379 /*
1380  * Copy records from one btree block to another.
1381  */
1382 STATIC void
1383 xfs_btree_copy_recs(
1384         struct xfs_btree_cur    *cur,
1385         union xfs_btree_rec     *dst_rec,
1386         union xfs_btree_rec     *src_rec,
1387         int                     numrecs)
1388 {
1389         ASSERT(numrecs >= 0);
1390         memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1391 }
1392
1393 /*
1394  * Copy block pointers from one btree block to another.
1395  */
1396 void
1397 xfs_btree_copy_ptrs(
1398         struct xfs_btree_cur    *cur,
1399         union xfs_btree_ptr     *dst_ptr,
1400         const union xfs_btree_ptr *src_ptr,
1401         int                     numptrs)
1402 {
1403         ASSERT(numptrs >= 0);
1404         memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1405 }
1406
1407 /*
1408  * Shift keys one index left/right inside a single btree block.
1409  */
1410 STATIC void
1411 xfs_btree_shift_keys(
1412         struct xfs_btree_cur    *cur,
1413         union xfs_btree_key     *key,
1414         int                     dir,
1415         int                     numkeys)
1416 {
1417         char                    *dst_key;
1418
1419         ASSERT(numkeys >= 0);
1420         ASSERT(dir == 1 || dir == -1);
1421
1422         dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1423         memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1424 }
1425
1426 /*
1427  * Shift records one index left/right inside a single btree block.
1428  */
1429 STATIC void
1430 xfs_btree_shift_recs(
1431         struct xfs_btree_cur    *cur,
1432         union xfs_btree_rec     *rec,
1433         int                     dir,
1434         int                     numrecs)
1435 {
1436         char                    *dst_rec;
1437
1438         ASSERT(numrecs >= 0);
1439         ASSERT(dir == 1 || dir == -1);
1440
1441         dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1442         memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1443 }
1444
1445 /*
1446  * Shift block pointers one index left/right inside a single btree block.
1447  */
1448 STATIC void
1449 xfs_btree_shift_ptrs(
1450         struct xfs_btree_cur    *cur,
1451         union xfs_btree_ptr     *ptr,
1452         int                     dir,
1453         int                     numptrs)
1454 {
1455         char                    *dst_ptr;
1456
1457         ASSERT(numptrs >= 0);
1458         ASSERT(dir == 1 || dir == -1);
1459
1460         dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1461         memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1462 }
1463
1464 /*
1465  * Log key values from the btree block.
1466  */
1467 STATIC void
1468 xfs_btree_log_keys(
1469         struct xfs_btree_cur    *cur,
1470         struct xfs_buf          *bp,
1471         int                     first,
1472         int                     last)
1473 {
1474
1475         if (bp) {
1476                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1477                 xfs_trans_log_buf(cur->bc_tp, bp,
1478                                   xfs_btree_key_offset(cur, first),
1479                                   xfs_btree_key_offset(cur, last + 1) - 1);
1480         } else {
1481                 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1482                                 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1483         }
1484 }
1485
1486 /*
1487  * Log record values from the btree block.
1488  */
1489 void
1490 xfs_btree_log_recs(
1491         struct xfs_btree_cur    *cur,
1492         struct xfs_buf          *bp,
1493         int                     first,
1494         int                     last)
1495 {
1496
1497         xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1498         xfs_trans_log_buf(cur->bc_tp, bp,
1499                           xfs_btree_rec_offset(cur, first),
1500                           xfs_btree_rec_offset(cur, last + 1) - 1);
1501
1502 }
1503
1504 /*
1505  * Log block pointer fields from a btree block (nonleaf).
1506  */
1507 STATIC void
1508 xfs_btree_log_ptrs(
1509         struct xfs_btree_cur    *cur,   /* btree cursor */
1510         struct xfs_buf          *bp,    /* buffer containing btree block */
1511         int                     first,  /* index of first pointer to log */
1512         int                     last)   /* index of last pointer to log */
1513 {
1514
1515         if (bp) {
1516                 struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
1517                 int                     level = xfs_btree_get_level(block);
1518
1519                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1520                 xfs_trans_log_buf(cur->bc_tp, bp,
1521                                 xfs_btree_ptr_offset(cur, first, level),
1522                                 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1523         } else {
1524                 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1525                         xfs_ilog_fbroot(cur->bc_ino.whichfork));
1526         }
1527
1528 }
1529
1530 /*
1531  * Log fields from a btree block header.
1532  */
1533 void
1534 xfs_btree_log_block(
1535         struct xfs_btree_cur    *cur,   /* btree cursor */
1536         struct xfs_buf          *bp,    /* buffer containing btree block */
1537         uint32_t                fields) /* mask of fields: XFS_BB_... */
1538 {
1539         int                     first;  /* first byte offset logged */
1540         int                     last;   /* last byte offset logged */
1541         static const short      soffsets[] = {  /* table of offsets (short) */
1542                 offsetof(struct xfs_btree_block, bb_magic),
1543                 offsetof(struct xfs_btree_block, bb_level),
1544                 offsetof(struct xfs_btree_block, bb_numrecs),
1545                 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1546                 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1547                 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1548                 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1549                 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1550                 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1551                 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1552                 XFS_BTREE_SBLOCK_CRC_LEN
1553         };
1554         static const short      loffsets[] = {  /* table of offsets (long) */
1555                 offsetof(struct xfs_btree_block, bb_magic),
1556                 offsetof(struct xfs_btree_block, bb_level),
1557                 offsetof(struct xfs_btree_block, bb_numrecs),
1558                 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1559                 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1560                 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1561                 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1562                 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1563                 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1564                 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1565                 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1566                 XFS_BTREE_LBLOCK_CRC_LEN
1567         };
1568
1569         if (bp) {
1570                 int nbits;
1571
1572                 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1573                         /*
1574                          * We don't log the CRC when updating a btree
1575                          * block but instead recreate it during log
1576                          * recovery.  As the log buffers have checksums
1577                          * of their own this is safe and avoids logging a crc
1578                          * update in a lot of places.
1579                          */
1580                         if (fields == XFS_BB_ALL_BITS)
1581                                 fields = XFS_BB_ALL_BITS_CRC;
1582                         nbits = XFS_BB_NUM_BITS_CRC;
1583                 } else {
1584                         nbits = XFS_BB_NUM_BITS;
1585                 }
1586                 xfs_btree_offsets(fields,
1587                                   (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1588                                         loffsets : soffsets,
1589                                   nbits, &first, &last);
1590                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1591                 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1592         } else {
1593                 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1594                         xfs_ilog_fbroot(cur->bc_ino.whichfork));
1595         }
1596 }
1597
1598 /*
1599  * Increment cursor by one record at the level.
1600  * For nonzero levels the leaf-ward information is untouched.
1601  */
1602 int                                             /* error */
1603 xfs_btree_increment(
1604         struct xfs_btree_cur    *cur,
1605         int                     level,
1606         int                     *stat)          /* success/failure */
1607 {
1608         struct xfs_btree_block  *block;
1609         union xfs_btree_ptr     ptr;
1610         struct xfs_buf          *bp;
1611         int                     error;          /* error return value */
1612         int                     lev;
1613
1614         ASSERT(level < cur->bc_nlevels);
1615
1616         /* Read-ahead to the right at this level. */
1617         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1618
1619         /* Get a pointer to the btree block. */
1620         block = xfs_btree_get_block(cur, level, &bp);
1621
1622 #ifdef DEBUG
1623         error = xfs_btree_check_block(cur, block, level, bp);
1624         if (error)
1625                 goto error0;
1626 #endif
1627
1628         /* We're done if we remain in the block after the increment. */
1629         if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1630                 goto out1;
1631
1632         /* Fail if we just went off the right edge of the tree. */
1633         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1634         if (xfs_btree_ptr_is_null(cur, &ptr))
1635                 goto out0;
1636
1637         XFS_BTREE_STATS_INC(cur, increment);
1638
1639         /*
1640          * March up the tree incrementing pointers.
1641          * Stop when we don't go off the right edge of a block.
1642          */
1643         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1644                 block = xfs_btree_get_block(cur, lev, &bp);
1645
1646 #ifdef DEBUG
1647                 error = xfs_btree_check_block(cur, block, lev, bp);
1648                 if (error)
1649                         goto error0;
1650 #endif
1651
1652                 if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1653                         break;
1654
1655                 /* Read-ahead the right block for the next loop. */
1656                 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1657         }
1658
1659         /*
1660          * If we went off the root then we are either seriously
1661          * confused or have the tree root in an inode.
1662          */
1663         if (lev == cur->bc_nlevels) {
1664                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1665                         goto out0;
1666                 ASSERT(0);
1667                 error = -EFSCORRUPTED;
1668                 goto error0;
1669         }
1670         ASSERT(lev < cur->bc_nlevels);
1671
1672         /*
1673          * Now walk back down the tree, fixing up the cursor's buffer
1674          * pointers and key numbers.
1675          */
1676         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1677                 union xfs_btree_ptr     *ptrp;
1678
1679                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1680                 --lev;
1681                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1682                 if (error)
1683                         goto error0;
1684
1685                 xfs_btree_setbuf(cur, lev, bp);
1686                 cur->bc_levels[lev].ptr = 1;
1687         }
1688 out1:
1689         *stat = 1;
1690         return 0;
1691
1692 out0:
1693         *stat = 0;
1694         return 0;
1695
1696 error0:
1697         return error;
1698 }
1699
1700 /*
1701  * Decrement cursor by one record at the level.
1702  * For nonzero levels the leaf-ward information is untouched.
1703  */
1704 int                                             /* error */
1705 xfs_btree_decrement(
1706         struct xfs_btree_cur    *cur,
1707         int                     level,
1708         int                     *stat)          /* success/failure */
1709 {
1710         struct xfs_btree_block  *block;
1711         struct xfs_buf          *bp;
1712         int                     error;          /* error return value */
1713         int                     lev;
1714         union xfs_btree_ptr     ptr;
1715
1716         ASSERT(level < cur->bc_nlevels);
1717
1718         /* Read-ahead to the left at this level. */
1719         xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1720
1721         /* We're done if we remain in the block after the decrement. */
1722         if (--cur->bc_levels[level].ptr > 0)
1723                 goto out1;
1724
1725         /* Get a pointer to the btree block. */
1726         block = xfs_btree_get_block(cur, level, &bp);
1727
1728 #ifdef DEBUG
1729         error = xfs_btree_check_block(cur, block, level, bp);
1730         if (error)
1731                 goto error0;
1732 #endif
1733
1734         /* Fail if we just went off the left edge of the tree. */
1735         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1736         if (xfs_btree_ptr_is_null(cur, &ptr))
1737                 goto out0;
1738
1739         XFS_BTREE_STATS_INC(cur, decrement);
1740
1741         /*
1742          * March up the tree decrementing pointers.
1743          * Stop when we don't go off the left edge of a block.
1744          */
1745         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1746                 if (--cur->bc_levels[lev].ptr > 0)
1747                         break;
1748                 /* Read-ahead the left block for the next loop. */
1749                 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1750         }
1751
1752         /*
1753          * If we went off the root then we are seriously confused.
1754          * or the root of the tree is in an inode.
1755          */
1756         if (lev == cur->bc_nlevels) {
1757                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1758                         goto out0;
1759                 ASSERT(0);
1760                 error = -EFSCORRUPTED;
1761                 goto error0;
1762         }
1763         ASSERT(lev < cur->bc_nlevels);
1764
1765         /*
1766          * Now walk back down the tree, fixing up the cursor's buffer
1767          * pointers and key numbers.
1768          */
1769         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1770                 union xfs_btree_ptr     *ptrp;
1771
1772                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1773                 --lev;
1774                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1775                 if (error)
1776                         goto error0;
1777                 xfs_btree_setbuf(cur, lev, bp);
1778                 cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1779         }
1780 out1:
1781         *stat = 1;
1782         return 0;
1783
1784 out0:
1785         *stat = 0;
1786         return 0;
1787
1788 error0:
1789         return error;
1790 }
1791
1792 int
1793 xfs_btree_lookup_get_block(
1794         struct xfs_btree_cur            *cur,   /* btree cursor */
1795         int                             level,  /* level in the btree */
1796         const union xfs_btree_ptr       *pp,    /* ptr to btree block */
1797         struct xfs_btree_block          **blkp) /* return btree block */
1798 {
1799         struct xfs_buf          *bp;    /* buffer pointer for btree block */
1800         xfs_daddr_t             daddr;
1801         int                     error = 0;
1802
1803         /* special case the root block if in an inode */
1804         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1805             (level == cur->bc_nlevels - 1)) {
1806                 *blkp = xfs_btree_get_iroot(cur);
1807                 return 0;
1808         }
1809
1810         /*
1811          * If the old buffer at this level for the disk address we are
1812          * looking for re-use it.
1813          *
1814          * Otherwise throw it away and get a new one.
1815          */
1816         bp = cur->bc_levels[level].bp;
1817         error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1818         if (error)
1819                 return error;
1820         if (bp && xfs_buf_daddr(bp) == daddr) {
1821                 *blkp = XFS_BUF_TO_BLOCK(bp);
1822                 return 0;
1823         }
1824
1825         error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1826         if (error)
1827                 return error;
1828
1829         /* Check the inode owner since the verifiers don't. */
1830         if (xfs_has_crc(cur->bc_mp) &&
1831             !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1832             (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1833             be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1834                         cur->bc_ino.ip->i_ino)
1835                 goto out_bad;
1836
1837         /* Did we get the level we were looking for? */
1838         if (be16_to_cpu((*blkp)->bb_level) != level)
1839                 goto out_bad;
1840
1841         /* Check that internal nodes have at least one record. */
1842         if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1843                 goto out_bad;
1844
1845         xfs_btree_setbuf(cur, level, bp);
1846         return 0;
1847
1848 out_bad:
1849         *blkp = NULL;
1850         xfs_buf_mark_corrupt(bp);
1851         xfs_trans_brelse(cur->bc_tp, bp);
1852         return -EFSCORRUPTED;
1853 }
1854
1855 /*
1856  * Get current search key.  For level 0 we don't actually have a key
1857  * structure so we make one up from the record.  For all other levels
1858  * we just return the right key.
1859  */
1860 STATIC union xfs_btree_key *
1861 xfs_lookup_get_search_key(
1862         struct xfs_btree_cur    *cur,
1863         int                     level,
1864         int                     keyno,
1865         struct xfs_btree_block  *block,
1866         union xfs_btree_key     *kp)
1867 {
1868         if (level == 0) {
1869                 cur->bc_ops->init_key_from_rec(kp,
1870                                 xfs_btree_rec_addr(cur, keyno, block));
1871                 return kp;
1872         }
1873
1874         return xfs_btree_key_addr(cur, keyno, block);
1875 }
1876
1877 /*
1878  * Lookup the record.  The cursor is made to point to it, based on dir.
