GNU Linux-libre 5.4.257-gnu1
[releases.git] / fs / userfaultfd.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30
31 int sysctl_unprivileged_userfaultfd __read_mostly = 1;
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 /*
36  * Start with fault_pending_wqh and fault_wqh so they're more likely
37  * to be in the same cacheline.
38  *
39  * Locking order:
40  *      fd_wqh.lock
41  *              fault_pending_wqh.lock
42  *                      fault_wqh.lock
43  *              event_wqh.lock
44  *
45  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
46  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
47  * also taken in IRQ context.
48  */
49 struct userfaultfd_ctx {
50         /* waitqueue head for the pending (i.e. not read) userfaults */
51         wait_queue_head_t fault_pending_wqh;
52         /* waitqueue head for the userfaults */
53         wait_queue_head_t fault_wqh;
54         /* waitqueue head for the pseudo fd to wakeup poll/read */
55         wait_queue_head_t fd_wqh;
56         /* waitqueue head for events */
57         wait_queue_head_t event_wqh;
58         /* a refile sequence protected by fault_pending_wqh lock */
59         struct seqcount refile_seq;
60         /* pseudo fd refcounting */
61         refcount_t refcount;
62         /* userfaultfd syscall flags */
63         unsigned int flags;
64         /* features requested from the userspace */
65         unsigned int features;
66         /* released */
67         bool released;
68         /* memory mappings are changing because of non-cooperative event */
69         bool mmap_changing;
70         /* mm with one ore more vmas attached to this userfaultfd_ctx */
71         struct mm_struct *mm;
72 };
73
74 struct userfaultfd_fork_ctx {
75         struct userfaultfd_ctx *orig;
76         struct userfaultfd_ctx *new;
77         struct list_head list;
78 };
79
80 struct userfaultfd_unmap_ctx {
81         struct userfaultfd_ctx *ctx;
82         unsigned long start;
83         unsigned long end;
84         struct list_head list;
85 };
86
87 struct userfaultfd_wait_queue {
88         struct uffd_msg msg;
89         wait_queue_entry_t wq;
90         struct userfaultfd_ctx *ctx;
91         bool waken;
92 };
93
94 struct userfaultfd_wake_range {
95         unsigned long start;
96         unsigned long len;
97 };
98
99 /* internal indication that UFFD_API ioctl was successfully executed */
100 #define UFFD_FEATURE_INITIALIZED                (1u << 31)
101
102 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
103 {
104         return ctx->features & UFFD_FEATURE_INITIALIZED;
105 }
106
107 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
108                                      int wake_flags, void *key)
109 {
110         struct userfaultfd_wake_range *range = key;
111         int ret;
112         struct userfaultfd_wait_queue *uwq;
113         unsigned long start, len;
114
115         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
116         ret = 0;
117         /* len == 0 means wake all */
118         start = range->start;
119         len = range->len;
120         if (len && (start > uwq->msg.arg.pagefault.address ||
121                     start + len <= uwq->msg.arg.pagefault.address))
122                 goto out;
123         WRITE_ONCE(uwq->waken, true);
124         /*
125          * The Program-Order guarantees provided by the scheduler
126          * ensure uwq->waken is visible before the task is woken.
127          */
128         ret = wake_up_state(wq->private, mode);
129         if (ret) {
130                 /*
131                  * Wake only once, autoremove behavior.
132                  *
133                  * After the effect of list_del_init is visible to the other
134                  * CPUs, the waitqueue may disappear from under us, see the
135                  * !list_empty_careful() in handle_userfault().
136                  *
137                  * try_to_wake_up() has an implicit smp_mb(), and the
138                  * wq->private is read before calling the extern function
139                  * "wake_up_state" (which in turns calls try_to_wake_up).
140                  */
141                 list_del_init(&wq->entry);
142         }
143 out:
144         return ret;
145 }
146
147 /**
148  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149  * context.
150  * @ctx: [in] Pointer to the userfaultfd context.
151  */
152 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153 {
154         refcount_inc(&ctx->refcount);
155 }
156
157 /**
158  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159  * context.
160  * @ctx: [in] Pointer to userfaultfd context.
161  *
162  * The userfaultfd context reference must have been previously acquired either
163  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164  */
165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166 {
167         if (refcount_dec_and_test(&ctx->refcount)) {
168                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
169                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
170                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
171                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
172                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
173                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
174                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
175                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
176                 mmdrop(ctx->mm);
177                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
178         }
179 }
180
181 static inline void msg_init(struct uffd_msg *msg)
182 {
183         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184         /*
185          * Must use memset to zero out the paddings or kernel data is
186          * leaked to userland.
187          */
188         memset(msg, 0, sizeof(struct uffd_msg));
189 }
190
191 static inline struct uffd_msg userfault_msg(unsigned long address,
192                                             unsigned int flags,
193                                             unsigned long reason,
194                                             unsigned int features)
195 {
196         struct uffd_msg msg;
197         msg_init(&msg);
198         msg.event = UFFD_EVENT_PAGEFAULT;
199         msg.arg.pagefault.address = address;
200         if (flags & FAULT_FLAG_WRITE)
201                 /*
202                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
203                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
204                  * was not set in a UFFD_EVENT_PAGEFAULT, it means it
205                  * was a read fault, otherwise if set it means it's
206                  * a write fault.
207                  */
208                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
209         if (reason & VM_UFFD_WP)
210                 /*
211                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
212                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
213                  * not set in a UFFD_EVENT_PAGEFAULT, it means it was
214                  * a missing fault, otherwise if set it means it's a
215                  * write protect fault.
216                  */
217                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
218         if (features & UFFD_FEATURE_THREAD_ID)
219                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
220         return msg;
221 }
222
223 #ifdef CONFIG_HUGETLB_PAGE
224 /*
225  * Same functionality as userfaultfd_must_wait below with modifications for
226  * hugepmd ranges.
227  */
228 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
229                                          struct vm_area_struct *vma,
230                                          unsigned long address,
231                                          unsigned long flags,
232                                          unsigned long reason)
233 {
234         struct mm_struct *mm = ctx->mm;
235         pte_t *ptep, pte;
236         bool ret = true;
237
238         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
239
240         ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
241
242         if (!ptep)
243                 goto out;
244
245         ret = false;
246         pte = huge_ptep_get(ptep);
247
248         /*
249          * Lockless access: we're in a wait_event so it's ok if it
250          * changes under us.
251          */
252         if (huge_pte_none(pte))
253                 ret = true;
254         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
255                 ret = true;
256 out:
257         return ret;
258 }
259 #else
260 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
261                                          struct vm_area_struct *vma,
262                                          unsigned long address,
263                                          unsigned long flags,
264                                          unsigned long reason)
265 {
266         return false;   /* should never get here */
267 }
268 #endif /* CONFIG_HUGETLB_PAGE */
269
270 /*
271  * Verify the pagetables are still not ok after having reigstered into
272  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
273  * userfault that has already been resolved, if userfaultfd_read and
274  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
275  * threads.
