GNU Linux-libre 4.19.209-gnu1
[releases.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68         VDS_POS_PRIMARY_VOL_DESC,
69         VDS_POS_UNALLOC_SPACE_DESC,
70         VDS_POS_LOGICAL_VOL_DESC,
71         VDS_POS_IMP_USE_VOL_DESC,
72         VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET         32768
76 #define VSD_MAX_SECTOR_OFFSET           0x800000
77
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96                             struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98                              struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107         struct logicalVolIntegrityDesc *lvid;
108         unsigned int partnum;
109         unsigned int offset;
110
111         if (!UDF_SB(sb)->s_lvid_bh)
112                 return NULL;
113         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114         partnum = le32_to_cpu(lvid->numOfPartitions);
115         /* The offset is to skip freeSpaceTable and sizeTable arrays */
116         offset = partnum * 2 * sizeof(uint32_t);
117         return (struct logicalVolIntegrityDescImpUse *)
118                                         (((uint8_t *)(lvid + 1)) + offset);
119 }
120
121 /* UDF filesystem type */
122 static struct dentry *udf_mount(struct file_system_type *fs_type,
123                       int flags, const char *dev_name, void *data)
124 {
125         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126 }
127
128 static struct file_system_type udf_fstype = {
129         .owner          = THIS_MODULE,
130         .name           = "udf",
131         .mount          = udf_mount,
132         .kill_sb        = kill_block_super,
133         .fs_flags       = FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("udf");
136
137 static struct kmem_cache *udf_inode_cachep;
138
139 static struct inode *udf_alloc_inode(struct super_block *sb)
140 {
141         struct udf_inode_info *ei;
142         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
143         if (!ei)
144                 return NULL;
145
146         ei->i_unique = 0;
147         ei->i_lenExtents = 0;
148         ei->i_next_alloc_block = 0;
149         ei->i_next_alloc_goal = 0;
150         ei->i_strat4096 = 0;
151         init_rwsem(&ei->i_data_sem);
152         ei->cached_extent.lstart = -1;
153         spin_lock_init(&ei->i_extent_cache_lock);
154
155         return &ei->vfs_inode;
156 }
157
158 static void udf_i_callback(struct rcu_head *head)
159 {
160         struct inode *inode = container_of(head, struct inode, i_rcu);
161         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163
164 static void udf_destroy_inode(struct inode *inode)
165 {
166         call_rcu(&inode->i_rcu, udf_i_callback);
167 }
168
169 static void init_once(void *foo)
170 {
171         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
172
173         ei->i_ext.i_data = NULL;
174         inode_init_once(&ei->vfs_inode);
175 }
176
177 static int __init init_inodecache(void)
178 {
179         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
180                                              sizeof(struct udf_inode_info),
181                                              0, (SLAB_RECLAIM_ACCOUNT |
182                                                  SLAB_MEM_SPREAD |
183                                                  SLAB_ACCOUNT),
184                                              init_once);
185         if (!udf_inode_cachep)
186                 return -ENOMEM;
187         return 0;
188 }
189
190 static void destroy_inodecache(void)
191 {
192         /*
193          * Make sure all delayed rcu free inodes are flushed before we
194          * destroy cache.
195          */
196         rcu_barrier();
197         kmem_cache_destroy(udf_inode_cachep);
198 }
199
200 /* Superblock operations */
201 static const struct super_operations udf_sb_ops = {
202         .alloc_inode    = udf_alloc_inode,
203         .destroy_inode  = udf_destroy_inode,
204         .write_inode    = udf_write_inode,
205         .evict_inode    = udf_evict_inode,
206         .put_super      = udf_put_super,
207         .sync_fs        = udf_sync_fs,
208         .statfs         = udf_statfs,
209         .remount_fs     = udf_remount_fs,
210         .show_options   = udf_show_options,
211 };
212
213 struct udf_options {
214         unsigned char novrs;
215         unsigned int blocksize;
216         unsigned int session;
217         unsigned int lastblock;
218         unsigned int anchor;
219         unsigned int flags;
220         umode_t umask;
221         kgid_t gid;
222         kuid_t uid;
223         umode_t fmode;
224         umode_t dmode;
225         struct nls_table *nls_map;
226 };
227
228 static int __init init_udf_fs(void)
229 {
230         int err;
231
232         err = init_inodecache();
233         if (err)
234                 goto out1;
235         err = register_filesystem(&udf_fstype);
236         if (err)
237                 goto out;
238
239         return 0;
240
241 out:
242         destroy_inodecache();
243
244 out1:
245         return err;
246 }
247
248 static void __exit exit_udf_fs(void)
249 {
250         unregister_filesystem(&udf_fstype);
251         destroy_inodecache();
252 }
253
254 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
255 {
256         struct udf_sb_info *sbi = UDF_SB(sb);
257
258         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
259         if (!sbi->s_partmaps) {
260                 sbi->s_partitions = 0;
261                 return -ENOMEM;
262         }
263
264         sbi->s_partitions = count;
265         return 0;
266 }
267
268 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
269 {
270         int i;
271         int nr_groups = bitmap->s_nr_groups;
272
273         for (i = 0; i < nr_groups; i++)
274                 if (bitmap->s_block_bitmap[i])
275                         brelse(bitmap->s_block_bitmap[i]);
276
277         kvfree(bitmap);
278 }
279
280 static void udf_free_partition(struct udf_part_map *map)
281 {
282         int i;
283         struct udf_meta_data *mdata;
284
285         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
286                 iput(map->s_uspace.s_table);
287         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
288                 iput(map->s_fspace.s_table);
289         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
290                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
291         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
292                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
293         if (map->s_partition_type == UDF_SPARABLE_MAP15)
294                 for (i = 0; i < 4; i++)
295                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
296         else if (map->s_partition_type == UDF_METADATA_MAP25) {
297                 mdata = &map->s_type_specific.s_metadata;
298                 iput(mdata->s_metadata_fe);
299                 mdata->s_metadata_fe = NULL;
300
301                 iput(mdata->s_mirror_fe);
302                 mdata->s_mirror_fe = NULL;
303
304                 iput(mdata->s_bitmap_fe);
305                 mdata->s_bitmap_fe = NULL;
306         }
307 }
308
309 static void udf_sb_free_partitions(struct super_block *sb)
310 {
311         struct udf_sb_info *sbi = UDF_SB(sb);
312         int i;
313
314         if (!sbi->s_partmaps)
315                 return;
316         for (i = 0; i < sbi->s_partitions; i++)
317                 udf_free_partition(&sbi->s_partmaps[i]);
318         kfree(sbi->s_partmaps);
319         sbi->s_partmaps = NULL;
320 }
321
322 static int udf_show_options(struct seq_file *seq, struct dentry *root)
323 {
324         struct super_block *sb = root->d_sb;
325         struct udf_sb_info *sbi = UDF_SB(sb);
326
327         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
328                 seq_puts(seq, ",nostrict");
329         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
330                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
331         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
332                 seq_puts(seq, ",unhide");
333         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
334                 seq_puts(seq, ",undelete");
335         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
336                 seq_puts(seq, ",noadinicb");
337         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
338                 seq_puts(seq, ",shortad");
339         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
340                 seq_puts(seq, ",uid=forget");
341         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
342                 seq_puts(seq, ",gid=forget");
343         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
344                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
345         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
346                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
347         if (sbi->s_umask != 0)
348                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
349         if (sbi->s_fmode != UDF_INVALID_MODE)
350                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
351         if (sbi->s_dmode != UDF_INVALID_MODE)
352                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
353         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
354                 seq_printf(seq, ",session=%d", sbi->s_session);
355         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
356                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
357         if (sbi->s_anchor != 0)
358                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
359         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
360                 seq_puts(seq, ",utf8");
361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
362                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
363
364         return 0;
365 }
366
367 /*
368  * udf_parse_options
369  *
370  * PURPOSE
371  *      Parse mount options.
372  *
373  * DESCRIPTION
374  *      The following mount options are supported:
375  *
376  *      gid=            Set the default group.
377  *      umask=          Set the default umask.
378  *      mode=           Set the default file permissions.
379  *      dmode=          Set the default directory permissions.
380  *      uid=            Set the default user.
381  *      bs=             Set the block size.
382  *      unhide          Show otherwise hidden files.
383  *      undelete        Show deleted files in lists.
384  *      adinicb         Embed data in the inode (default)
385  *      noadinicb       Don't embed data in the inode
386  *      shortad         Use short ad's
387  *      longad          Use long ad's (default)
388  *      nostrict        Unset strict conformance
389  *      iocharset=      Set the NLS character set
390  *
391  *      The remaining are for debugging and disaster recovery:
392  *
393  *      novrs           Skip volume sequence recognition
394  *
395  *      The following expect a offset from 0.
396  *
397  *      session=        Set the CDROM session (default= last session)
398  *      anchor=         Override standard anchor location. (default= 256)
399  *      volume=         Override the VolumeDesc location. (unused)
400  *      partition=      Override the PartitionDesc location. (unused)
401  *      lastblock=      Set the last block of the filesystem/
402  *
403  *      The following expect a offset from the partition root.
404  *
405  *      fileset=        Override the fileset block location. (unused)
406  *      rootdir=        Override the root directory location. (unused)
407  *              WARNING: overriding the rootdir to a non-directory may
408  *              yield highly unpredictable results.
409  *
410  * PRE-CONDITIONS
411  *      options         Pointer to mount options string.
412  *      uopts           Pointer to mount options variable.
413  *
414  * POST-CONDITIONS
415  *      <return>        1       Mount options parsed okay.