1879  * stat is set to 0 if can't find any such record, 1 for success.
1880  */
1881 int                                     /* error */
1882 xfs_btree_lookup(
1883         struct xfs_btree_cur    *cur,   /* btree cursor */
1884         xfs_lookup_t            dir,    /* <=, ==, or >= */
1885         int                     *stat)  /* success/failure */
1886 {
1887         struct xfs_btree_block  *block; /* current btree block */
1888         int64_t                 diff;   /* difference for the current key */
1889         int                     error;  /* error return value */
1890         int                     keyno;  /* current key number */
1891         int                     level;  /* level in the btree */
1892         union xfs_btree_ptr     *pp;    /* ptr to btree block */
1893         union xfs_btree_ptr     ptr;    /* ptr to btree block */
1894
1895         XFS_BTREE_STATS_INC(cur, lookup);
1896
1897         /* No such thing as a zero-level tree. */
1898         if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1899                 return -EFSCORRUPTED;
1900
1901         block = NULL;
1902         keyno = 0;
1903
1904         /* initialise start pointer from cursor */
1905         cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1906         pp = &ptr;
1907
1908         /*
1909          * Iterate over each level in the btree, starting at the root.
1910          * For each level above the leaves, find the key we need, based
1911          * on the lookup record, then follow the corresponding block
1912          * pointer down to the next level.
1913          */
1914         for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1915                 /* Get the block we need to do the lookup on. */
1916                 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1917                 if (error)
1918                         goto error0;
1919
1920                 if (diff == 0) {
1921                         /*
1922                          * If we already had a key match at a higher level, we
1923                          * know we need to use the first entry in this block.
1924                          */
1925                         keyno = 1;
1926                 } else {
1927                         /* Otherwise search this block. Do a binary search. */
1928
1929                         int     high;   /* high entry number */
1930                         int     low;    /* low entry number */
1931
1932                         /* Set low and high entry numbers, 1-based. */
1933                         low = 1;
1934                         high = xfs_btree_get_numrecs(block);
1935                         if (!high) {
1936                                 /* Block is empty, must be an empty leaf. */
1937                                 if (level != 0 || cur->bc_nlevels != 1) {
1938                                         XFS_CORRUPTION_ERROR(__func__,
1939                                                         XFS_ERRLEVEL_LOW,
1940                                                         cur->bc_mp, block,
1941                                                         sizeof(*block));
1942                                         return -EFSCORRUPTED;
1943                                 }
1944
1945                                 cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
1946                                 *stat = 0;
1947                                 return 0;
1948                         }
1949
1950                         /* Binary search the block. */
1951                         while (low <= high) {
1952                                 union xfs_btree_key     key;
1953                                 union xfs_btree_key     *kp;
1954
1955                                 XFS_BTREE_STATS_INC(cur, compare);
1956
1957                                 /* keyno is average of low and high. */
1958                                 keyno = (low + high) >> 1;
1959
1960                                 /* Get current search key */
1961                                 kp = xfs_lookup_get_search_key(cur, level,
1962                                                 keyno, block, &key);
1963
1964                                 /*
1965                                  * Compute difference to get next direction:
1966                                  *  - less than, move right
1967                                  *  - greater than, move left
1968                                  *  - equal, we're done
1969                                  */
1970                                 diff = cur->bc_ops->key_diff(cur, kp);
1971                                 if (diff < 0)
1972                                         low = keyno + 1;
1973                                 else if (diff > 0)
1974                                         high = keyno - 1;
1975                                 else
1976                                         break;
1977                         }
1978                 }
1979
1980                 /*
1981                  * If there are more levels, set up for the next level
1982                  * by getting the block number and filling in the cursor.
1983                  */
1984                 if (level > 0) {
1985                         /*
1986                          * If we moved left, need the previous key number,
1987                          * unless there isn't one.
1988                          */
1989                         if (diff > 0 && --keyno < 1)
1990                                 keyno = 1;
1991                         pp = xfs_btree_ptr_addr(cur, keyno, block);
1992
1993                         error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1994                         if (error)
1995                                 goto error0;
1996
1997                         cur->bc_levels[level].ptr = keyno;
1998                 }
1999         }
2000
2001         /* Done with the search. See if we need to adjust the results. */
2002         if (dir != XFS_LOOKUP_LE && diff < 0) {
2003                 keyno++;
2004                 /*
2005                  * If ge search and we went off the end of the block, but it's
2006                  * not the last block, we're in the wrong block.
2007                  */
2008                 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2009                 if (dir == XFS_LOOKUP_GE &&
2010                     keyno > xfs_btree_get_numrecs(block) &&
2011                     !xfs_btree_ptr_is_null(cur, &ptr)) {
2012                         int     i;
2013
2014                         cur->bc_levels[0].ptr = keyno;
2015                         error = xfs_btree_increment(cur, 0, &i);
2016                         if (error)
2017                                 goto error0;
2018                         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
2019                                 return -EFSCORRUPTED;
2020                         *stat = 1;
2021                         return 0;
2022                 }
2023         } else if (dir == XFS_LOOKUP_LE && diff > 0)
2024                 keyno--;
2025         cur->bc_levels[0].ptr = keyno;
2026
2027         /* Return if we succeeded or not. */
2028         if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2029                 *stat = 0;
2030         else if (dir != XFS_LOOKUP_EQ || diff == 0)
2031                 *stat = 1;
2032         else
2033                 *stat = 0;
2034         return 0;
2035
2036 error0:
2037         return error;
2038 }
2039
2040 /* Find the high key storage area from a regular key. */
2041 union xfs_btree_key *
2042 xfs_btree_high_key_from_key(
2043         struct xfs_btree_cur    *cur,
2044         union xfs_btree_key     *key)
2045 {
2046         ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2047         return (union xfs_btree_key *)((char *)key +
2048                         (cur->bc_ops->key_len / 2));
2049 }
2050
2051 /* Determine the low (and high if overlapped) keys of a leaf block */
2052 STATIC void
2053 xfs_btree_get_leaf_keys(
2054         struct xfs_btree_cur    *cur,
2055         struct xfs_btree_block  *block,
2056         union xfs_btree_key     *key)
2057 {
2058         union xfs_btree_key     max_hkey;
2059         union xfs_btree_key     hkey;
2060         union xfs_btree_rec     *rec;
2061         union xfs_btree_key     *high;
2062         int                     n;
2063
2064         rec = xfs_btree_rec_addr(cur, 1, block);
2065         cur->bc_ops->init_key_from_rec(key, rec);
2066
2067         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2068
2069                 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2070                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2071                         rec = xfs_btree_rec_addr(cur, n, block);
2072                         cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2073                         if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2074                                         > 0)
2075                                 max_hkey = hkey;
2076                 }
2077
2078                 high = xfs_btree_high_key_from_key(cur, key);
2079                 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2080         }
2081 }
2082
2083 /* Determine the low (and high if overlapped) keys of a node block */
2084 STATIC void
2085 xfs_btree_get_node_keys(
2086         struct xfs_btree_cur    *cur,
2087         struct xfs_btree_block  *block,
2088         union xfs_btree_key     *key)
2089 {
2090         union xfs_btree_key     *hkey;
2091         union xfs_btree_key     *max_hkey;
2092         union xfs_btree_key     *high;
2093         int                     n;
2094
2095         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2096                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2097                                 cur->bc_ops->key_len / 2);
2098
2099                 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2100                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2101                         hkey = xfs_btree_high_key_addr(cur, n, block);
2102                         if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2103                                 max_hkey = hkey;
2104                 }
2105
2106                 high = xfs_btree_high_key_from_key(cur, key);
2107                 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2108         } else {
2109                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2110                                 cur->bc_ops->key_len);
2111         }
2112 }
2113
2114 /* Derive the keys for any btree block. */
2115 void
2116 xfs_btree_get_keys(
2117         struct xfs_btree_cur    *cur,
2118         struct xfs_btree_block  *block,
2119         union xfs_btree_key     *key)
2120 {
2121         if (be16_to_cpu(block->bb_level) == 0)
2122                 xfs_btree_get_leaf_keys(cur, block, key);
2123         else
2124                 xfs_btree_get_node_keys(cur, block, key);
2125 }
2126
2127 /*
2128  * Decide if we need to update the parent keys of a btree block.  For
2129  * a standard btree this is only necessary if we're updating the first
2130  * record/key.  For an overlapping btree, we must always update the
2131  * keys because the highest key can be in any of the records or keys
2132  * in the block.
2133  */
2134 static inline bool
2135 xfs_btree_needs_key_update(
2136         struct xfs_btree_cur    *cur,
2137         int                     ptr)
2138 {
2139         return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2140 }
2141
2142 /*
2143  * Update the low and high parent keys of the given level, progressing
2144  * towards the root.  If force_all is false, stop if the keys for a given
2145  * level do not need updating.
2146  */
2147 STATIC int
2148 __xfs_btree_updkeys(
2149         struct xfs_btree_cur    *cur,
2150         int                     level,
2151         struct xfs_btree_block  *block,
2152         struct xfs_buf          *bp0,
2153         bool                    force_all)
2154 {
2155         union xfs_btree_key     key;    /* keys from current level */
2156         union xfs_btree_key     *lkey;  /* keys from the next level up */
2157         union xfs_btree_key     *hkey;
2158         union xfs_btree_key     *nlkey; /* keys from the next level up */
2159         union xfs_btree_key     *nhkey;
2160         struct xfs_buf          *bp;
2161         int                     ptr;
2162
2163         ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2164
2165         /* Exit if there aren't any parent levels to update. */
2166         if (level + 1 >= cur->bc_nlevels)
2167                 return 0;
2168
2169         trace_xfs_btree_updkeys(cur, level, bp0);
2170
2171         lkey = &key;
2172         hkey = xfs_btree_high_key_from_key(cur, lkey);
2173         xfs_btree_get_keys(cur, block, lkey);
2174         for (level++; level < cur->bc_nlevels; level++) {
2175 #ifdef DEBUG
2176                 int             error;
2177 #endif
2178                 block = xfs_btree_get_block(cur, level, &bp);
2179                 trace_xfs_btree_updkeys(cur, level, bp);
2180 #ifdef DEBUG
2181                 error = xfs_btree_check_block(cur, block, level, bp);
2182                 if (error)
2183                         return error;
2184 #endif
2185                 ptr = cur->bc_levels[level].ptr;
2186                 nlkey = xfs_btree_key_addr(cur, ptr, block);
2187                 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2188                 if (!force_all &&
2189                     !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2190                       cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2191                         break;
2192                 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2193                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2194                 if (level + 1 >= cur->bc_nlevels)
2195                         break;
2196                 xfs_btree_get_node_keys(cur, block, lkey);
2197         }
2198
2199         return 0;
2200 }
2201
2202 /* Update all the keys from some level in cursor back to the root. */
2203 STATIC int
2204 xfs_btree_updkeys_force(
2205         struct xfs_btree_cur    *cur,
2206         int                     level)
2207 {
2208         struct xfs_buf          *bp;
2209         struct xfs_btree_block  *block;
2210
2211         block = xfs_btree_get_block(cur, level, &bp);
2212         return __xfs_btree_updkeys(cur, level, block, bp, true);
2213 }
2214
2215 /*
2216  * Update the parent keys of the given level, progressing towards the root.
2217  */
2218 STATIC int
2219 xfs_btree_update_keys(
2220         struct xfs_btree_cur    *cur,
2221         int                     level)
2222 {
2223         struct xfs_btree_block  *block;
2224         struct xfs_buf          *bp;
2225         union xfs_btree_key     *kp;
2226         union xfs_btree_key     key;
2227         int                     ptr;
2228
2229         ASSERT(level >= 0);
2230
2231         block = xfs_btree_get_block(cur, level, &bp);
2232         if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2233                 return __xfs_btree_updkeys(cur, level, block, bp, false);
2234
2235         /*
2236          * Go up the tree from this level toward the root.
2237          * At each level, update the key value to the value input.
2238          * Stop when we reach a level where the cursor isn't pointing
2239          * at the first entry in the block.
2240          */
2241         xfs_btree_get_keys(cur, block, &key);
2242         for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2243 #ifdef DEBUG
2244                 int             error;
2245 #endif
2246                 block = xfs_btree_get_block(cur, level, &bp);
2247 #ifdef DEBUG
2248                 error = xfs_btree_check_block(cur, block, level, bp);
2249                 if (error)
2250                         return error;
2251 #endif
2252                 ptr = cur->bc_levels[level].ptr;
2253                 kp = xfs_btree_key_addr(cur, ptr, block);
2254                 xfs_btree_copy_keys(cur, kp, &key, 1);
2255                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2256         }
2257
2258         return 0;
2259 }
2260
2261 /*
2262  * Update the record referred to by cur to the value in the
2263  * given record. This either works (return 0) or gets an
2264  * EFSCORRUPTED error.
2265  */
2266 int
2267 xfs_btree_update(
2268         struct xfs_btree_cur    *cur,
2269         union xfs_btree_rec     *rec)
2270 {
2271         struct xfs_btree_block  *block;
2272         struct xfs_buf          *bp;
2273         int                     error;
2274         int                     ptr;
2275         union xfs_btree_rec     *rp;
2276
2277         /* Pick up the current block. */
2278         block = xfs_btree_get_block(cur, 0, &bp);
2279
2280 #ifdef DEBUG
2281         error = xfs_btree_check_block(cur, block, 0, bp);
2282         if (error)
2283                 goto error0;
2284 #endif
2285         /* Get the address of the rec to be updated. */
2286         ptr = cur->bc_levels[0].ptr;
2287         rp = xfs_btree_rec_addr(cur, ptr, block);
2288
2289         /* Fill in the new contents and log them. */
2290         xfs_btree_copy_recs(cur, rp, rec, 1);
2291         xfs_btree_log_recs(cur, bp, ptr, ptr);
2292
2293         /*
2294          * If we are tracking the last record in the tree and
2295          * we are at the far right edge of the tree, update it.
2296          */
2297         if (xfs_btree_is_lastrec(cur, block, 0)) {
2298                 cur->bc_ops->update_lastrec(cur, block, rec,
2299                                             ptr, LASTREC_UPDATE);
2300         }
2301
2302         /* Pass new key value up to our parent. */
2303         if (xfs_btree_needs_key_update(cur, ptr)) {
2304                 error = xfs_btree_update_keys(cur, 0);
2305                 if (error)
2306                         goto error0;
2307         }
2308
2309         return 0;
2310
2311 error0:
2312         return error;
2313 }
2314
2315 /*
2316  * Move 1 record left from cur/level if possible.