276  */
277 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
278                                          unsigned long address,
279                                          unsigned long flags,
280                                          unsigned long reason)
281 {
282         struct mm_struct *mm = ctx->mm;
283         pgd_t *pgd;
284         p4d_t *p4d;
285         pud_t *pud;
286         pmd_t *pmd, _pmd;
287         pte_t *pte;
288         bool ret = true;
289
290         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
291
292         pgd = pgd_offset(mm, address);
293         if (!pgd_present(*pgd))
294                 goto out;
295         p4d = p4d_offset(pgd, address);
296         if (!p4d_present(*p4d))
297                 goto out;
298         pud = pud_offset(p4d, address);
299         if (!pud_present(*pud))
300                 goto out;
301         pmd = pmd_offset(pud, address);
302         /*
303          * READ_ONCE must function as a barrier with narrower scope
304          * and it must be equivalent to:
305          *      _pmd = *pmd; barrier();
306          *
307          * This is to deal with the instability (as in
308          * pmd_trans_unstable) of the pmd.
309          */
310         _pmd = READ_ONCE(*pmd);
311         if (pmd_none(_pmd))
312                 goto out;
313
314         ret = false;
315         if (!pmd_present(_pmd))
316                 goto out;
317
318         if (pmd_trans_huge(_pmd))
319                 goto out;
320
321         /*
322          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
323          * and use the standard pte_offset_map() instead of parsing _pmd.
324          */
325         pte = pte_offset_map(pmd, address);
326         /*
327          * Lockless access: we're in a wait_event so it's ok if it
328          * changes under us.
329          */
330         if (pte_none(*pte))
331                 ret = true;
332         pte_unmap(pte);
333
334 out:
335         return ret;
336 }
337
338 /*
339  * The locking rules involved in returning VM_FAULT_RETRY depending on
340  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
341  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
342  * recommendation in __lock_page_or_retry is not an understatement.
343  *
344  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
345  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
346  * not set.
347  *
348  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
349  * set, VM_FAULT_RETRY can still be returned if and only if there are
350  * fatal_signal_pending()s, and the mmap_sem must be released before
351  * returning it.
352  */
353 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
354 {
355         struct mm_struct *mm = vmf->vma->vm_mm;
356         struct userfaultfd_ctx *ctx;
357         struct userfaultfd_wait_queue uwq;
358         vm_fault_t ret = VM_FAULT_SIGBUS;
359         bool must_wait, return_to_userland;
360         long blocking_state;
361
362         /*
363          * We don't do userfault handling for the final child pid update.
364          *
365          * We also don't do userfault handling during
366          * coredumping. hugetlbfs has the special
367          * follow_hugetlb_page() to skip missing pages in the
368          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
369          * the no_page_table() helper in follow_page_mask(), but the
370          * shmem_vm_ops->fault method is invoked even during
371          * coredumping without mmap_sem and it ends up here.
372          */
373         if (current->flags & (PF_EXITING|PF_DUMPCORE))
374                 goto out;
375
376         /*
377          * Coredumping runs without mmap_sem so we can only check that
378          * the mmap_sem is held, if PF_DUMPCORE was not set.
379          */
380         WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
381
382         ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
383         if (!ctx)
384                 goto out;
385
386         BUG_ON(ctx->mm != mm);
387
388         VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
389         VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
390
391         if (ctx->features & UFFD_FEATURE_SIGBUS)
392                 goto out;
393
394         /*
395          * If it's already released don't get it. This avoids to loop
396          * in __get_user_pages if userfaultfd_release waits on the
397          * caller of handle_userfault to release the mmap_sem.
398          */
399         if (unlikely(READ_ONCE(ctx->released))) {
400                 /*
401                  * Don't return VM_FAULT_SIGBUS in this case, so a non
402                  * cooperative manager can close the uffd after the
403                  * last UFFDIO_COPY, without risking to trigger an
404                  * involuntary SIGBUS if the process was starting the
405                  * userfaultfd while the userfaultfd was still armed
406                  * (but after the last UFFDIO_COPY). If the uffd
407                  * wasn't already closed when the userfault reached
408                  * this point, that would normally be solved by
409                  * userfaultfd_must_wait returning 'false'.
410                  *
411                  * If we were to return VM_FAULT_SIGBUS here, the non
412                  * cooperative manager would be instead forced to
413                  * always call UFFDIO_UNREGISTER before it can safely
414                  * close the uffd.
415                  */
416                 ret = VM_FAULT_NOPAGE;
417                 goto out;
418         }
419
420         /*
421          * Check that we can return VM_FAULT_RETRY.
422          *
423          * NOTE: it should become possible to return VM_FAULT_RETRY
424          * even if FAULT_FLAG_TRIED is set without leading to gup()
425          * -EBUSY failures, if the userfaultfd is to be extended for
426          * VM_UFFD_WP tracking and we intend to arm the userfault
427          * without first stopping userland access to the memory. For
428          * VM_UFFD_MISSING userfaults this is enough for now.
429          */
430         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
431                 /*
432                  * Validate the invariant that nowait must allow retry
433                  * to be sure not to return SIGBUS erroneously on
434                  * nowait invocations.
435                  */
436                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
437 #ifdef CONFIG_DEBUG_VM
438                 if (printk_ratelimit()) {
439                         printk(KERN_WARNING
440                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
441                                vmf->flags);
442                         dump_stack();
443                 }
444 #endif
445                 goto out;
446         }
447
448         /*
449          * Handle nowait, not much to do other than tell it to retry
450          * and wait.
451          */
452         ret = VM_FAULT_RETRY;
453         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
454                 goto out;
455
456         /* take the reference before dropping the mmap_sem */
457         userfaultfd_ctx_get(ctx);
458
459         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
460         uwq.wq.private = current;
461         uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
462                         ctx->features);
463         uwq.ctx = ctx;
464         uwq.waken = false;
465
466         return_to_userland =
467                 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
468                 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
469         blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
470                          TASK_KILLABLE;
471
472         spin_lock_irq(&ctx->fault_pending_wqh.lock);
473         /*
474          * After the __add_wait_queue the uwq is visible to userland
475          * through poll/read().
476          */
477         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
478         /*
479          * The smp_mb() after __set_current_state prevents the reads
480          * following the spin_unlock to happen before the list_add in
481          * __add_wait_queue.
482          */
483         set_current_state(blocking_state);
484         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
485
486         if (!is_vm_hugetlb_page(vmf->vma))
487                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
488                                                   reason);
489         else
490                 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
491                                                        vmf->address,
492                                                        vmf->flags, reason);
493         up_read(&mm->mmap_sem);
494
495         if (likely(must_wait && !READ_ONCE(ctx->released) &&
496                    (return_to_userland ? !signal_pending(current) :
497                     !fatal_signal_pending(current)))) {
498                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
499                 schedule();
500                 ret |= VM_FAULT_MAJOR;
501
502                 /*
503                  * False wakeups can orginate even from rwsem before
504                  * up_read() however userfaults will wait either for a
505                  * targeted wakeup on the specific uwq waitqueue from
506                  * wake_userfault() or for signals or for uffd
507                  * release.
508                  */
509                 while (!READ_ONCE(uwq.waken)) {
510                         /*
511                          * This needs the full smp_store_mb()
512                          * guarantee as the state write must be
513                          * visible to other CPUs before reading
514                          * uwq.waken from other CPUs.
515                          */
516                         set_current_state(blocking_state);
517                         if (READ_ONCE(uwq.waken) ||
518                             READ_ONCE(ctx->released) ||
519                             (return_to_userland ? signal_pending(current) :
520                              fatal_signal_pending(current)))
521                                 break;
522                         schedule();
523                 }
524         }
525
526         __set_current_state(TASK_RUNNING);
527
528         if (return_to_userland) {
529                 if (signal_pending(current) &&
530                     !fatal_signal_pending(current)) {
531                         /*
532                          * If we got a SIGSTOP or SIGCONT and this is
533                          * a normal userland page fault, just let
534                          * userland return so the signal will be
535                          * handled and gdb debugging works.  The page
536                          * fault code immediately after we return from
537                          * this function is going to release the
538                          * mmap_sem and it's not depending on it
539                          * (unlike gup would if we were not to return
540                          * VM_FAULT_RETRY).