416  *      <return>        0       Error parsing mount options.
417  *
418  * HISTORY
419  *      July 1, 1997 - Andrew E. Mileski
420  *      Written, tested, and released.
421  */
422
423 enum {
424         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
425         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
426         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
427         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
428         Opt_rootdir, Opt_utf8, Opt_iocharset,
429         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
430         Opt_fmode, Opt_dmode
431 };
432
433 static const match_table_t tokens = {
434         {Opt_novrs,     "novrs"},
435         {Opt_nostrict,  "nostrict"},
436         {Opt_bs,        "bs=%u"},
437         {Opt_unhide,    "unhide"},
438         {Opt_undelete,  "undelete"},
439         {Opt_noadinicb, "noadinicb"},
440         {Opt_adinicb,   "adinicb"},
441         {Opt_shortad,   "shortad"},
442         {Opt_longad,    "longad"},
443         {Opt_uforget,   "uid=forget"},
444         {Opt_uignore,   "uid=ignore"},
445         {Opt_gforget,   "gid=forget"},
446         {Opt_gignore,   "gid=ignore"},
447         {Opt_gid,       "gid=%u"},
448         {Opt_uid,       "uid=%u"},
449         {Opt_umask,     "umask=%o"},
450         {Opt_session,   "session=%u"},
451         {Opt_lastblock, "lastblock=%u"},
452         {Opt_anchor,    "anchor=%u"},
453         {Opt_volume,    "volume=%u"},
454         {Opt_partition, "partition=%u"},
455         {Opt_fileset,   "fileset=%u"},
456         {Opt_rootdir,   "rootdir=%u"},
457         {Opt_utf8,      "utf8"},
458         {Opt_iocharset, "iocharset=%s"},
459         {Opt_fmode,     "mode=%o"},
460         {Opt_dmode,     "dmode=%o"},
461         {Opt_err,       NULL}
462 };
463
464 static int udf_parse_options(char *options, struct udf_options *uopt,
465                              bool remount)
466 {
467         char *p;
468         int option;
469
470         uopt->novrs = 0;
471         uopt->session = 0xFFFFFFFF;
472         uopt->lastblock = 0;
473         uopt->anchor = 0;
474
475         if (!options)
476                 return 1;
477
478         while ((p = strsep(&options, ",")) != NULL) {
479                 substring_t args[MAX_OPT_ARGS];
480                 int token;
481                 unsigned n;
482                 if (!*p)
483                         continue;
484
485                 token = match_token(p, tokens, args);
486                 switch (token) {
487                 case Opt_novrs:
488                         uopt->novrs = 1;
489                         break;
490                 case Opt_bs:
491                         if (match_int(&args[0], &option))
492                                 return 0;
493                         n = option;
494                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
495                                 return 0;
496                         uopt->blocksize = n;
497                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
498                         break;
499                 case Opt_unhide:
500                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
501                         break;
502                 case Opt_undelete:
503                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
504                         break;
505                 case Opt_noadinicb:
506                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
507                         break;
508                 case Opt_adinicb:
509                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
510                         break;
511                 case Opt_shortad:
512                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
513                         break;
514                 case Opt_longad:
515                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
516                         break;
517                 case Opt_gid:
518                         if (match_int(args, &option))
519                                 return 0;
520                         uopt->gid = make_kgid(current_user_ns(), option);
521                         if (!gid_valid(uopt->gid))
522                                 return 0;
523                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
524                         break;
525                 case Opt_uid:
526                         if (match_int(args, &option))
527                                 return 0;
528                         uopt->uid = make_kuid(current_user_ns(), option);
529                         if (!uid_valid(uopt->uid))
530                                 return 0;
531                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
532                         break;
533                 case Opt_umask:
534                         if (match_octal(args, &option))
535                                 return 0;
536                         uopt->umask = option;
537                         break;
538                 case Opt_nostrict:
539                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
540                         break;
541                 case Opt_session:
542                         if (match_int(args, &option))
543                                 return 0;
544                         uopt->session = option;
545                         if (!remount)
546                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
547                         break;
548                 case Opt_lastblock:
549                         if (match_int(args, &option))
550                                 return 0;
551                         uopt->lastblock = option;
552                         if (!remount)
553                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
554                         break;
555                 case Opt_anchor:
556                         if (match_int(args, &option))
557                                 return 0;
558                         uopt->anchor = option;
559                         break;
560                 case Opt_volume:
561                 case Opt_partition:
562                 case Opt_fileset:
563                 case Opt_rootdir:
564                         /* Ignored (never implemented properly) */
565                         break;
566                 case Opt_utf8:
567                         uopt->flags |= (1 << UDF_FLAG_UTF8);
568                         break;
569                 case Opt_iocharset:
570                         if (!remount) {
571                                 if (uopt->nls_map)
572                                         unload_nls(uopt->nls_map);
573                                 uopt->nls_map = load_nls(args[0].from);
574                                 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
575                         }
576                         break;
577                 case Opt_uforget:
578                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
579                         break;
580                 case Opt_uignore:
581                 case Opt_gignore:
582                         /* These options are superseeded by uid=<number> */
583                         break;
584                 case Opt_gforget:
585                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
586                         break;
587                 case Opt_fmode:
588                         if (match_octal(args, &option))
589                                 return 0;
590                         uopt->fmode = option & 0777;
591                         break;
592                 case Opt_dmode:
593                         if (match_octal(args, &option))
594                                 return 0;
595                         uopt->dmode = option & 0777;
596                         break;
597                 default:
598                         pr_err("bad mount option \"%s\" or missing value\n", p);
599                         return 0;
600                 }
601         }
602         return 1;
603 }
604
605 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
606 {
607         struct udf_options uopt;
608         struct udf_sb_info *sbi = UDF_SB(sb);
609         int error = 0;
610
611         if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
612                 return -EACCES;
613
614         sync_filesystem(sb);
615
616         uopt.flags = sbi->s_flags;
617         uopt.uid   = sbi->s_uid;
618         uopt.gid   = sbi->s_gid;
619         uopt.umask = sbi->s_umask;
620         uopt.fmode = sbi->s_fmode;
621         uopt.dmode = sbi->s_dmode;
622         uopt.nls_map = NULL;
623
624         if (!udf_parse_options(options, &uopt, true))
625                 return -EINVAL;
626
627         write_lock(&sbi->s_cred_lock);
628         sbi->s_flags = uopt.flags;
629         sbi->s_uid   = uopt.uid;
630         sbi->s_gid   = uopt.gid;
631         sbi->s_umask = uopt.umask;
632         sbi->s_fmode = uopt.fmode;
633         sbi->s_dmode = uopt.dmode;
634         write_unlock(&sbi->s_cred_lock);
635
636         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
637                 goto out_unlock;
638
639         if (*flags & SB_RDONLY)
640                 udf_close_lvid(sb);
641         else
642                 udf_open_lvid(sb);
643
644 out_unlock:
645         return error;
646 }
647
648 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
649 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
650 static loff_t udf_check_vsd(struct super_block *sb)
651 {
652         struct volStructDesc *vsd = NULL;
653         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
654         int sectorsize;
655         struct buffer_head *bh = NULL;
656         int nsr02 = 0;
657         int nsr03 = 0;
658         struct udf_sb_info *sbi;
659
660         sbi = UDF_SB(sb);
661         if (sb->s_blocksize < sizeof(struct volStructDesc))
662                 sectorsize = sizeof(struct volStructDesc);
663         else
664                 sectorsize = sb->s_blocksize;
665
666         sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
667
668         udf_debug("Starting at sector %u (%lu byte sectors)\n",
669                   (unsigned int)(sector >> sb->s_blocksize_bits),
670                   sb->s_blocksize);
671         /* Process the sequence (if applicable). The hard limit on the sector
672          * offset is arbitrary, hopefully large enough so that all valid UDF
673          * filesystems will be recognised. There is no mention of an upper
674          * bound to the size of the volume recognition area in the standard.
675          *  The limit will prevent the code to read all the sectors of a
676          * specially crafted image (like a bluray disc full of CD001 sectors),
677          * potentially causing minutes or even hours of uninterruptible I/O
678          * activity. This actually happened with uninitialised SSD partitions
679          * (all 0xFF) before the check for the limit and all valid IDs were
680          * added */
681         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
682              sector += sectorsize) {
683                 /* Read a block */
684                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
685                 if (!bh)
686                         break;
687
688                 /* Look for ISO  descriptors */
689                 vsd = (struct volStructDesc *)(bh->b_data +
690                                               (sector & (sb->s_blocksize - 1)));
691
692                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
693                                     VSD_STD_ID_LEN)) {
694                         switch (vsd->structType) {
695                         case 0:
696                                 udf_debug("ISO9660 Boot Record found\n");
697                                 break;
698                         case 1:
699                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
700                                 break;
701                         case 2:
702                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
703                                 break;
704                         case 3:
705                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
706                                 break;
707                         case 255:
708                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
709                                 break;
710                         default:
711                                 udf_debug("ISO9660 VRS (%u) found\n",
712                                           vsd->structType);
713                                 break;
714                         }
715                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
716                                     VSD_STD_ID_LEN))
717                         ; /* nothing */
718                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
719                                     VSD_STD_ID_LEN)) {
720                         brelse(bh);
721                         break;
722                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
723                                     VSD_STD_ID_LEN))
724                         nsr02 = sector;
725                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
726                                     VSD_STD_ID_LEN))
727                         nsr03 = sector;
728                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
729                                     VSD_STD_ID_LEN))
730                         ; /* nothing */
731                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
732                                     VSD_STD_ID_LEN))
733                         ; /* nothing */
734                 else {
735                         /* invalid id : end of volume recognition area */
736                         brelse(bh);
737                         break;
738                 }
739                 brelse(bh);
740         }
741
742         if (nsr03)
743                 return nsr03;
744         else if (nsr02)
745                 return nsr02;
746         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
747                         VSD_FIRST_SECTOR_OFFSET)
748                 return -1;
749         else
750                 return 0;
751 }
752
753 static int udf_find_fileset(struct super_block *sb,
754                             struct kernel_lb_addr *fileset,
755                             struct kernel_lb_addr *root)
756 {
757         struct buffer_head *bh = NULL;
758         uint16_t ident;
759
760         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
761             fileset->partitionReferenceNum != 0xFFFF) {
762                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
763
764                 if (!bh) {
765                         return 1;
766                 } else if (ident != TAG_IDENT_FSD) {
767                         brelse(bh);
768                         return 1;
769                 }
770
771                 udf_debug("Fileset at block=%u, partition=%u\n",
772                           fileset->logicalBlockNum,
773                           fileset->partitionReferenceNum);
774
775                 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
776                 udf_load_fileset(sb, bh, root);
777                 brelse(bh);
778                 return 0;
779         }
780         return 1;
781 }
782
783 /*
784  * Load primary Volume Descriptor Sequence
785  *
786  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
787  * should be tried.