2317  * Update cur to reflect the new path.
2318  */
2319 STATIC int                                      /* error */
2320 xfs_btree_lshift(
2321         struct xfs_btree_cur    *cur,
2322         int                     level,
2323         int                     *stat)          /* success/failure */
2324 {
2325         struct xfs_buf          *lbp;           /* left buffer pointer */
2326         struct xfs_btree_block  *left;          /* left btree block */
2327         int                     lrecs;          /* left record count */
2328         struct xfs_buf          *rbp;           /* right buffer pointer */
2329         struct xfs_btree_block  *right;         /* right btree block */
2330         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2331         int                     rrecs;          /* right record count */
2332         union xfs_btree_ptr     lptr;           /* left btree pointer */
2333         union xfs_btree_key     *rkp = NULL;    /* right btree key */
2334         union xfs_btree_ptr     *rpp = NULL;    /* right address pointer */
2335         union xfs_btree_rec     *rrp = NULL;    /* right record pointer */
2336         int                     error;          /* error return value */
2337         int                     i;
2338
2339         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2340             level == cur->bc_nlevels - 1)
2341                 goto out0;
2342
2343         /* Set up variables for this block as "right". */
2344         right = xfs_btree_get_block(cur, level, &rbp);
2345
2346 #ifdef DEBUG
2347         error = xfs_btree_check_block(cur, right, level, rbp);
2348         if (error)
2349                 goto error0;
2350 #endif
2351
2352         /* If we've got no left sibling then we can't shift an entry left. */
2353         xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2354         if (xfs_btree_ptr_is_null(cur, &lptr))
2355                 goto out0;
2356
2357         /*
2358          * If the cursor entry is the one that would be moved, don't
2359          * do it... it's too complicated.
2360          */
2361         if (cur->bc_levels[level].ptr <= 1)
2362                 goto out0;
2363
2364         /* Set up the left neighbor as "left". */
2365         error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2366         if (error)
2367                 goto error0;
2368
2369         /* If it's full, it can't take another entry. */
2370         lrecs = xfs_btree_get_numrecs(left);
2371         if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2372                 goto out0;
2373
2374         rrecs = xfs_btree_get_numrecs(right);
2375
2376         /*
2377          * We add one entry to the left side and remove one for the right side.
2378          * Account for it here, the changes will be updated on disk and logged
2379          * later.
2380          */
2381         lrecs++;
2382         rrecs--;
2383
2384         XFS_BTREE_STATS_INC(cur, lshift);
2385         XFS_BTREE_STATS_ADD(cur, moves, 1);
2386
2387         /*
2388          * If non-leaf, copy a key and a ptr to the left block.
2389          * Log the changes to the left block.
2390          */
2391         if (level > 0) {
2392                 /* It's a non-leaf.  Move keys and pointers. */
2393                 union xfs_btree_key     *lkp;   /* left btree key */
2394                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2395
2396                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2397                 rkp = xfs_btree_key_addr(cur, 1, right);
2398
2399                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2400                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2401
2402                 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2403                 if (error)
2404                         goto error0;
2405
2406                 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2407                 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2408
2409                 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2410                 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2411
2412                 ASSERT(cur->bc_ops->keys_inorder(cur,
2413                         xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2414         } else {
2415                 /* It's a leaf.  Move records.  */
2416                 union xfs_btree_rec     *lrp;   /* left record pointer */
2417
2418                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2419                 rrp = xfs_btree_rec_addr(cur, 1, right);
2420
2421                 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2422                 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2423
2424                 ASSERT(cur->bc_ops->recs_inorder(cur,
2425                         xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2426         }
2427
2428         xfs_btree_set_numrecs(left, lrecs);
2429         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2430
2431         xfs_btree_set_numrecs(right, rrecs);
2432         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2433
2434         /*
2435          * Slide the contents of right down one entry.
2436          */
2437         XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2438         if (level > 0) {
2439                 /* It's a nonleaf. operate on keys and ptrs */
2440                 for (i = 0; i < rrecs; i++) {
2441                         error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2442                         if (error)
2443                                 goto error0;
2444                 }
2445
2446                 xfs_btree_shift_keys(cur,
2447                                 xfs_btree_key_addr(cur, 2, right),
2448                                 -1, rrecs);
2449                 xfs_btree_shift_ptrs(cur,
2450                                 xfs_btree_ptr_addr(cur, 2, right),
2451                                 -1, rrecs);
2452
2453                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2454                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2455         } else {
2456                 /* It's a leaf. operate on records */
2457                 xfs_btree_shift_recs(cur,
2458                         xfs_btree_rec_addr(cur, 2, right),
2459                         -1, rrecs);
2460                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2461         }
2462
2463         /*
2464          * Using a temporary cursor, update the parent key values of the
2465          * block on the left.
2466          */
2467         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2468                 error = xfs_btree_dup_cursor(cur, &tcur);
2469                 if (error)
2470                         goto error0;
2471                 i = xfs_btree_firstrec(tcur, level);
2472                 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2473                         error = -EFSCORRUPTED;
2474                         goto error0;
2475                 }
2476
2477                 error = xfs_btree_decrement(tcur, level, &i);
2478                 if (error)
2479                         goto error1;
2480
2481                 /* Update the parent high keys of the left block, if needed. */
2482                 error = xfs_btree_update_keys(tcur, level);
2483                 if (error)
2484                         goto error1;
2485
2486                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2487         }
2488
2489         /* Update the parent keys of the right block. */
2490         error = xfs_btree_update_keys(cur, level);
2491         if (error)
2492                 goto error0;
2493
2494         /* Slide the cursor value left one. */
2495         cur->bc_levels[level].ptr--;
2496
2497         *stat = 1;
2498         return 0;
2499
2500 out0:
2501         *stat = 0;
2502         return 0;
2503
2504 error0:
2505         return error;
2506
2507 error1:
2508         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2509         return error;
2510 }
2511
2512 /*
2513  * Move 1 record right from cur/level if possible.
2514  * Update cur to reflect the new path.
2515  */
2516 STATIC int                                      /* error */
2517 xfs_btree_rshift(
2518         struct xfs_btree_cur    *cur,
2519         int                     level,
2520         int                     *stat)          /* success/failure */
2521 {
2522         struct xfs_buf          *lbp;           /* left buffer pointer */
2523         struct xfs_btree_block  *left;          /* left btree block */
2524         struct xfs_buf          *rbp;           /* right buffer pointer */
2525         struct xfs_btree_block  *right;         /* right btree block */
2526         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2527         union xfs_btree_ptr     rptr;           /* right block pointer */
2528         union xfs_btree_key     *rkp;           /* right btree key */
2529         int                     rrecs;          /* right record count */
2530         int                     lrecs;          /* left record count */
2531         int                     error;          /* error return value */
2532         int                     i;              /* loop counter */
2533
2534         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2535             (level == cur->bc_nlevels - 1))
2536                 goto out0;
2537
2538         /* Set up variables for this block as "left". */
2539         left = xfs_btree_get_block(cur, level, &lbp);
2540
2541 #ifdef DEBUG
2542         error = xfs_btree_check_block(cur, left, level, lbp);
2543         if (error)
2544                 goto error0;
2545 #endif
2546
2547         /* If we've got no right sibling then we can't shift an entry right. */
2548         xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2549         if (xfs_btree_ptr_is_null(cur, &rptr))
2550                 goto out0;
2551
2552         /*
2553          * If the cursor entry is the one that would be moved, don't
2554          * do it... it's too complicated.
2555          */
2556         lrecs = xfs_btree_get_numrecs(left);
2557         if (cur->bc_levels[level].ptr >= lrecs)
2558                 goto out0;
2559
2560         /* Set up the right neighbor as "right". */
2561         error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2562         if (error)
2563                 goto error0;
2564
2565         /* If it's full, it can't take another entry. */
2566         rrecs = xfs_btree_get_numrecs(right);
2567         if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2568                 goto out0;
2569
2570         XFS_BTREE_STATS_INC(cur, rshift);
2571         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2572
2573         /*
2574          * Make a hole at the start of the right neighbor block, then
2575          * copy the last left block entry to the hole.
2576          */
2577         if (level > 0) {
2578                 /* It's a nonleaf. make a hole in the keys and ptrs */
2579                 union xfs_btree_key     *lkp;
2580                 union xfs_btree_ptr     *lpp;
2581                 union xfs_btree_ptr     *rpp;
2582
2583                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2584                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2585                 rkp = xfs_btree_key_addr(cur, 1, right);
2586                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2587
2588                 for (i = rrecs - 1; i >= 0; i--) {
2589                         error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2590                         if (error)
2591                                 goto error0;
2592                 }
2593
2594                 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2595                 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2596
2597                 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2598                 if (error)
2599                         goto error0;
2600
2601                 /* Now put the new data in, and log it. */
2602                 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2603                 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2604
2605                 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2606                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2607
2608                 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2609                         xfs_btree_key_addr(cur, 2, right)));
2610         } else {
2611                 /* It's a leaf. make a hole in the records */
2612                 union xfs_btree_rec     *lrp;
2613                 union xfs_btree_rec     *rrp;
2614
2615                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2616                 rrp = xfs_btree_rec_addr(cur, 1, right);
2617
2618                 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2619
2620                 /* Now put the new data in, and log it. */
2621                 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2622                 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2623         }
2624
2625         /*
2626          * Decrement and log left's numrecs, bump and log right's numrecs.
2627          */
2628         xfs_btree_set_numrecs(left, --lrecs);
2629         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2630
2631         xfs_btree_set_numrecs(right, ++rrecs);
2632         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2633
2634         /*
2635          * Using a temporary cursor, update the parent key values of the
2636          * block on the right.
2637          */
2638         error = xfs_btree_dup_cursor(cur, &tcur);
2639         if (error)
2640                 goto error0;
2641         i = xfs_btree_lastrec(tcur, level);
2642         if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2643                 error = -EFSCORRUPTED;
2644                 goto error0;
2645         }
2646
2647         error = xfs_btree_increment(tcur, level, &i);
2648         if (error)
2649                 goto error1;
2650
2651         /* Update the parent high keys of the left block, if needed. */
2652         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2653                 error = xfs_btree_update_keys(cur, level);
2654                 if (error)
2655                         goto error1;
2656         }
2657
2658         /* Update the parent keys of the right block. */
2659         error = xfs_btree_update_keys(tcur, level);
2660         if (error)
2661                 goto error1;
2662
2663         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2664
2665         *stat = 1;
2666         return 0;
2667
2668 out0:
2669         *stat = 0;
2670         return 0;
2671
2672 error0:
2673         return error;
2674
2675 error1:
2676         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2677         return error;
2678 }
2679
2680 /*
2681  * Split cur/level block in half.
2682  * Return new block number and the key to its first
2683  * record (to be inserted into parent).
2684  */
2685 STATIC int                                      /* error */
2686 __xfs_btree_split(
2687         struct xfs_btree_cur    *cur,
2688         int                     level,
2689         union xfs_btree_ptr     *ptrp,
2690         union xfs_btree_key     *key,
2691         struct xfs_btree_cur    **curp,
2692         int                     *stat)          /* success/failure */
2693 {
2694         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
2695         struct xfs_buf          *lbp;           /* left buffer pointer */
2696         struct xfs_btree_block  *left;          /* left btree block */
2697         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
2698         struct xfs_buf          *rbp;           /* right buffer pointer */
2699         struct xfs_btree_block  *right;         /* right btree block */
2700         union xfs_btree_ptr     rrptr;          /* right-right sibling ptr */
2701         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
2702         struct xfs_btree_block  *rrblock;       /* right-right btree block */
2703         int                     lrecs;
2704         int                     rrecs;
2705         int                     src_index;
2706         int                     error;          /* error return value */
2707         int                     i;
2708
2709         XFS_BTREE_STATS_INC(cur, split);
2710
2711         /* Set up left block (current one). */
2712         left = xfs_btree_get_block(cur, level, &lbp);
2713
2714 #ifdef DEBUG
2715         error = xfs_btree_check_block(cur, left, level, lbp);
2716         if (error)
2717                 goto error0;
2718 #endif
2719
2720         xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2721
2722         /* Allocate the new block. If we can't do it, we're toast. Give up. */
2723         error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2724         if (error)
2725                 goto error0;
2726         if (*stat == 0)
2727                 goto out0;
2728         XFS_BTREE_STATS_INC(cur, alloc);
2729
2730         /* Set up the new block as "right". */
2731         error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2732         if (error)
2733                 goto error0;
2734
2735         /* Fill in the btree header for the new right block. */
2736         xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2737
2738         /*
2739          * Split the entries between the old and the new block evenly.
2740          * Make sure that if there's an odd number of entries now, that
2741          * each new block will have the same number of entries.
2742          */
2743         lrecs = xfs_btree_get_numrecs(left);
2744         rrecs = lrecs / 2;
2745         if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2746                 rrecs++;
2747         src_index = (lrecs - rrecs + 1);
2748
2749         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2750
2751         /* Adjust numrecs for the later get_*_keys() calls. */
2752         lrecs -= rrecs;
2753         xfs_btree_set_numrecs(left, lrecs);
2754         xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2755
2756         /*
2757          * Copy btree block entries from the left block over to the
2758          * new block, the right. Update the right block and log the
2759          * changes.
2760          */
2761         if (level > 0) {
2762                 /* It's a non-leaf.  Move keys and pointers. */
2763                 union xfs_btree_key     *lkp;   /* left btree key */
2764                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2765                 union xfs_btree_key     *rkp;   /* right btree key */
2766                 union xfs_btree_ptr     *rpp;   /* right address pointer */
2767
2768                 lkp = xfs_btree_key_addr(cur, src_index, left);
2769                 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2770                 rkp = xfs_btree_key_addr(cur, 1, right);
2771                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2772
2773                 for (i = src_index; i < rrecs; i++) {
2774                         error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2775                         if (error)
2776                                 goto error0;
2777                 }
2778
2779                 /* Copy the keys & pointers to the new block. */
2780                 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2781                 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2782
2783                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2784                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2785
2786                 /* Stash the keys of the new block for later insertion. */
2787                 xfs_btree_get_node_keys(cur, right, key);
2788         } else {
2789                 /* It's a leaf.  Move records.  */
2790                 union xfs_btree_rec     *lrp;   /* left record pointer */
2791                 union xfs_btree_rec     *rrp;   /* right record pointer */
2792
2793                 lrp = xfs_btree_rec_addr(cur, src_index, left);
2794                 rrp = xfs_btree_rec_addr(cur, 1, right);
2795
2796                 /* Copy records to the new block. */
2797                 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2798                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2799
2800                 /* Stash the keys of the new block for later insertion. */
2801                 xfs_btree_get_leaf_keys(cur, right, key);
2802         }
2803
2804         /*
2805          * Find the left block number by looking in the buffer.