541                          *
542                          * If a fatal signal is pending we still take
543                          * the streamlined VM_FAULT_RETRY failure path
544                          * and there's no need to retake the mmap_sem
545                          * in such case.
546                          */
547                         down_read(&mm->mmap_sem);
548                         ret = VM_FAULT_NOPAGE;
549                 }
550         }
551
552         /*
553          * Here we race with the list_del; list_add in
554          * userfaultfd_ctx_read(), however because we don't ever run
555          * list_del_init() to refile across the two lists, the prev
556          * and next pointers will never point to self. list_add also
557          * would never let any of the two pointers to point to
558          * self. So list_empty_careful won't risk to see both pointers
559          * pointing to self at any time during the list refile. The
560          * only case where list_del_init() is called is the full
561          * removal in the wake function and there we don't re-list_add
562          * and it's fine not to block on the spinlock. The uwq on this
563          * kernel stack can be released after the list_del_init.
564          */
565         if (!list_empty_careful(&uwq.wq.entry)) {
566                 spin_lock_irq(&ctx->fault_pending_wqh.lock);
567                 /*
568                  * No need of list_del_init(), the uwq on the stack
569                  * will be freed shortly anyway.
570                  */
571                 list_del(&uwq.wq.entry);
572                 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
573         }
574
575         /*
576          * ctx may go away after this if the userfault pseudo fd is
577          * already released.
578          */
579         userfaultfd_ctx_put(ctx);
580
581 out:
582         return ret;
583 }
584
585 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
586                                               struct userfaultfd_wait_queue *ewq)
587 {
588         struct userfaultfd_ctx *release_new_ctx;
589
590         if (WARN_ON_ONCE(current->flags & PF_EXITING))
591                 goto out;
592
593         ewq->ctx = ctx;
594         init_waitqueue_entry(&ewq->wq, current);
595         release_new_ctx = NULL;
596
597         spin_lock_irq(&ctx->event_wqh.lock);
598         /*
599          * After the __add_wait_queue the uwq is visible to userland
600          * through poll/read().
601          */
602         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
603         for (;;) {
604                 set_current_state(TASK_KILLABLE);
605                 if (ewq->msg.event == 0)
606                         break;
607                 if (READ_ONCE(ctx->released) ||
608                     fatal_signal_pending(current)) {
609                         /*
610                          * &ewq->wq may be queued in fork_event, but
611                          * __remove_wait_queue ignores the head
612                          * parameter. It would be a problem if it
613                          * didn't.
614                          */
615                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
616                         if (ewq->msg.event == UFFD_EVENT_FORK) {
617                                 struct userfaultfd_ctx *new;
618
619                                 new = (struct userfaultfd_ctx *)
620                                         (unsigned long)
621                                         ewq->msg.arg.reserved.reserved1;
622                                 release_new_ctx = new;
623                         }
624                         break;
625                 }
626
627                 spin_unlock_irq(&ctx->event_wqh.lock);
628
629                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
630                 schedule();
631
632                 spin_lock_irq(&ctx->event_wqh.lock);
633         }
634         __set_current_state(TASK_RUNNING);
635         spin_unlock_irq(&ctx->event_wqh.lock);
636
637         if (release_new_ctx) {
638                 struct vm_area_struct *vma;
639                 struct mm_struct *mm = release_new_ctx->mm;
640
641                 /* the various vma->vm_userfaultfd_ctx still points to it */
642                 down_write(&mm->mmap_sem);
643                 /* no task can run (and in turn coredump) yet */
644                 VM_WARN_ON(!mmget_still_valid(mm));
645                 for (vma = mm->mmap; vma; vma = vma->vm_next)
646                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
647                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
648                                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
649                         }
650                 up_write(&mm->mmap_sem);
651
652                 userfaultfd_ctx_put(release_new_ctx);
653         }
654
655         /*
656          * ctx may go away after this if the userfault pseudo fd is
657          * already released.
658          */
659 out:
660         WRITE_ONCE(ctx->mmap_changing, false);
661         userfaultfd_ctx_put(ctx);
662 }
663
664 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
665                                        struct userfaultfd_wait_queue *ewq)
666 {
667         ewq->msg.event = 0;
668         wake_up_locked(&ctx->event_wqh);
669         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
670 }
671
672 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
673 {
674         struct userfaultfd_ctx *ctx = NULL, *octx;
675         struct userfaultfd_fork_ctx *fctx;
676
677         octx = vma->vm_userfaultfd_ctx.ctx;
678         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
679                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
680                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
681                 return 0;
682         }
683
684         list_for_each_entry(fctx, fcs, list)
685                 if (fctx->orig == octx) {
686                         ctx = fctx->new;
687                         break;
688                 }
689
690         if (!ctx) {
691                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
692                 if (!fctx)
693                         return -ENOMEM;
694
695                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
696                 if (!ctx) {
697                         kfree(fctx);
698                         return -ENOMEM;
699                 }
700
701                 refcount_set(&ctx->refcount, 1);
702                 ctx->flags = octx->flags;
703                 ctx->features = octx->features;
704                 ctx->released = false;
705                 ctx->mmap_changing = false;
706                 ctx->mm = vma->vm_mm;
707                 mmgrab(ctx->mm);
708
709                 userfaultfd_ctx_get(octx);
710                 WRITE_ONCE(octx->mmap_changing, true);
711                 fctx->orig = octx;
712                 fctx->new = ctx;
713                 list_add_tail(&fctx->list, fcs);
714         }
715
716         vma->vm_userfaultfd_ctx.ctx = ctx;
717         return 0;
718 }
719
720 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
721 {
722         struct userfaultfd_ctx *ctx = fctx->orig;
723         struct userfaultfd_wait_queue ewq;
724
725         msg_init(&ewq.msg);
726
727         ewq.msg.event = UFFD_EVENT_FORK;
728         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
729
730         userfaultfd_event_wait_completion(ctx, &ewq);
731 }
732
733 void dup_userfaultfd_complete(struct list_head *fcs)
734 {
735         struct userfaultfd_fork_ctx *fctx, *n;
736
737         list_for_each_entry_safe(fctx, n, fcs, list) {
738                 dup_fctx(fctx);
739                 list_del(&fctx->list);
740                 kfree(fctx);
741         }
742 }
743
744 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
745                              struct vm_userfaultfd_ctx *vm_ctx)
746 {
747         struct userfaultfd_ctx *ctx;
748
749         ctx = vma->vm_userfaultfd_ctx.ctx;
750
751         if (!ctx)
752                 return;
753
754         if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
755                 vm_ctx->ctx = ctx;
756                 userfaultfd_ctx_get(ctx);
757                 WRITE_ONCE(ctx->mmap_changing, true);
758         } else {
759                 /* Drop uffd context if remap feature not enabled */
760                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
761                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
762         }
763 }
764
765 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
766                                  unsigned long from, unsigned long to,