788  */
789 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
790 {
791         struct primaryVolDesc *pvoldesc;
792         uint8_t *outstr;
793         struct buffer_head *bh;
794         uint16_t ident;
795         int ret = -ENOMEM;
796 #ifdef UDFFS_DEBUG
797         struct timestamp *ts;
798 #endif
799
800         outstr = kmalloc(128, GFP_NOFS);
801         if (!outstr)
802                 return -ENOMEM;
803
804         bh = udf_read_tagged(sb, block, block, &ident);
805         if (!bh) {
806                 ret = -EAGAIN;
807                 goto out2;
808         }
809
810         if (ident != TAG_IDENT_PVD) {
811                 ret = -EIO;
812                 goto out_bh;
813         }
814
815         pvoldesc = (struct primaryVolDesc *)bh->b_data;
816
817         udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
818                               pvoldesc->recordingDateAndTime);
819 #ifdef UDFFS_DEBUG
820         ts = &pvoldesc->recordingDateAndTime;
821         udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
822                   le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
823                   ts->minute, le16_to_cpu(ts->typeAndTimezone));
824 #endif
825
826
827         ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
828         if (ret < 0) {
829                 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
830                 pr_warn("incorrect volume identification, setting to "
831                         "'InvalidName'\n");
832         } else {
833                 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
834         }
835         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
836
837         ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
838         if (ret < 0) {
839                 ret = 0;
840                 goto out_bh;
841         }
842         outstr[ret] = 0;
843         udf_debug("volSetIdent[] = '%s'\n", outstr);
844
845         ret = 0;
846 out_bh:
847         brelse(bh);
848 out2:
849         kfree(outstr);
850         return ret;
851 }
852
853 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
854                                         u32 meta_file_loc, u32 partition_ref)
855 {
856         struct kernel_lb_addr addr;
857         struct inode *metadata_fe;
858
859         addr.logicalBlockNum = meta_file_loc;
860         addr.partitionReferenceNum = partition_ref;
861
862         metadata_fe = udf_iget_special(sb, &addr);
863
864         if (IS_ERR(metadata_fe)) {
865                 udf_warn(sb, "metadata inode efe not found\n");
866                 return metadata_fe;
867         }
868         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
869                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
870                 iput(metadata_fe);
871                 return ERR_PTR(-EIO);
872         }
873
874         return metadata_fe;
875 }
876
877 static int udf_load_metadata_files(struct super_block *sb, int partition,
878                                    int type1_index)
879 {
880         struct udf_sb_info *sbi = UDF_SB(sb);
881         struct udf_part_map *map;
882         struct udf_meta_data *mdata;
883         struct kernel_lb_addr addr;
884         struct inode *fe;
885
886         map = &sbi->s_partmaps[partition];
887         mdata = &map->s_type_specific.s_metadata;
888         mdata->s_phys_partition_ref = type1_index;
889
890         /* metadata address */
891         udf_debug("Metadata file location: block = %u part = %u\n",
892                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
893
894         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
895                                          mdata->s_phys_partition_ref);
896         if (IS_ERR(fe)) {
897                 /* mirror file entry */
898                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
899                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
900
901                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
902                                                  mdata->s_phys_partition_ref);
903
904                 if (IS_ERR(fe)) {
905                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
906                         return PTR_ERR(fe);
907                 }
908                 mdata->s_mirror_fe = fe;
909         } else
910                 mdata->s_metadata_fe = fe;
911
912
913         /*
914          * bitmap file entry
915          * Note:
916          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
917         */
918         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
919                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
920                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
921
922                 udf_debug("Bitmap file location: block = %u part = %u\n",
923                           addr.logicalBlockNum, addr.partitionReferenceNum);
924
925                 fe = udf_iget_special(sb, &addr);
926                 if (IS_ERR(fe)) {
927                         if (sb_rdonly(sb))
928                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
929                         else {
930                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
931                                 return PTR_ERR(fe);
932                         }
933                 } else
934                         mdata->s_bitmap_fe = fe;
935         }
936
937         udf_debug("udf_load_metadata_files Ok\n");
938         return 0;
939 }
940
941 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
942                              struct kernel_lb_addr *root)
943 {
944         struct fileSetDesc *fset;
945
946         fset = (struct fileSetDesc *)bh->b_data;
947
948         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
949
950         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
951
952         udf_debug("Rootdir at block=%u, partition=%u\n",
953                   root->logicalBlockNum, root->partitionReferenceNum);
954 }
955
956 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
957 {
958         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
959         return DIV_ROUND_UP(map->s_partition_len +
960                             (sizeof(struct spaceBitmapDesc) << 3),
961                             sb->s_blocksize * 8);
962 }
963
964 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
965 {
966         struct udf_bitmap *bitmap;
967         int nr_groups;
968         int size;
969
970         nr_groups = udf_compute_nr_groups(sb, index);
971         size = sizeof(struct udf_bitmap) +
972                 (sizeof(struct buffer_head *) * nr_groups);
973
974         if (size <= PAGE_SIZE)
975                 bitmap = kzalloc(size, GFP_KERNEL);
976         else
977                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
978
979         if (!bitmap)
980                 return NULL;
981
982         bitmap->s_nr_groups = nr_groups;
983         return bitmap;
984 }
985
986 static int check_partition_desc(struct super_block *sb,
987                                 struct partitionDesc *p,
988                                 struct udf_part_map *map)
989 {
990         bool umap, utable, fmap, ftable;
991         struct partitionHeaderDesc *phd;
992
993         switch (le32_to_cpu(p->accessType)) {
994         case PD_ACCESS_TYPE_READ_ONLY:
995         case PD_ACCESS_TYPE_WRITE_ONCE:
996         case PD_ACCESS_TYPE_NONE:
997                 goto force_ro;
998         }
999
1000         /* No Partition Header Descriptor? */
1001         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1002             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1003                 goto force_ro;
1004
1005         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1006         utable = phd->unallocSpaceTable.extLength;
1007         umap = phd->unallocSpaceBitmap.extLength;
1008         ftable = phd->freedSpaceTable.extLength;
1009         fmap = phd->freedSpaceBitmap.extLength;
1010
1011         /* No allocation info? */
1012         if (!utable && !umap && !ftable && !fmap)
1013                 goto force_ro;
1014
1015         /* We don't support blocks that require erasing before overwrite */
1016         if (ftable || fmap)
1017                 goto force_ro;
1018         /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1019         if (utable && umap)
1020                 goto force_ro;
1021
1022         if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1023             map->s_partition_type == UDF_VIRTUAL_MAP20)
1024                 goto force_ro;
1025
1026         return 0;
1027 force_ro:
1028         if (!sb_rdonly(sb))
1029                 return -EACCES;
1030         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1031         return 0;
1032 }
1033
1034 static int udf_fill_partdesc_info(struct super_block *sb,
1035                 struct partitionDesc *p, int p_index)
1036 {
1037         struct udf_part_map *map;
1038         struct udf_sb_info *sbi = UDF_SB(sb);
1039         struct partitionHeaderDesc *phd;
1040         int err;
1041
1042         map = &sbi->s_partmaps[p_index];
1043
1044         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1045         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1046
1047         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1048                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1049         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1050                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1051         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1052                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1053         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1054                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1055
1056         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1057                   p_index, map->s_partition_type,
1058                   map->s_partition_root, map->s_partition_len);
1059
1060         err = check_partition_desc(sb, p, map);
1061         if (err)
1062                 return err;
1063
1064         /*
1065          * Skip loading allocation info it we cannot ever write to the fs.
1066          * This is a correctness thing as we may have decided to force ro mount
1067          * to avoid allocation info we don't support.