2806          * Adjust sibling pointers.
2807          */
2808         xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2809         xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2810         xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2811         xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2812
2813         xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2814         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2815
2816         /*
2817          * If there's a block to the new block's right, make that block
2818          * point back to right instead of to left.
2819          */
2820         if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2821                 error = xfs_btree_read_buf_block(cur, &rrptr,
2822                                                         0, &rrblock, &rrbp);
2823                 if (error)
2824                         goto error0;
2825                 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2826                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2827         }
2828
2829         /* Update the parent high keys of the left block, if needed. */
2830         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2831                 error = xfs_btree_update_keys(cur, level);
2832                 if (error)
2833                         goto error0;
2834         }
2835
2836         /*
2837          * If the cursor is really in the right block, move it there.
2838          * If it's just pointing past the last entry in left, then we'll
2839          * insert there, so don't change anything in that case.
2840          */
2841         if (cur->bc_levels[level].ptr > lrecs + 1) {
2842                 xfs_btree_setbuf(cur, level, rbp);
2843                 cur->bc_levels[level].ptr -= lrecs;
2844         }
2845         /*
2846          * If there are more levels, we'll need another cursor which refers
2847          * the right block, no matter where this cursor was.
2848          */
2849         if (level + 1 < cur->bc_nlevels) {
2850                 error = xfs_btree_dup_cursor(cur, curp);
2851                 if (error)
2852                         goto error0;
2853                 (*curp)->bc_levels[level + 1].ptr++;
2854         }
2855         *ptrp = rptr;
2856         *stat = 1;
2857         return 0;
2858 out0:
2859         *stat = 0;
2860         return 0;
2861
2862 error0:
2863         return error;
2864 }
2865
2866 #ifdef __KERNEL__
2867 struct xfs_btree_split_args {
2868         struct xfs_btree_cur    *cur;
2869         int                     level;
2870         union xfs_btree_ptr     *ptrp;
2871         union xfs_btree_key     *key;
2872         struct xfs_btree_cur    **curp;
2873         int                     *stat;          /* success/failure */
2874         int                     result;
2875         bool                    kswapd; /* allocation in kswapd context */
2876         struct completion       *done;
2877         struct work_struct      work;
2878 };
2879
2880 /*
2881  * Stack switching interfaces for allocation
2882  */
2883 static void
2884 xfs_btree_split_worker(
2885         struct work_struct      *work)
2886 {
2887         struct xfs_btree_split_args     *args = container_of(work,
2888                                                 struct xfs_btree_split_args, work);
2889         unsigned long           pflags;
2890         unsigned long           new_pflags = 0;
2891
2892         /*
2893          * we are in a transaction context here, but may also be doing work
2894          * in kswapd context, and hence we may need to inherit that state
2895          * temporarily to ensure that we don't block waiting for memory reclaim
2896          * in any way.
2897          */
2898         if (args->kswapd)
2899                 new_pflags |= PF_MEMALLOC | PF_KSWAPD;
2900
2901         current_set_flags_nested(&pflags, new_pflags);
2902         xfs_trans_set_context(args->cur->bc_tp);
2903
2904         args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2905                                          args->key, args->curp, args->stat);
2906
2907         xfs_trans_clear_context(args->cur->bc_tp);
2908         current_restore_flags_nested(&pflags, new_pflags);
2909
2910         /*
2911          * Do not access args after complete() has run here. We don't own args
2912          * and the owner may run and free args before we return here.
2913          */
2914         complete(args->done);
2915
2916 }
2917
2918 /*
2919  * BMBT split requests often come in with little stack to work on. Push
2920  * them off to a worker thread so there is lots of stack to use. For the other
2921  * btree types, just call directly to avoid the context switch overhead here.
2922  */
2923 STATIC int                                      /* error */
2924 xfs_btree_split(
2925         struct xfs_btree_cur    *cur,
2926         int                     level,
2927         union xfs_btree_ptr     *ptrp,
2928         union xfs_btree_key     *key,
2929         struct xfs_btree_cur    **curp,
2930         int                     *stat)          /* success/failure */
2931 {
2932         struct xfs_btree_split_args     args;
2933         DECLARE_COMPLETION_ONSTACK(done);
2934
2935         if (cur->bc_btnum != XFS_BTNUM_BMAP)
2936                 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2937
2938         args.cur = cur;
2939         args.level = level;
2940         args.ptrp = ptrp;
2941         args.key = key;
2942         args.curp = curp;
2943         args.stat = stat;
2944         args.done = &done;
2945         args.kswapd = current_is_kswapd();
2946         INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2947         queue_work(xfs_alloc_wq, &args.work);
2948         wait_for_completion(&done);
2949         destroy_work_on_stack(&args.work);
2950         return args.result;
2951 }
2952 #else
2953 #define xfs_btree_split __xfs_btree_split
2954 #endif /* __KERNEL__ */
2955
2956
2957 /*
2958  * Copy the old inode root contents into a real block and make the
2959  * broot point to it.
2960  */
2961 int                                             /* error */
2962 xfs_btree_new_iroot(
2963         struct xfs_btree_cur    *cur,           /* btree cursor */
2964         int                     *logflags,      /* logging flags for inode */
2965         int                     *stat)          /* return status - 0 fail */
2966 {
2967         struct xfs_buf          *cbp;           /* buffer for cblock */
2968         struct xfs_btree_block  *block;         /* btree block */
2969         struct xfs_btree_block  *cblock;        /* child btree block */
2970         union xfs_btree_key     *ckp;           /* child key pointer */
2971         union xfs_btree_ptr     *cpp;           /* child ptr pointer */
2972         union xfs_btree_key     *kp;            /* pointer to btree key */
2973         union xfs_btree_ptr     *pp;            /* pointer to block addr */
2974         union xfs_btree_ptr     nptr;           /* new block addr */
2975         int                     level;          /* btree level */
2976         int                     error;          /* error return code */
2977         int                     i;              /* loop counter */
2978
2979         XFS_BTREE_STATS_INC(cur, newroot);
2980
2981         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2982
2983         level = cur->bc_nlevels - 1;
2984
2985         block = xfs_btree_get_iroot(cur);
2986         pp = xfs_btree_ptr_addr(cur, 1, block);
2987
2988         /* Allocate the new block. If we can't do it, we're toast. Give up. */
2989         error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2990         if (error)
2991                 goto error0;
2992         if (*stat == 0)
2993                 return 0;
2994
2995         XFS_BTREE_STATS_INC(cur, alloc);
2996
2997         /* Copy the root into a real block. */
2998         error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2999         if (error)
3000                 goto error0;
3001
3002         /*
3003          * we can't just memcpy() the root in for CRC enabled btree blocks.
3004          * In that case have to also ensure the blkno remains correct
3005          */
3006         memcpy(cblock, block, xfs_btree_block_len(cur));
3007         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3008                 __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3009                 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3010                         cblock->bb_u.l.bb_blkno = bno;
3011                 else
3012                         cblock->bb_u.s.bb_blkno = bno;
3013         }
3014
3015         be16_add_cpu(&block->bb_level, 1);
3016         xfs_btree_set_numrecs(block, 1);
3017         cur->bc_nlevels++;
3018         ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3019         cur->bc_levels[level + 1].ptr = 1;
3020
3021         kp = xfs_btree_key_addr(cur, 1, block);
3022         ckp = xfs_btree_key_addr(cur, 1, cblock);
3023         xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3024
3025         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3026         for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3027                 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3028                 if (error)
3029                         goto error0;
3030         }
3031
3032         xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3033
3034         error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3035         if (error)
3036                 goto error0;
3037
3038         xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3039
3040         xfs_iroot_realloc(cur->bc_ino.ip,
3041                           1 - xfs_btree_get_numrecs(cblock),
3042                           cur->bc_ino.whichfork);
3043
3044         xfs_btree_setbuf(cur, level, cbp);
3045
3046         /*
3047          * Do all this logging at the end so that
3048          * the root is at the right level.
3049          */
3050         xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3051         xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3052         xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3053
3054         *logflags |=
3055                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3056         *stat = 1;
3057         return 0;
3058 error0:
3059         return error;
3060 }
3061
3062 /*
3063  * Allocate a new root block, fill it in.
3064  */
3065 STATIC int                              /* error */
3066 xfs_btree_new_root(
3067         struct xfs_btree_cur    *cur,   /* btree cursor */
3068         int                     *stat)  /* success/failure */
3069 {
3070         struct xfs_btree_block  *block; /* one half of the old root block */
3071         struct xfs_buf          *bp;    /* buffer containing block */
3072         int                     error;  /* error return value */
3073         struct xfs_buf          *lbp;   /* left buffer pointer */
3074         struct xfs_btree_block  *left;  /* left btree block */
3075         struct xfs_buf          *nbp;   /* new (root) buffer */
3076         struct xfs_btree_block  *new;   /* new (root) btree block */
3077         int                     nptr;   /* new value for key index, 1 or 2 */
3078         struct xfs_buf          *rbp;   /* right buffer pointer */
3079         struct xfs_btree_block  *right; /* right btree block */
3080         union xfs_btree_ptr     rptr;
3081         union xfs_btree_ptr     lptr;
3082
3083         XFS_BTREE_STATS_INC(cur, newroot);
3084
3085         /* initialise our start point from the cursor */
3086         cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3087
3088         /* Allocate the new block. If we can't do it, we're toast. Give up. */
3089         error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3090         if (error)
3091                 goto error0;
3092         if (*stat == 0)
3093                 goto out0;
3094         XFS_BTREE_STATS_INC(cur, alloc);
3095
3096         /* Set up the new block. */
3097         error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3098         if (error)
3099                 goto error0;
3100
3101         /* Set the root in the holding structure  increasing the level by 1. */
3102         cur->bc_ops->set_root(cur, &lptr, 1);
3103
3104         /*
3105          * At the previous root level there are now two blocks: the old root,
3106          * and the new block generated when it was split.  We don't know which
3107          * one the cursor is pointing at, so we set up variables "left" and
3108          * "right" for each case.
3109          */
3110         block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3111
3112 #ifdef DEBUG
3113         error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3114         if (error)
3115                 goto error0;
3116 #endif
3117
3118         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3119         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3120                 /* Our block is left, pick up the right block. */
3121                 lbp = bp;
3122                 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3123                 left = block;
3124                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3125                 if (error)
3126                         goto error0;
3127                 bp = rbp;
3128                 nptr = 1;
3129         } else {
3130                 /* Our block is right, pick up the left block. */
3131                 rbp = bp;
3132                 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3133                 right = block;
3134                 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3135                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3136                 if (error)
3137                         goto error0;
3138                 bp = lbp;
3139                 nptr = 2;
3140         }
3141
3142         /* Fill in the new block's btree header and log it. */
3143         xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3144         xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3145         ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3146                         !xfs_btree_ptr_is_null(cur, &rptr));
3147
3148         /* Fill in the key data in the new root. */
3149         if (xfs_btree_get_level(left) > 0) {
3150                 /*
3151                  * Get the keys for the left block's keys and put them directly
3152                  * in the parent block.  Do the same for the right block.
3153                  */
3154                 xfs_btree_get_node_keys(cur, left,
3155                                 xfs_btree_key_addr(cur, 1, new));
3156                 xfs_btree_get_node_keys(cur, right,
3157                                 xfs_btree_key_addr(cur, 2, new));
3158         } else {
3159                 /*
3160                  * Get the keys for the left block's records and put them
3161                  * directly in the parent block.  Do the same for the right
3162                  * block.
3163                  */
3164                 xfs_btree_get_leaf_keys(cur, left,
3165                         xfs_btree_key_addr(cur, 1, new));
3166                 xfs_btree_get_leaf_keys(cur, right,
3167                         xfs_btree_key_addr(cur, 2, new));
3168         }
3169         xfs_btree_log_keys(cur, nbp, 1, 2);
3170
3171         /* Fill in the pointer data in the new root. */
3172         xfs_btree_copy_ptrs(cur,
3173                 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3174         xfs_btree_copy_ptrs(cur,
3175                 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3176         xfs_btree_log_ptrs(cur, nbp, 1, 2);
3177
3178         /* Fix up the cursor. */
3179         xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3180         cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3181         cur->bc_nlevels++;
3182         ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3183         *stat = 1;
3184         return 0;
3185 error0:
3186         return error;
3187 out0:
3188         *stat = 0;
3189         return 0;
3190 }
3191
3192 STATIC int
3193 xfs_btree_make_block_unfull(
3194         struct xfs_btree_cur    *cur,   /* btree cursor */
3195         int                     level,  /* btree level */
3196         int                     numrecs,/* # of recs in block */
3197         int                     *oindex,/* old tree index */
3198         int                     *index, /* new tree index */
3199         union xfs_btree_ptr     *nptr,  /* new btree ptr */
3200         struct xfs_btree_cur    **ncur, /* new btree cursor */
3201         union xfs_btree_key     *key,   /* key of new block */
3202         int                     *stat)
3203 {
3204         int                     error = 0;
3205
3206         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3207             level == cur->bc_nlevels - 1) {
3208                 struct xfs_inode *ip = cur->bc_ino.ip;
3209
3210                 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3211                         /* A root block that can be made bigger. */
3212                         xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3213                         *stat = 1;
3214                 } else {
3215                         /* A root block that needs replacing */
3216                         int     logflags = 0;
3217
3218                         error = xfs_btree_new_iroot(cur, &logflags, stat);
3219                         if (error || *stat == 0)
3220                                 return error;
3221
3222                         xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3223                 }
3224
3225                 return 0;
3226         }
3227
3228         /* First, try shifting an entry to the right neighbor. */
3229         error = xfs_btree_rshift(cur, level, stat);
3230         if (error || *stat)
3231                 return error;
3232
3233         /* Next, try shifting an entry to the left neighbor. */
3234         error = xfs_btree_lshift(cur, level, stat);
3235         if (error)
3236                 return error;
3237
3238         if (*stat) {
3239                 *oindex = *index = cur->bc_levels[level].ptr;
3240                 return 0;
3241         }
3242
3243         /*
3244          * Next, try splitting the current block in half.
3245          *
3246          * If this works we have to re-set our variables because we
3247          * could be in a different block now.
3248          */
3249         error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3250         if (error || *stat == 0)
3251                 return error;
3252
3253
3254         *index = cur->bc_levels[level].ptr;
3255         return 0;
3256 }
3257
3258 /*
3259  * Insert one record/level.  Return information to the caller
3260  * allowing the next level up to proceed if necessary.