767                                  unsigned long len)
768 {
769         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
770         struct userfaultfd_wait_queue ewq;
771
772         if (!ctx)
773                 return;
774
775         if (to & ~PAGE_MASK) {
776                 userfaultfd_ctx_put(ctx);
777                 return;
778         }
779
780         msg_init(&ewq.msg);
781
782         ewq.msg.event = UFFD_EVENT_REMAP;
783         ewq.msg.arg.remap.from = from;
784         ewq.msg.arg.remap.to = to;
785         ewq.msg.arg.remap.len = len;
786
787         userfaultfd_event_wait_completion(ctx, &ewq);
788 }
789
790 bool userfaultfd_remove(struct vm_area_struct *vma,
791                         unsigned long start, unsigned long end)
792 {
793         struct mm_struct *mm = vma->vm_mm;
794         struct userfaultfd_ctx *ctx;
795         struct userfaultfd_wait_queue ewq;
796
797         ctx = vma->vm_userfaultfd_ctx.ctx;
798         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
799                 return true;
800
801         userfaultfd_ctx_get(ctx);
802         WRITE_ONCE(ctx->mmap_changing, true);
803         up_read(&mm->mmap_sem);
804
805         msg_init(&ewq.msg);
806
807         ewq.msg.event = UFFD_EVENT_REMOVE;
808         ewq.msg.arg.remove.start = start;
809         ewq.msg.arg.remove.end = end;
810
811         userfaultfd_event_wait_completion(ctx, &ewq);
812
813         return false;
814 }
815
816 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
817                           unsigned long start, unsigned long end)
818 {
819         struct userfaultfd_unmap_ctx *unmap_ctx;
820
821         list_for_each_entry(unmap_ctx, unmaps, list)
822                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
823                     unmap_ctx->end == end)
824                         return true;
825
826         return false;
827 }
828
829 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
830                            unsigned long start, unsigned long end,
831                            struct list_head *unmaps)
832 {
833         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
834                 struct userfaultfd_unmap_ctx *unmap_ctx;
835                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
836
837                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
838                     has_unmap_ctx(ctx, unmaps, start, end))
839                         continue;
840
841                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
842                 if (!unmap_ctx)
843                         return -ENOMEM;
844
845                 userfaultfd_ctx_get(ctx);
846                 WRITE_ONCE(ctx->mmap_changing, true);
847                 unmap_ctx->ctx = ctx;
848                 unmap_ctx->start = start;
849                 unmap_ctx->end = end;
850                 list_add_tail(&unmap_ctx->list, unmaps);
851         }
852
853         return 0;
854 }
855
856 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
857 {
858         struct userfaultfd_unmap_ctx *ctx, *n;
859         struct userfaultfd_wait_queue ewq;
860
861         list_for_each_entry_safe(ctx, n, uf, list) {
862                 msg_init(&ewq.msg);
863
864                 ewq.msg.event = UFFD_EVENT_UNMAP;
865                 ewq.msg.arg.remove.start = ctx->start;
866                 ewq.msg.arg.remove.end = ctx->end;
867
868                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
869
870                 list_del(&ctx->list);
871                 kfree(ctx);
872         }
873 }
874
875 static int userfaultfd_release(struct inode *inode, struct file *file)
876 {
877         struct userfaultfd_ctx *ctx = file->private_data;
878         struct mm_struct *mm = ctx->mm;
879         struct vm_area_struct *vma, *prev;
880         /* len == 0 means wake all */
881         struct userfaultfd_wake_range range = { .len = 0, };
882         unsigned long new_flags;
883         bool still_valid;
884
885         WRITE_ONCE(ctx->released, true);
886
887         if (!mmget_not_zero(mm))
888                 goto wakeup;
889
890         /*
891          * Flush page faults out of all CPUs. NOTE: all page faults
892          * must be retried without returning VM_FAULT_SIGBUS if
893          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
894          * changes while handle_userfault released the mmap_sem. So
895          * it's critical that released is set to true (above), before
896          * taking the mmap_sem for writing.
897          */
898         down_write(&mm->mmap_sem);
899         still_valid = mmget_still_valid(mm);
900         prev = NULL;
901         for (vma = mm->mmap; vma; vma = vma->vm_next) {
902                 cond_resched();
903                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
904                        !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
905                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
906                         prev = vma;
907                         continue;
908                 }
909                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
910                 if (still_valid) {
911                         prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
912                                          new_flags, vma->anon_vma,
913                                          vma->vm_file, vma->vm_pgoff,
914                                          vma_policy(vma),
915                                          NULL_VM_UFFD_CTX);
916                         if (prev)
917                                 vma = prev;
918                         else
919                                 prev = vma;
920                 }
921                 vma->vm_flags = new_flags;
922                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
923         }
924         up_write(&mm->mmap_sem);
925         mmput(mm);
926 wakeup:
927         /*
928          * After no new page faults can wait on this fault_*wqh, flush
929          * the last page faults that may have been already waiting on
930          * the fault_*wqh.
931          */
932         spin_lock_irq(&ctx->fault_pending_wqh.lock);
933         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
934         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
935         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
936
937         /* Flush pending events that may still wait on event_wqh */
938         wake_up_all(&ctx->event_wqh);
939
940         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
941         userfaultfd_ctx_put(ctx);
942         return 0;
943 }
944
945 /* fault_pending_wqh.lock must be hold by the caller */
946 static inline struct userfaultfd_wait_queue *find_userfault_in(
947                 wait_queue_head_t *wqh)
948 {
949         wait_queue_entry_t *wq;
950         struct userfaultfd_wait_queue *uwq;
951
952         lockdep_assert_held(&wqh->lock);
953
954         uwq = NULL;
955         if (!waitqueue_active(wqh))
956                 goto out;
957         /* walk in reverse to provide FIFO behavior to read userfaults */
958         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
959         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
960 out:
961         return uwq;
962 }
963
964 static inline struct userfaultfd_wait_queue *find_userfault(
965                 struct userfaultfd_ctx *ctx)
966 {
967         return find_userfault_in(&ctx->fault_pending_wqh);
968 }
969
970 static inline struct userfaultfd_wait_queue *find_userfault_evt(
971                 struct userfaultfd_ctx *ctx)
972 {
973         return find_userfault_in(&ctx->event_wqh);
974 }
975
976 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
977 {
978         struct userfaultfd_ctx *ctx = file->private_data;
979         __poll_t ret;
980
981         poll_wait(file, &ctx->fd_wqh, wait);
982
983         if (!userfaultfd_is_initialized(ctx))
984                 return EPOLLERR;
985
986         /*
987          * poll() never guarantees that read won't block.
988          * userfaults can be waken before they're read().
989          */
990         if (unlikely(!(file->f_flags & O_NONBLOCK)))
991                 return EPOLLERR;
992         /*
993          * lockless access to see if there are pending faults
994          * __pollwait last action is the add_wait_queue but
995          * the spin_unlock would allow the waitqueue_active to
996          * pass above the actual list_add inside
997          * add_wait_queue critical section. So use a full
998          * memory barrier to serialize the list_add write of
999          * add_wait_queue() with the waitqueue_active read
1000          * below.
