GNU Linux-libre 4.19.268-gnu1
[releases.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 #include <linux/iversion.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
67
68 enum {
69         VDS_POS_PRIMARY_VOL_DESC,
70         VDS_POS_UNALLOC_SPACE_DESC,
71         VDS_POS_LOGICAL_VOL_DESC,
72         VDS_POS_IMP_USE_VOL_DESC,
73         VDS_POS_LENGTH
74 };
75
76 #define VSD_FIRST_SECTOR_OFFSET         32768
77 #define VSD_MAX_SECTOR_OFFSET           0x800000
78
79 /*
80  * Maximum number of Terminating Descriptor / Logical Volume Integrity
81  * Descriptor redirections. The chosen numbers are arbitrary - just that we
82  * hopefully don't limit any real use of rewritten inode on write-once media
83  * but avoid looping for too long on corrupted media.
84  */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87
88 enum { UDF_MAX_LINKS = 0xffff };
89
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
97                             struct kernel_lb_addr *);
98 static void udf_load_fileset(struct super_block *, struct buffer_head *,
99                              struct kernel_lb_addr *);
100 static void udf_open_lvid(struct super_block *);
101 static void udf_close_lvid(struct super_block *);
102 static unsigned int udf_count_free(struct super_block *);
103 static int udf_statfs(struct dentry *, struct kstatfs *);
104 static int udf_show_options(struct seq_file *, struct dentry *);
105
106 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
107 {
108         struct logicalVolIntegrityDesc *lvid;
109         unsigned int partnum;
110         unsigned int offset;
111
112         if (!UDF_SB(sb)->s_lvid_bh)
113                 return NULL;
114         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
115         partnum = le32_to_cpu(lvid->numOfPartitions);
116         /* The offset is to skip freeSpaceTable and sizeTable arrays */
117         offset = partnum * 2 * sizeof(uint32_t);
118         return (struct logicalVolIntegrityDescImpUse *)
119                                         (((uint8_t *)(lvid + 1)) + offset);
120 }
121
122 /* UDF filesystem type */
123 static struct dentry *udf_mount(struct file_system_type *fs_type,
124                       int flags, const char *dev_name, void *data)
125 {
126         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
127 }
128
129 static struct file_system_type udf_fstype = {
130         .owner          = THIS_MODULE,
131         .name           = "udf",
132         .mount          = udf_mount,
133         .kill_sb        = kill_block_super,
134         .fs_flags       = FS_REQUIRES_DEV,
135 };
136 MODULE_ALIAS_FS("udf");
137
138 static struct kmem_cache *udf_inode_cachep;
139
140 static struct inode *udf_alloc_inode(struct super_block *sb)
141 {
142         struct udf_inode_info *ei;
143         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
144         if (!ei)
145                 return NULL;
146
147         ei->i_unique = 0;
148         ei->i_lenExtents = 0;
149         ei->i_next_alloc_block = 0;
150         ei->i_next_alloc_goal = 0;
151         ei->i_strat4096 = 0;
152         init_rwsem(&ei->i_data_sem);
153         ei->cached_extent.lstart = -1;
154         spin_lock_init(&ei->i_extent_cache_lock);
155         inode_set_iversion(&ei->vfs_inode, 1);
156
157         return &ei->vfs_inode;
158 }
159
160 static void udf_i_callback(struct rcu_head *head)
161 {
162         struct inode *inode = container_of(head, struct inode, i_rcu);
163         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
164 }
165
166 static void udf_destroy_inode(struct inode *inode)
167 {
168         call_rcu(&inode->i_rcu, udf_i_callback);
169 }
170
171 static void init_once(void *foo)
172 {
173         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
174
175         ei->i_ext.i_data = NULL;
176         inode_init_once(&ei->vfs_inode);
177 }
178
179 static int __init init_inodecache(void)
180 {
181         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
182                                              sizeof(struct udf_inode_info),
183                                              0, (SLAB_RECLAIM_ACCOUNT |
184                                                  SLAB_MEM_SPREAD |
185                                                  SLAB_ACCOUNT),
186                                              init_once);
187         if (!udf_inode_cachep)
188                 return -ENOMEM;
189         return 0;
190 }
191
192 static void destroy_inodecache(void)
193 {
194         /*
195          * Make sure all delayed rcu free inodes are flushed before we
196          * destroy cache.
197          */
198         rcu_barrier();
199         kmem_cache_destroy(udf_inode_cachep);
200 }
201
202 /* Superblock operations */
203 static const struct super_operations udf_sb_ops = {
204         .alloc_inode    = udf_alloc_inode,
205         .destroy_inode  = udf_destroy_inode,
206         .write_inode    = udf_write_inode,
207         .evict_inode    = udf_evict_inode,
208         .put_super      = udf_put_super,
209         .sync_fs        = udf_sync_fs,
210         .statfs         = udf_statfs,
211         .remount_fs     = udf_remount_fs,
212         .show_options   = udf_show_options,
213 };
214
215 struct udf_options {
216         unsigned char novrs;
217         unsigned int blocksize;
218         unsigned int session;
219         unsigned int lastblock;
220         unsigned int anchor;
221         unsigned int flags;
222         umode_t umask;
223         kgid_t gid;
224         kuid_t uid;
225         umode_t fmode;
226         umode_t dmode;
227         struct nls_table *nls_map;
228 };
229
230 static int __init init_udf_fs(void)
231 {
232         int err;
233
234         err = init_inodecache();
235         if (err)
236                 goto out1;
237         err = register_filesystem(&udf_fstype);
238         if (err)
239                 goto out;
240
241         return 0;
242
243 out:
244         destroy_inodecache();
245
246 out1:
247         return err;
248 }
249
250 static void __exit exit_udf_fs(void)
251 {
252         unregister_filesystem(&udf_fstype);
253         destroy_inodecache();
254 }
255
256 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
257 {
258         struct udf_sb_info *sbi = UDF_SB(sb);
259
260         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
261         if (!sbi->s_partmaps) {
262                 sbi->s_partitions = 0;
263                 return -ENOMEM;
264         }
265
266         sbi->s_partitions = count;
267         return 0;
268 }
269
270 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
271 {
272         int i;
273         int nr_groups = bitmap->s_nr_groups;
274
275         for (i = 0; i < nr_groups; i++)
276                 if (bitmap->s_block_bitmap[i])
277                         brelse(bitmap->s_block_bitmap[i]);
278
279         kvfree(bitmap);
280 }
281
282 static void udf_free_partition(struct udf_part_map *map)
283 {
284         int i;
285         struct udf_meta_data *mdata;
286
287         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
288                 iput(map->s_uspace.s_table);
289         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
290                 iput(map->s_fspace.s_table);
291         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
292                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
293         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
294                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
295         if (map->s_partition_type == UDF_SPARABLE_MAP15)
296                 for (i = 0; i < 4; i++)
297                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
298         else if (map->s_partition_type == UDF_METADATA_MAP25) {
299                 mdata = &map->s_type_specific.s_metadata;
300                 iput(mdata->s_metadata_fe);
301                 mdata->s_metadata_fe = NULL;
302
303                 iput(mdata->s_mirror_fe);
304                 mdata->s_mirror_fe = NULL;
305
306                 iput(mdata->s_bitmap_fe);
307                 mdata->s_bitmap_fe = NULL;
308         }
309 }
310
311 static void udf_sb_free_partitions(struct super_block *sb)
312 {
313         struct udf_sb_info *sbi = UDF_SB(sb);
314         int i;
315
316         if (!sbi->s_partmaps)
317                 return;
318         for (i = 0; i < sbi->s_partitions; i++)
319                 udf_free_partition(&sbi->s_partmaps[i]);
320         kfree(sbi->s_partmaps);
321         sbi->s_partmaps = NULL;
322 }
323
324 static int udf_show_options(struct seq_file *seq, struct dentry *root)
325 {
326         struct super_block *sb = root->d_sb;
327         struct udf_sb_info *sbi = UDF_SB(sb);
328
329         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
330                 seq_puts(seq, ",nostrict");
331         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
332                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
333         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
334                 seq_puts(seq, ",unhide");
335         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
336                 seq_puts(seq, ",undelete");
337         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
338                 seq_puts(seq, ",noadinicb");
339         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
340                 seq_puts(seq, ",shortad");
341         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
342                 seq_puts(seq, ",uid=forget");
343         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
344                 seq_puts(seq, ",gid=forget");
345         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
346                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
347         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
348                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
349         if (sbi->s_umask != 0)
350                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
351         if (sbi->s_fmode != UDF_INVALID_MODE)
352                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
353         if (sbi->s_dmode != UDF_INVALID_MODE)
354                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
355         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
356                 seq_printf(seq, ",session=%d", sbi->s_session);
357         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
358                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
359         if (sbi->s_anchor != 0)
360                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
362                 seq_puts(seq, ",utf8");
363         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
364                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
365
366         return 0;
367 }
368
369 /*
370  * udf_parse_options
371  *
372  * PURPOSE
373  *      Parse mount options.
374  *
375  * DESCRIPTION
376  *      The following mount options are supported:
377  *
378  *      gid=            Set the default group.
379  *      umask=          Set the default umask.
380  *      mode=           Set the default file permissions.
381  *      dmode=          Set the default directory permissions.
382  *      uid=            Set the default user.
383  *      bs=             Set the block size.
384  *      unhide          Show otherwise hidden files.
385  *      undelete        Show deleted files in lists.
386  *      adinicb         Embed data in the inode (default)
387  *      noadinicb       Don't embed data in the inode
388  *      shortad         Use short ad's
389  *      longad          Use long ad's (default)
390  *      nostrict        Unset strict conformance
391  *      iocharset=      Set the NLS character set
392  *
393  *      The remaining are for debugging and disaster recovery:
394  *
395  *      novrs           Skip volume sequence recognition
396  *
397  *      The following expect a offset from 0.