3261  */
3262 STATIC int
3263 xfs_btree_insrec(
3264         struct xfs_btree_cur    *cur,   /* btree cursor */
3265         int                     level,  /* level to insert record at */
3266         union xfs_btree_ptr     *ptrp,  /* i/o: block number inserted */
3267         union xfs_btree_rec     *rec,   /* record to insert */
3268         union xfs_btree_key     *key,   /* i/o: block key for ptrp */
3269         struct xfs_btree_cur    **curp, /* output: new cursor replacing cur */
3270         int                     *stat)  /* success/failure */
3271 {
3272         struct xfs_btree_block  *block; /* btree block */
3273         struct xfs_buf          *bp;    /* buffer for block */
3274         union xfs_btree_ptr     nptr;   /* new block ptr */
3275         struct xfs_btree_cur    *ncur = NULL;   /* new btree cursor */
3276         union xfs_btree_key     nkey;   /* new block key */
3277         union xfs_btree_key     *lkey;
3278         int                     optr;   /* old key/record index */
3279         int                     ptr;    /* key/record index */
3280         int                     numrecs;/* number of records */
3281         int                     error;  /* error return value */
3282         int                     i;
3283         xfs_daddr_t             old_bn;
3284
3285         ncur = NULL;
3286         lkey = &nkey;
3287
3288         /*
3289          * If we have an external root pointer, and we've made it to the
3290          * root level, allocate a new root block and we're done.
3291          */
3292         if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3293             (level >= cur->bc_nlevels)) {
3294                 error = xfs_btree_new_root(cur, stat);
3295                 xfs_btree_set_ptr_null(cur, ptrp);
3296
3297                 return error;
3298         }
3299
3300         /* If we're off the left edge, return failure. */
3301         ptr = cur->bc_levels[level].ptr;
3302         if (ptr == 0) {
3303                 *stat = 0;
3304                 return 0;
3305         }
3306
3307         optr = ptr;
3308
3309         XFS_BTREE_STATS_INC(cur, insrec);
3310
3311         /* Get pointers to the btree buffer and block. */
3312         block = xfs_btree_get_block(cur, level, &bp);
3313         old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3314         numrecs = xfs_btree_get_numrecs(block);
3315
3316 #ifdef DEBUG
3317         error = xfs_btree_check_block(cur, block, level, bp);
3318         if (error)
3319                 goto error0;
3320
3321         /* Check that the new entry is being inserted in the right place. */
3322         if (ptr <= numrecs) {
3323                 if (level == 0) {
3324                         ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3325                                 xfs_btree_rec_addr(cur, ptr, block)));
3326                 } else {
3327                         ASSERT(cur->bc_ops->keys_inorder(cur, key,
3328                                 xfs_btree_key_addr(cur, ptr, block)));
3329                 }
3330         }
3331 #endif
3332
3333         /*
3334          * If the block is full, we can't insert the new entry until we
3335          * make the block un-full.
3336          */
3337         xfs_btree_set_ptr_null(cur, &nptr);
3338         if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3339                 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3340                                         &optr, &ptr, &nptr, &ncur, lkey, stat);
3341                 if (error || *stat == 0)
3342                         goto error0;
3343         }
3344
3345         /*
3346          * The current block may have changed if the block was
3347          * previously full and we have just made space in it.
3348          */
3349         block = xfs_btree_get_block(cur, level, &bp);
3350         numrecs = xfs_btree_get_numrecs(block);
3351
3352 #ifdef DEBUG
3353         error = xfs_btree_check_block(cur, block, level, bp);
3354         if (error)
3355                 goto error0;
3356 #endif
3357
3358         /*
3359          * At this point we know there's room for our new entry in the block
3360          * we're pointing at.
3361          */
3362         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3363
3364         if (level > 0) {
3365                 /* It's a nonleaf. make a hole in the keys and ptrs */
3366                 union xfs_btree_key     *kp;
3367                 union xfs_btree_ptr     *pp;
3368
3369                 kp = xfs_btree_key_addr(cur, ptr, block);
3370                 pp = xfs_btree_ptr_addr(cur, ptr, block);
3371
3372                 for (i = numrecs - ptr; i >= 0; i--) {
3373                         error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3374                         if (error)
3375                                 goto error0;
3376                 }
3377
3378                 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3379                 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3380
3381                 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3382                 if (error)
3383                         goto error0;
3384
3385                 /* Now put the new data in, bump numrecs and log it. */
3386                 xfs_btree_copy_keys(cur, kp, key, 1);
3387                 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3388                 numrecs++;
3389                 xfs_btree_set_numrecs(block, numrecs);
3390                 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3391                 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3392 #ifdef DEBUG
3393                 if (ptr < numrecs) {
3394                         ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3395                                 xfs_btree_key_addr(cur, ptr + 1, block)));
3396                 }
3397 #endif
3398         } else {
3399                 /* It's a leaf. make a hole in the records */
3400                 union xfs_btree_rec             *rp;
3401
3402                 rp = xfs_btree_rec_addr(cur, ptr, block);
3403
3404                 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3405
3406                 /* Now put the new data in, bump numrecs and log it. */
3407                 xfs_btree_copy_recs(cur, rp, rec, 1);
3408                 xfs_btree_set_numrecs(block, ++numrecs);
3409                 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3410 #ifdef DEBUG
3411                 if (ptr < numrecs) {
3412                         ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3413                                 xfs_btree_rec_addr(cur, ptr + 1, block)));
3414                 }
3415 #endif
3416         }
3417
3418         /* Log the new number of records in the btree header. */
3419         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3420
3421         /*
3422          * If we just inserted into a new tree block, we have to
3423          * recalculate nkey here because nkey is out of date.
3424          *
3425          * Otherwise we're just updating an existing block (having shoved
3426          * some records into the new tree block), so use the regular key
3427          * update mechanism.
3428          */
3429         if (bp && xfs_buf_daddr(bp) != old_bn) {
3430                 xfs_btree_get_keys(cur, block, lkey);
3431         } else if (xfs_btree_needs_key_update(cur, optr)) {
3432                 error = xfs_btree_update_keys(cur, level);
3433                 if (error)
3434                         goto error0;
3435         }
3436
3437         /*
3438          * If we are tracking the last record in the tree and
3439          * we are at the far right edge of the tree, update it.
3440          */
3441         if (xfs_btree_is_lastrec(cur, block, level)) {
3442                 cur->bc_ops->update_lastrec(cur, block, rec,
3443                                             ptr, LASTREC_INSREC);
3444         }
3445
3446         /*
3447          * Return the new block number, if any.
3448          * If there is one, give back a record value and a cursor too.
3449          */
3450         *ptrp = nptr;
3451         if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3452                 xfs_btree_copy_keys(cur, key, lkey, 1);
3453                 *curp = ncur;
3454         }
3455
3456         *stat = 1;
3457         return 0;
3458
3459 error0:
3460         if (ncur)
3461                 xfs_btree_del_cursor(ncur, error);
3462         return error;
3463 }
3464
3465 /*
3466  * Insert the record at the point referenced by cur.
3467  *
3468  * A multi-level split of the tree on insert will invalidate the original
3469  * cursor.  All callers of this function should assume that the cursor is
3470  * no longer valid and revalidate it.
3471  */
3472 int
3473 xfs_btree_insert(
3474         struct xfs_btree_cur    *cur,
3475         int                     *stat)
3476 {
3477         int                     error;  /* error return value */
3478         int                     i;      /* result value, 0 for failure */
3479         int                     level;  /* current level number in btree */
3480         union xfs_btree_ptr     nptr;   /* new block number (split result) */
3481         struct xfs_btree_cur    *ncur;  /* new cursor (split result) */
3482         struct xfs_btree_cur    *pcur;  /* previous level's cursor */
3483         union xfs_btree_key     bkey;   /* key of block to insert */
3484         union xfs_btree_key     *key;
3485         union xfs_btree_rec     rec;    /* record to insert */
3486
3487         level = 0;
3488         ncur = NULL;
3489         pcur = cur;
3490         key = &bkey;
3491
3492         xfs_btree_set_ptr_null(cur, &nptr);
3493
3494         /* Make a key out of the record data to be inserted, and save it. */
3495         cur->bc_ops->init_rec_from_cur(cur, &rec);
3496         cur->bc_ops->init_key_from_rec(key, &rec);
3497
3498         /*
3499          * Loop going up the tree, starting at the leaf level.
3500          * Stop when we don't get a split block, that must mean that
3501          * the insert is finished with this level.
3502          */
3503         do {
3504                 /*
3505                  * Insert nrec/nptr into this level of the tree.
3506                  * Note if we fail, nptr will be null.
3507                  */
3508                 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3509                                 &ncur, &i);
3510                 if (error) {
3511                         if (pcur != cur)
3512                                 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3513                         goto error0;
3514                 }
3515
3516                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3517                         error = -EFSCORRUPTED;
3518                         goto error0;
3519                 }
3520                 level++;
3521
3522                 /*
3523                  * See if the cursor we just used is trash.
3524                  * Can't trash the caller's cursor, but otherwise we should
3525                  * if ncur is a new cursor or we're about to be done.
3526                  */
3527                 if (pcur != cur &&
3528                     (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3529                         /* Save the state from the cursor before we trash it */
3530                         if (cur->bc_ops->update_cursor)
3531                                 cur->bc_ops->update_cursor(pcur, cur);
3532                         cur->bc_nlevels = pcur->bc_nlevels;
3533                         xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3534                 }
3535                 /* If we got a new cursor, switch to it. */
3536                 if (ncur) {
3537                         pcur = ncur;
3538                         ncur = NULL;
3539                 }
3540         } while (!xfs_btree_ptr_is_null(cur, &nptr));
3541
3542         *stat = i;
3543         return 0;
3544 error0:
3545         return error;
3546 }
3547
3548 /*
3549  * Try to merge a non-leaf block back into the inode root.
3550  *
3551  * Note: the killroot names comes from the fact that we're effectively
3552  * killing the old root block.  But because we can't just delete the
3553  * inode we have to copy the single block it was pointing to into the
3554  * inode.
3555  */
3556 STATIC int
3557 xfs_btree_kill_iroot(
3558         struct xfs_btree_cur    *cur)
3559 {
3560         int                     whichfork = cur->bc_ino.whichfork;
3561         struct xfs_inode        *ip = cur->bc_ino.ip;
3562         struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, whichfork);
3563         struct xfs_btree_block  *block;
3564         struct xfs_btree_block  *cblock;
3565         union xfs_btree_key     *kp;
3566         union xfs_btree_key     *ckp;
3567         union xfs_btree_ptr     *pp;
3568         union xfs_btree_ptr     *cpp;
3569         struct xfs_buf          *cbp;
3570         int                     level;
3571         int                     index;
3572         int                     numrecs;
3573         int                     error;
3574 #ifdef DEBUG
3575         union xfs_btree_ptr     ptr;
3576 #endif
3577         int                     i;
3578
3579         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3580         ASSERT(cur->bc_nlevels > 1);
3581
3582         /*
3583          * Don't deal with the root block needs to be a leaf case.
3584          * We're just going to turn the thing back into extents anyway.
3585          */
3586         level = cur->bc_nlevels - 1;
3587         if (level == 1)
3588                 goto out0;
3589
3590         /*
3591          * Give up if the root has multiple children.
3592          */
3593         block = xfs_btree_get_iroot(cur);
3594         if (xfs_btree_get_numrecs(block) != 1)
3595                 goto out0;
3596
3597         cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3598         numrecs = xfs_btree_get_numrecs(cblock);
3599
3600         /*
3601          * Only do this if the next level will fit.
3602          * Then the data must be copied up to the inode,
3603          * instead of freeing the root you free the next level.
3604          */
3605         if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3606                 goto out0;
3607
3608         XFS_BTREE_STATS_INC(cur, killroot);
3609
3610 #ifdef DEBUG
3611         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3612         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3613         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3614         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3615 #endif
3616
3617         index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3618         if (index) {
3619                 xfs_iroot_realloc(cur->bc_ino.ip, index,
3620                                   cur->bc_ino.whichfork);
3621                 block = ifp->if_broot;
3622         }
3623
3624         be16_add_cpu(&block->bb_numrecs, index);
3625         ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3626
3627         kp = xfs_btree_key_addr(cur, 1, block);
3628         ckp = xfs_btree_key_addr(cur, 1, cblock);
3629         xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3630
3631         pp = xfs_btree_ptr_addr(cur, 1, block);
3632         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3633
3634         for (i = 0; i < numrecs; i++) {
3635                 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3636                 if (error)
3637                         return error;
3638         }
3639
3640         xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3641
3642         error = xfs_btree_free_block(cur, cbp);
3643         if (error)
3644                 return error;
3645
3646         cur->bc_levels[level - 1].bp = NULL;
3647         be16_add_cpu(&block->bb_level, -1);
3648         xfs_trans_log_inode(cur->bc_tp, ip,
3649                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3650         cur->bc_nlevels--;
3651 out0:
3652         return 0;
3653 }
3654
3655 /*
3656  * Kill the current root node, and replace it with it's only child node.
3657  */
3658 STATIC int
3659 xfs_btree_kill_root(
3660         struct xfs_btree_cur    *cur,
3661         struct xfs_buf          *bp,
3662         int                     level,
3663         union xfs_btree_ptr     *newroot)
3664 {
3665         int                     error;
3666
3667         XFS_BTREE_STATS_INC(cur, killroot);
3668
3669         /*
3670          * Update the root pointer, decreasing the level by 1 and then
3671          * free the old root.
3672          */
3673         cur->bc_ops->set_root(cur, newroot, -1);
3674
3675         error = xfs_btree_free_block(cur, bp);
3676         if (error)
3677                 return error;
3678
3679         cur->bc_levels[level].bp = NULL;
3680         cur->bc_levels[level].ra = 0;
3681         cur->bc_nlevels--;
3682
3683         return 0;
3684 }
3685
3686 STATIC int
3687 xfs_btree_dec_cursor(
3688         struct xfs_btree_cur    *cur,
3689         int                     level,
3690         int                     *stat)
3691 {
3692         int                     error;
3693         int                     i;
3694
3695         if (level > 0) {
3696                 error = xfs_btree_decrement(cur, level, &i);
3697                 if (error)
3698                         return error;
3699         }
3700
3701         *stat = 1;
3702         return 0;
3703 }
3704
3705 /*
3706  * Single level of the btree record deletion routine.
3707  * Delete record pointed to by cur/level.
3708  * Remove the record from its block then rebalance the tree.
3709  * Return 0 for error, 1 for done, 2 to go on to the next level.