1001          */
1002         ret = 0;
1003         smp_mb();
1004         if (waitqueue_active(&ctx->fault_pending_wqh))
1005                 ret = EPOLLIN;
1006         else if (waitqueue_active(&ctx->event_wqh))
1007                 ret = EPOLLIN;
1008
1009         return ret;
1010 }
1011
1012 static const struct file_operations userfaultfd_fops;
1013
1014 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1015                                   struct userfaultfd_ctx *new,
1016                                   struct uffd_msg *msg)
1017 {
1018         int fd;
1019
1020         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1021                               O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1022         if (fd < 0)
1023                 return fd;
1024
1025         msg->arg.reserved.reserved1 = 0;
1026         msg->arg.fork.ufd = fd;
1027         return 0;
1028 }
1029
1030 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1031                                     struct uffd_msg *msg)
1032 {
1033         ssize_t ret;
1034         DECLARE_WAITQUEUE(wait, current);
1035         struct userfaultfd_wait_queue *uwq;
1036         /*
1037          * Handling fork event requires sleeping operations, so
1038          * we drop the event_wqh lock, then do these ops, then
1039          * lock it back and wake up the waiter. While the lock is
1040          * dropped the ewq may go away so we keep track of it
1041          * carefully.
1042          */
1043         LIST_HEAD(fork_event);
1044         struct userfaultfd_ctx *fork_nctx = NULL;
1045
1046         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1047         spin_lock_irq(&ctx->fd_wqh.lock);
1048         __add_wait_queue(&ctx->fd_wqh, &wait);
1049         for (;;) {
1050                 set_current_state(TASK_INTERRUPTIBLE);
1051                 spin_lock(&ctx->fault_pending_wqh.lock);
1052                 uwq = find_userfault(ctx);
1053                 if (uwq) {
1054                         /*
1055                          * Use a seqcount to repeat the lockless check
1056                          * in wake_userfault() to avoid missing
1057                          * wakeups because during the refile both
1058                          * waitqueue could become empty if this is the
1059                          * only userfault.
1060                          */
1061                         write_seqcount_begin(&ctx->refile_seq);
1062
1063                         /*
1064                          * The fault_pending_wqh.lock prevents the uwq
1065                          * to disappear from under us.
1066                          *
1067                          * Refile this userfault from
1068                          * fault_pending_wqh to fault_wqh, it's not
1069                          * pending anymore after we read it.
1070                          *
1071                          * Use list_del() by hand (as
1072                          * userfaultfd_wake_function also uses
1073                          * list_del_init() by hand) to be sure nobody
1074                          * changes __remove_wait_queue() to use
1075                          * list_del_init() in turn breaking the
1076                          * !list_empty_careful() check in
1077                          * handle_userfault(). The uwq->wq.head list
1078                          * must never be empty at any time during the
1079                          * refile, or the waitqueue could disappear
1080                          * from under us. The "wait_queue_head_t"
1081                          * parameter of __remove_wait_queue() is unused
1082                          * anyway.
1083                          */
1084                         list_del(&uwq->wq.entry);
1085                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1086
1087                         write_seqcount_end(&ctx->refile_seq);
1088
1089                         /* careful to always initialize msg if ret == 0 */
1090                         *msg = uwq->msg;
1091                         spin_unlock(&ctx->fault_pending_wqh.lock);
1092                         ret = 0;
1093                         break;
1094                 }
1095                 spin_unlock(&ctx->fault_pending_wqh.lock);
1096
1097                 spin_lock(&ctx->event_wqh.lock);
1098                 uwq = find_userfault_evt(ctx);
1099                 if (uwq) {
1100                         *msg = uwq->msg;
1101
1102                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1103                                 fork_nctx = (struct userfaultfd_ctx *)
1104                                         (unsigned long)
1105                                         uwq->msg.arg.reserved.reserved1;
1106                                 list_move(&uwq->wq.entry, &fork_event);
1107                                 /*
1108                                  * fork_nctx can be freed as soon as
1109                                  * we drop the lock, unless we take a
1110                                  * reference on it.
1111                                  */
1112                                 userfaultfd_ctx_get(fork_nctx);
1113                                 spin_unlock(&ctx->event_wqh.lock);
1114                                 ret = 0;
1115                                 break;
1116                         }
1117
1118                         userfaultfd_event_complete(ctx, uwq);
1119                         spin_unlock(&ctx->event_wqh.lock);
1120                         ret = 0;
1121                         break;
1122                 }
1123                 spin_unlock(&ctx->event_wqh.lock);
1124
1125                 if (signal_pending(current)) {
1126                         ret = -ERESTARTSYS;
1127                         break;
1128                 }
1129                 if (no_wait) {
1130                         ret = -EAGAIN;
1131                         break;
1132                 }
1133                 spin_unlock_irq(&ctx->fd_wqh.lock);
1134                 schedule();
1135                 spin_lock_irq(&ctx->fd_wqh.lock);
1136         }
1137         __remove_wait_queue(&ctx->fd_wqh, &wait);
1138         __set_current_state(TASK_RUNNING);
1139         spin_unlock_irq(&ctx->fd_wqh.lock);
1140
1141         if (!ret && msg->event == UFFD_EVENT_FORK) {
1142                 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1143                 spin_lock_irq(&ctx->event_wqh.lock);
1144                 if (!list_empty(&fork_event)) {
1145                         /*
1146                          * The fork thread didn't abort, so we can
1147                          * drop the temporary refcount.
1148                          */
1149                         userfaultfd_ctx_put(fork_nctx);
1150
1151                         uwq = list_first_entry(&fork_event,
1152                                                typeof(*uwq),
1153                                                wq.entry);
1154                         /*
1155                          * If fork_event list wasn't empty and in turn
1156                          * the event wasn't already released by fork
1157                          * (the event is allocated on fork kernel
1158                          * stack), put the event back to its place in
1159                          * the event_wq. fork_event head will be freed
1160                          * as soon as we return so the event cannot
1161                          * stay queued there no matter the current
1162                          * "ret" value.
1163                          */
1164                         list_del(&uwq->wq.entry);
1165                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1166
1167                         /*
1168                          * Leave the event in the waitqueue and report
1169                          * error to userland if we failed to resolve
1170                          * the userfault fork.
1171                          */
1172                         if (likely(!ret))
1173                                 userfaultfd_event_complete(ctx, uwq);
1174                 } else {
1175                         /*
1176                          * Here the fork thread aborted and the
1177                          * refcount from the fork thread on fork_nctx
1178                          * has already been released. We still hold
1179                          * the reference we took before releasing the
1180                          * lock above. If resolve_userfault_fork
1181                          * failed we've to drop it because the
1182                          * fork_nctx has to be freed in such case. If
1183                          * it succeeded we'll hold it because the new
1184                          * uffd references it.
1185                          */
1186                         if (ret)
1187                                 userfaultfd_ctx_put(fork_nctx);
1188                 }
1189                 spin_unlock_irq(&ctx->event_wqh.lock);
1190         }
1191
1192         return ret;
1193 }
1194
1195 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1196                                 size_t count, loff_t *ppos)
1197 {
1198         struct userfaultfd_ctx *ctx = file->private_data;
1199         ssize_t _ret, ret = 0;
1200         struct uffd_msg msg;
1201         int no_wait = file->f_flags & O_NONBLOCK;
1202
1203         if (!userfaultfd_is_initialized(ctx))
1204                 return -EINVAL;
1205
1206         for (;;) {
1207                 if (count < sizeof(msg))
1208                         return ret ? ret : -EINVAL;
1209                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1210                 if (_ret < 0)
1211                         return ret ? ret : _ret;
1212                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1213                         return ret ? ret : -EFAULT;
1214                 ret += sizeof(msg);
1215                 buf += sizeof(msg);
1216                 count -= sizeof(msg);
1217                 /*
1218                  * Allow to read more than one fault at time but only
1219                  * block if waiting for the very first one.