398  *
399  *      session=        Set the CDROM session (default= last session)
400  *      anchor=         Override standard anchor location. (default= 256)
401  *      volume=         Override the VolumeDesc location. (unused)
402  *      partition=      Override the PartitionDesc location. (unused)
403  *      lastblock=      Set the last block of the filesystem/
404  *
405  *      The following expect a offset from the partition root.
406  *
407  *      fileset=        Override the fileset block location. (unused)
408  *      rootdir=        Override the root directory location. (unused)
409  *              WARNING: overriding the rootdir to a non-directory may
410  *              yield highly unpredictable results.
411  *
412  * PRE-CONDITIONS
413  *      options         Pointer to mount options string.
414  *      uopts           Pointer to mount options variable.
415  *
416  * POST-CONDITIONS
417  *      <return>        1       Mount options parsed okay.
418  *      <return>        0       Error parsing mount options.
419  *
420  * HISTORY
421  *      July 1, 1997 - Andrew E. Mileski
422  *      Written, tested, and released.
423  */
424
425 enum {
426         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
427         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
428         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
429         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
430         Opt_rootdir, Opt_utf8, Opt_iocharset,
431         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
432         Opt_fmode, Opt_dmode
433 };
434
435 static const match_table_t tokens = {
436         {Opt_novrs,     "novrs"},
437         {Opt_nostrict,  "nostrict"},
438         {Opt_bs,        "bs=%u"},
439         {Opt_unhide,    "unhide"},
440         {Opt_undelete,  "undelete"},
441         {Opt_noadinicb, "noadinicb"},
442         {Opt_adinicb,   "adinicb"},
443         {Opt_shortad,   "shortad"},
444         {Opt_longad,    "longad"},
445         {Opt_uforget,   "uid=forget"},
446         {Opt_uignore,   "uid=ignore"},
447         {Opt_gforget,   "gid=forget"},
448         {Opt_gignore,   "gid=ignore"},
449         {Opt_gid,       "gid=%u"},
450         {Opt_uid,       "uid=%u"},
451         {Opt_umask,     "umask=%o"},
452         {Opt_session,   "session=%u"},
453         {Opt_lastblock, "lastblock=%u"},
454         {Opt_anchor,    "anchor=%u"},
455         {Opt_volume,    "volume=%u"},
456         {Opt_partition, "partition=%u"},
457         {Opt_fileset,   "fileset=%u"},
458         {Opt_rootdir,   "rootdir=%u"},
459         {Opt_utf8,      "utf8"},
460         {Opt_iocharset, "iocharset=%s"},
461         {Opt_fmode,     "mode=%o"},
462         {Opt_dmode,     "dmode=%o"},
463         {Opt_err,       NULL}
464 };
465
466 static int udf_parse_options(char *options, struct udf_options *uopt,
467                              bool remount)
468 {
469         char *p;
470         int option;
471
472         uopt->novrs = 0;
473         uopt->session = 0xFFFFFFFF;
474         uopt->lastblock = 0;
475         uopt->anchor = 0;
476
477         if (!options)
478                 return 1;
479
480         while ((p = strsep(&options, ",")) != NULL) {
481                 substring_t args[MAX_OPT_ARGS];
482                 int token;
483                 unsigned n;
484                 if (!*p)
485                         continue;
486
487                 token = match_token(p, tokens, args);
488                 switch (token) {
489                 case Opt_novrs:
490                         uopt->novrs = 1;
491                         break;
492                 case Opt_bs:
493                         if (match_int(&args[0], &option))
494                                 return 0;
495                         n = option;
496                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
497                                 return 0;
498                         uopt->blocksize = n;
499                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
500                         break;
501                 case Opt_unhide:
502                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
503                         break;
504                 case Opt_undelete:
505                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
506                         break;
507                 case Opt_noadinicb:
508                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
509                         break;
510                 case Opt_adinicb:
511                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
512                         break;
513                 case Opt_shortad:
514                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
515                         break;
516                 case Opt_longad:
517                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
518                         break;
519                 case Opt_gid:
520                         if (match_int(args, &option))
521                                 return 0;
522                         uopt->gid = make_kgid(current_user_ns(), option);
523                         if (!gid_valid(uopt->gid))
524                                 return 0;
525                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
526                         break;
527                 case Opt_uid:
528                         if (match_int(args, &option))
529                                 return 0;
530                         uopt->uid = make_kuid(current_user_ns(), option);
531                         if (!uid_valid(uopt->uid))
532                                 return 0;
533                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
534                         break;
535                 case Opt_umask:
536                         if (match_octal(args, &option))
537                                 return 0;
538                         uopt->umask = option;
539                         break;
540                 case Opt_nostrict:
541                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
542                         break;
543                 case Opt_session:
544                         if (match_int(args, &option))
545                                 return 0;
546                         uopt->session = option;
547                         if (!remount)
548                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
549                         break;
550                 case Opt_lastblock:
551                         if (match_int(args, &option))
552                                 return 0;
553                         uopt->lastblock = option;
554                         if (!remount)
555                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
556                         break;
557                 case Opt_anchor:
558                         if (match_int(args, &option))
559                                 return 0;
560                         uopt->anchor = option;
561                         break;
562                 case Opt_volume:
563                 case Opt_partition:
564                 case Opt_fileset:
565                 case Opt_rootdir:
566                         /* Ignored (never implemented properly) */
567                         break;
568                 case Opt_utf8:
569                         uopt->flags |= (1 << UDF_FLAG_UTF8);
570                         break;
571                 case Opt_iocharset:
572                         if (!remount) {
573                                 if (uopt->nls_map)
574                                         unload_nls(uopt->nls_map);
575                                 uopt->nls_map = load_nls(args[0].from);
576                                 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
577                         }
578                         break;
579                 case Opt_uforget:
580                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
581                         break;
582                 case Opt_uignore:
583                 case Opt_gignore:
584                         /* These options are superseeded by uid=<number> */
585                         break;
586                 case Opt_gforget:
587                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
588                         break;
589                 case Opt_fmode:
590                         if (match_octal(args, &option))
591                                 return 0;
592                         uopt->fmode = option & 0777;
593                         break;
594                 case Opt_dmode:
595                         if (match_octal(args, &option))
596                                 return 0;
597                         uopt->dmode = option & 0777;
598                         break;
599                 default:
600                         pr_err("bad mount option \"%s\" or missing value\n", p);
601                         return 0;
602                 }
603         }
604         return 1;
605 }
606
607 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
608 {
609         struct udf_options uopt;
610         struct udf_sb_info *sbi = UDF_SB(sb);
611         int error = 0;
612
613         if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
614                 return -EACCES;
615
616         sync_filesystem(sb);
617
618         uopt.flags = sbi->s_flags;
619         uopt.uid   = sbi->s_uid;
620         uopt.gid   = sbi->s_gid;
621         uopt.umask = sbi->s_umask;
622         uopt.fmode = sbi->s_fmode;
623         uopt.dmode = sbi->s_dmode;
624         uopt.nls_map = NULL;
625
626         if (!udf_parse_options(options, &uopt, true))
627                 return -EINVAL;
628
629         write_lock(&sbi->s_cred_lock);
630         sbi->s_flags = uopt.flags;
631         sbi->s_uid   = uopt.uid;
632         sbi->s_gid   = uopt.gid;
633         sbi->s_umask = uopt.umask;
634         sbi->s_fmode = uopt.fmode;
635         sbi->s_dmode = uopt.dmode;
636         write_unlock(&sbi->s_cred_lock);
637
638         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
639                 goto out_unlock;
640
641         if (*flags & SB_RDONLY)
642                 udf_close_lvid(sb);
643         else
644                 udf_open_lvid(sb);
645
646 out_unlock:
647         return error;
648 }
649
650 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
651 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
652 static loff_t udf_check_vsd(struct super_block *sb)
653 {
654         struct volStructDesc *vsd = NULL;
655         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
656         int sectorsize;
657         struct buffer_head *bh = NULL;
658         int nsr02 = 0;
659         int nsr03 = 0;
660         struct udf_sb_info *sbi;
661
662         sbi = UDF_SB(sb);
663         if (sb->s_blocksize < sizeof(struct volStructDesc))
664                 sectorsize = sizeof(struct volStructDesc);
665         else
666                 sectorsize = sb->s_blocksize;
667
668         sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
669
670         udf_debug("Starting at sector %u (%lu byte sectors)\n",
671                   (unsigned int)(sector >> sb->s_blocksize_bits),
672                   sb->s_blocksize);
673         /* Process the sequence (if applicable). The hard limit on the sector
674          * offset is arbitrary, hopefully large enough so that all valid UDF
675          * filesystems will be recognised. There is no mention of an upper
676          * bound to the size of the volume recognition area in the standard.