3710  */
3711 STATIC int                                      /* error */
3712 xfs_btree_delrec(
3713         struct xfs_btree_cur    *cur,           /* btree cursor */
3714         int                     level,          /* level removing record from */
3715         int                     *stat)          /* fail/done/go-on */
3716 {
3717         struct xfs_btree_block  *block;         /* btree block */
3718         union xfs_btree_ptr     cptr;           /* current block ptr */
3719         struct xfs_buf          *bp;            /* buffer for block */
3720         int                     error;          /* error return value */
3721         int                     i;              /* loop counter */
3722         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
3723         struct xfs_buf          *lbp;           /* left buffer pointer */
3724         struct xfs_btree_block  *left;          /* left btree block */
3725         int                     lrecs = 0;      /* left record count */
3726         int                     ptr;            /* key/record index */
3727         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
3728         struct xfs_buf          *rbp;           /* right buffer pointer */
3729         struct xfs_btree_block  *right;         /* right btree block */
3730         struct xfs_btree_block  *rrblock;       /* right-right btree block */
3731         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
3732         int                     rrecs = 0;      /* right record count */
3733         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
3734         int                     numrecs;        /* temporary numrec count */
3735
3736         tcur = NULL;
3737
3738         /* Get the index of the entry being deleted, check for nothing there. */
3739         ptr = cur->bc_levels[level].ptr;
3740         if (ptr == 0) {
3741                 *stat = 0;
3742                 return 0;
3743         }
3744
3745         /* Get the buffer & block containing the record or key/ptr. */
3746         block = xfs_btree_get_block(cur, level, &bp);
3747         numrecs = xfs_btree_get_numrecs(block);
3748
3749 #ifdef DEBUG
3750         error = xfs_btree_check_block(cur, block, level, bp);
3751         if (error)
3752                 goto error0;
3753 #endif
3754
3755         /* Fail if we're off the end of the block. */
3756         if (ptr > numrecs) {
3757                 *stat = 0;
3758                 return 0;
3759         }
3760
3761         XFS_BTREE_STATS_INC(cur, delrec);
3762         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3763
3764         /* Excise the entries being deleted. */
3765         if (level > 0) {
3766                 /* It's a nonleaf. operate on keys and ptrs */
3767                 union xfs_btree_key     *lkp;
3768                 union xfs_btree_ptr     *lpp;
3769
3770                 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3771                 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3772
3773                 for (i = 0; i < numrecs - ptr; i++) {
3774                         error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3775                         if (error)
3776                                 goto error0;
3777                 }
3778
3779                 if (ptr < numrecs) {
3780                         xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3781                         xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3782                         xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3783                         xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3784                 }
3785         } else {
3786                 /* It's a leaf. operate on records */
3787                 if (ptr < numrecs) {
3788                         xfs_btree_shift_recs(cur,
3789                                 xfs_btree_rec_addr(cur, ptr + 1, block),
3790                                 -1, numrecs - ptr);
3791                         xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3792                 }
3793         }
3794
3795         /*
3796          * Decrement and log the number of entries in the block.
3797          */
3798         xfs_btree_set_numrecs(block, --numrecs);
3799         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3800
3801         /*
3802          * If we are tracking the last record in the tree and
3803          * we are at the far right edge of the tree, update it.
3804          */
3805         if (xfs_btree_is_lastrec(cur, block, level)) {
3806                 cur->bc_ops->update_lastrec(cur, block, NULL,
3807                                             ptr, LASTREC_DELREC);
3808         }
3809
3810         /*
3811          * We're at the root level.  First, shrink the root block in-memory.
3812          * Try to get rid of the next level down.  If we can't then there's
3813          * nothing left to do.
3814          */
3815         if (level == cur->bc_nlevels - 1) {
3816                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3817                         xfs_iroot_realloc(cur->bc_ino.ip, -1,
3818                                           cur->bc_ino.whichfork);
3819
3820                         error = xfs_btree_kill_iroot(cur);
3821                         if (error)
3822                                 goto error0;
3823
3824                         error = xfs_btree_dec_cursor(cur, level, stat);
3825                         if (error)
3826                                 goto error0;
3827                         *stat = 1;
3828                         return 0;
3829                 }
3830
3831                 /*
3832                  * If this is the root level, and there's only one entry left,
3833                  * and it's NOT the leaf level, then we can get rid of this
3834                  * level.
3835                  */
3836                 if (numrecs == 1 && level > 0) {
3837                         union xfs_btree_ptr     *pp;
3838                         /*
3839                          * pp is still set to the first pointer in the block.
3840                          * Make it the new root of the btree.
3841                          */
3842                         pp = xfs_btree_ptr_addr(cur, 1, block);
3843                         error = xfs_btree_kill_root(cur, bp, level, pp);
3844                         if (error)
3845                                 goto error0;
3846                 } else if (level > 0) {
3847                         error = xfs_btree_dec_cursor(cur, level, stat);
3848                         if (error)
3849                                 goto error0;
3850                 }
3851                 *stat = 1;
3852                 return 0;
3853         }
3854
3855         /*
3856          * If we deleted the leftmost entry in the block, update the
3857          * key values above us in the tree.
3858          */
3859         if (xfs_btree_needs_key_update(cur, ptr)) {
3860                 error = xfs_btree_update_keys(cur, level);
3861                 if (error)
3862                         goto error0;
3863         }
3864
3865         /*
3866          * If the number of records remaining in the block is at least
3867          * the minimum, we're done.
3868          */
3869         if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3870                 error = xfs_btree_dec_cursor(cur, level, stat);
3871                 if (error)
3872                         goto error0;
3873                 return 0;
3874         }
3875
3876         /*
3877          * Otherwise, we have to move some records around to keep the
3878          * tree balanced.  Look at the left and right sibling blocks to
3879          * see if we can re-balance by moving only one record.
3880          */
3881         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3882         xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3883
3884         if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3885                 /*
3886                  * One child of root, need to get a chance to copy its contents
3887                  * into the root and delete it. Can't go up to next level,
3888                  * there's nothing to delete there.
3889                  */
3890                 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3891                     xfs_btree_ptr_is_null(cur, &lptr) &&
3892                     level == cur->bc_nlevels - 2) {
3893                         error = xfs_btree_kill_iroot(cur);
3894                         if (!error)
3895                                 error = xfs_btree_dec_cursor(cur, level, stat);
3896                         if (error)
3897                                 goto error0;
3898                         return 0;
3899                 }
3900         }
3901
3902         ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3903                !xfs_btree_ptr_is_null(cur, &lptr));
3904
3905         /*
3906          * Duplicate the cursor so our btree manipulations here won't
3907          * disrupt the next level up.
3908          */
3909         error = xfs_btree_dup_cursor(cur, &tcur);
3910         if (error)
3911                 goto error0;
3912
3913         /*
3914          * If there's a right sibling, see if it's ok to shift an entry
3915          * out of it.
3916          */
3917         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3918                 /*
3919                  * Move the temp cursor to the last entry in the next block.
3920                  * Actually any entry but the first would suffice.
3921                  */
3922                 i = xfs_btree_lastrec(tcur, level);
3923                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3924                         error = -EFSCORRUPTED;
3925                         goto error0;
3926                 }
3927
3928                 error = xfs_btree_increment(tcur, level, &i);
3929                 if (error)
3930                         goto error0;
3931                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3932                         error = -EFSCORRUPTED;
3933                         goto error0;
3934                 }
3935
3936                 i = xfs_btree_lastrec(tcur, level);
3937                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3938                         error = -EFSCORRUPTED;
3939                         goto error0;
3940                 }
3941
3942                 /* Grab a pointer to the block. */
3943                 right = xfs_btree_get_block(tcur, level, &rbp);
3944 #ifdef DEBUG
3945                 error = xfs_btree_check_block(tcur, right, level, rbp);
3946                 if (error)
3947                         goto error0;
3948 #endif
3949                 /* Grab the current block number, for future use. */
3950                 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3951
3952                 /*
3953                  * If right block is full enough so that removing one entry
3954                  * won't make it too empty, and left-shifting an entry out
3955                  * of right to us works, we're done.
3956                  */
3957                 if (xfs_btree_get_numrecs(right) - 1 >=
3958                     cur->bc_ops->get_minrecs(tcur, level)) {
3959                         error = xfs_btree_lshift(tcur, level, &i);
3960                         if (error)
3961                                 goto error0;
3962                         if (i) {
3963                                 ASSERT(xfs_btree_get_numrecs(block) >=
3964                                        cur->bc_ops->get_minrecs(tcur, level));
3965
3966                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3967                                 tcur = NULL;
3968
3969                                 error = xfs_btree_dec_cursor(cur, level, stat);
3970                                 if (error)
3971                                         goto error0;
3972                                 return 0;
3973                         }
3974                 }
3975
3976                 /*
3977                  * Otherwise, grab the number of records in right for
3978                  * future reference, and fix up the temp cursor to point
3979                  * to our block again (last record).
3980                  */
3981                 rrecs = xfs_btree_get_numrecs(right);
3982                 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3983                         i = xfs_btree_firstrec(tcur, level);
3984                         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3985                                 error = -EFSCORRUPTED;
3986                                 goto error0;
3987                         }
3988
3989                         error = xfs_btree_decrement(tcur, level, &i);
3990                         if (error)
3991                                 goto error0;
3992                         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3993                                 error = -EFSCORRUPTED;
3994                                 goto error0;
3995                         }
3996                 }
3997         }
3998
3999         /*
4000          * If there's a left sibling, see if it's ok to shift an entry
4001          * out of it.
4002          */
4003         if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4004                 /*
4005                  * Move the temp cursor to the first entry in the
4006                  * previous block.
4007                  */
4008                 i = xfs_btree_firstrec(tcur, level);
4009                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4010                         error = -EFSCORRUPTED;
4011                         goto error0;
4012                 }
4013
4014                 error = xfs_btree_decrement(tcur, level, &i);
4015                 if (error)
4016                         goto error0;
4017                 i = xfs_btree_firstrec(tcur, level);
4018                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4019                         error = -EFSCORRUPTED;
4020                         goto error0;
4021                 }
4022
4023                 /* Grab a pointer to the block. */
4024                 left = xfs_btree_get_block(tcur, level, &lbp);
4025 #ifdef DEBUG
4026                 error = xfs_btree_check_block(cur, left, level, lbp);
4027                 if (error)
4028                         goto error0;
4029 #endif
4030                 /* Grab the current block number, for future use. */
4031                 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4032
4033                 /*
4034                  * If left block is full enough so that removing one entry
4035                  * won't make it too empty, and right-shifting an entry out
4036                  * of left to us works, we're done.
4037                  */
4038                 if (xfs_btree_get_numrecs(left) - 1 >=
4039                     cur->bc_ops->get_minrecs(tcur, level)) {
4040                         error = xfs_btree_rshift(tcur, level, &i);
4041                         if (error)
4042                                 goto error0;
4043                         if (i) {
4044                                 ASSERT(xfs_btree_get_numrecs(block) >=
4045                                        cur->bc_ops->get_minrecs(tcur, level));
4046                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4047                                 tcur = NULL;
4048                                 if (level == 0)
4049                                         cur->bc_levels[0].ptr++;
4050
4051                                 *stat = 1;
4052                                 return 0;
4053                         }
4054                 }
4055
4056                 /*
4057                  * Otherwise, grab the number of records in right for
4058                  * future reference.
4059                  */
4060                 lrecs = xfs_btree_get_numrecs(left);
4061         }
4062
4063         /* Delete the temp cursor, we're done with it. */
4064         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4065         tcur = NULL;
4066
4067         /* If here, we need to do a join to keep the tree balanced. */
4068         ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4069
4070         if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4071             lrecs + xfs_btree_get_numrecs(block) <=
4072                         cur->bc_ops->get_maxrecs(cur, level)) {
4073                 /*
4074                  * Set "right" to be the starting block,
4075                  * "left" to be the left neighbor.
4076                  */
4077                 rptr = cptr;
4078                 right = block;
4079                 rbp = bp;
4080                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4081                 if (error)
4082                         goto error0;
4083
4084         /*
4085          * If that won't work, see if we can join with the right neighbor block.
4086          */
4087         } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4088                    rrecs + xfs_btree_get_numrecs(block) <=
4089                         cur->bc_ops->get_maxrecs(cur, level)) {
4090                 /*
4091                  * Set "left" to be the starting block,
4092                  * "right" to be the right neighbor.
4093                  */
4094                 lptr = cptr;
4095                 left = block;
4096                 lbp = bp;
4097                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4098                 if (error)
4099                         goto error0;
4100
4101         /*
4102          * Otherwise, we can't fix the imbalance.
4103          * Just return.  This is probably a logic error, but it's not fatal.
4104          */
4105         } else {
4106                 error = xfs_btree_dec_cursor(cur, level, stat);
4107                 if (error)
4108                         goto error0;
4109                 return 0;
4110         }
4111
4112         rrecs = xfs_btree_get_numrecs(right);
4113         lrecs = xfs_btree_get_numrecs(left);
4114
4115         /*
4116          * We're now going to join "left" and "right" by moving all the stuff
4117          * in "right" to "left" and deleting "right".
4118          */
4119         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4120         if (level > 0) {
4121                 /* It's a non-leaf.  Move keys and pointers. */
4122                 union xfs_btree_key     *lkp;   /* left btree key */
4123                 union xfs_btree_ptr     *lpp;   /* left address pointer */
4124                 union xfs_btree_key     *rkp;   /* right btree key */
4125                 union xfs_btree_ptr     *rpp;   /* right address pointer */
4126
4127                 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4128                 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4129                 rkp = xfs_btree_key_addr(cur, 1, right);
4130                 rpp = xfs_btree_ptr_addr(cur, 1, right);
4131
4132                 for (i = 1; i < rrecs; i++) {
4133                         error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4134                         if (error)
4135                                 goto error0;
4136                 }
4137
4138                 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4139                 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4140
4141                 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4142                 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4143         } else {
4144                 /* It's a leaf.  Move records.  */
4145                 union xfs_btree_rec     *lrp;   /* left record pointer */
4146                 union xfs_btree_rec     *rrp;   /* right record pointer */
4147
4148                 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4149                 rrp = xfs_btree_rec_addr(cur, 1, right);
4150
4151                 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4152                 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4153         }
4154
4155         XFS_BTREE_STATS_INC(cur, join);
4156
4157         /*
4158          * Fix up the number of records and right block pointer in the
4159          * surviving block, and log it.
4160          */
4161         xfs_btree_set_numrecs(left, lrecs + rrecs);
4162         xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4163         xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4164         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4165
4166         /* If there is a right sibling, point it to the remaining block. */
4167         xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4168         if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4169                 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4170                 if (error)
4171                         goto error0;
4172                 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4173                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4174         }
4175
4176         /* Free the deleted block. */
4177         error = xfs_btree_free_block(cur, rbp);
4178         if (error)
4179                 goto error0;
4180
4181         /*
4182          * If we joined with the left neighbor, set the buffer in the
4183          * cursor to the left block, and fix up the index.
