5 * Super block routines for the OSTA-UDF(tm) filesystem.
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * https://www.ecma.ch/
15 * https://www.iso.org/
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 #include <linux/iversion.h>
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
69 VDS_POS_PRIMARY_VOL_DESC,
70 VDS_POS_UNALLOC_SPACE_DESC,
71 VDS_POS_LOGICAL_VOL_DESC,
72 VDS_POS_IMP_USE_VOL_DESC,
76 #define VSD_FIRST_SECTOR_OFFSET 32768
77 #define VSD_MAX_SECTOR_OFFSET 0x800000
80 * Maximum number of Terminating Descriptor / Logical Volume Integrity
81 * Descriptor redirections. The chosen numbers are arbitrary - just that we
82 * hopefully don't limit any real use of rewritten inode on write-once media
83 * but avoid looping for too long on corrupted media.
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
88 enum { UDF_MAX_LINKS = 0xffff };
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static void udf_open_lvid(struct super_block *);
97 static void udf_close_lvid(struct super_block *);
98 static unsigned int udf_count_free(struct super_block *);
99 static int udf_statfs(struct dentry *, struct kstatfs *);
100 static int udf_show_options(struct seq_file *, struct dentry *);
102 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
104 struct logicalVolIntegrityDesc *lvid;
105 unsigned int partnum;
108 if (!UDF_SB(sb)->s_lvid_bh)
110 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
111 partnum = le32_to_cpu(lvid->numOfPartitions);
112 /* The offset is to skip freeSpaceTable and sizeTable arrays */
113 offset = partnum * 2 * sizeof(uint32_t);
114 return (struct logicalVolIntegrityDescImpUse *)
115 (((uint8_t *)(lvid + 1)) + offset);
118 /* UDF filesystem type */
119 static struct dentry *udf_mount(struct file_system_type *fs_type,
120 int flags, const char *dev_name, void *data)
122 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
125 static struct file_system_type udf_fstype = {
126 .owner = THIS_MODULE,
129 .kill_sb = kill_block_super,
130 .fs_flags = FS_REQUIRES_DEV,
132 MODULE_ALIAS_FS("udf");
134 static struct kmem_cache *udf_inode_cachep;
136 static struct inode *udf_alloc_inode(struct super_block *sb)
138 struct udf_inode_info *ei;
139 ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
144 ei->i_lenExtents = 0;
145 ei->i_lenStreams = 0;
146 ei->i_next_alloc_block = 0;
147 ei->i_next_alloc_goal = 0;
150 init_rwsem(&ei->i_data_sem);
151 ei->cached_extent.lstart = -1;
152 spin_lock_init(&ei->i_extent_cache_lock);
153 inode_set_iversion(&ei->vfs_inode, 1);
155 return &ei->vfs_inode;
158 static void udf_free_in_core_inode(struct inode *inode)
160 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
163 static void init_once(void *foo)
165 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
168 inode_init_once(&ei->vfs_inode);
171 static int __init init_inodecache(void)
173 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
174 sizeof(struct udf_inode_info),
175 0, (SLAB_RECLAIM_ACCOUNT |
179 if (!udf_inode_cachep)
184 static void destroy_inodecache(void)
187 * Make sure all delayed rcu free inodes are flushed before we
191 kmem_cache_destroy(udf_inode_cachep);
194 /* Superblock operations */
195 static const struct super_operations udf_sb_ops = {
196 .alloc_inode = udf_alloc_inode,
197 .free_inode = udf_free_in_core_inode,
198 .write_inode = udf_write_inode,
199 .evict_inode = udf_evict_inode,
200 .put_super = udf_put_super,
201 .sync_fs = udf_sync_fs,
202 .statfs = udf_statfs,
203 .remount_fs = udf_remount_fs,
204 .show_options = udf_show_options,
209 unsigned int blocksize;
210 unsigned int session;
211 unsigned int lastblock;
219 struct nls_table *nls_map;
222 static int __init init_udf_fs(void)
226 err = init_inodecache();
229 err = register_filesystem(&udf_fstype);
236 destroy_inodecache();
242 static void __exit exit_udf_fs(void)
244 unregister_filesystem(&udf_fstype);
245 destroy_inodecache();
248 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
250 struct udf_sb_info *sbi = UDF_SB(sb);
252 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