677          *  The limit will prevent the code to read all the sectors of a
678          * specially crafted image (like a bluray disc full of CD001 sectors),
679          * potentially causing minutes or even hours of uninterruptible I/O
680          * activity. This actually happened with uninitialised SSD partitions
681          * (all 0xFF) before the check for the limit and all valid IDs were
682          * added */
683         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
684              sector += sectorsize) {
685                 /* Read a block */
686                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
687                 if (!bh)
688                         break;
689
690                 /* Look for ISO  descriptors */
691                 vsd = (struct volStructDesc *)(bh->b_data +
692                                               (sector & (sb->s_blocksize - 1)));
693
694                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
695                                     VSD_STD_ID_LEN)) {
696                         switch (vsd->structType) {
697                         case 0:
698                                 udf_debug("ISO9660 Boot Record found\n");
699                                 break;
700                         case 1:
701                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
702                                 break;
703                         case 2:
704                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
705                                 break;
706                         case 3:
707                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
708                                 break;
709                         case 255:
710                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
711                                 break;
712                         default:
713                                 udf_debug("ISO9660 VRS (%u) found\n",
714                                           vsd->structType);
715                                 break;
716                         }
717                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
718                                     VSD_STD_ID_LEN))
719                         ; /* nothing */
720                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
721                                     VSD_STD_ID_LEN)) {
722                         brelse(bh);
723                         break;
724                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
725                                     VSD_STD_ID_LEN))
726                         nsr02 = sector;
727                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
728                                     VSD_STD_ID_LEN))
729                         nsr03 = sector;
730                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
731                                     VSD_STD_ID_LEN))
732                         ; /* nothing */
733                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
734                                     VSD_STD_ID_LEN))
735                         ; /* nothing */
736                 else {
737                         /* invalid id : end of volume recognition area */
738                         brelse(bh);
739                         break;
740                 }
741                 brelse(bh);
742         }
743
744         if (nsr03)
745                 return nsr03;
746         else if (nsr02)
747                 return nsr02;
748         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
749                         VSD_FIRST_SECTOR_OFFSET)
750                 return -1;
751         else
752                 return 0;
753 }
754
755 static int udf_find_fileset(struct super_block *sb,
756                             struct kernel_lb_addr *fileset,
757                             struct kernel_lb_addr *root)
758 {
759         struct buffer_head *bh = NULL;
760         uint16_t ident;
761
762         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
763             fileset->partitionReferenceNum != 0xFFFF) {
764                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
765
766                 if (!bh) {
767                         return 1;
768                 } else if (ident != TAG_IDENT_FSD) {
769                         brelse(bh);
770                         return 1;
771                 }
772
773                 udf_debug("Fileset at block=%u, partition=%u\n",
774                           fileset->logicalBlockNum,
775                           fileset->partitionReferenceNum);
776
777                 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
778                 udf_load_fileset(sb, bh, root);
779                 brelse(bh);
780                 return 0;
781         }
782         return 1;
783 }
784
785 /*
786  * Load primary Volume Descriptor Sequence
787  *
788  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
789  * should be tried.
790  */
791 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
792 {
793         struct primaryVolDesc *pvoldesc;
794         uint8_t *outstr;
795         struct buffer_head *bh;
796         uint16_t ident;
797         int ret = -ENOMEM;
798 #ifdef UDFFS_DEBUG
799         struct timestamp *ts;
800 #endif
801
802         outstr = kmalloc(128, GFP_NOFS);
803         if (!outstr)
804                 return -ENOMEM;
805
806         bh = udf_read_tagged(sb, block, block, &ident);
807         if (!bh) {
808                 ret = -EAGAIN;
809                 goto out2;
810         }
811
812         if (ident != TAG_IDENT_PVD) {
813                 ret = -EIO;
814                 goto out_bh;
815         }
816
817         pvoldesc = (struct primaryVolDesc *)bh->b_data;
818
819         udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
820                               pvoldesc->recordingDateAndTime);
821 #ifdef UDFFS_DEBUG
822         ts = &pvoldesc->recordingDateAndTime;
823         udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
824                   le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
825                   ts->minute, le16_to_cpu(ts->typeAndTimezone));
826 #endif
827
828
829         ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
830         if (ret < 0) {
831                 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
832                 pr_warn("incorrect volume identification, setting to "
833                         "'InvalidName'\n");
834         } else {
835                 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
836         }
837         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
838
839         ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
840         if (ret < 0) {
841                 ret = 0;
842                 goto out_bh;
843         }
844         outstr[ret] = 0;
845         udf_debug("volSetIdent[] = '%s'\n", outstr);
846
847         ret = 0;
848 out_bh:
849         brelse(bh);
850 out2:
851         kfree(outstr);
852         return ret;
853 }
854
855 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
856                                         u32 meta_file_loc, u32 partition_ref)
857 {
858         struct kernel_lb_addr addr;
859         struct inode *metadata_fe;
860
861         addr.logicalBlockNum = meta_file_loc;
862         addr.partitionReferenceNum = partition_ref;
863
864         metadata_fe = udf_iget_special(sb, &addr);
865
866         if (IS_ERR(metadata_fe)) {
867                 udf_warn(sb, "metadata inode efe not found\n");
868                 return metadata_fe;
869         }
870         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
871                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
872                 iput(metadata_fe);
873                 return ERR_PTR(-EIO);
874         }
875
876         return metadata_fe;
877 }
878
879 static int udf_load_metadata_files(struct super_block *sb, int partition,
880                                    int type1_index)
881 {
882         struct udf_sb_info *sbi = UDF_SB(sb);
883         struct udf_part_map *map;
884         struct udf_meta_data *mdata;
885         struct kernel_lb_addr addr;
886         struct inode *fe;
887
888         map = &sbi->s_partmaps[partition];
889         mdata = &map->s_type_specific.s_metadata;
890         mdata->s_phys_partition_ref = type1_index;
891
892         /* metadata address */
893         udf_debug("Metadata file location: block = %u part = %u\n",
894                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
895
896         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
897                                          mdata->s_phys_partition_ref);
898         if (IS_ERR(fe)) {
899                 /* mirror file entry */
900                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
901                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
902
903                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
904                                                  mdata->s_phys_partition_ref);
905
906                 if (IS_ERR(fe)) {
907                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
908                         return PTR_ERR(fe);
909                 }
910                 mdata->s_mirror_fe = fe;
911         } else
912                 mdata->s_metadata_fe = fe;
913
914
915         /*
916          * bitmap file entry
917          * Note:
918          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
919         */
920         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
921                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
922                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
923
924                 udf_debug("Bitmap file location: block = %u part = %u\n",
925                           addr.logicalBlockNum, addr.partitionReferenceNum);
926
927                 fe = udf_iget_special(sb, &addr);
928                 if (IS_ERR(fe)) {
929                         if (sb_rdonly(sb))
930                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
931                         else {
932                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
933                                 return PTR_ERR(fe);
934                         }
935                 } else
936                         mdata->s_bitmap_fe = fe;
937         }
938
939         udf_debug("udf_load_metadata_files Ok\n");
940         return 0;
941 }
942
943 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
944                              struct kernel_lb_addr *root)
945 {
946         struct fileSetDesc *fset;
947
948         fset = (struct fileSetDesc *)bh->b_data;
949
950         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
951
952         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
953
954         udf_debug("Rootdir at block=%u, partition=%u\n",
955                   root->logicalBlockNum, root->partitionReferenceNum);
956 }
957
958 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
959 {
960         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
961         return DIV_ROUND_UP(map->s_partition_len +
962                             (sizeof(struct spaceBitmapDesc) << 3),
963                             sb->s_blocksize * 8);
964 }
965
966 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
967 {
968         struct udf_bitmap *bitmap;
969         int nr_groups;
970         int size;
971
972         nr_groups = udf_compute_nr_groups(sb, index);
973         size = sizeof(struct udf_bitmap) +
974                 (sizeof(struct buffer_head *) * nr_groups);
975
976         if (size <= PAGE_SIZE)
977                 bitmap = kzalloc(size, GFP_KERNEL);
978         else
979                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
980
981         if (!bitmap)
982                 return NULL;
983
984         bitmap->s_nr_groups = nr_groups;
985         return bitmap;
986 }
987
988 static int check_partition_desc(struct super_block *sb,
989                                 struct partitionDesc *p,
990                                 struct udf_part_map *map)
991 {
992         bool umap, utable, fmap, ftable;
993         struct partitionHeaderDesc *phd;
994
995         switch (le32_to_cpu(p->accessType)) {
996         case PD_ACCESS_TYPE_READ_ONLY:
997         case PD_ACCESS_TYPE_WRITE_ONCE:
998         case PD_ACCESS_TYPE_NONE:
999                 goto force_ro;
1000         }
1001
1002         /* No Partition Header Descriptor? */
1003         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1004             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1005                 goto force_ro;
1006
1007         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1008         utable = phd->unallocSpaceTable.extLength;
1009         umap = phd->unallocSpaceBitmap.extLength;
1010         ftable = phd->freedSpaceTable.extLength;
1011         fmap = phd->freedSpaceBitmap.extLength;
1012
1013         /* No allocation info? */
1014         if (!utable && !umap && !ftable && !fmap)
1015                 goto force_ro;
1016
1017         /* We don't support blocks that require erasing before overwrite */
1018         if (ftable || fmap)
1019                 goto force_ro;
1020         /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1021         if (utable && umap)
1022                 goto force_ro;
1023
1024         if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1025             map->s_partition_type == UDF_VIRTUAL_MAP20)
1026                 goto force_ro;
1027
1028         return 0;
1029 force_ro:
1030         if (!sb_rdonly(sb))
1031                 return -EACCES;
1032         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1033         return 0;
1034 }
1035
1036 static int udf_fill_partdesc_info(struct super_block *sb,
1037                 struct partitionDesc *p, int p_index)
1038 {
1039         struct udf_part_map *map;
1040         struct udf_sb_info *sbi = UDF_SB(sb);
1041         struct partitionHeaderDesc *phd;
1042         int err;
1043
1044         map = &sbi->s_partmaps[p_index];
1045
1046         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1047         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1048
1049         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1050                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1051         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1052                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1053         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1054                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1055         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1056                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1057
1058         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1059                   p_index, map->s_partition_type,
1060                   map->s_partition_root, map->s_partition_len);
1061
1062         err = check_partition_desc(sb, p, map);
1063         if (err)
1064                 return err;
1065
1066         /*
1067          * Skip loading allocation info it we cannot ever write to the fs.