4184          */
4185         if (bp != lbp) {
4186                 cur->bc_levels[level].bp = lbp;
4187                 cur->bc_levels[level].ptr += lrecs;
4188                 cur->bc_levels[level].ra = 0;
4189         }
4190         /*
4191          * If we joined with the right neighbor and there's a level above
4192          * us, increment the cursor at that level.
4193          */
4194         else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4195                    (level + 1 < cur->bc_nlevels)) {
4196                 error = xfs_btree_increment(cur, level + 1, &i);
4197                 if (error)
4198                         goto error0;
4199         }
4200
4201         /*
4202          * Readjust the ptr at this level if it's not a leaf, since it's
4203          * still pointing at the deletion point, which makes the cursor
4204          * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4205          * We can't use decrement because it would change the next level up.
4206          */
4207         if (level > 0)
4208                 cur->bc_levels[level].ptr--;
4209
4210         /*
4211          * We combined blocks, so we have to update the parent keys if the
4212          * btree supports overlapped intervals.  However,
4213          * bc_levels[level + 1].ptr points to the old block so that the caller
4214          * knows which record to delete.  Therefore, the caller must be savvy
4215          * enough to call updkeys for us if we return stat == 2.  The other
4216          * exit points from this function don't require deletions further up
4217          * the tree, so they can call updkeys directly.
4218          */
4219
4220         /* Return value means the next level up has something to do. */
4221         *stat = 2;
4222         return 0;
4223
4224 error0:
4225         if (tcur)
4226                 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4227         return error;
4228 }
4229
4230 /*
4231  * Delete the record pointed to by cur.
4232  * The cursor refers to the place where the record was (could be inserted)
4233  * when the operation returns.
4234  */
4235 int                                     /* error */
4236 xfs_btree_delete(
4237         struct xfs_btree_cur    *cur,
4238         int                     *stat)  /* success/failure */
4239 {
4240         int                     error;  /* error return value */
4241         int                     level;
4242         int                     i;
4243         bool                    joined = false;
4244
4245         /*
4246          * Go up the tree, starting at leaf level.
4247          *
4248          * If 2 is returned then a join was done; go to the next level.
4249          * Otherwise we are done.
4250          */
4251         for (level = 0, i = 2; i == 2; level++) {
4252                 error = xfs_btree_delrec(cur, level, &i);
4253                 if (error)
4254                         goto error0;
4255                 if (i == 2)
4256                         joined = true;
4257         }
4258
4259         /*
4260          * If we combined blocks as part of deleting the record, delrec won't
4261          * have updated the parent high keys so we have to do that here.
4262          */
4263         if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4264                 error = xfs_btree_updkeys_force(cur, 0);
4265                 if (error)
4266                         goto error0;
4267         }
4268
4269         if (i == 0) {
4270                 for (level = 1; level < cur->bc_nlevels; level++) {
4271                         if (cur->bc_levels[level].ptr == 0) {
4272                                 error = xfs_btree_decrement(cur, level, &i);
4273                                 if (error)
4274                                         goto error0;
4275                                 break;
4276                         }
4277                 }
4278         }
4279
4280         *stat = i;
4281         return 0;
4282 error0:
4283         return error;
4284 }
4285
4286 /*
4287  * Get the data from the pointed-to record.
4288  */
4289 int                                     /* error */
4290 xfs_btree_get_rec(
4291         struct xfs_btree_cur    *cur,   /* btree cursor */
4292         union xfs_btree_rec     **recp, /* output: btree record */
4293         int                     *stat)  /* output: success/failure */
4294 {
4295         struct xfs_btree_block  *block; /* btree block */
4296         struct xfs_buf          *bp;    /* buffer pointer */
4297         int                     ptr;    /* record number */
4298 #ifdef DEBUG
4299         int                     error;  /* error return value */
4300 #endif
4301
4302         ptr = cur->bc_levels[0].ptr;
4303         block = xfs_btree_get_block(cur, 0, &bp);
4304
4305 #ifdef DEBUG
4306         error = xfs_btree_check_block(cur, block, 0, bp);
4307         if (error)
4308                 return error;
4309 #endif
4310
4311         /*
4312          * Off the right end or left end, return failure.
4313          */
4314         if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4315                 *stat = 0;
4316                 return 0;
4317         }
4318
4319         /*
4320          * Point to the record and extract its data.
4321          */
4322         *recp = xfs_btree_rec_addr(cur, ptr, block);
4323         *stat = 1;
4324         return 0;
4325 }
4326
4327 /* Visit a block in a btree. */
4328 STATIC int
4329 xfs_btree_visit_block(
4330         struct xfs_btree_cur            *cur,
4331         int                             level,
4332         xfs_btree_visit_blocks_fn       fn,
4333         void                            *data)
4334 {
4335         struct xfs_btree_block          *block;
4336         struct xfs_buf                  *bp;
4337         union xfs_btree_ptr             rptr;
4338         int                             error;
4339
4340         /* do right sibling readahead */
4341         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4342         block = xfs_btree_get_block(cur, level, &bp);
4343
4344         /* process the block */
4345         error = fn(cur, level, data);
4346         if (error)
4347                 return error;
4348
4349         /* now read rh sibling block for next iteration */
4350         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4351         if (xfs_btree_ptr_is_null(cur, &rptr))
4352                 return -ENOENT;
4353
4354         /*
4355          * We only visit blocks once in this walk, so we have to avoid the
4356          * internal xfs_btree_lookup_get_block() optimisation where it will
4357          * return the same block without checking if the right sibling points
4358          * back to us and creates a cyclic reference in the btree.
4359          */
4360         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4361                 if (be64_to_cpu(rptr.l) == XFS_DADDR_TO_FSB(cur->bc_mp,
4362                                                         xfs_buf_daddr(bp)))
4363                         return -EFSCORRUPTED;
4364         } else {
4365                 if (be32_to_cpu(rptr.s) == xfs_daddr_to_agbno(cur->bc_mp,
4366                                                         xfs_buf_daddr(bp)))
4367                         return -EFSCORRUPTED;
4368         }
4369         return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4370 }
4371
4372
4373 /* Visit every block in a btree. */
4374 int
4375 xfs_btree_visit_blocks(
4376         struct xfs_btree_cur            *cur,
4377         xfs_btree_visit_blocks_fn       fn,
4378         unsigned int                    flags,
4379         void                            *data)
4380 {
4381         union xfs_btree_ptr             lptr;
4382         int                             level;
4383         struct xfs_btree_block          *block = NULL;
4384         int                             error = 0;
4385
4386         cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4387
4388         /* for each level */
4389         for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4390                 /* grab the left hand block */
4391                 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4392                 if (error)
4393                         return error;
4394
4395                 /* readahead the left most block for the next level down */
4396                 if (level > 0) {
4397                         union xfs_btree_ptr     *ptr;
4398
4399                         ptr = xfs_btree_ptr_addr(cur, 1, block);
4400                         xfs_btree_readahead_ptr(cur, ptr, 1);
4401
4402                         /* save for the next iteration of the loop */
4403                         xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4404
4405                         if (!(flags & XFS_BTREE_VISIT_LEAVES))
4406                                 continue;
4407                 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4408                         continue;
4409                 }
4410
4411                 /* for each buffer in the level */
4412                 do {
4413                         error = xfs_btree_visit_block(cur, level, fn, data);
4414                 } while (!error);
4415
4416                 if (error != -ENOENT)
4417                         return error;
4418         }
4419
4420         return 0;
4421 }
4422
4423 /*
4424  * Change the owner of a btree.
4425  *
4426  * The mechanism we use here is ordered buffer logging. Because we don't know
4427  * how many buffers were are going to need to modify, we don't really want to
4428  * have to make transaction reservations for the worst case of every buffer in a
4429  * full size btree as that may be more space that we can fit in the log....
4430  *
4431  * We do the btree walk in the most optimal manner possible - we have sibling
4432  * pointers so we can just walk all the blocks on each level from left to right
4433  * in a single pass, and then move to the next level and do the same. We can
4434  * also do readahead on the sibling pointers to get IO moving more quickly,
4435  * though for slow disks this is unlikely to make much difference to performance
4436  * as the amount of CPU work we have to do before moving to the next block is
4437  * relatively small.
4438  *
4439  * For each btree block that we load, modify the owner appropriately, set the
4440  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4441  * we mark the region we change dirty so that if the buffer is relogged in
4442  * a subsequent transaction the changes we make here as an ordered buffer are
4443  * correctly relogged in that transaction.  If we are in recovery context, then
4444  * just queue the modified buffer as delayed write buffer so the transaction
4445  * recovery completion writes the changes to disk.
4446  */
4447 struct xfs_btree_block_change_owner_info {
4448         uint64_t                new_owner;
4449         struct list_head        *buffer_list;
4450 };
4451
4452 static int
4453 xfs_btree_block_change_owner(
4454         struct xfs_btree_cur    *cur,
4455         int                     level,
4456         void                    *data)
4457 {
4458         struct xfs_btree_block_change_owner_info        *bbcoi = data;
4459         struct xfs_btree_block  *block;
4460         struct xfs_buf          *bp;
4461
4462         /* modify the owner */
4463         block = xfs_btree_get_block(cur, level, &bp);
4464         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4465                 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4466                         return 0;
4467                 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4468         } else {
4469                 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4470                         return 0;
4471                 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4472         }
4473
4474         /*
4475          * If the block is a root block hosted in an inode, we might not have a
4476          * buffer pointer here and we shouldn't attempt to log the change as the
4477          * information is already held in the inode and discarded when the root
4478          * block is formatted into the on-disk inode fork. We still change it,
4479          * though, so everything is consistent in memory.
4480          */
4481         if (!bp) {
4482                 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4483                 ASSERT(level == cur->bc_nlevels - 1);
4484                 return 0;
4485         }
4486
4487         if (cur->bc_tp) {
4488                 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4489                         xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4490                         return -EAGAIN;
4491                 }
4492         } else {
4493                 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4494         }
4495
4496         return 0;
4497 }
4498
4499 int
4500 xfs_btree_change_owner(
4501         struct xfs_btree_cur    *cur,
4502         uint64_t                new_owner,
4503         struct list_head        *buffer_list)
4504 {
4505         struct xfs_btree_block_change_owner_info        bbcoi;
4506
4507         bbcoi.new_owner = new_owner;
4508         bbcoi.buffer_list = buffer_list;
4509
4510         return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4511                         XFS_BTREE_VISIT_ALL, &bbcoi);
4512 }
4513
4514 /* Verify the v5 fields of a long-format btree block. */
4515 xfs_failaddr_t
4516 xfs_btree_lblock_v5hdr_verify(
4517         struct xfs_buf          *bp,
4518         uint64_t                owner)
4519 {
4520         struct xfs_mount        *mp = bp->b_mount;
4521         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4522
4523         if (!xfs_has_crc(mp))
4524                 return __this_address;
4525         if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4526                 return __this_address;
4527         if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4528                 return __this_address;
4529         if (owner != XFS_RMAP_OWN_UNKNOWN &&
4530             be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4531                 return __this_address;
4532         return NULL;
4533 }
4534
4535 /* Verify a long-format btree block. */
4536 xfs_failaddr_t
4537 xfs_btree_lblock_verify(
4538         struct xfs_buf          *bp,
4539         unsigned int            max_recs)
4540 {
4541         struct xfs_mount        *mp = bp->b_mount;
4542         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4543         xfs_fsblock_t           fsb;
4544         xfs_failaddr_t          fa;
4545
4546         /* numrecs verification */
4547         if (be16_to_cpu(block->bb_numrecs) > max_recs)
4548                 return __this_address;
4549
4550         /* sibling pointer verification */
4551         fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4552         fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4553                         block->bb_u.l.bb_leftsib);
4554         if (!fa)
4555                 fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4556                                 block->bb_u.l.bb_rightsib);
4557         return fa;
4558 }
4559
4560 /**
4561  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4562  *                                    btree block
4563  *
4564  * @bp: buffer containing the btree block
4565  */
4566 xfs_failaddr_t
4567 xfs_btree_sblock_v5hdr_verify(
4568         struct xfs_buf          *bp)
4569 {
4570         struct xfs_mount        *mp = bp->b_mount;
4571         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4572         struct xfs_perag        *pag = bp->b_pag;
4573
4574         if (!xfs_has_crc(mp))
4575                 return __this_address;
4576         if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4577                 return __this_address;
4578         if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4579                 return __this_address;
4580         if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4581                 return __this_address;
4582         return NULL;
4583 }
4584
4585 /**
4586  * xfs_btree_sblock_verify() -- verify a short-format btree block
4587  *
4588  * @bp: buffer containing the btree block
4589  * @max_recs: maximum records allowed in this btree node
4590  */
4591 xfs_failaddr_t
4592 xfs_btree_sblock_verify(
4593         struct xfs_buf          *bp,
4594         unsigned int            max_recs)
4595 {
4596         struct xfs_mount        *mp = bp->b_mount;
4597         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4598         xfs_agnumber_t          agno;
4599         xfs_agblock_t           agbno;
4600         xfs_failaddr_t          fa;
4601
4602         /* numrecs verification */
4603         if (be16_to_cpu(block->bb_numrecs) > max_recs)
4604                 return __this_address;
4605
4606         /* sibling pointer verification */
4607         agno = xfs_daddr_to_agno(mp, xfs_buf_daddr(bp));
4608         agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4609         fa = xfs_btree_check_sblock_siblings(mp, NULL, -1, agno, agbno,
4610                         block->bb_u.s.bb_leftsib);
4611         if (!fa)
4612                 fa = xfs_btree_check_sblock_siblings(mp, NULL, -1, agno, agbno,
4613                                 block->bb_u.s.bb_rightsib);
4614         return fa;
4615 }
4616
4617 /*
4618  * For the given limits on leaf and keyptr records per block, calculate the
4619  * height of the tree needed to index the number of leaf records.
4620  */
4621 unsigned int
4622 xfs_btree_compute_maxlevels(
4623         const unsigned int      *limits,
4624         unsigned long long      records)
4625 {
4626         unsigned long long      level_blocks = howmany_64(records, limits[0]);
4627         unsigned int            height = 1;
4628
4629         while (level_blocks > 1) {
4630                 level_blocks = howmany_64(level_blocks, limits[1]);
4631                 height++;
4632         }
4633
4634         return height;
4635 }
4636
4637 /*
4638  * For the given limits on leaf and keyptr records per block, calculate the
4639  * number of blocks needed to index the given number of leaf records.