1220                  */
1221                 no_wait = O_NONBLOCK;
1222         }
1223 }
1224
1225 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1226                              struct userfaultfd_wake_range *range)
1227 {
1228         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1229         /* wake all in the range and autoremove */
1230         if (waitqueue_active(&ctx->fault_pending_wqh))
1231                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1232                                      range);
1233         if (waitqueue_active(&ctx->fault_wqh))
1234                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1235         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1236 }
1237
1238 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1239                                            struct userfaultfd_wake_range *range)
1240 {
1241         unsigned seq;
1242         bool need_wakeup;
1243
1244         /*
1245          * To be sure waitqueue_active() is not reordered by the CPU
1246          * before the pagetable update, use an explicit SMP memory
1247          * barrier here. PT lock release or up_read(mmap_sem) still
1248          * have release semantics that can allow the
1249          * waitqueue_active() to be reordered before the pte update.
1250          */
1251         smp_mb();
1252
1253         /*
1254          * Use waitqueue_active because it's very frequent to
1255          * change the address space atomically even if there are no
1256          * userfaults yet. So we take the spinlock only when we're
1257          * sure we've userfaults to wake.
1258          */
1259         do {
1260                 seq = read_seqcount_begin(&ctx->refile_seq);
1261                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1262                         waitqueue_active(&ctx->fault_wqh);
1263                 cond_resched();
1264         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1265         if (need_wakeup)
1266                 __wake_userfault(ctx, range);
1267 }
1268
1269 static __always_inline int validate_range(struct mm_struct *mm,
1270                                           __u64 start, __u64 len)
1271 {
1272         __u64 task_size = mm->task_size;
1273
1274         if (start & ~PAGE_MASK)
1275                 return -EINVAL;
1276         if (len & ~PAGE_MASK)
1277                 return -EINVAL;
1278         if (!len)
1279                 return -EINVAL;
1280         if (start < mmap_min_addr)
1281                 return -EINVAL;
1282         if (start >= task_size)
1283                 return -EINVAL;
1284         if (len > task_size - start)
1285                 return -EINVAL;
1286         return 0;
1287 }
1288
1289 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1290 {
1291         return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1292                 vma_is_shmem(vma);
1293 }
1294
1295 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1296                                 unsigned long arg)
1297 {
1298         struct mm_struct *mm = ctx->mm;
1299         struct vm_area_struct *vma, *prev, *cur;
1300         int ret;
1301         struct uffdio_register uffdio_register;
1302         struct uffdio_register __user *user_uffdio_register;
1303         unsigned long vm_flags, new_flags;
1304         bool found;
1305         bool basic_ioctls;
1306         unsigned long start, end, vma_end;
1307
1308         user_uffdio_register = (struct uffdio_register __user *) arg;
1309
1310         ret = -EFAULT;
1311         if (copy_from_user(&uffdio_register, user_uffdio_register,
1312                            sizeof(uffdio_register)-sizeof(__u64)))
1313                 goto out;
1314
1315         ret = -EINVAL;
1316         if (!uffdio_register.mode)
1317                 goto out;
1318         if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1319                                      UFFDIO_REGISTER_MODE_WP))
1320                 goto out;
1321         vm_flags = 0;
1322         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1323                 vm_flags |= VM_UFFD_MISSING;
1324         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1325                 vm_flags |= VM_UFFD_WP;
1326                 /*
1327                  * FIXME: remove the below error constraint by
1328                  * implementing the wprotect tracking mode.
1329                  */
1330                 ret = -EINVAL;
1331                 goto out;
1332         }
1333
1334         ret = validate_range(mm, uffdio_register.range.start,
1335                              uffdio_register.range.len);
1336         if (ret)
1337                 goto out;
1338
1339         start = uffdio_register.range.start;
1340         end = start + uffdio_register.range.len;
1341
1342         ret = -ENOMEM;
1343         if (!mmget_not_zero(mm))
1344                 goto out;
1345
1346         down_write(&mm->mmap_sem);
1347         if (!mmget_still_valid(mm))
1348                 goto out_unlock;
1349         vma = find_vma_prev(mm, start, &prev);
1350         if (!vma)
1351                 goto out_unlock;
1352
1353         /* check that there's at least one vma in the range */
1354         ret = -EINVAL;
1355         if (vma->vm_start >= end)
1356                 goto out_unlock;
1357
1358         /*
1359          * If the first vma contains huge pages, make sure start address
1360          * is aligned to huge page size.
1361          */
1362         if (is_vm_hugetlb_page(vma)) {
1363                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1364
1365                 if (start & (vma_hpagesize - 1))
1366                         goto out_unlock;
1367         }
1368
1369         /*
1370          * Search for not compatible vmas.
1371          */
1372         found = false;
1373         basic_ioctls = false;
1374         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1375                 cond_resched();
1376
1377                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1378                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1379
1380                 /* check not compatible vmas */
1381                 ret = -EINVAL;
1382                 if (!vma_can_userfault(cur))
1383                         goto out_unlock;
1384
1385                 /*
1386                  * UFFDIO_COPY will fill file holes even without
1387                  * PROT_WRITE. This check enforces that if this is a
1388                  * MAP_SHARED, the process has write permission to the backing
1389                  * file. If VM_MAYWRITE is set it also enforces that on a
1390                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1391                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1392                  */
1393                 ret = -EPERM;
1394                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1395                         goto out_unlock;
1396
1397                 /*
1398                  * If this vma contains ending address, and huge pages
1399                  * check alignment.
1400                  */
1401                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1402                     end > cur->vm_start) {
1403                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1404
1405                         ret = -EINVAL;
1406
1407                         if (end & (vma_hpagesize - 1))
1408                                 goto out_unlock;
1409                 }
1410
1411                 /*
1412                  * Check that this vma isn't already owned by a
1413                  * different userfaultfd. We can't allow more than one
1414                  * userfaultfd to own a single vma simultaneously or we
1415                  * wouldn't know which one to deliver the userfaults to.
1416                  */
1417                 ret = -EBUSY;
1418                 if (cur->vm_userfaultfd_ctx.ctx &&
1419                     cur->vm_userfaultfd_ctx.ctx != ctx)
1420                         goto out_unlock;
1421
1422                 /*
1423                  * Note vmas containing huge pages
1424                  */
1425                 if (is_vm_hugetlb_page(cur))
1426                         basic_ioctls = true;
1427
1428                 found = true;
1429         }
1430         BUG_ON(!found);
1431
1432         if (vma->vm_start < start)
1433                 prev = vma;
1434
1435         ret = 0;
1436         do {
1437                 cond_resched();
1438
1439                 BUG_ON(!vma_can_userfault(vma));
1440                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1441                        vma->vm_userfaultfd_ctx.ctx != ctx);
1442                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1443
1444                 /*
1445                  * Nothing to do: this vma is already registered into this
1446                  * userfaultfd and with the right tracking mode too.
1447                  */
1448                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1449                     (vma->vm_flags & vm_flags) == vm_flags)
1450                         goto skip;
1451
1452                 if (vma->vm_start > start)
1453                         start = vma->vm_start;
1454                 vma_end = min(end, vma->vm_end);
1455
1456                 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1457                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1458                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1459                                  vma_policy(vma),
1460                                  ((struct vm_userfaultfd_ctx){ ctx }));
1461                 if (prev) {
1462                         vma = prev;
1463                         goto next;
1464                 }
1465                 if (vma->vm_start < start) {
1466                         ret = split_vma(mm, vma, start, 1);
1467                         if (ret)
1468                                 break;
1469                 }
1470                 if (vma->vm_end > end) {
1471                         ret = split_vma(mm, vma, end, 0);
1472                         if (ret)
1473                                 break;
1474                 }
1475         next:
1476                 /*
1477                  * In the vma_merge() successful mprotect-like case 8:
1478                  * the next vma was merged into the current one and
1479                  * the current one has not been updated yet.