1068          * This is a correctness thing as we may have decided to force ro mount
1069          * to avoid allocation info we don't support.
1070          */
1071         if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1072                 return 0;
1073
1074         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1075         if (phd->unallocSpaceTable.extLength) {
1076                 struct kernel_lb_addr loc = {
1077                         .logicalBlockNum = le32_to_cpu(
1078                                 phd->unallocSpaceTable.extPosition),
1079                         .partitionReferenceNum = p_index,
1080                 };
1081                 struct inode *inode;
1082
1083                 inode = udf_iget_special(sb, &loc);
1084                 if (IS_ERR(inode)) {
1085                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1086                                   p_index);
1087                         return PTR_ERR(inode);
1088                 }
1089                 map->s_uspace.s_table = inode;
1090                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1091                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1092                           p_index, map->s_uspace.s_table->i_ino);
1093         }
1094
1095         if (phd->unallocSpaceBitmap.extLength) {
1096                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1097                 if (!bitmap)
1098                         return -ENOMEM;
1099                 map->s_uspace.s_bitmap = bitmap;
1100                 bitmap->s_extPosition = le32_to_cpu(
1101                                 phd->unallocSpaceBitmap.extPosition);
1102                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1103                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1104                           p_index, bitmap->s_extPosition);
1105         }
1106
1107         if (phd->freedSpaceTable.extLength) {
1108                 struct kernel_lb_addr loc = {
1109                         .logicalBlockNum = le32_to_cpu(
1110                                 phd->freedSpaceTable.extPosition),
1111                         .partitionReferenceNum = p_index,
1112                 };
1113                 struct inode *inode;
1114
1115                 inode = udf_iget_special(sb, &loc);
1116                 if (IS_ERR(inode)) {
1117                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1118                                   p_index);
1119                         return PTR_ERR(inode);
1120                 }
1121                 map->s_fspace.s_table = inode;
1122                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1123                 udf_debug("freedSpaceTable (part %d) @ %lu\n",
1124                           p_index, map->s_fspace.s_table->i_ino);
1125         }
1126
1127         if (phd->freedSpaceBitmap.extLength) {
1128                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1129                 if (!bitmap)
1130                         return -ENOMEM;
1131                 map->s_fspace.s_bitmap = bitmap;
1132                 bitmap->s_extPosition = le32_to_cpu(
1133                                 phd->freedSpaceBitmap.extPosition);
1134                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1135                 udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1136                           p_index, bitmap->s_extPosition);
1137         }
1138         return 0;
1139 }
1140
1141 static void udf_find_vat_block(struct super_block *sb, int p_index,
1142                                int type1_index, sector_t start_block)
1143 {
1144         struct udf_sb_info *sbi = UDF_SB(sb);
1145         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1146         sector_t vat_block;
1147         struct kernel_lb_addr ino;
1148         struct inode *inode;
1149
1150         /*
1151          * VAT file entry is in the last recorded block. Some broken disks have
1152          * it a few blocks before so try a bit harder...
1153          */
1154         ino.partitionReferenceNum = type1_index;
1155         for (vat_block = start_block;
1156              vat_block >= map->s_partition_root &&
1157              vat_block >= start_block - 3; vat_block--) {
1158                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1159                 inode = udf_iget_special(sb, &ino);
1160                 if (!IS_ERR(inode)) {
1161                         sbi->s_vat_inode = inode;
1162                         break;
1163                 }
1164         }
1165 }
1166
1167 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1168 {
1169         struct udf_sb_info *sbi = UDF_SB(sb);
1170         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1171         struct buffer_head *bh = NULL;
1172         struct udf_inode_info *vati;
1173         uint32_t pos;
1174         struct virtualAllocationTable20 *vat20;
1175         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1176                           sb->s_blocksize_bits;
1177
1178         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1179         if (!sbi->s_vat_inode &&
1180             sbi->s_last_block != blocks - 1) {
1181                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1182                           (unsigned long)sbi->s_last_block,
1183                           (unsigned long)blocks - 1);
1184                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1185         }
1186         if (!sbi->s_vat_inode)
1187                 return -EIO;
1188
1189         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1190                 map->s_type_specific.s_virtual.s_start_offset = 0;
1191                 map->s_type_specific.s_virtual.s_num_entries =
1192                         (sbi->s_vat_inode->i_size - 36) >> 2;
1193         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1194                 vati = UDF_I(sbi->s_vat_inode);
1195                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1196                         pos = udf_block_map(sbi->s_vat_inode, 0);
1197                         bh = sb_bread(sb, pos);
1198                         if (!bh)
1199                                 return -EIO;
1200                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1201                 } else {
1202                         vat20 = (struct virtualAllocationTable20 *)
1203                                                         vati->i_ext.i_data;
1204                 }
1205
1206                 map->s_type_specific.s_virtual.s_start_offset =
1207                         le16_to_cpu(vat20->lengthHeader);
1208                 map->s_type_specific.s_virtual.s_num_entries =
1209                         (sbi->s_vat_inode->i_size -
1210                                 map->s_type_specific.s_virtual.
1211                                         s_start_offset) >> 2;
1212                 brelse(bh);
1213         }
1214         return 0;
1215 }
1216
1217 /*
1218  * Load partition descriptor block
1219  *
1220  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1221  * sequence.
1222  */
1223 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1224 {
1225         struct buffer_head *bh;
1226         struct partitionDesc *p;
1227         struct udf_part_map *map;
1228         struct udf_sb_info *sbi = UDF_SB(sb);
1229         int i, type1_idx;
1230         uint16_t partitionNumber;
1231         uint16_t ident;
1232         int ret;
1233
1234         bh = udf_read_tagged(sb, block, block, &ident);
1235         if (!bh)
1236                 return -EAGAIN;
1237         if (ident != TAG_IDENT_PD) {
1238                 ret = 0;
1239                 goto out_bh;
1240         }
1241
1242         p = (struct partitionDesc *)bh->b_data;
1243         partitionNumber = le16_to_cpu(p->partitionNumber);
1244
1245         /* First scan for TYPE1 and SPARABLE partitions */
1246         for (i = 0; i < sbi->s_partitions; i++) {
1247                 map = &sbi->s_partmaps[i];
1248                 udf_debug("Searching map: (%u == %u)\n",
1249                           map->s_partition_num, partitionNumber);
1250                 if (map->s_partition_num == partitionNumber &&
1251                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1252                      map->s_partition_type == UDF_SPARABLE_MAP15))
1253                         break;
1254         }
1255
1256         if (i >= sbi->s_partitions) {
1257                 udf_debug("Partition (%u) not found in partition map\n",
1258                           partitionNumber);
1259                 ret = 0;
1260                 goto out_bh;
1261         }
1262
1263         ret = udf_fill_partdesc_info(sb, p, i);
1264         if (ret < 0)
1265                 goto out_bh;
1266
1267         /*
1268          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1269          * PHYSICAL partitions are already set up
1270          */
1271         type1_idx = i;
1272 #ifdef UDFFS_DEBUG
1273         map = NULL; /* supress 'maybe used uninitialized' warning */
1274 #endif
1275         for (i = 0; i < sbi->s_partitions; i++) {
1276                 map = &sbi->s_partmaps[i];
1277
1278                 if (map->s_partition_num == partitionNumber &&
1279                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1280                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1281                      map->s_partition_type == UDF_METADATA_MAP25))
1282                         break;
1283         }
1284
1285         if (i >= sbi->s_partitions) {
1286                 ret = 0;
1287                 goto out_bh;
1288         }
1289
1290         ret = udf_fill_partdesc_info(sb, p, i);
1291         if (ret < 0)
1292                 goto out_bh;
1293
1294         if (map->s_partition_type == UDF_METADATA_MAP25) {
1295                 ret = udf_load_metadata_files(sb, i, type1_idx);
1296                 if (ret < 0) {
1297                         udf_err(sb, "error loading MetaData partition map %d\n",
1298                                 i);
1299                         goto out_bh;
1300                 }
1301         } else {
1302                 /*
1303                  * If we have a partition with virtual map, we don't handle
1304                  * writing to it (we overwrite blocks instead of relocating
1305                  * them).