4640  */
4641 unsigned long long
4642 xfs_btree_calc_size(
4643         const unsigned int      *limits,
4644         unsigned long long      records)
4645 {
4646         unsigned long long      level_blocks = howmany_64(records, limits[0]);
4647         unsigned long long      blocks = level_blocks;
4648
4649         while (level_blocks > 1) {
4650                 level_blocks = howmany_64(level_blocks, limits[1]);
4651                 blocks += level_blocks;
4652         }
4653
4654         return blocks;
4655 }
4656
4657 /*
4658  * Given a number of available blocks for the btree to consume with records and
4659  * pointers, calculate the height of the tree needed to index all the records
4660  * that space can hold based on the number of pointers each interior node
4661  * holds.
4662  *
4663  * We start by assuming a single level tree consumes a single block, then track
4664  * the number of blocks each node level consumes until we no longer have space
4665  * to store the next node level. At this point, we are indexing all the leaf
4666  * blocks in the space, and there's no more free space to split the tree any
4667  * further. That's our maximum btree height.
4668  */
4669 unsigned int
4670 xfs_btree_space_to_height(
4671         const unsigned int      *limits,
4672         unsigned long long      leaf_blocks)
4673 {
4674         unsigned long long      node_blocks = limits[1];
4675         unsigned long long      blocks_left = leaf_blocks - 1;
4676         unsigned int            height = 1;
4677
4678         if (leaf_blocks < 1)
4679                 return 0;
4680
4681         while (node_blocks < blocks_left) {
4682                 blocks_left -= node_blocks;
4683                 node_blocks *= limits[1];
4684                 height++;
4685         }
4686
4687         return height;
4688 }
4689
4690 /*
4691  * Query a regular btree for all records overlapping a given interval.
4692  * Start with a LE lookup of the key of low_rec and return all records
4693  * until we find a record with a key greater than the key of high_rec.
4694  */
4695 STATIC int
4696 xfs_btree_simple_query_range(
4697         struct xfs_btree_cur            *cur,
4698         const union xfs_btree_key       *low_key,
4699         const union xfs_btree_key       *high_key,
4700         xfs_btree_query_range_fn        fn,
4701         void                            *priv)
4702 {
4703         union xfs_btree_rec             *recp;
4704         union xfs_btree_key             rec_key;
4705         int64_t                         diff;
4706         int                             stat;
4707         bool                            firstrec = true;
4708         int                             error;
4709
4710         ASSERT(cur->bc_ops->init_high_key_from_rec);
4711         ASSERT(cur->bc_ops->diff_two_keys);
4712
4713         /*
4714          * Find the leftmost record.  The btree cursor must be set
4715          * to the low record used to generate low_key.
4716          */
4717         stat = 0;
4718         error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4719         if (error)
4720                 goto out;
4721
4722         /* Nothing?  See if there's anything to the right. */
4723         if (!stat) {
4724                 error = xfs_btree_increment(cur, 0, &stat);
4725                 if (error)
4726                         goto out;
4727         }
4728
4729         while (stat) {
4730                 /* Find the record. */
4731                 error = xfs_btree_get_rec(cur, &recp, &stat);
4732                 if (error || !stat)
4733                         break;
4734
4735                 /* Skip if high_key(rec) < low_key. */
4736                 if (firstrec) {
4737                         cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4738                         firstrec = false;
4739                         diff = cur->bc_ops->diff_two_keys(cur, low_key,
4740                                         &rec_key);
4741                         if (diff > 0)
4742                                 goto advloop;
4743                 }
4744
4745                 /* Stop if high_key < low_key(rec). */
4746                 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4747                 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4748                 if (diff > 0)
4749                         break;
4750
4751                 /* Callback */
4752                 error = fn(cur, recp, priv);
4753                 if (error)
4754                         break;
4755
4756 advloop:
4757                 /* Move on to the next record. */
4758                 error = xfs_btree_increment(cur, 0, &stat);
4759                 if (error)
4760                         break;
4761         }
4762
4763 out:
4764         return error;
4765 }
4766
4767 /*
4768  * Query an overlapped interval btree for all records overlapping a given
4769  * interval.  This function roughly follows the algorithm given in
4770  * "Interval Trees" of _Introduction to Algorithms_, which is section
4771  * 14.3 in the 2nd and 3rd editions.
4772  *
4773  * First, generate keys for the low and high records passed in.
4774  *
4775  * For any leaf node, generate the high and low keys for the record.
4776  * If the record keys overlap with the query low/high keys, pass the
4777  * record to the function iterator.
4778  *
4779  * For any internal node, compare the low and high keys of each
4780  * pointer against the query low/high keys.  If there's an overlap,
4781  * follow the pointer.
4782  *
4783  * As an optimization, we stop scanning a block when we find a low key
4784  * that is greater than the query's high key.
4785  */
4786 STATIC int
4787 xfs_btree_overlapped_query_range(
4788         struct xfs_btree_cur            *cur,
4789         const union xfs_btree_key       *low_key,
4790         const union xfs_btree_key       *high_key,
4791         xfs_btree_query_range_fn        fn,
4792         void                            *priv)
4793 {
4794         union xfs_btree_ptr             ptr;
4795         union xfs_btree_ptr             *pp;
4796         union xfs_btree_key             rec_key;
4797         union xfs_btree_key             rec_hkey;
4798         union xfs_btree_key             *lkp;
4799         union xfs_btree_key             *hkp;
4800         union xfs_btree_rec             *recp;
4801         struct xfs_btree_block          *block;
4802         int64_t                         ldiff;
4803         int64_t                         hdiff;
4804         int                             level;
4805         struct xfs_buf                  *bp;
4806         int                             i;
4807         int                             error;
4808
4809         /* Load the root of the btree. */
4810         level = cur->bc_nlevels - 1;
4811         cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4812         error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4813         if (error)
4814                 return error;
4815         xfs_btree_get_block(cur, level, &bp);
4816         trace_xfs_btree_overlapped_query_range(cur, level, bp);
4817 #ifdef DEBUG
4818         error = xfs_btree_check_block(cur, block, level, bp);
4819         if (error)
4820                 goto out;
4821 #endif
4822         cur->bc_levels[level].ptr = 1;
4823
4824         while (level < cur->bc_nlevels) {
4825                 block = xfs_btree_get_block(cur, level, &bp);
4826
4827                 /* End of node, pop back towards the root. */
4828                 if (cur->bc_levels[level].ptr >
4829                                         be16_to_cpu(block->bb_numrecs)) {
4830 pop_up:
4831                         if (level < cur->bc_nlevels - 1)
4832                                 cur->bc_levels[level + 1].ptr++;
4833                         level++;
4834                         continue;
4835                 }
4836
4837                 if (level == 0) {
4838                         /* Handle a leaf node. */
4839                         recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
4840                                         block);
4841
4842                         cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4843                         ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4844                                         low_key);
4845
4846                         cur->bc_ops->init_key_from_rec(&rec_key, recp);
4847                         hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4848                                         &rec_key);
4849
4850                         /*
4851                          * If (record's high key >= query's low key) and
4852                          *    (query's high key >= record's low key), then
4853                          * this record overlaps the query range; callback.
4854                          */
4855                         if (ldiff >= 0 && hdiff >= 0) {
4856                                 error = fn(cur, recp, priv);
4857                                 if (error)
4858                                         break;
4859                         } else if (hdiff < 0) {
4860                                 /* Record is larger than high key; pop. */
4861                                 goto pop_up;
4862                         }
4863                         cur->bc_levels[level].ptr++;
4864                         continue;
4865                 }
4866
4867                 /* Handle an internal node. */
4868                 lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
4869                 hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
4870                                 block);
4871                 pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
4872
4873                 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4874                 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4875
4876                 /*
4877                  * If (pointer's high key >= query's low key) and
4878                  *    (query's high key >= pointer's low key), then
4879                  * this record overlaps the query range; follow pointer.
4880                  */
4881                 if (ldiff >= 0 && hdiff >= 0) {
4882                         level--;
4883                         error = xfs_btree_lookup_get_block(cur, level, pp,
4884                                         &block);
4885                         if (error)
4886                                 goto out;
4887                         xfs_btree_get_block(cur, level, &bp);
4888                         trace_xfs_btree_overlapped_query_range(cur, level, bp);
4889 #ifdef DEBUG
4890                         error = xfs_btree_check_block(cur, block, level, bp);
4891                         if (error)
4892                                 goto out;
4893 #endif
4894                         cur->bc_levels[level].ptr = 1;
4895                         continue;
4896                 } else if (hdiff < 0) {
4897                         /* The low key is larger than the upper range; pop. */
4898                         goto pop_up;
4899                 }
4900                 cur->bc_levels[level].ptr++;
4901         }
4902
4903 out:
4904         /*
4905          * If we don't end this function with the cursor pointing at a record
4906          * block, a subsequent non-error cursor deletion will not release
4907          * node-level buffers, causing a buffer leak.  This is quite possible
4908          * with a zero-results range query, so release the buffers if we
4909          * failed to return any results.
4910          */
4911         if (cur->bc_levels[0].bp == NULL) {
4912                 for (i = 0; i < cur->bc_nlevels; i++) {
4913                         if (cur->bc_levels[i].bp) {
4914                                 xfs_trans_brelse(cur->bc_tp,
4915                                                 cur->bc_levels[i].bp);
4916                                 cur->bc_levels[i].bp = NULL;
4917                                 cur->bc_levels[i].ptr = 0;
4918                                 cur->bc_levels[i].ra = 0;
4919                         }
4920                 }
4921         }
4922
4923         return error;
4924 }
4925
4926 /*
4927  * Query a btree for all records overlapping a given interval of keys.  The
4928  * supplied function will be called with each record found; return one of the
4929  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4930  * code.  This function returns -ECANCELED, zero, or a negative error code.
4931  */
4932 int
4933 xfs_btree_query_range(
4934         struct xfs_btree_cur            *cur,
4935         const union xfs_btree_irec      *low_rec,
4936         const union xfs_btree_irec      *high_rec,
4937         xfs_btree_query_range_fn        fn,
4938         void                            *priv)
4939 {
4940         union xfs_btree_rec             rec;
4941         union xfs_btree_key             low_key;
4942         union xfs_btree_key             high_key;
4943
4944         /* Find the keys of both ends of the interval. */
4945         cur->bc_rec = *high_rec;
4946         cur->bc_ops->init_rec_from_cur(cur, &rec);
4947         cur->bc_ops->init_key_from_rec(&high_key, &rec);
4948
4949         cur->bc_rec = *low_rec;
4950         cur->bc_ops->init_rec_from_cur(cur, &rec);
4951         cur->bc_ops->init_key_from_rec(&low_key, &rec);
4952
4953         /* Enforce low key < high key. */
4954         if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4955                 return -EINVAL;
4956
4957         if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4958                 return xfs_btree_simple_query_range(cur, &low_key,
4959                                 &high_key, fn, priv);
4960         return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4961                         fn, priv);
4962 }
4963
4964 /* Query a btree for all records. */
4965 int
4966 xfs_btree_query_all(
4967         struct xfs_btree_cur            *cur,
4968         xfs_btree_query_range_fn        fn,
4969         void                            *priv)
4970 {
4971         union xfs_btree_key             low_key;
4972         union xfs_btree_key             high_key;
4973
4974         memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4975         memset(&low_key, 0, sizeof(low_key));
4976         memset(&high_key, 0xFF, sizeof(high_key));
4977
4978         return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4979 }
4980
4981 static int
4982 xfs_btree_count_blocks_helper(
4983         struct xfs_btree_cur    *cur,
4984         int                     level,
4985         void                    *data)
4986 {
4987         xfs_extlen_t            *blocks = data;
4988         (*blocks)++;
4989
4990         return 0;
4991 }
4992
4993 /* Count the blocks in a btree and return the result in *blocks. */
4994 int
4995 xfs_btree_count_blocks(
4996         struct xfs_btree_cur    *cur,
4997         xfs_extlen_t            *blocks)
4998 {
4999         *blocks = 0;
5000         return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5001                         XFS_BTREE_VISIT_ALL, blocks);
5002 }
5003
5004 /* Compare two btree pointers. */
5005 int64_t
5006 xfs_btree_diff_two_ptrs(
5007         struct xfs_btree_cur            *cur,
5008         const union xfs_btree_ptr       *a,
5009         const union xfs_btree_ptr       *b)
5010 {
5011         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5012                 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5013         return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5014 }
5015
5016 /* If there's an extent, we're done. */
5017 STATIC int
5018 xfs_btree_has_record_helper(
5019         struct xfs_btree_cur            *cur,
5020         const union xfs_btree_rec       *rec,
5021         void                            *priv)
5022 {
5023         return -ECANCELED;
5024 }
5025
5026 /* Is there a record covering a given range of keys? */
5027 int
5028 xfs_btree_has_record(
5029         struct xfs_btree_cur            *cur,
5030         const union xfs_btree_irec      *low,
5031         const union xfs_btree_irec      *high,
5032         bool                            *exists)
5033 {
5034         int                             error;
5035
5036         error = xfs_btree_query_range(cur, low, high,
5037                         &xfs_btree_has_record_helper, NULL);
5038         if (error == -ECANCELED) {
5039                 *exists = true;
5040                 return 0;
5041         }
5042         *exists = false;
5043         return error;
5044 }
5045
5046 /* Are there more records in this btree? */
5047 bool
5048 xfs_btree_has_more_records(
5049         struct xfs_btree_cur    *cur)
5050 {
5051         struct xfs_btree_block  *block;
5052         struct xfs_buf          *bp;
5053
5054         block = xfs_btree_get_block(cur, 0, &bp);
5055
5056         /* There are still records in this block. */
5057         if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5058                 return true;
5059
5060         /* There are more record blocks. */
5061         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5062                 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5063         else
5064                 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5065 }
5066
5067 /* Set up all the btree cursor caches. */
5068 int __init
5069 xfs_btree_init_cur_caches(void)
5070 {
5071         int             error;
5072
5073         error = xfs_allocbt_init_cur_cache();
5074         if (error)
5075                 return error;
5076         error = xfs_inobt_init_cur_cache();
5077         if (error)
5078                 goto err;
5079         error = xfs_bmbt_init_cur_cache();
5080         if (error)
5081                 goto err;
5082         error = xfs_rmapbt_init_cur_cache();
5083         if (error)
5084                 goto err;
5085         error = xfs_refcountbt_init_cur_cache();
5086         if (error)
5087                 goto err;
5088
5089         return 0;
5090 err:
5091         xfs_btree_destroy_cur_caches();
5092         return error;
5093 }
5094
5095 /* Destroy all the btree cursor caches, if they've been allocated. */
5096 void
5097 xfs_btree_destroy_cur_caches(void)
5098 {
5099         xfs_allocbt_destroy_cur_cache();
5100         xfs_inobt_destroy_cur_cache();
5101         xfs_bmbt_destroy_cur_cache();
5102         xfs_rmapbt_destroy_cur_cache();
5103         xfs_refcountbt_destroy_cur_cache();
5104 }