1068          */
1069         if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1070                 return 0;
1071
1072         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1073         if (phd->unallocSpaceTable.extLength) {
1074                 struct kernel_lb_addr loc = {
1075                         .logicalBlockNum = le32_to_cpu(
1076                                 phd->unallocSpaceTable.extPosition),
1077                         .partitionReferenceNum = p_index,
1078                 };
1079                 struct inode *inode;
1080
1081                 inode = udf_iget_special(sb, &loc);
1082                 if (IS_ERR(inode)) {
1083                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1084                                   p_index);
1085                         return PTR_ERR(inode);
1086                 }
1087                 map->s_uspace.s_table = inode;
1088                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1089                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1090                           p_index, map->s_uspace.s_table->i_ino);
1091         }
1092
1093         if (phd->unallocSpaceBitmap.extLength) {
1094                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1095                 if (!bitmap)
1096                         return -ENOMEM;
1097                 map->s_uspace.s_bitmap = bitmap;
1098                 bitmap->s_extPosition = le32_to_cpu(
1099                                 phd->unallocSpaceBitmap.extPosition);
1100                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1101                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1102                           p_index, bitmap->s_extPosition);
1103         }
1104
1105         if (phd->freedSpaceTable.extLength) {
1106                 struct kernel_lb_addr loc = {
1107                         .logicalBlockNum = le32_to_cpu(
1108                                 phd->freedSpaceTable.extPosition),
1109                         .partitionReferenceNum = p_index,
1110                 };
1111                 struct inode *inode;
1112
1113                 inode = udf_iget_special(sb, &loc);
1114                 if (IS_ERR(inode)) {
1115                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1116                                   p_index);
1117                         return PTR_ERR(inode);
1118                 }
1119                 map->s_fspace.s_table = inode;
1120                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1121                 udf_debug("freedSpaceTable (part %d) @ %lu\n",
1122                           p_index, map->s_fspace.s_table->i_ino);
1123         }
1124
1125         if (phd->freedSpaceBitmap.extLength) {
1126                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1127                 if (!bitmap)
1128                         return -ENOMEM;
1129                 map->s_fspace.s_bitmap = bitmap;
1130                 bitmap->s_extPosition = le32_to_cpu(
1131                                 phd->freedSpaceBitmap.extPosition);
1132                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1133                 udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1134                           p_index, bitmap->s_extPosition);
1135         }
1136         return 0;
1137 }
1138
1139 static void udf_find_vat_block(struct super_block *sb, int p_index,
1140                                int type1_index, sector_t start_block)
1141 {
1142         struct udf_sb_info *sbi = UDF_SB(sb);
1143         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1144         sector_t vat_block;
1145         struct kernel_lb_addr ino;
1146         struct inode *inode;
1147
1148         /*
1149          * VAT file entry is in the last recorded block. Some broken disks have
1150          * it a few blocks before so try a bit harder...
1151          */
1152         ino.partitionReferenceNum = type1_index;
1153         for (vat_block = start_block;
1154              vat_block >= map->s_partition_root &&
1155              vat_block >= start_block - 3; vat_block--) {
1156                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1157                 inode = udf_iget_special(sb, &ino);
1158                 if (!IS_ERR(inode)) {
1159                         sbi->s_vat_inode = inode;
1160                         break;
1161                 }
1162         }
1163 }
1164
1165 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1166 {
1167         struct udf_sb_info *sbi = UDF_SB(sb);
1168         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1169         struct buffer_head *bh = NULL;
1170         struct udf_inode_info *vati;
1171         uint32_t pos;
1172         struct virtualAllocationTable20 *vat20;
1173         sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1174                           sb->s_blocksize_bits;
1175
1176         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1177         if (!sbi->s_vat_inode &&
1178             sbi->s_last_block != blocks - 1) {
1179                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1180                           (unsigned long)sbi->s_last_block,
1181                           (unsigned long)blocks - 1);
1182                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1183         }
1184         if (!sbi->s_vat_inode)
1185                 return -EIO;
1186
1187         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1188                 map->s_type_specific.s_virtual.s_start_offset = 0;
1189                 map->s_type_specific.s_virtual.s_num_entries =
1190                         (sbi->s_vat_inode->i_size - 36) >> 2;
1191         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1192                 vati = UDF_I(sbi->s_vat_inode);
1193                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1194                         pos = udf_block_map(sbi->s_vat_inode, 0);
1195                         bh = sb_bread(sb, pos);
1196                         if (!bh)
1197                                 return -EIO;
1198                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1199                 } else {
1200                         vat20 = (struct virtualAllocationTable20 *)
1201                                                         vati->i_ext.i_data;
1202                 }
1203
1204                 map->s_type_specific.s_virtual.s_start_offset =
1205                         le16_to_cpu(vat20->lengthHeader);
1206                 map->s_type_specific.s_virtual.s_num_entries =
1207                         (sbi->s_vat_inode->i_size -
1208                                 map->s_type_specific.s_virtual.
1209                                         s_start_offset) >> 2;
1210                 brelse(bh);
1211         }
1212         return 0;
1213 }
1214
1215 /*
1216  * Load partition descriptor block
1217  *
1218  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1219  * sequence.
1220  */
1221 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1222 {
1223         struct buffer_head *bh;
1224         struct partitionDesc *p;
1225         struct udf_part_map *map;
1226         struct udf_sb_info *sbi = UDF_SB(sb);
1227         int i, type1_idx;
1228         uint16_t partitionNumber;
1229         uint16_t ident;
1230         int ret;
1231
1232         bh = udf_read_tagged(sb, block, block, &ident);
1233         if (!bh)
1234                 return -EAGAIN;
1235         if (ident != TAG_IDENT_PD) {
1236                 ret = 0;
1237                 goto out_bh;
1238         }
1239
1240         p = (struct partitionDesc *)bh->b_data;
1241         partitionNumber = le16_to_cpu(p->partitionNumber);
1242
1243         /* First scan for TYPE1 and SPARABLE partitions */
1244         for (i = 0; i < sbi->s_partitions; i++) {
1245                 map = &sbi->s_partmaps[i];
1246                 udf_debug("Searching map: (%u == %u)\n",
1247                           map->s_partition_num, partitionNumber);
1248                 if (map->s_partition_num == partitionNumber &&
1249                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1250                      map->s_partition_type == UDF_SPARABLE_MAP15))
1251                         break;
1252         }
1253
1254         if (i >= sbi->s_partitions) {
1255                 udf_debug("Partition (%u) not found in partition map\n",
1256                           partitionNumber);
1257                 ret = 0;
1258                 goto out_bh;
1259         }
1260
1261         ret = udf_fill_partdesc_info(sb, p, i);
1262         if (ret < 0)
1263                 goto out_bh;
1264
1265         /*
1266          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1267          * PHYSICAL partitions are already set up
1268          */
1269         type1_idx = i;
1270 #ifdef UDFFS_DEBUG
1271         map = NULL; /* supress 'maybe used uninitialized' warning */
1272 #endif
1273         for (i = 0; i < sbi->s_partitions; i++) {
1274                 map = &sbi->s_partmaps[i];
1275
1276                 if (map->s_partition_num == partitionNumber &&
1277                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1278                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1279                      map->s_partition_type == UDF_METADATA_MAP25))
1280                         break;
1281         }
1282
1283         if (i >= sbi->s_partitions) {
1284                 ret = 0;
1285                 goto out_bh;
1286         }
1287
1288         ret = udf_fill_partdesc_info(sb, p, i);
1289         if (ret < 0)
1290                 goto out_bh;
1291
1292         if (map->s_partition_type == UDF_METADATA_MAP25) {
1293                 ret = udf_load_metadata_files(sb, i, type1_idx);
1294                 if (ret < 0) {
1295                         udf_err(sb, "error loading MetaData partition map %d\n",
1296                                 i);
1297                         goto out_bh;
1298                 }
1299         } else {
1300                 /*
1301                  * If we have a partition with virtual map, we don't handle
1302                  * writing to it (we overwrite blocks instead of relocating
1303                  * them).