1306                  */
1307                 if (!sb_rdonly(sb)) {
1308                         ret = -EACCES;
1309                         goto out_bh;
1310                 }
1311                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1312                 ret = udf_load_vat(sb, i, type1_idx);
1313                 if (ret < 0)
1314                         goto out_bh;
1315         }
1316         ret = 0;
1317 out_bh:
1318         /* In case loading failed, we handle cleanup in udf_fill_super */
1319         brelse(bh);
1320         return ret;
1321 }
1322
1323 static int udf_load_sparable_map(struct super_block *sb,
1324                                  struct udf_part_map *map,
1325                                  struct sparablePartitionMap *spm)
1326 {
1327         uint32_t loc;
1328         uint16_t ident;
1329         struct sparingTable *st;
1330         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1331         int i;
1332         struct buffer_head *bh;
1333
1334         map->s_partition_type = UDF_SPARABLE_MAP15;
1335         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1336         if (!is_power_of_2(sdata->s_packet_len)) {
1337                 udf_err(sb, "error loading logical volume descriptor: "
1338                         "Invalid packet length %u\n",
1339                         (unsigned)sdata->s_packet_len);
1340                 return -EIO;
1341         }
1342         if (spm->numSparingTables > 4) {
1343                 udf_err(sb, "error loading logical volume descriptor: "
1344                         "Too many sparing tables (%d)\n",
1345                         (int)spm->numSparingTables);
1346                 return -EIO;
1347         }
1348         if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1349                 udf_err(sb, "error loading logical volume descriptor: "
1350                         "Too big sparing table size (%u)\n",
1351                         le32_to_cpu(spm->sizeSparingTable));
1352                 return -EIO;
1353         }
1354
1355         for (i = 0; i < spm->numSparingTables; i++) {
1356                 loc = le32_to_cpu(spm->locSparingTable[i]);
1357                 bh = udf_read_tagged(sb, loc, loc, &ident);
1358                 if (!bh)
1359                         continue;
1360
1361                 st = (struct sparingTable *)bh->b_data;
1362                 if (ident != 0 ||
1363                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1364                             strlen(UDF_ID_SPARING)) ||
1365                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1366                                                         sb->s_blocksize) {
1367                         brelse(bh);
1368                         continue;
1369                 }
1370
1371                 sdata->s_spar_map[i] = bh;
1372         }
1373         map->s_partition_func = udf_get_pblock_spar15;
1374         return 0;
1375 }
1376
1377 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1378                                struct kernel_lb_addr *fileset)
1379 {
1380         struct logicalVolDesc *lvd;
1381         int i, offset;
1382         uint8_t type;
1383         struct udf_sb_info *sbi = UDF_SB(sb);
1384         struct genericPartitionMap *gpm;
1385         uint16_t ident;
1386         struct buffer_head *bh;
1387         unsigned int table_len;
1388         int ret;
1389
1390         bh = udf_read_tagged(sb, block, block, &ident);
1391         if (!bh)
1392                 return -EAGAIN;
1393         BUG_ON(ident != TAG_IDENT_LVD);
1394         lvd = (struct logicalVolDesc *)bh->b_data;
1395         table_len = le32_to_cpu(lvd->mapTableLength);
1396         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1397                 udf_err(sb, "error loading logical volume descriptor: "
1398                         "Partition table too long (%u > %lu)\n", table_len,
1399                         sb->s_blocksize - sizeof(*lvd));
1400                 ret = -EIO;
1401                 goto out_bh;
1402         }
1403
1404         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1405         if (ret)
1406                 goto out_bh;
1407
1408         for (i = 0, offset = 0;
1409              i < sbi->s_partitions && offset < table_len;
1410              i++, offset += gpm->partitionMapLength) {
1411                 struct udf_part_map *map = &sbi->s_partmaps[i];
1412                 gpm = (struct genericPartitionMap *)
1413                                 &(lvd->partitionMaps[offset]);
1414                 type = gpm->partitionMapType;
1415                 if (type == 1) {
1416                         struct genericPartitionMap1 *gpm1 =
1417                                 (struct genericPartitionMap1 *)gpm;
1418                         map->s_partition_type = UDF_TYPE1_MAP15;
1419                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1420                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1421                         map->s_partition_func = NULL;
1422                 } else if (type == 2) {
1423                         struct udfPartitionMap2 *upm2 =
1424                                                 (struct udfPartitionMap2 *)gpm;
1425                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1426                                                 strlen(UDF_ID_VIRTUAL))) {
1427                                 u16 suf =
1428                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1429                                                         identSuffix)[0]);
1430                                 if (suf < 0x0200) {
1431                                         map->s_partition_type =
1432                                                         UDF_VIRTUAL_MAP15;
1433                                         map->s_partition_func =
1434                                                         udf_get_pblock_virt15;
1435                                 } else {
1436                                         map->s_partition_type =
1437                                                         UDF_VIRTUAL_MAP20;
1438                                         map->s_partition_func =
1439                                                         udf_get_pblock_virt20;
1440                                 }
1441                         } else if (!strncmp(upm2->partIdent.ident,
1442                                                 UDF_ID_SPARABLE,
1443                                                 strlen(UDF_ID_SPARABLE))) {
1444                                 ret = udf_load_sparable_map(sb, map,
1445                                         (struct sparablePartitionMap *)gpm);
1446                                 if (ret < 0)
1447                                         goto out_bh;
1448                         } else if (!strncmp(upm2->partIdent.ident,
1449                                                 UDF_ID_METADATA,
1450                                                 strlen(UDF_ID_METADATA))) {
1451                                 struct udf_meta_data *mdata =
1452                                         &map->s_type_specific.s_metadata;
1453                                 struct metadataPartitionMap *mdm =
1454                                                 (struct metadataPartitionMap *)
1455                                                 &(lvd->partitionMaps[offset]);
1456                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1457                                           i, type, UDF_ID_METADATA);
1458
1459                                 map->s_partition_type = UDF_METADATA_MAP25;
1460                                 map->s_partition_func = udf_get_pblock_meta25;
1461
1462                                 mdata->s_meta_file_loc   =
1463                                         le32_to_cpu(mdm->metadataFileLoc);
1464                                 mdata->s_mirror_file_loc =
1465                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1466                                 mdata->s_bitmap_file_loc =
1467                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1468                                 mdata->s_alloc_unit_size =
1469                                         le32_to_cpu(mdm->allocUnitSize);
1470                                 mdata->s_align_unit_size =
1471                                         le16_to_cpu(mdm->alignUnitSize);
1472                                 if (mdm->flags & 0x01)
1473                                         mdata->s_flags |= MF_DUPLICATE_MD;
1474
1475                                 udf_debug("Metadata Ident suffix=0x%x\n",
1476                                           le16_to_cpu(*(__le16 *)
1477                                                       mdm->partIdent.identSuffix));
1478                                 udf_debug("Metadata part num=%u\n",
1479                                           le16_to_cpu(mdm->partitionNum));
1480                                 udf_debug("Metadata part alloc unit size=%u\n",
1481                                           le32_to_cpu(mdm->allocUnitSize));
1482                                 udf_debug("Metadata file loc=%u\n",
1483                                           le32_to_cpu(mdm->metadataFileLoc));
1484                                 udf_debug("Mirror file loc=%u\n",
1485                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1486                                 udf_debug("Bitmap file loc=%u\n",
1487                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1488                                 udf_debug("Flags: %d %u\n",
1489                                           mdata->s_flags, mdm->flags);
1490                         } else {
1491                                 udf_debug("Unknown ident: %s\n",
1492                                           upm2->partIdent.ident);
1493                                 continue;
1494                         }
1495                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1496                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1497                 }
1498                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1499                           i, map->s_partition_num, type, map->s_volumeseqnum);
1500         }
1501
1502         if (fileset) {
1503                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1504
1505                 *fileset = lelb_to_cpu(la->extLocation);
1506                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1507                           fileset->logicalBlockNum,
1508                           fileset->partitionReferenceNum);
1509         }
1510         if (lvd->integritySeqExt.extLength)
1511                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1512         ret = 0;
1513 out_bh:
1514         brelse(bh);
1515         return ret;
1516 }
1517
1518 /*
1519  * Find the prevailing Logical Volume Integrity Descriptor.
1520  */
1521 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1522 {
1523         struct buffer_head *bh, *final_bh;
1524         uint16_t ident;
1525         struct udf_sb_info *sbi = UDF_SB(sb);
1526         struct logicalVolIntegrityDesc *lvid;
1527         int indirections = 0;
1528         u32 parts, impuselen;
1529
1530         while (++indirections <= UDF_MAX_LVID_NESTING) {
1531                 final_bh = NULL;
1532                 while (loc.extLength > 0 &&
1533                         (bh = udf_read_tagged(sb, loc.extLocation,
1534                                         loc.extLocation, &ident))) {
1535                         if (ident != TAG_IDENT_LVID) {
1536                                 brelse(bh);
1537                                 break;
1538                         }
1539
1540                         brelse(final_bh);
1541                         final_bh = bh;
1542
1543                         loc.extLength -= sb->s_blocksize;
1544                         loc.extLocation++;
1545                 }
1546
1547                 if (!final_bh)
1548                         return;
1549
1550                 brelse(sbi->s_lvid_bh);
1551                 sbi->s_lvid_bh = final_bh;
1552
1553                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1554                 if (lvid->nextIntegrityExt.extLength == 0)
1555                         goto check;
1556
1557                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1558         }
1559
1560         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1561                 UDF_MAX_LVID_NESTING);
1562 out_err:
1563         brelse(sbi->s_lvid_bh);
1564         sbi->s_lvid_bh = NULL;
1565         return;
1566 check:
1567         parts = le32_to_cpu(lvid->numOfPartitions);
1568         impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1569         if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1570             sizeof(struct logicalVolIntegrityDesc) + impuselen +
1571             2 * parts * sizeof(u32) > sb->s_blocksize) {
1572                 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1573                          "ignoring.\n", parts, impuselen);
1574                 goto out_err;
1575         }
1576 }
1577
1578 /*
1579  * Step for reallocation of table of partition descriptor sequence numbers.
1580  * Must be power of 2.
1581  */
1582 #define PART_DESC_ALLOC_STEP 32
1583
1584 struct part_desc_seq_scan_data {
1585         struct udf_vds_record rec;
1586         u32 partnum;
1587 };
1588
1589 struct desc_seq_scan_data {
1590         struct udf_vds_record vds[VDS_POS_LENGTH];
1591         unsigned int size_part_descs;
1592         unsigned int num_part_descs;
1593         struct part_desc_seq_scan_data *part_descs_loc;
1594 };
1595
1596 static struct udf_vds_record *handle_partition_descriptor(
1597                                 struct buffer_head *bh,
1598                                 struct desc_seq_scan_data *data)
1599 {
1600         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1601         int partnum;
1602         int i;
1603
1604         partnum = le16_to_cpu(desc->partitionNumber);
1605         for (i = 0; i < data->num_part_descs; i++)
1606                 if (partnum == data->part_descs_loc[i].partnum)
1607                         return &(data->part_descs_loc[i].rec);
1608         if (data->num_part_descs >= data->size_part_descs) {
1609                 struct part_desc_seq_scan_data *new_loc;
1610                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1611
1612                 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1613                 if (!new_loc)
1614                         return ERR_PTR(-ENOMEM);
1615                 memcpy(new_loc, data->part_descs_loc,
1616                        data->size_part_descs * sizeof(*new_loc));
1617                 kfree(data->part_descs_loc);
1618                 data->part_descs_loc = new_loc;
1619                 data->size_part_descs = new_size;
1620         }
1621         return &(data->part_descs_loc[data->num_part_descs++].rec);
1622 }
1623
1624
1625 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1626                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1627 {
1628         switch (ident) {
1629         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1630                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1631         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1632                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1633         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1634                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1635         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1636                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1637         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1638                 return handle_partition_descriptor(bh, data);
1639         }
1640         return NULL;
1641 }
1642
1643 /*
1644  * Process a main/reserve volume descriptor sequence.