1480                  */
1481                 vma->vm_flags = new_flags;
1482                 vma->vm_userfaultfd_ctx.ctx = ctx;
1483
1484         skip:
1485                 prev = vma;
1486                 start = vma->vm_end;
1487                 vma = vma->vm_next;
1488         } while (vma && vma->vm_start < end);
1489 out_unlock:
1490         up_write(&mm->mmap_sem);
1491         mmput(mm);
1492         if (!ret) {
1493                 /*
1494                  * Now that we scanned all vmas we can already tell
1495                  * userland which ioctls methods are guaranteed to
1496                  * succeed on this range.
1497                  */
1498                 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1499                              UFFD_API_RANGE_IOCTLS,
1500                              &user_uffdio_register->ioctls))
1501                         ret = -EFAULT;
1502         }
1503 out:
1504         return ret;
1505 }
1506
1507 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1508                                   unsigned long arg)
1509 {
1510         struct mm_struct *mm = ctx->mm;
1511         struct vm_area_struct *vma, *prev, *cur;
1512         int ret;
1513         struct uffdio_range uffdio_unregister;
1514         unsigned long new_flags;
1515         bool found;
1516         unsigned long start, end, vma_end;
1517         const void __user *buf = (void __user *)arg;
1518
1519         ret = -EFAULT;
1520         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1521                 goto out;
1522
1523         ret = validate_range(mm, uffdio_unregister.start,
1524                              uffdio_unregister.len);
1525         if (ret)
1526                 goto out;
1527
1528         start = uffdio_unregister.start;
1529         end = start + uffdio_unregister.len;
1530
1531         ret = -ENOMEM;
1532         if (!mmget_not_zero(mm))
1533                 goto out;
1534
1535         down_write(&mm->mmap_sem);
1536         if (!mmget_still_valid(mm))
1537                 goto out_unlock;
1538         vma = find_vma_prev(mm, start, &prev);
1539         if (!vma)
1540                 goto out_unlock;
1541
1542         /* check that there's at least one vma in the range */
1543         ret = -EINVAL;
1544         if (vma->vm_start >= end)
1545                 goto out_unlock;
1546
1547         /*
1548          * If the first vma contains huge pages, make sure start address
1549          * is aligned to huge page size.
1550          */
1551         if (is_vm_hugetlb_page(vma)) {
1552                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1553
1554                 if (start & (vma_hpagesize - 1))
1555                         goto out_unlock;
1556         }
1557
1558         /*
1559          * Search for not compatible vmas.
1560          */
1561         found = false;
1562         ret = -EINVAL;
1563         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1564                 cond_resched();
1565
1566                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1567                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1568
1569                 /*
1570                  * Check not compatible vmas, not strictly required
1571                  * here as not compatible vmas cannot have an
1572                  * userfaultfd_ctx registered on them, but this
1573                  * provides for more strict behavior to notice
1574                  * unregistration errors.
1575                  */
1576                 if (!vma_can_userfault(cur))
1577                         goto out_unlock;
1578
1579                 found = true;
1580         }
1581         BUG_ON(!found);
1582
1583         if (vma->vm_start < start)
1584                 prev = vma;
1585
1586         ret = 0;
1587         do {
1588                 cond_resched();
1589
1590                 BUG_ON(!vma_can_userfault(vma));
1591
1592                 /*
1593                  * Nothing to do: this vma is already registered into this
1594                  * userfaultfd and with the right tracking mode too.
1595                  */
1596                 if (!vma->vm_userfaultfd_ctx.ctx)
1597                         goto skip;
1598
1599                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1600
1601                 if (vma->vm_start > start)
1602                         start = vma->vm_start;
1603                 vma_end = min(end, vma->vm_end);
1604
1605                 if (userfaultfd_missing(vma)) {
1606                         /*
1607                          * Wake any concurrent pending userfault while
1608                          * we unregister, so they will not hang
1609                          * permanently and it avoids userland to call
1610                          * UFFDIO_WAKE explicitly.
1611                          */
1612                         struct userfaultfd_wake_range range;
1613                         range.start = start;
1614                         range.len = vma_end - start;
1615                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1616                 }
1617
1618                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1619                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1620                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1621                                  vma_policy(vma),
1622                                  NULL_VM_UFFD_CTX);
1623                 if (prev) {
1624                         vma = prev;
1625                         goto next;
1626                 }
1627                 if (vma->vm_start < start) {
1628                         ret = split_vma(mm, vma, start, 1);
1629                         if (ret)
1630                                 break;
1631                 }
1632                 if (vma->vm_end > end) {
1633                         ret = split_vma(mm, vma, end, 0);
1634                         if (ret)
1635                                 break;
1636                 }
1637         next:
1638                 /*
1639                  * In the vma_merge() successful mprotect-like case 8:
1640                  * the next vma was merged into the current one and
1641                  * the current one has not been updated yet.
1642                  */
1643                 vma->vm_flags = new_flags;
1644                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1645
1646         skip:
1647                 prev = vma;
1648                 start = vma->vm_end;
1649                 vma = vma->vm_next;
1650         } while (vma && vma->vm_start < end);
1651 out_unlock:
1652         up_write(&mm->mmap_sem);
1653         mmput(mm);
1654 out:
1655         return ret;
1656 }
1657
1658 /*
1659  * userfaultfd_wake may be used in combination with the
1660  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1661  */
1662 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1663                             unsigned long arg)
1664 {
1665         int ret;
1666         struct uffdio_range uffdio_wake;
1667         struct userfaultfd_wake_range range;
1668         const void __user *buf = (void __user *)arg;
1669
1670         ret = -EFAULT;
1671         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1672                 goto out;
1673
1674         ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1675         if (ret)
1676                 goto out;
1677
1678         range.start = uffdio_wake.start;
1679         range.len = uffdio_wake.len;
1680
1681         /*
1682          * len == 0 means wake all and we don't want to wake all here,
1683          * so check it again to be sure.
1684          */
1685         VM_BUG_ON(!range.len);
1686
1687         wake_userfault(ctx, &range);
1688         ret = 0;
1689
1690 out:
1691         return ret;
1692 }
1693
1694 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1695                             unsigned long arg)
1696 {
1697         __s64 ret;
1698         struct uffdio_copy uffdio_copy;
1699         struct uffdio_copy __user *user_uffdio_copy;
1700         struct userfaultfd_wake_range range;
1701
1702         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1703
1704         ret = -EAGAIN;
1705         if (READ_ONCE(ctx->mmap_changing))
1706                 goto out;
1707
1708         ret = -EFAULT;
1709         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1710                            /* don't copy "copy" last field */
1711                            sizeof(uffdio_copy)-sizeof(__s64)))
1712                 goto out;
1713
1714         ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1715         if (ret)
1716                 goto out;
1717         /*
1718          * double check for wraparound just in case. copy_from_user()
1719          * will later check uffdio_copy.src + uffdio_copy.len to fit
1720          * in the userland range.