1304                  */
1305                 if (!sb_rdonly(sb)) {
1306                         ret = -EACCES;
1307                         goto out_bh;
1308                 }
1309                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1310                 ret = udf_load_vat(sb, i, type1_idx);
1311                 if (ret < 0)
1312                         goto out_bh;
1313         }
1314         ret = 0;
1315 out_bh:
1316         /* In case loading failed, we handle cleanup in udf_fill_super */
1317         brelse(bh);
1318         return ret;
1319 }
1320
1321 static int udf_load_sparable_map(struct super_block *sb,
1322                                  struct udf_part_map *map,
1323                                  struct sparablePartitionMap *spm)
1324 {
1325         uint32_t loc;
1326         uint16_t ident;
1327         struct sparingTable *st;
1328         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1329         int i;
1330         struct buffer_head *bh;
1331
1332         map->s_partition_type = UDF_SPARABLE_MAP15;
1333         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1334         if (!is_power_of_2(sdata->s_packet_len)) {
1335                 udf_err(sb, "error loading logical volume descriptor: "
1336                         "Invalid packet length %u\n",
1337                         (unsigned)sdata->s_packet_len);
1338                 return -EIO;
1339         }
1340         if (spm->numSparingTables > 4) {
1341                 udf_err(sb, "error loading logical volume descriptor: "
1342                         "Too many sparing tables (%d)\n",
1343                         (int)spm->numSparingTables);
1344                 return -EIO;
1345         }
1346         if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1347                 udf_err(sb, "error loading logical volume descriptor: "
1348                         "Too big sparing table size (%u)\n",
1349                         le32_to_cpu(spm->sizeSparingTable));
1350                 return -EIO;
1351         }
1352
1353         for (i = 0; i < spm->numSparingTables; i++) {
1354                 loc = le32_to_cpu(spm->locSparingTable[i]);
1355                 bh = udf_read_tagged(sb, loc, loc, &ident);
1356                 if (!bh)
1357                         continue;
1358
1359                 st = (struct sparingTable *)bh->b_data;
1360                 if (ident != 0 ||
1361                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1362                             strlen(UDF_ID_SPARING)) ||
1363                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1364                                                         sb->s_blocksize) {
1365                         brelse(bh);
1366                         continue;
1367                 }
1368
1369                 sdata->s_spar_map[i] = bh;
1370         }
1371         map->s_partition_func = udf_get_pblock_spar15;
1372         return 0;
1373 }
1374
1375 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1376                                struct kernel_lb_addr *fileset)
1377 {
1378         struct logicalVolDesc *lvd;
1379         int i, offset;
1380         uint8_t type;
1381         struct udf_sb_info *sbi = UDF_SB(sb);
1382         struct genericPartitionMap *gpm;
1383         uint16_t ident;
1384         struct buffer_head *bh;
1385         unsigned int table_len;
1386         int ret;
1387
1388         bh = udf_read_tagged(sb, block, block, &ident);
1389         if (!bh)
1390                 return -EAGAIN;
1391         BUG_ON(ident != TAG_IDENT_LVD);
1392         lvd = (struct logicalVolDesc *)bh->b_data;
1393         table_len = le32_to_cpu(lvd->mapTableLength);
1394         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1395                 udf_err(sb, "error loading logical volume descriptor: "
1396                         "Partition table too long (%u > %lu)\n", table_len,
1397                         sb->s_blocksize - sizeof(*lvd));
1398                 ret = -EIO;
1399                 goto out_bh;
1400         }
1401
1402         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1403         if (ret)
1404                 goto out_bh;
1405
1406         for (i = 0, offset = 0;
1407              i < sbi->s_partitions && offset < table_len;
1408              i++, offset += gpm->partitionMapLength) {
1409                 struct udf_part_map *map = &sbi->s_partmaps[i];
1410                 gpm = (struct genericPartitionMap *)
1411                                 &(lvd->partitionMaps[offset]);
1412                 type = gpm->partitionMapType;
1413                 if (type == 1) {
1414                         struct genericPartitionMap1 *gpm1 =
1415                                 (struct genericPartitionMap1 *)gpm;
1416                         map->s_partition_type = UDF_TYPE1_MAP15;
1417                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1418                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1419                         map->s_partition_func = NULL;
1420                 } else if (type == 2) {
1421                         struct udfPartitionMap2 *upm2 =
1422                                                 (struct udfPartitionMap2 *)gpm;
1423                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1424                                                 strlen(UDF_ID_VIRTUAL))) {
1425                                 u16 suf =
1426                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1427                                                         identSuffix)[0]);
1428                                 if (suf < 0x0200) {
1429                                         map->s_partition_type =
1430                                                         UDF_VIRTUAL_MAP15;
1431                                         map->s_partition_func =
1432                                                         udf_get_pblock_virt15;
1433                                 } else {
1434                                         map->s_partition_type =
1435                                                         UDF_VIRTUAL_MAP20;
1436                                         map->s_partition_func =
1437                                                         udf_get_pblock_virt20;
1438                                 }
1439                         } else if (!strncmp(upm2->partIdent.ident,
1440                                                 UDF_ID_SPARABLE,
1441                                                 strlen(UDF_ID_SPARABLE))) {
1442                                 ret = udf_load_sparable_map(sb, map,
1443                                         (struct sparablePartitionMap *)gpm);
1444                                 if (ret < 0)
1445                                         goto out_bh;
1446                         } else if (!strncmp(upm2->partIdent.ident,
1447                                                 UDF_ID_METADATA,
1448                                                 strlen(UDF_ID_METADATA))) {
1449                                 struct udf_meta_data *mdata =
1450                                         &map->s_type_specific.s_metadata;
1451                                 struct metadataPartitionMap *mdm =
1452                                                 (struct metadataPartitionMap *)
1453                                                 &(lvd->partitionMaps[offset]);
1454                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1455                                           i, type, UDF_ID_METADATA);
1456
1457                                 map->s_partition_type = UDF_METADATA_MAP25;
1458                                 map->s_partition_func = udf_get_pblock_meta25;
1459
1460                                 mdata->s_meta_file_loc   =
1461                                         le32_to_cpu(mdm->metadataFileLoc);
1462                                 mdata->s_mirror_file_loc =
1463                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1464                                 mdata->s_bitmap_file_loc =
1465                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1466                                 mdata->s_alloc_unit_size =
1467                                         le32_to_cpu(mdm->allocUnitSize);
1468                                 mdata->s_align_unit_size =
1469                                         le16_to_cpu(mdm->alignUnitSize);
1470                                 if (mdm->flags & 0x01)
1471                                         mdata->s_flags |= MF_DUPLICATE_MD;
1472
1473                                 udf_debug("Metadata Ident suffix=0x%x\n",
1474                                           le16_to_cpu(*(__le16 *)
1475                                                       mdm->partIdent.identSuffix));
1476                                 udf_debug("Metadata part num=%u\n",
1477                                           le16_to_cpu(mdm->partitionNum));
1478                                 udf_debug("Metadata part alloc unit size=%u\n",
1479                                           le32_to_cpu(mdm->allocUnitSize));
1480                                 udf_debug("Metadata file loc=%u\n",
1481                                           le32_to_cpu(mdm->metadataFileLoc));
1482                                 udf_debug("Mirror file loc=%u\n",
1483                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1484                                 udf_debug("Bitmap file loc=%u\n",
1485                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1486                                 udf_debug("Flags: %d %u\n",
1487                                           mdata->s_flags, mdm->flags);
1488                         } else {
1489                                 udf_debug("Unknown ident: %s\n",
1490                                           upm2->partIdent.ident);
1491                                 continue;
1492                         }
1493                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1494                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1495                 }
1496                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1497                           i, map->s_partition_num, type, map->s_volumeseqnum);
1498         }
1499
1500         if (fileset) {
1501                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1502
1503                 *fileset = lelb_to_cpu(la->extLocation);
1504                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1505                           fileset->logicalBlockNum,
1506                           fileset->partitionReferenceNum);
1507         }
1508         if (lvd->integritySeqExt.extLength)
1509                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1510         ret = 0;
1511 out_bh:
1512         brelse(bh);
1513         return ret;
1514 }
1515
1516 /*
1517  * Find the prevailing Logical Volume Integrity Descriptor.
1518  */
1519 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1520 {
1521         struct buffer_head *bh, *final_bh;
1522         uint16_t ident;
1523         struct udf_sb_info *sbi = UDF_SB(sb);
1524         struct logicalVolIntegrityDesc *lvid;
1525         int indirections = 0;
1526         u32 parts, impuselen;
1527
1528         while (++indirections <= UDF_MAX_LVID_NESTING) {
1529                 final_bh = NULL;
1530                 while (loc.extLength > 0 &&
1531                         (bh = udf_read_tagged(sb, loc.extLocation,
1532                                         loc.extLocation, &ident))) {
1533                         if (ident != TAG_IDENT_LVID) {
1534                                 brelse(bh);
1535                                 break;
1536                         }
1537
1538                         brelse(final_bh);
1539                         final_bh = bh;
1540
1541                         loc.extLength -= sb->s_blocksize;
1542                         loc.extLocation++;
1543                 }
1544
1545                 if (!final_bh)
1546                         return;
1547
1548                 brelse(sbi->s_lvid_bh);
1549                 sbi->s_lvid_bh = final_bh;
1550
1551                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1552                 if (lvid->nextIntegrityExt.extLength == 0)
1553                         goto check;
1554
1555                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1556         }
1557
1558         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1559                 UDF_MAX_LVID_NESTING);
1560 out_err:
1561         brelse(sbi->s_lvid_bh);
1562         sbi->s_lvid_bh = NULL;
1563         return;
1564 check:
1565         parts = le32_to_cpu(lvid->numOfPartitions);
1566         impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1567         if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1568             sizeof(struct logicalVolIntegrityDesc) + impuselen +
1569             2 * parts * sizeof(u32) > sb->s_blocksize) {
1570                 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1571                          "ignoring.\n", parts, impuselen);
1572                 goto out_err;
1573         }
1574 }
1575
1576 /*
1577  * Step for reallocation of table of partition descriptor sequence numbers.
1578  * Must be power of 2.
1579  */
1580 #define PART_DESC_ALLOC_STEP 32
1581
1582 struct part_desc_seq_scan_data {
1583         struct udf_vds_record rec;
1584         u32 partnum;
1585 };
1586
1587 struct desc_seq_scan_data {
1588         struct udf_vds_record vds[VDS_POS_LENGTH];
1589         unsigned int size_part_descs;
1590         unsigned int num_part_descs;
1591         struct part_desc_seq_scan_data *part_descs_loc;
1592 };
1593
1594 static struct udf_vds_record *handle_partition_descriptor(
1595                                 struct buffer_head *bh,
1596                                 struct desc_seq_scan_data *data)
1597 {
1598         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1599         int partnum;
1600         int i;
1601
1602         partnum = le16_to_cpu(desc->partitionNumber);
1603         for (i = 0; i < data->num_part_descs; i++)
1604                 if (partnum == data->part_descs_loc[i].partnum)
1605                         return &(data->part_descs_loc[i].rec);
1606         if (data->num_part_descs >= data->size_part_descs) {
1607                 struct part_desc_seq_scan_data *new_loc;
1608                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1609
1610                 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1611                 if (!new_loc)
1612                         return ERR_PTR(-ENOMEM);
1613                 memcpy(new_loc, data->part_descs_loc,
1614                        data->size_part_descs * sizeof(*new_loc));
1615                 kfree(data->part_descs_loc);
1616                 data->part_descs_loc = new_loc;
1617                 data->size_part_descs = new_size;
1618         }
1619         return &(data->part_descs_loc[data->num_part_descs++].rec);
1620 }
1621
1622
1623 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1624                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1625 {
1626         switch (ident) {
1627         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1628                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1629         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1630                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1631         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1632                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1633         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1634                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1635         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1636                 return handle_partition_descriptor(bh, data);
1637         }
1638         return NULL;
1639 }
1640
1641 /*
1642  * Process a main/reserve volume descriptor sequence.