1645  *   @block             First block of first extent of the sequence.
1646  *   @lastblock         Lastblock of first extent of the sequence.
1647  *   @fileset           There we store extent containing root fileset
1648  *
1649  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1650  * sequence
1651  */
1652 static noinline int udf_process_sequence(
1653                 struct super_block *sb,
1654                 sector_t block, sector_t lastblock,
1655                 struct kernel_lb_addr *fileset)
1656 {
1657         struct buffer_head *bh = NULL;
1658         struct udf_vds_record *curr;
1659         struct generic_desc *gd;
1660         struct volDescPtr *vdp;
1661         bool done = false;
1662         uint32_t vdsn;
1663         uint16_t ident;
1664         int ret;
1665         unsigned int indirections = 0;
1666         struct desc_seq_scan_data data;
1667         unsigned int i;
1668
1669         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1670         data.size_part_descs = PART_DESC_ALLOC_STEP;
1671         data.num_part_descs = 0;
1672         data.part_descs_loc = kcalloc(data.size_part_descs,
1673                                       sizeof(*data.part_descs_loc),
1674                                       GFP_KERNEL);
1675         if (!data.part_descs_loc)
1676                 return -ENOMEM;
1677
1678         /*
1679          * Read the main descriptor sequence and find which descriptors
1680          * are in it.
1681          */
1682         for (; (!done && block <= lastblock); block++) {
1683                 bh = udf_read_tagged(sb, block, block, &ident);
1684                 if (!bh)
1685                         break;
1686
1687                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1688                 gd = (struct generic_desc *)bh->b_data;
1689                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1690                 switch (ident) {
1691                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1692                         if (++indirections > UDF_MAX_TD_NESTING) {
1693                                 udf_err(sb, "too many Volume Descriptor "
1694                                         "Pointers (max %u supported)\n",
1695                                         UDF_MAX_TD_NESTING);
1696                                 brelse(bh);
1697                                 ret = -EIO;
1698                                 goto out;
1699                         }
1700
1701                         vdp = (struct volDescPtr *)bh->b_data;
1702                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1703                         lastblock = le32_to_cpu(
1704                                 vdp->nextVolDescSeqExt.extLength) >>
1705                                 sb->s_blocksize_bits;
1706                         lastblock += block - 1;
1707                         /* For loop is going to increment 'block' again */
1708                         block--;
1709                         break;
1710                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1711                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1712                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1713                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1714                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1715                         curr = get_volume_descriptor_record(ident, bh, &data);
1716                         if (IS_ERR(curr)) {
1717                                 brelse(bh);
1718                                 ret = PTR_ERR(curr);
1719                                 goto out;
1720                         }
1721                         /* Descriptor we don't care about? */
1722                         if (!curr)
1723                                 break;
1724                         if (vdsn >= curr->volDescSeqNum) {
1725                                 curr->volDescSeqNum = vdsn;
1726                                 curr->block = block;
1727                         }
1728                         break;
1729                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1730                         done = true;
1731                         break;
1732                 }
1733                 brelse(bh);
1734         }
1735         /*
1736          * Now read interesting descriptors again and process them
1737          * in a suitable order
1738          */
1739         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1740                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1741                 ret = -EAGAIN;
1742                 goto out;
1743         }
1744         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1745         if (ret < 0)
1746                 goto out;
1747
1748         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1749                 ret = udf_load_logicalvol(sb,
1750                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1751                                 fileset);
1752                 if (ret < 0)
1753                         goto out;
1754         }
1755
1756         /* Now handle prevailing Partition Descriptors */
1757         for (i = 0; i < data.num_part_descs; i++) {
1758                 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1759                 if (ret < 0)
1760                         goto out;
1761         }
1762         ret = 0;
1763 out:
1764         kfree(data.part_descs_loc);
1765         return ret;
1766 }
1767
1768 /*
1769  * Load Volume Descriptor Sequence described by anchor in bh
1770  *
1771  * Returns <0 on error, 0 on success
1772  */
1773 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1774                              struct kernel_lb_addr *fileset)
1775 {
1776         struct anchorVolDescPtr *anchor;
1777         sector_t main_s, main_e, reserve_s, reserve_e;
1778         int ret;
1779
1780         anchor = (struct anchorVolDescPtr *)bh->b_data;
1781
1782         /* Locate the main sequence */
1783         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1784         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1785         main_e = main_e >> sb->s_blocksize_bits;
1786         main_e += main_s - 1;
1787
1788         /* Locate the reserve sequence */
1789         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1790         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1791         reserve_e = reserve_e >> sb->s_blocksize_bits;
1792         reserve_e += reserve_s - 1;
1793
1794         /* Process the main & reserve sequences */
1795         /* responsible for finding the PartitionDesc(s) */
1796         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1797         if (ret != -EAGAIN)
1798                 return ret;
1799         udf_sb_free_partitions(sb);
1800         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1801         if (ret < 0) {
1802                 udf_sb_free_partitions(sb);
1803                 /* No sequence was OK, return -EIO */
1804                 if (ret == -EAGAIN)
1805                         ret = -EIO;
1806         }
1807         return ret;
1808 }
1809
1810 /*
1811  * Check whether there is an anchor block in the given block and
1812  * load Volume Descriptor Sequence if so.
1813  *
1814  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1815  * block
1816  */
1817 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1818                                   struct kernel_lb_addr *fileset)
1819 {
1820         struct buffer_head *bh;
1821         uint16_t ident;
1822         int ret;
1823
1824         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1825             udf_fixed_to_variable(block) >=
1826             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1827                 return -EAGAIN;
1828
1829         bh = udf_read_tagged(sb, block, block, &ident);
1830         if (!bh)
1831                 return -EAGAIN;
1832         if (ident != TAG_IDENT_AVDP) {
1833                 brelse(bh);
1834                 return -EAGAIN;
1835         }
1836         ret = udf_load_sequence(sb, bh, fileset);
1837         brelse(bh);
1838         return ret;
1839 }
1840
1841 /*
1842  * Search for an anchor volume descriptor pointer.
1843  *
1844  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1845  * of anchors.
1846  */
1847 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1848                             struct kernel_lb_addr *fileset)
1849 {
1850         sector_t last[6];
1851         int i;
1852         struct udf_sb_info *sbi = UDF_SB(sb);
1853         int last_count = 0;
1854         int ret;
1855
1856         /* First try user provided anchor */
1857         if (sbi->s_anchor) {
1858                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1859                 if (ret != -EAGAIN)
1860                         return ret;
1861         }
1862         /*
1863          * according to spec, anchor is in either:
1864          *     block 256
1865          *     lastblock-256
1866          *     lastblock
1867          *  however, if the disc isn't closed, it could be 512.
1868          */
1869         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1870         if (ret != -EAGAIN)
1871                 return ret;
1872         /*
1873          * The trouble is which block is the last one. Drives often misreport
1874          * this so we try various possibilities.
1875          */
1876         last[last_count++] = *lastblock;
1877         if (*lastblock >= 1)
1878                 last[last_count++] = *lastblock - 1;
1879         last[last_count++] = *lastblock + 1;
1880         if (*lastblock >= 2)
1881                 last[last_count++] = *lastblock - 2;
1882         if (*lastblock >= 150)
1883                 last[last_count++] = *lastblock - 150;
1884         if (*lastblock >= 152)
1885                 last[last_count++] = *lastblock - 152;
1886
1887         for (i = 0; i < last_count; i++) {
1888                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1889                                 sb->s_blocksize_bits)
1890                         continue;
1891                 ret = udf_check_anchor_block(sb, last[i], fileset);
1892                 if (ret != -EAGAIN) {
1893                         if (!ret)
1894                                 *lastblock = last[i];
1895                         return ret;
1896                 }
1897                 if (last[i] < 256)
1898                         continue;
1899                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1900                 if (ret != -EAGAIN) {
1901                         if (!ret)
1902                                 *lastblock = last[i];
1903                         return ret;
1904                 }
1905         }
1906
1907         /* Finally try block 512 in case media is open */
1908         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1909 }
1910
1911 /*
1912  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1913  * area specified by it. The function expects sbi->s_lastblock to be the last
1914  * block on the media.
1915  *
1916  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1917  * was not found.