1721          */
1722         ret = -EINVAL;
1723         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1724                 goto out;
1725         if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1726                 goto out;
1727         if (mmget_not_zero(ctx->mm)) {
1728                 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1729                                    uffdio_copy.len, &ctx->mmap_changing);
1730                 mmput(ctx->mm);
1731         } else {
1732                 return -ESRCH;
1733         }
1734         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1735                 return -EFAULT;
1736         if (ret < 0)
1737                 goto out;
1738         BUG_ON(!ret);
1739         /* len == 0 would wake all */
1740         range.len = ret;
1741         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1742                 range.start = uffdio_copy.dst;
1743                 wake_userfault(ctx, &range);
1744         }
1745         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1746 out:
1747         return ret;
1748 }
1749
1750 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1751                                 unsigned long arg)
1752 {
1753         __s64 ret;
1754         struct uffdio_zeropage uffdio_zeropage;
1755         struct uffdio_zeropage __user *user_uffdio_zeropage;
1756         struct userfaultfd_wake_range range;
1757
1758         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1759
1760         ret = -EAGAIN;
1761         if (READ_ONCE(ctx->mmap_changing))
1762                 goto out;
1763
1764         ret = -EFAULT;
1765         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1766                            /* don't copy "zeropage" last field */
1767                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1768                 goto out;
1769
1770         ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1771                              uffdio_zeropage.range.len);
1772         if (ret)
1773                 goto out;
1774         ret = -EINVAL;
1775         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1776                 goto out;
1777
1778         if (mmget_not_zero(ctx->mm)) {
1779                 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1780                                      uffdio_zeropage.range.len,
1781                                      &ctx->mmap_changing);
1782                 mmput(ctx->mm);
1783         } else {
1784                 return -ESRCH;
1785         }
1786         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1787                 return -EFAULT;
1788         if (ret < 0)
1789                 goto out;
1790         /* len == 0 would wake all */
1791         BUG_ON(!ret);
1792         range.len = ret;
1793         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1794                 range.start = uffdio_zeropage.range.start;
1795                 wake_userfault(ctx, &range);
1796         }
1797         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1798 out:
1799         return ret;
1800 }
1801
1802 static inline unsigned int uffd_ctx_features(__u64 user_features)
1803 {
1804         /*
1805          * For the current set of features the bits just coincide. Set
1806          * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1807          */
1808         return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1809 }
1810
1811 /*
1812  * userland asks for a certain API version and we return which bits
1813  * and ioctl commands are implemented in this kernel for such API
1814  * version or -EINVAL if unknown.
1815  */
1816 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1817                            unsigned long arg)
1818 {
1819         struct uffdio_api uffdio_api;
1820         void __user *buf = (void __user *)arg;
1821         unsigned int ctx_features;
1822         int ret;
1823         __u64 features;
1824
1825         ret = -EFAULT;
1826         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1827                 goto out;
1828         features = uffdio_api.features;
1829         ret = -EINVAL;
1830         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1831                 goto err_out;
1832         ret = -EPERM;
1833         if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1834                 goto err_out;
1835         /* report all available features and ioctls to userland */
1836         uffdio_api.features = UFFD_API_FEATURES;
1837         uffdio_api.ioctls = UFFD_API_IOCTLS;
1838         ret = -EFAULT;
1839         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1840                 goto out;
1841
1842         /* only enable the requested features for this uffd context */
1843         ctx_features = uffd_ctx_features(features);
1844         ret = -EINVAL;
1845         if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1846                 goto err_out;
1847
1848         ret = 0;
1849 out:
1850         return ret;
1851 err_out:
1852         memset(&uffdio_api, 0, sizeof(uffdio_api));
1853         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1854                 ret = -EFAULT;
1855         goto out;
1856 }
1857
1858 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1859                               unsigned long arg)
1860 {
1861         int ret = -EINVAL;
1862         struct userfaultfd_ctx *ctx = file->private_data;
1863
1864         if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1865                 return -EINVAL;
1866
1867         switch(cmd) {
1868         case UFFDIO_API:
1869                 ret = userfaultfd_api(ctx, arg);
1870                 break;
1871         case UFFDIO_REGISTER:
1872                 ret = userfaultfd_register(ctx, arg);
1873                 break;
1874         case UFFDIO_UNREGISTER:
1875                 ret = userfaultfd_unregister(ctx, arg);
1876                 break;
1877         case UFFDIO_WAKE:
1878                 ret = userfaultfd_wake(ctx, arg);
1879                 break;
1880         case UFFDIO_COPY:
1881                 ret = userfaultfd_copy(ctx, arg);
1882                 break;
1883         case UFFDIO_ZEROPAGE:
1884                 ret = userfaultfd_zeropage(ctx, arg);
1885                 break;
1886         }
1887         return ret;
1888 }
1889
1890 #ifdef CONFIG_PROC_FS
1891 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1892 {
1893         struct userfaultfd_ctx *ctx = f->private_data;
1894         wait_queue_entry_t *wq;
1895         unsigned long pending = 0, total = 0;
1896
1897         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1898         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1899                 pending++;
1900                 total++;
1901         }
1902         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1903                 total++;
1904         }
1905         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1906
1907         /*
1908          * If more protocols will be added, there will be all shown
1909          * separated by a space. Like this:
1910          *      protocols: aa:... bb:...
1911          */
1912         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1913                    pending, total, UFFD_API, ctx->features,
1914                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1915 }
1916 #endif
1917
1918 static const struct file_operations userfaultfd_fops = {
1919 #ifdef CONFIG_PROC_FS
1920         .show_fdinfo    = userfaultfd_show_fdinfo,
1921 #endif
1922         .release        = userfaultfd_release,
1923         .poll           = userfaultfd_poll,
1924         .read           = userfaultfd_read,
1925         .unlocked_ioctl = userfaultfd_ioctl,
1926         .compat_ioctl   = userfaultfd_ioctl,
1927         .llseek         = noop_llseek,
1928 };
1929
1930 static void init_once_userfaultfd_ctx(void *mem)
1931 {
1932         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1933
1934         init_waitqueue_head(&ctx->fault_pending_wqh);
1935         init_waitqueue_head(&ctx->fault_wqh);
1936         init_waitqueue_head(&ctx->event_wqh);
1937         init_waitqueue_head(&ctx->fd_wqh);
1938         seqcount_init(&ctx->refile_seq);
1939 }
1940
1941 SYSCALL_DEFINE1(userfaultfd, int, flags)
1942 {
1943         struct userfaultfd_ctx *ctx;
1944         int fd;
1945
1946         if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1947                 return -EPERM;
1948
1949         BUG_ON(!current->mm);
1950
1951         /* Check the UFFD_* constants for consistency.  */
1952         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1953         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1954
1955         if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1956                 return -EINVAL;
1957
1958         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1959         if (!ctx)
1960                 return -ENOMEM;
1961
1962         refcount_set(&ctx->refcount, 1);
1963         ctx->flags = flags;
1964         ctx->features = 0;
1965         ctx->released = false;
1966         ctx->mmap_changing = false;
1967         ctx->mm = current->mm;
1968         /* prevent the mm struct to be freed */
1969         mmgrab(ctx->mm);
1970
1971         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1972                               O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS));
1973         if (fd < 0) {
1974                 mmdrop(ctx->mm);
1975                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1976         }
1977         return fd;
1978 }
1979
1980 static int __init userfaultfd_init(void)
1981 {
1982         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1983                                                 sizeof(struct userfaultfd_ctx),
1984                                                 0,
1985                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1986                                                 init_once_userfaultfd_ctx);
1987         return 0;
1988 }
1989 __initcall(userfaultfd_init);