1643  *   @block             First block of first extent of the sequence.
1644  *   @lastblock         Lastblock of first extent of the sequence.
1645  *   @fileset           There we store extent containing root fileset
1646  *
1647  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1648  * sequence
1649  */
1650 static noinline int udf_process_sequence(
1651                 struct super_block *sb,
1652                 sector_t block, sector_t lastblock,
1653                 struct kernel_lb_addr *fileset)
1654 {
1655         struct buffer_head *bh = NULL;
1656         struct udf_vds_record *curr;
1657         struct generic_desc *gd;
1658         struct volDescPtr *vdp;
1659         bool done = false;
1660         uint32_t vdsn;
1661         uint16_t ident;
1662         int ret;
1663         unsigned int indirections = 0;
1664         struct desc_seq_scan_data data;
1665         unsigned int i;
1666
1667         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1668         data.size_part_descs = PART_DESC_ALLOC_STEP;
1669         data.num_part_descs = 0;
1670         data.part_descs_loc = kcalloc(data.size_part_descs,
1671                                       sizeof(*data.part_descs_loc),
1672                                       GFP_KERNEL);
1673         if (!data.part_descs_loc)
1674                 return -ENOMEM;
1675
1676         /*
1677          * Read the main descriptor sequence and find which descriptors
1678          * are in it.
1679          */
1680         for (; (!done && block <= lastblock); block++) {
1681                 bh = udf_read_tagged(sb, block, block, &ident);
1682                 if (!bh)
1683                         break;
1684
1685                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1686                 gd = (struct generic_desc *)bh->b_data;
1687                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1688                 switch (ident) {
1689                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1690                         if (++indirections > UDF_MAX_TD_NESTING) {
1691                                 udf_err(sb, "too many Volume Descriptor "
1692                                         "Pointers (max %u supported)\n",
1693                                         UDF_MAX_TD_NESTING);
1694                                 brelse(bh);
1695                                 ret = -EIO;
1696                                 goto out;
1697                         }
1698
1699                         vdp = (struct volDescPtr *)bh->b_data;
1700                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1701                         lastblock = le32_to_cpu(
1702                                 vdp->nextVolDescSeqExt.extLength) >>
1703                                 sb->s_blocksize_bits;
1704                         lastblock += block - 1;
1705                         /* For loop is going to increment 'block' again */
1706                         block--;
1707                         break;
1708                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1709                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1710                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1711                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1712                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1713                         curr = get_volume_descriptor_record(ident, bh, &data);
1714                         if (IS_ERR(curr)) {
1715                                 brelse(bh);
1716                                 ret = PTR_ERR(curr);
1717                                 goto out;
1718                         }
1719                         /* Descriptor we don't care about? */
1720                         if (!curr)
1721                                 break;
1722                         if (vdsn >= curr->volDescSeqNum) {
1723                                 curr->volDescSeqNum = vdsn;
1724                                 curr->block = block;
1725                         }
1726                         break;
1727                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1728                         done = true;
1729                         break;
1730                 }
1731                 brelse(bh);
1732         }
1733         /*
1734          * Now read interesting descriptors again and process them
1735          * in a suitable order
1736          */
1737         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1738                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1739                 ret = -EAGAIN;
1740                 goto out;
1741         }
1742         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1743         if (ret < 0)
1744                 goto out;
1745
1746         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1747                 ret = udf_load_logicalvol(sb,
1748                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1749                                 fileset);
1750                 if (ret < 0)
1751                         goto out;
1752         }
1753
1754         /* Now handle prevailing Partition Descriptors */
1755         for (i = 0; i < data.num_part_descs; i++) {
1756                 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1757                 if (ret < 0)
1758                         goto out;
1759         }
1760         ret = 0;
1761 out:
1762         kfree(data.part_descs_loc);
1763         return ret;
1764 }
1765
1766 /*
1767  * Load Volume Descriptor Sequence described by anchor in bh
1768  *
1769  * Returns <0 on error, 0 on success
1770  */
1771 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1772                              struct kernel_lb_addr *fileset)
1773 {
1774         struct anchorVolDescPtr *anchor;
1775         sector_t main_s, main_e, reserve_s, reserve_e;
1776         int ret;
1777
1778         anchor = (struct anchorVolDescPtr *)bh->b_data;
1779
1780         /* Locate the main sequence */
1781         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1782         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1783         main_e = main_e >> sb->s_blocksize_bits;
1784         main_e += main_s - 1;
1785
1786         /* Locate the reserve sequence */
1787         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1788         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1789         reserve_e = reserve_e >> sb->s_blocksize_bits;
1790         reserve_e += reserve_s - 1;
1791
1792         /* Process the main & reserve sequences */
1793         /* responsible for finding the PartitionDesc(s) */
1794         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1795         if (ret != -EAGAIN)
1796                 return ret;
1797         udf_sb_free_partitions(sb);
1798         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1799         if (ret < 0) {
1800                 udf_sb_free_partitions(sb);
1801                 /* No sequence was OK, return -EIO */
1802                 if (ret == -EAGAIN)
1803                         ret = -EIO;
1804         }
1805         return ret;
1806 }
1807
1808 /*
1809  * Check whether there is an anchor block in the given block and
1810  * load Volume Descriptor Sequence if so.
1811  *
1812  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1813  * block
1814  */
1815 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1816                                   struct kernel_lb_addr *fileset)
1817 {
1818         struct buffer_head *bh;
1819         uint16_t ident;
1820         int ret;
1821
1822         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1823             udf_fixed_to_variable(block) >=
1824             i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1825                 return -EAGAIN;
1826
1827         bh = udf_read_tagged(sb, block, block, &ident);
1828         if (!bh)
1829                 return -EAGAIN;
1830         if (ident != TAG_IDENT_AVDP) {
1831                 brelse(bh);
1832                 return -EAGAIN;
1833         }
1834         ret = udf_load_sequence(sb, bh, fileset);
1835         brelse(bh);
1836         return ret;
1837 }
1838
1839 /*
1840  * Search for an anchor volume descriptor pointer.
1841  *
1842  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1843  * of anchors.
1844  */
1845 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1846                             struct kernel_lb_addr *fileset)
1847 {
1848         sector_t last[6];
1849         int i;
1850         struct udf_sb_info *sbi = UDF_SB(sb);
1851         int last_count = 0;
1852         int ret;
1853
1854         /* First try user provided anchor */
1855         if (sbi->s_anchor) {
1856                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1857                 if (ret != -EAGAIN)
1858                         return ret;
1859         }
1860         /*
1861          * according to spec, anchor is in either:
1862          *     block 256
1863          *     lastblock-256
1864          *     lastblock
1865          *  however, if the disc isn't closed, it could be 512.
1866          */
1867         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1868         if (ret != -EAGAIN)
1869                 return ret;
1870         /*
1871          * The trouble is which block is the last one. Drives often misreport
1872          * this so we try various possibilities.
1873          */
1874         last[last_count++] = *lastblock;
1875         if (*lastblock >= 1)
1876                 last[last_count++] = *lastblock - 1;
1877         last[last_count++] = *lastblock + 1;
1878         if (*lastblock >= 2)
1879                 last[last_count++] = *lastblock - 2;
1880         if (*lastblock >= 150)
1881                 last[last_count++] = *lastblock - 150;
1882         if (*lastblock >= 152)
1883                 last[last_count++] = *lastblock - 152;
1884
1885         for (i = 0; i < last_count; i++) {
1886                 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1887                                 sb->s_blocksize_bits)
1888                         continue;
1889                 ret = udf_check_anchor_block(sb, last[i], fileset);
1890                 if (ret != -EAGAIN) {
1891                         if (!ret)
1892                                 *lastblock = last[i];
1893                         return ret;
1894                 }
1895                 if (last[i] < 256)
1896                         continue;
1897                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1898                 if (ret != -EAGAIN) {
1899                         if (!ret)
1900                                 *lastblock = last[i];
1901                         return ret;
1902                 }
1903         }
1904
1905         /* Finally try block 512 in case media is open */
1906         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1907 }
1908
1909 /*
1910  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1911  * area specified by it. The function expects sbi->s_lastblock to be the last
1912  * block on the media.
1913  *
1914  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1915  * was not found.
1916  */
1917 static int udf_find_anchor(struct super_block *sb,
1918                            struct kernel_lb_addr *fileset)
1919 {
1920         struct udf_sb_info *sbi = UDF_SB(sb);
1921         sector_t lastblock = sbi->s_last_block;
1922         int ret;
1923
1924         ret = udf_scan_anchors(sb, &lastblock, fileset);
1925         if (ret != -EAGAIN)
1926                 goto out;
1927
1928         /* No anchor found? Try VARCONV conversion of block numbers */
1929         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1930         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1931         /* Firstly, we try to not convert number of the last block */
1932         ret = udf_scan_anchors(sb, &lastblock, fileset);
1933         if (ret != -EAGAIN)
1934                 goto out;
1935
1936         lastblock = sbi->s_last_block;
1937         /* Secondly, we try with converted number of the last block */
1938         ret = udf_scan_anchors(sb, &lastblock, fileset);
1939         if (ret < 0) {
1940                 /* VARCONV didn't help. Clear it. */
1941                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1942         }
1943 out:
1944         if (ret == 0)
1945                 sbi->s_last_block = lastblock;
1946         return ret;
1947 }
1948
1949 /*
1950  * Check Volume Structure Descriptor, find Anchor block and load Volume
1951  * Descriptor Sequence.