1918  */
1919 static int udf_find_anchor(struct super_block *sb,
1920                            struct kernel_lb_addr *fileset)
1921 {
1922         struct udf_sb_info *sbi = UDF_SB(sb);
1923         sector_t lastblock = sbi->s_last_block;
1924         int ret;
1925
1926         ret = udf_scan_anchors(sb, &lastblock, fileset);
1927         if (ret != -EAGAIN)
1928                 goto out;
1929
1930         /* No anchor found? Try VARCONV conversion of block numbers */
1931         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1932         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1933         /* Firstly, we try to not convert number of the last block */
1934         ret = udf_scan_anchors(sb, &lastblock, fileset);
1935         if (ret != -EAGAIN)
1936                 goto out;
1937
1938         lastblock = sbi->s_last_block;
1939         /* Secondly, we try with converted number of the last block */
1940         ret = udf_scan_anchors(sb, &lastblock, fileset);
1941         if (ret < 0) {
1942                 /* VARCONV didn't help. Clear it. */
1943                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1944         }
1945 out:
1946         if (ret == 0)
1947                 sbi->s_last_block = lastblock;
1948         return ret;
1949 }
1950
1951 /*
1952  * Check Volume Structure Descriptor, find Anchor block and load Volume
1953  * Descriptor Sequence.
1954  *
1955  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1956  * block was not found.
1957  */
1958 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1959                         int silent, struct kernel_lb_addr *fileset)
1960 {
1961         struct udf_sb_info *sbi = UDF_SB(sb);
1962         loff_t nsr_off;
1963         int ret;
1964
1965         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1966                 if (!silent)
1967                         udf_warn(sb, "Bad block size\n");
1968                 return -EINVAL;
1969         }
1970         sbi->s_last_block = uopt->lastblock;
1971         if (!uopt->novrs) {
1972                 /* Check that it is NSR02 compliant */
1973                 nsr_off = udf_check_vsd(sb);
1974                 if (!nsr_off) {
1975                         if (!silent)
1976                                 udf_warn(sb, "No VRS found\n");
1977                         return -EINVAL;
1978                 }
1979                 if (nsr_off == -1)
1980                         udf_debug("Failed to read sector at offset %d. "
1981                                   "Assuming open disc. Skipping validity "
1982                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1983                 if (!sbi->s_last_block)
1984                         sbi->s_last_block = udf_get_last_block(sb);
1985         } else {
1986                 udf_debug("Validity check skipped because of novrs option\n");
1987         }
1988
1989         /* Look for anchor block and load Volume Descriptor Sequence */
1990         sbi->s_anchor = uopt->anchor;
1991         ret = udf_find_anchor(sb, fileset);
1992         if (ret < 0) {
1993                 if (!silent && ret == -EAGAIN)
1994                         udf_warn(sb, "No anchor found\n");
1995                 return ret;
1996         }
1997         return 0;
1998 }
1999
2000 static void udf_open_lvid(struct super_block *sb)
2001 {
2002         struct udf_sb_info *sbi = UDF_SB(sb);
2003         struct buffer_head *bh = sbi->s_lvid_bh;
2004         struct logicalVolIntegrityDesc *lvid;
2005         struct logicalVolIntegrityDescImpUse *lvidiu;
2006         struct timespec64 ts;
2007
2008         if (!bh)
2009                 return;
2010         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2011         lvidiu = udf_sb_lvidiu(sb);
2012         if (!lvidiu)
2013                 return;
2014
2015         mutex_lock(&sbi->s_alloc_mutex);
2016         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2017         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2018         ktime_get_real_ts64(&ts);
2019         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2020         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2021                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2022         else
2023                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2024
2025         lvid->descTag.descCRC = cpu_to_le16(
2026                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2027                         le16_to_cpu(lvid->descTag.descCRCLength)));
2028
2029         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2030         mark_buffer_dirty(bh);
2031         sbi->s_lvid_dirty = 0;
2032         mutex_unlock(&sbi->s_alloc_mutex);
2033         /* Make opening of filesystem visible on the media immediately */
2034         sync_dirty_buffer(bh);
2035 }
2036
2037 static void udf_close_lvid(struct super_block *sb)
2038 {
2039         struct udf_sb_info *sbi = UDF_SB(sb);
2040         struct buffer_head *bh = sbi->s_lvid_bh;
2041         struct logicalVolIntegrityDesc *lvid;
2042         struct logicalVolIntegrityDescImpUse *lvidiu;
2043         struct timespec64 ts;
2044
2045         if (!bh)
2046                 return;
2047         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2048         lvidiu = udf_sb_lvidiu(sb);
2049         if (!lvidiu)
2050                 return;
2051
2052         mutex_lock(&sbi->s_alloc_mutex);
2053         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2054         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2055         ktime_get_real_ts64(&ts);
2056         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2057         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2058                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2059         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2060                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2061         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2062                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2063         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2064                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2065
2066         lvid->descTag.descCRC = cpu_to_le16(
2067                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2068                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2069
2070         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2071         /*
2072          * We set buffer uptodate unconditionally here to avoid spurious
2073          * warnings from mark_buffer_dirty() when previous EIO has marked
2074          * the buffer as !uptodate
2075          */
2076         set_buffer_uptodate(bh);
2077         mark_buffer_dirty(bh);
2078         sbi->s_lvid_dirty = 0;
2079         mutex_unlock(&sbi->s_alloc_mutex);
2080         /* Make closing of filesystem visible on the media immediately */
2081         sync_dirty_buffer(bh);
2082 }
2083
2084 u64 lvid_get_unique_id(struct super_block *sb)
2085 {
2086         struct buffer_head *bh;
2087         struct udf_sb_info *sbi = UDF_SB(sb);
2088         struct logicalVolIntegrityDesc *lvid;
2089         struct logicalVolHeaderDesc *lvhd;
2090         u64 uniqueID;
2091         u64 ret;
2092
2093         bh = sbi->s_lvid_bh;
2094         if (!bh)
2095                 return 0;
2096
2097         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2098         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2099
2100         mutex_lock(&sbi->s_alloc_mutex);
2101         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2102         if (!(++uniqueID & 0xFFFFFFFF))
2103                 uniqueID += 16;
2104         lvhd->uniqueID = cpu_to_le64(uniqueID);
2105         mutex_unlock(&sbi->s_alloc_mutex);
2106         mark_buffer_dirty(bh);
2107
2108         return ret;
2109 }
2110
2111 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2112 {
2113         int ret = -EINVAL;
2114         struct inode *inode = NULL;
2115         struct udf_options uopt;
2116         struct kernel_lb_addr rootdir, fileset;
2117         struct udf_sb_info *sbi;
2118         bool lvid_open = false;
2119
2120         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2121         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2122         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2123         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2124         uopt.umask = 0;
2125         uopt.fmode = UDF_INVALID_MODE;
2126         uopt.dmode = UDF_INVALID_MODE;
2127         uopt.nls_map = NULL;
2128
2129         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2130         if (!sbi)
2131                 return -ENOMEM;
2132
2133         sb->s_fs_info = sbi;
2134
2135         mutex_init(&sbi->s_alloc_mutex);
2136
2137         if (!udf_parse_options((char *)options, &uopt, false))
2138                 goto parse_options_failure;
2139
2140         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2141             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2142                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2143                 goto parse_options_failure;
2144         }
2145         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2146                 uopt.nls_map = load_nls_default();
2147                 if (!uopt.nls_map)
2148                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2149                 else
2150                         udf_debug("Using default NLS map\n");
2151         }
2152         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2153                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2154
2155         fileset.logicalBlockNum = 0xFFFFFFFF;
2156         fileset.partitionReferenceNum = 0xFFFF;
2157
2158         sbi->s_flags = uopt.flags;
2159         sbi->s_uid = uopt.uid;
2160         sbi->s_gid = uopt.gid;
2161         sbi->s_umask = uopt.umask;
2162         sbi->s_fmode = uopt.fmode;
2163         sbi->s_dmode = uopt.dmode;
2164         sbi->s_nls_map = uopt.nls_map;
2165         rwlock_init(&sbi->s_cred_lock);
2166
2167         if (uopt.session == 0xFFFFFFFF)
2168                 sbi->s_session = udf_get_last_session(sb);
2169         else
2170                 sbi->s_session = uopt.session;
2171
2172         udf_debug("Multi-session=%d\n", sbi->s_session);
2173
2174         /* Fill in the rest of the superblock */
2175         sb->s_op = &udf_sb_ops;
2176         sb->s_export_op = &udf_export_ops;
2177
2178         sb->s_magic = UDF_SUPER_MAGIC;
2179         sb->s_time_gran = 1000;
2180
2181         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2182                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2183         } else {
2184                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2185                 while (uopt.blocksize <= 4096) {
2186                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2187                         if (ret < 0) {
2188                                 if (!silent && ret != -EACCES) {
2189                                         pr_notice("Scanning with blocksize %u failed\n",
2190                                                   uopt.blocksize);
2191                                 }
2192                                 brelse(sbi->s_lvid_bh);
2193                                 sbi->s_lvid_bh = NULL;
2194                                 /*
2195                                  * EACCES is special - we want to propagate to
2196                                  * upper layers that we cannot handle RW mount.