1952  *
1953  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1954  * block was not found.
1955  */
1956 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1957                         int silent, struct kernel_lb_addr *fileset)
1958 {
1959         struct udf_sb_info *sbi = UDF_SB(sb);
1960         loff_t nsr_off;
1961         int ret;
1962
1963         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1964                 if (!silent)
1965                         udf_warn(sb, "Bad block size\n");
1966                 return -EINVAL;
1967         }
1968         sbi->s_last_block = uopt->lastblock;
1969         if (!uopt->novrs) {
1970                 /* Check that it is NSR02 compliant */
1971                 nsr_off = udf_check_vsd(sb);
1972                 if (!nsr_off) {
1973                         if (!silent)
1974                                 udf_warn(sb, "No VRS found\n");
1975                         return -EINVAL;
1976                 }
1977                 if (nsr_off == -1)
1978                         udf_debug("Failed to read sector at offset %d. "
1979                                   "Assuming open disc. Skipping validity "
1980                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1981                 if (!sbi->s_last_block)
1982                         sbi->s_last_block = udf_get_last_block(sb);
1983         } else {
1984                 udf_debug("Validity check skipped because of novrs option\n");
1985         }
1986
1987         /* Look for anchor block and load Volume Descriptor Sequence */
1988         sbi->s_anchor = uopt->anchor;
1989         ret = udf_find_anchor(sb, fileset);
1990         if (ret < 0) {
1991                 if (!silent && ret == -EAGAIN)
1992                         udf_warn(sb, "No anchor found\n");
1993                 return ret;
1994         }
1995         return 0;
1996 }
1997
1998 static void udf_open_lvid(struct super_block *sb)
1999 {
2000         struct udf_sb_info *sbi = UDF_SB(sb);
2001         struct buffer_head *bh = sbi->s_lvid_bh;
2002         struct logicalVolIntegrityDesc *lvid;
2003         struct logicalVolIntegrityDescImpUse *lvidiu;
2004         struct timespec64 ts;
2005
2006         if (!bh)
2007                 return;
2008         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2009         lvidiu = udf_sb_lvidiu(sb);
2010         if (!lvidiu)
2011                 return;
2012
2013         mutex_lock(&sbi->s_alloc_mutex);
2014         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2015         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2016         ktime_get_real_ts64(&ts);
2017         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2018         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2019                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2020         else
2021                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2022
2023         lvid->descTag.descCRC = cpu_to_le16(
2024                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2025                         le16_to_cpu(lvid->descTag.descCRCLength)));
2026
2027         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2028         mark_buffer_dirty(bh);
2029         sbi->s_lvid_dirty = 0;
2030         mutex_unlock(&sbi->s_alloc_mutex);
2031         /* Make opening of filesystem visible on the media immediately */
2032         sync_dirty_buffer(bh);
2033 }
2034
2035 static void udf_close_lvid(struct super_block *sb)
2036 {
2037         struct udf_sb_info *sbi = UDF_SB(sb);
2038         struct buffer_head *bh = sbi->s_lvid_bh;
2039         struct logicalVolIntegrityDesc *lvid;
2040         struct logicalVolIntegrityDescImpUse *lvidiu;
2041         struct timespec64 ts;
2042
2043         if (!bh)
2044                 return;
2045         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2046         lvidiu = udf_sb_lvidiu(sb);
2047         if (!lvidiu)
2048                 return;
2049
2050         mutex_lock(&sbi->s_alloc_mutex);
2051         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2052         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2053         ktime_get_real_ts64(&ts);
2054         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2055         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2056                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2057         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2058                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2059         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2060                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2061         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2062                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2063
2064         lvid->descTag.descCRC = cpu_to_le16(
2065                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2066                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2067
2068         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2069         /*
2070          * We set buffer uptodate unconditionally here to avoid spurious
2071          * warnings from mark_buffer_dirty() when previous EIO has marked
2072          * the buffer as !uptodate
2073          */
2074         set_buffer_uptodate(bh);
2075         mark_buffer_dirty(bh);
2076         sbi->s_lvid_dirty = 0;
2077         mutex_unlock(&sbi->s_alloc_mutex);
2078         /* Make closing of filesystem visible on the media immediately */
2079         sync_dirty_buffer(bh);
2080 }
2081
2082 u64 lvid_get_unique_id(struct super_block *sb)
2083 {
2084         struct buffer_head *bh;
2085         struct udf_sb_info *sbi = UDF_SB(sb);
2086         struct logicalVolIntegrityDesc *lvid;
2087         struct logicalVolHeaderDesc *lvhd;
2088         u64 uniqueID;
2089         u64 ret;
2090
2091         bh = sbi->s_lvid_bh;
2092         if (!bh)
2093                 return 0;
2094
2095         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2096         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2097
2098         mutex_lock(&sbi->s_alloc_mutex);
2099         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2100         if (!(++uniqueID & 0xFFFFFFFF))
2101                 uniqueID += 16;
2102         lvhd->uniqueID = cpu_to_le64(uniqueID);
2103         mutex_unlock(&sbi->s_alloc_mutex);
2104         mark_buffer_dirty(bh);
2105
2106         return ret;
2107 }
2108
2109 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2110 {
2111         int ret = -EINVAL;
2112         struct inode *inode = NULL;
2113         struct udf_options uopt;
2114         struct kernel_lb_addr rootdir, fileset;
2115         struct udf_sb_info *sbi;
2116         bool lvid_open = false;
2117
2118         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2119         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2120         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2121         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2122         uopt.umask = 0;
2123         uopt.fmode = UDF_INVALID_MODE;
2124         uopt.dmode = UDF_INVALID_MODE;
2125         uopt.nls_map = NULL;
2126
2127         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2128         if (!sbi)
2129                 return -ENOMEM;
2130
2131         sb->s_fs_info = sbi;
2132
2133         mutex_init(&sbi->s_alloc_mutex);
2134
2135         if (!udf_parse_options((char *)options, &uopt, false))
2136                 goto parse_options_failure;
2137
2138         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2139             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2140                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2141                 goto parse_options_failure;
2142         }
2143         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2144                 uopt.nls_map = load_nls_default();
2145                 if (!uopt.nls_map)
2146                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2147                 else
2148                         udf_debug("Using default NLS map\n");
2149         }
2150         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2151                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2152
2153         fileset.logicalBlockNum = 0xFFFFFFFF;
2154         fileset.partitionReferenceNum = 0xFFFF;
2155
2156         sbi->s_flags = uopt.flags;
2157         sbi->s_uid = uopt.uid;
2158         sbi->s_gid = uopt.gid;
2159         sbi->s_umask = uopt.umask;
2160         sbi->s_fmode = uopt.fmode;
2161         sbi->s_dmode = uopt.dmode;
2162         sbi->s_nls_map = uopt.nls_map;
2163         rwlock_init(&sbi->s_cred_lock);
2164
2165         if (uopt.session == 0xFFFFFFFF)
2166                 sbi->s_session = udf_get_last_session(sb);
2167         else
2168                 sbi->s_session = uopt.session;
2169
2170         udf_debug("Multi-session=%d\n", sbi->s_session);
2171
2172         /* Fill in the rest of the superblock */
2173         sb->s_op = &udf_sb_ops;
2174         sb->s_export_op = &udf_export_ops;
2175
2176         sb->s_magic = UDF_SUPER_MAGIC;
2177         sb->s_time_gran = 1000;
2178
2179         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2180                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2181         } else {
2182                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2183                 while (uopt.blocksize <= 4096) {
2184                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2185                         if (ret < 0) {
2186                                 if (!silent && ret != -EACCES) {
2187                                         pr_notice("Scanning with blocksize %u failed\n",
2188                                                   uopt.blocksize);
2189                                 }
2190                                 brelse(sbi->s_lvid_bh);
2191                                 sbi->s_lvid_bh = NULL;
2192                                 /*
2193                                  * EACCES is special - we want to propagate to
2194                                  * upper layers that we cannot handle RW mount.
2195                                  */
2196                                 if (ret == -EACCES)
2197                                         break;
2198                         } else
2199                                 break;
2200
2201                         uopt.blocksize <<= 1;
2202                 }
2203         }
2204         if (ret < 0) {
2205                 if (ret == -EAGAIN) {
2206                         udf_warn(sb, "No partition found (1)\n");
2207                         ret = -EINVAL;
2208                 }
2209                 goto error_out;
2210         }
2211
2212         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2213
2214         if (sbi->s_lvid_bh) {
2215                 struct logicalVolIntegrityDescImpUse *lvidiu =
2216                                                         udf_sb_lvidiu(sb);
2217                 uint16_t minUDFReadRev;
2218                 uint16_t minUDFWriteRev;
2219
2220                 if (!lvidiu) {
2221                         ret = -EINVAL;
2222                         goto error_out;
2223                 }
2224                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2225                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2226                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2227                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2228                                 minUDFReadRev,
2229                                 UDF_MAX_READ_VERSION);
2230                         ret = -EINVAL;
2231                         goto error_out;
2232                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2233                         if (!sb_rdonly(sb)) {
2234                                 ret = -EACCES;
2235                                 goto error_out;
2236                         }
2237                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2238                 }
2239
2240                 sbi->s_udfrev = minUDFWriteRev;
2241
2242                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2243                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2244                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2245                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2246         }
2247
2248         if (!sbi->s_partitions) {
2249                 udf_warn(sb, "No partition found (2)\n");
2250                 ret = -EINVAL;
2251                 goto error_out;
2252         }
2253
2254         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2255                         UDF_PART_FLAG_READ_ONLY) {
2256                 if (!sb_rdonly(sb)) {
2257                         ret = -EACCES;
2258                         goto error_out;
2259                 }
2260                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2261         }
2262
2263         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2264                 udf_warn(sb, "No fileset found\n");
2265                 ret = -EINVAL;
2266                 goto error_out;
2267         }
2268
2269         if (!silent) {
2270                 struct timestamp ts;
2271                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2272                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2273                          sbi->s_volume_ident,
2274                          le16_to_cpu(ts.year), ts.month, ts.day,
2275                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2276         }
2277         if (!sb_rdonly(sb)) {
2278                 udf_open_lvid(sb);
2279                 lvid_open = true;
2280         }
2281
2282         /* Assign the root inode */
2283         /* assign inodes by physical block number */
2284         /* perhaps it's not extensible enough, but for now ... */
2285         inode = udf_iget(sb, &rootdir);
2286         if (IS_ERR(inode)) {
2287                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2288                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2289                 ret = PTR_ERR(inode);
2290                 goto error_out;
2291         }
2292
2293         /* Allocate a dentry for the root inode */
2294         sb->s_root = d_make_root(inode);
2295         if (!sb->s_root) {
2296                 udf_err(sb, "Couldn't allocate root dentry\n");
2297                 ret = -ENOMEM;
2298                 goto error_out;
2299         }
2300         sb->s_maxbytes = MAX_LFS_FILESIZE;
2301         sb->s_max_links = UDF_MAX_LINKS;
2302         return 0;
2303
2304 error_out:
2305         iput(sbi->s_vat_inode);
2306 parse_options_failure:
2307         if (uopt.nls_map)
2308                 unload_nls(uopt.nls_map);
2309         if (lvid_open)
2310                 udf_close_lvid(sb);
2311         brelse(sbi->s_lvid_bh);
2312         udf_sb_free_partitions(sb);
2313         kfree(sbi);
2314         sb->s_fs_info = NULL;
2315
2316         return ret;
2317 }
2318
2319 void _udf_err(struct super_block *sb, const char *function,
2320               const char *fmt, ...)
2321 {
2322         struct va_format vaf;
2323         va_list args;
2324
2325         va_start(args, fmt);
2326
2327         vaf.fmt = fmt;
2328         vaf.va = &args;
2329
2330         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2331
2332         va_end(args);
2333 }
2334
2335 void _udf_warn(struct super_block *sb, const char *function,
2336                const char *fmt, ...)
2337 {
2338         struct va_format vaf;
2339         va_list args;
2340
2341         va_start(args, fmt);
2342
2343         vaf.fmt = fmt;
2344         vaf.va = &args;
2345
2346         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2347
2348         va_end(args);
2349 }
2350
2351 static void udf_put_super(struct super_block *sb)
2352 {
2353         struct udf_sb_info *sbi;
2354
2355         sbi = UDF_SB(sb);
2356
2357         iput(sbi->s_vat_inode);
2358         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2359                 unload_nls(sbi->s_nls_map);
2360         if (!sb_rdonly(sb))
2361                 udf_close_lvid(sb);
2362         brelse(sbi->s_lvid_bh);
2363         udf_sb_free_partitions(sb);
2364         mutex_destroy(&sbi->s_alloc_mutex);
2365         kfree(sb->s_fs_info);
2366         sb->s_fs_info = NULL;
2367 }
2368
2369 static int udf_sync_fs(struct super_block *sb, int wait)
2370 {
2371         struct udf_sb_info *sbi = UDF_SB(sb);
2372
2373         mutex_lock(&sbi->s_alloc_mutex);
2374         if (sbi->s_lvid_dirty) {
2375                 /*
2376                  * Blockdevice will be synced later so we don't have to submit
2377                  * the buffer for IO
2378                  */
2379                 mark_buffer_dirty(sbi->s_lvid_bh);
2380                 sbi->s_lvid_dirty = 0;
2381         }
2382         mutex_unlock(&sbi->s_alloc_mutex);
2383
2384         return 0;
2385 }
2386
2387 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2388 {
2389         struct super_block *sb = dentry->d_sb;
2390         struct udf_sb_info *sbi = UDF_SB(sb);
2391         struct logicalVolIntegrityDescImpUse *lvidiu;
2392         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2393
2394         lvidiu = udf_sb_lvidiu(sb);
2395         buf->f_type = UDF_SUPER_MAGIC;
2396         buf->f_bsize = sb->s_blocksize;
2397         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2398         buf->f_bfree = udf_count_free(sb);
2399         buf->f_bavail = buf->f_bfree;
2400         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2401                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2402                         + buf->f_bfree;
2403         buf->f_ffree = buf->f_bfree;
2404         buf->f_namelen = UDF_NAME_LEN;
2405         buf->f_fsid.val[0] = (u32)id;
2406         buf->f_fsid.val[1] = (u32)(id >> 32);
2407
2408         return 0;
2409 }
2410
2411 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2412                                           struct udf_bitmap *bitmap)
2413 {
2414         struct buffer_head *bh = NULL;
2415         unsigned int accum = 0;
2416         int index;
2417         udf_pblk_t block = 0, newblock;
2418         struct kernel_lb_addr loc;
2419         uint32_t bytes;
2420         uint8_t *ptr;
2421         uint16_t ident;
2422         struct spaceBitmapDesc *bm;
2423
2424         loc.logicalBlockNum = bitmap->s_extPosition;
2425         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2426         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2427
2428         if (!bh) {
2429                 udf_err(sb, "udf_count_free failed\n");
2430                 goto out;
2431         } else if (ident != TAG_IDENT_SBD) {
2432                 brelse(bh);
2433                 udf_err(sb, "udf_count_free failed\n");
2434                 goto out;
2435         }
2436
2437         bm = (struct spaceBitmapDesc *)bh->b_data;
2438         bytes = le32_to_cpu(bm->numOfBytes);
2439         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2440         ptr = (uint8_t *)bh->b_data;
2441
2442         while (bytes > 0) {
2443                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2444                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2445                                         cur_bytes * 8);
2446                 bytes -= cur_bytes;
2447                 if (bytes) {
2448                         brelse(bh);
2449                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2450                         bh = udf_tread(sb, newblock);
2451                         if (!bh) {
2452                                 udf_debug("read failed\n");
2453                                 goto out;
2454                         }
2455                         index = 0;
2456                         ptr = (uint8_t *)bh->b_data;
2457                 }
2458         }
2459         brelse(bh);
2460 out:
2461         return accum;
2462 }
2463
2464 static unsigned int udf_count_free_table(struct super_block *sb,
2465                                          struct inode *table)
2466 {
2467         unsigned int accum = 0;
2468         uint32_t elen;
2469         struct kernel_lb_addr eloc;
2470         int8_t etype;
2471         struct extent_position epos;
2472
2473         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2474         epos.block = UDF_I(table)->i_location;
2475         epos.offset = sizeof(struct unallocSpaceEntry);
2476         epos.bh = NULL;
2477
2478         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2479                 accum += (elen >> table->i_sb->s_blocksize_bits);
2480
2481         brelse(epos.bh);
2482         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2483
2484         return accum;
2485 }
2486
2487 static unsigned int udf_count_free(struct super_block *sb)
2488 {
2489         unsigned int accum = 0;
2490         struct udf_sb_info *sbi = UDF_SB(sb);
2491         struct udf_part_map *map;
2492         unsigned int part = sbi->s_partition;
2493         int ptype = sbi->s_partmaps[part].s_partition_type;
2494
2495         if (ptype == UDF_METADATA_MAP25) {
2496                 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2497                                                         s_phys_partition_ref;
2498         } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2499                 /*
2500                  * Filesystems with VAT are append-only and we cannot write to
2501                  * them. Let's just report 0 here.
2502                  */
2503                 return 0;
2504         }
2505
2506         if (sbi->s_lvid_bh) {
2507                 struct logicalVolIntegrityDesc *lvid =
2508                         (struct logicalVolIntegrityDesc *)
2509                         sbi->s_lvid_bh->b_data;
2510                 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2511                         accum = le32_to_cpu(
2512                                         lvid->freeSpaceTable[part]);
2513                         if (accum == 0xFFFFFFFF)
2514                                 accum = 0;
2515                 }
2516         }
2517
2518         if (accum)
2519                 return accum;
2520
2521         map = &sbi->s_partmaps[part];
2522         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2523                 accum += udf_count_free_bitmap(sb,
2524                                                map->s_uspace.s_bitmap);
2525         }
2526         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2527                 accum += udf_count_free_bitmap(sb,
2528                                                map->s_fspace.s_bitmap);
2529         }
2530         if (accum)
2531                 return accum;
2532
2533         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2534                 accum += udf_count_free_table(sb,
2535                                               map->s_uspace.s_table);
2536         }
2537         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2538                 accum += udf_count_free_table(sb,
2539                                               map->s_fspace.s_table);
2540         }
2541
2542         return accum;
2543 }
2544
2545 MODULE_AUTHOR("Ben Fennema");
2546 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2547 MODULE_LICENSE("GPL");
2548 module_init(init_udf_fs)
2549 module_exit(exit_udf_fs)