2197                                  */
2198                                 if (ret == -EACCES)
2199                                         break;
2200                         } else
2201                                 break;
2202
2203                         uopt.blocksize <<= 1;
2204                 }
2205         }
2206         if (ret < 0) {
2207                 if (ret == -EAGAIN) {
2208                         udf_warn(sb, "No partition found (1)\n");
2209                         ret = -EINVAL;
2210                 }
2211                 goto error_out;
2212         }
2213
2214         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2215
2216         if (sbi->s_lvid_bh) {
2217                 struct logicalVolIntegrityDescImpUse *lvidiu =
2218                                                         udf_sb_lvidiu(sb);
2219                 uint16_t minUDFReadRev;
2220                 uint16_t minUDFWriteRev;
2221
2222                 if (!lvidiu) {
2223                         ret = -EINVAL;
2224                         goto error_out;
2225                 }
2226                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2227                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2228                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2229                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2230                                 minUDFReadRev,
2231                                 UDF_MAX_READ_VERSION);
2232                         ret = -EINVAL;
2233                         goto error_out;
2234                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2235                         if (!sb_rdonly(sb)) {
2236                                 ret = -EACCES;
2237                                 goto error_out;
2238                         }
2239                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2240                 }
2241
2242                 sbi->s_udfrev = minUDFWriteRev;
2243
2244                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2245                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2246                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2247                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2248         }
2249
2250         if (!sbi->s_partitions) {
2251                 udf_warn(sb, "No partition found (2)\n");
2252                 ret = -EINVAL;
2253                 goto error_out;
2254         }
2255
2256         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2257                         UDF_PART_FLAG_READ_ONLY) {
2258                 if (!sb_rdonly(sb)) {
2259                         ret = -EACCES;
2260                         goto error_out;
2261                 }
2262                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2263         }
2264
2265         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2266                 udf_warn(sb, "No fileset found\n");
2267                 ret = -EINVAL;
2268                 goto error_out;
2269         }
2270
2271         if (!silent) {
2272                 struct timestamp ts;
2273                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2274                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2275                          sbi->s_volume_ident,
2276                          le16_to_cpu(ts.year), ts.month, ts.day,
2277                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2278         }
2279         if (!sb_rdonly(sb)) {
2280                 udf_open_lvid(sb);
2281                 lvid_open = true;
2282         }
2283
2284         /* Assign the root inode */
2285         /* assign inodes by physical block number */
2286         /* perhaps it's not extensible enough, but for now ... */
2287         inode = udf_iget(sb, &rootdir);
2288         if (IS_ERR(inode)) {
2289                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2290                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2291                 ret = PTR_ERR(inode);
2292                 goto error_out;
2293         }
2294
2295         /* Allocate a dentry for the root inode */
2296         sb->s_root = d_make_root(inode);
2297         if (!sb->s_root) {
2298                 udf_err(sb, "Couldn't allocate root dentry\n");
2299                 ret = -ENOMEM;
2300                 goto error_out;
2301         }
2302         sb->s_maxbytes = MAX_LFS_FILESIZE;
2303         sb->s_max_links = UDF_MAX_LINKS;
2304         return 0;
2305
2306 error_out:
2307         iput(sbi->s_vat_inode);
2308 parse_options_failure:
2309         if (uopt.nls_map)
2310                 unload_nls(uopt.nls_map);
2311         if (lvid_open)
2312                 udf_close_lvid(sb);
2313         brelse(sbi->s_lvid_bh);
2314         udf_sb_free_partitions(sb);
2315         kfree(sbi);
2316         sb->s_fs_info = NULL;
2317
2318         return ret;
2319 }
2320
2321 void _udf_err(struct super_block *sb, const char *function,
2322               const char *fmt, ...)
2323 {
2324         struct va_format vaf;
2325         va_list args;
2326
2327         va_start(args, fmt);
2328
2329         vaf.fmt = fmt;
2330         vaf.va = &args;
2331
2332         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2333
2334         va_end(args);
2335 }
2336
2337 void _udf_warn(struct super_block *sb, const char *function,
2338                const char *fmt, ...)
2339 {
2340         struct va_format vaf;
2341         va_list args;
2342
2343         va_start(args, fmt);
2344
2345         vaf.fmt = fmt;
2346         vaf.va = &args;
2347
2348         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2349
2350         va_end(args);
2351 }
2352
2353 static void udf_put_super(struct super_block *sb)
2354 {
2355         struct udf_sb_info *sbi;
2356
2357         sbi = UDF_SB(sb);
2358
2359         iput(sbi->s_vat_inode);
2360         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2361                 unload_nls(sbi->s_nls_map);
2362         if (!sb_rdonly(sb))
2363                 udf_close_lvid(sb);
2364         brelse(sbi->s_lvid_bh);
2365         udf_sb_free_partitions(sb);
2366         mutex_destroy(&sbi->s_alloc_mutex);
2367         kfree(sb->s_fs_info);
2368         sb->s_fs_info = NULL;
2369 }
2370
2371 static int udf_sync_fs(struct super_block *sb, int wait)
2372 {
2373         struct udf_sb_info *sbi = UDF_SB(sb);
2374
2375         mutex_lock(&sbi->s_alloc_mutex);
2376         if (sbi->s_lvid_dirty) {
2377                 /*
2378                  * Blockdevice will be synced later so we don't have to submit
2379                  * the buffer for IO
2380                  */
2381                 mark_buffer_dirty(sbi->s_lvid_bh);
2382                 sbi->s_lvid_dirty = 0;
2383         }
2384         mutex_unlock(&sbi->s_alloc_mutex);
2385
2386         return 0;
2387 }
2388
2389 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2390 {
2391         struct super_block *sb = dentry->d_sb;
2392         struct udf_sb_info *sbi = UDF_SB(sb);
2393         struct logicalVolIntegrityDescImpUse *lvidiu;
2394         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2395
2396         lvidiu = udf_sb_lvidiu(sb);
2397         buf->f_type = UDF_SUPER_MAGIC;
2398         buf->f_bsize = sb->s_blocksize;
2399         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2400         buf->f_bfree = udf_count_free(sb);
2401         buf->f_bavail = buf->f_bfree;
2402         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2403                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2404                         + buf->f_bfree;
2405         buf->f_ffree = buf->f_bfree;
2406         buf->f_namelen = UDF_NAME_LEN;
2407         buf->f_fsid.val[0] = (u32)id;
2408         buf->f_fsid.val[1] = (u32)(id >> 32);
2409
2410         return 0;
2411 }
2412
2413 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2414                                           struct udf_bitmap *bitmap)
2415 {
2416         struct buffer_head *bh = NULL;
2417         unsigned int accum = 0;
2418         int index;
2419         udf_pblk_t block = 0, newblock;
2420         struct kernel_lb_addr loc;
2421         uint32_t bytes;
2422         uint8_t *ptr;
2423         uint16_t ident;
2424         struct spaceBitmapDesc *bm;
2425
2426         loc.logicalBlockNum = bitmap->s_extPosition;
2427         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2428         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2429
2430         if (!bh) {
2431                 udf_err(sb, "udf_count_free failed\n");
2432                 goto out;
2433         } else if (ident != TAG_IDENT_SBD) {
2434                 brelse(bh);
2435                 udf_err(sb, "udf_count_free failed\n");
2436                 goto out;
2437         }
2438
2439         bm = (struct spaceBitmapDesc *)bh->b_data;
2440         bytes = le32_to_cpu(bm->numOfBytes);
2441         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2442         ptr = (uint8_t *)bh->b_data;
2443
2444         while (bytes > 0) {
2445                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2446                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2447                                         cur_bytes * 8);
2448                 bytes -= cur_bytes;
2449                 if (bytes) {
2450                         brelse(bh);
2451                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2452                         bh = udf_tread(sb, newblock);
2453                         if (!bh) {
2454                                 udf_debug("read failed\n");
2455                                 goto out;
2456                         }
2457                         index = 0;
2458                         ptr = (uint8_t *)bh->b_data;
2459                 }
2460         }
2461         brelse(bh);
2462 out:
2463         return accum;
2464 }
2465
2466 static unsigned int udf_count_free_table(struct super_block *sb,
2467                                          struct inode *table)
2468 {
2469         unsigned int accum = 0;
2470         uint32_t elen;
2471         struct kernel_lb_addr eloc;
2472         int8_t etype;
2473         struct extent_position epos;
2474
2475         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2476         epos.block = UDF_I(table)->i_location;
2477         epos.offset = sizeof(struct unallocSpaceEntry);
2478         epos.bh = NULL;
2479
2480         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2481                 accum += (elen >> table->i_sb->s_blocksize_bits);
2482
2483         brelse(epos.bh);
2484         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2485
2486         return accum;
2487 }
2488
2489 static unsigned int udf_count_free(struct super_block *sb)
2490 {
2491         unsigned int accum = 0;
2492         struct udf_sb_info *sbi = UDF_SB(sb);
2493         struct udf_part_map *map;
2494         unsigned int part = sbi->s_partition;
2495         int ptype = sbi->s_partmaps[part].s_partition_type;
2496
2497         if (ptype == UDF_METADATA_MAP25) {
2498                 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2499                                                         s_phys_partition_ref;
2500         } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2501                 /*
2502                  * Filesystems with VAT are append-only and we cannot write to
2503                  * them. Let's just report 0 here.
2504                  */
2505                 return 0;
2506         }
2507
2508         if (sbi->s_lvid_bh) {
2509                 struct logicalVolIntegrityDesc *lvid =
2510                         (struct logicalVolIntegrityDesc *)
2511                         sbi->s_lvid_bh->b_data;
2512                 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2513                         accum = le32_to_cpu(
2514                                         lvid->freeSpaceTable[part]);
2515                         if (accum == 0xFFFFFFFF)
2516                                 accum = 0;
2517                 }
2518         }
2519
2520         if (accum)
2521                 return accum;
2522
2523         map = &sbi->s_partmaps[part];
2524         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2525                 accum += udf_count_free_bitmap(sb,
2526                                                map->s_uspace.s_bitmap);
2527         }
2528         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2529                 accum += udf_count_free_bitmap(sb,
2530                                                map->s_fspace.s_bitmap);
2531         }
2532         if (accum)
2533                 return accum;
2534
2535         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2536                 accum += udf_count_free_table(sb,
2537                                               map->s_uspace.s_table);
2538         }
2539         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2540                 accum += udf_count_free_table(sb,
2541                                               map->s_fspace.s_table);
2542         }
2543
2544         return accum;
2545 }
2546
2547 MODULE_AUTHOR("Ben Fennema");
2548 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2549 MODULE_LICENSE("GPL");
2550 module_init(init_udf_fs)
2551 module_exit(exit_udf_fs)