253 if (!sbi->s_partmaps) {
254 sbi->s_partitions = 0;
258 sbi->s_partitions = count;
262 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
265 int nr_groups = bitmap->s_nr_groups;
267 for (i = 0; i < nr_groups; i++)
268 brelse(bitmap->s_block_bitmap[i]);
273 static void udf_free_partition(struct udf_part_map *map)
276 struct udf_meta_data *mdata;
278 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
279 iput(map->s_uspace.s_table);
280 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
281 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
282 if (map->s_partition_type == UDF_SPARABLE_MAP15)
283 for (i = 0; i < 4; i++)
284 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
285 else if (map->s_partition_type == UDF_METADATA_MAP25) {
286 mdata = &map->s_type_specific.s_metadata;
287 iput(mdata->s_metadata_fe);
288 mdata->s_metadata_fe = NULL;
290 iput(mdata->s_mirror_fe);
291 mdata->s_mirror_fe = NULL;
293 iput(mdata->s_bitmap_fe);
294 mdata->s_bitmap_fe = NULL;
298 static void udf_sb_free_partitions(struct super_block *sb)
300 struct udf_sb_info *sbi = UDF_SB(sb);
303 if (!sbi->s_partmaps)
305 for (i = 0; i < sbi->s_partitions; i++)
306 udf_free_partition(&sbi->s_partmaps[i]);
307 kfree(sbi->s_partmaps);
308 sbi->s_partmaps = NULL;
311 static int udf_show_options(struct seq_file *seq, struct dentry *root)
313 struct super_block *sb = root->d_sb;
314 struct udf_sb_info *sbi = UDF_SB(sb);
316 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
317 seq_puts(seq, ",nostrict");
318 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
319 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
320 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
321 seq_puts(seq, ",unhide");
322 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
323 seq_puts(seq, ",undelete");
324 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
325 seq_puts(seq, ",noadinicb");
326 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
327 seq_puts(seq, ",shortad");
328 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
329 seq_puts(seq, ",uid=forget");
330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
331 seq_puts(seq, ",gid=forget");
332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
333 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
334 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
335 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
336 if (sbi->s_umask != 0)
337 seq_printf(seq, ",umask=%ho", sbi->s_umask);
338 if (sbi->s_fmode != UDF_INVALID_MODE)
339 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
340 if (sbi->s_dmode != UDF_INVALID_MODE)
341 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
343 seq_printf(seq, ",session=%d", sbi->s_session);
344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
345 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
346 if (sbi->s_anchor != 0)
347 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
349 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
351 seq_puts(seq, ",iocharset=utf8");
360 * Parse mount options.
363 * The following mount options are supported:
365 * gid= Set the default group.
366 * umask= Set the default umask.
367 * mode= Set the default file permissions.
368 * dmode= Set the default directory permissions.
369 * uid= Set the default user.
370 * bs= Set the block size.
371 * unhide Show otherwise hidden files.
372 * undelete Show deleted files in lists.
373 * adinicb Embed data in the inode (default)
374 * noadinicb Don't embed data in the inode
375 * shortad Use short ad's
376 * longad Use long ad's (default)
377 * nostrict Unset strict conformance
378 * iocharset= Set the NLS character set
380 * The remaining are for debugging and disaster recovery:
382 * novrs Skip volume sequence recognition
384 * The following expect a offset from 0.
386 * session= Set the CDROM session (default= last session)
387 * anchor= Override standard anchor location. (default= 256)
388 * volume= Override the VolumeDesc location. (unused)
389 * partition= Override the PartitionDesc location. (unused)
390 * lastblock= Set the last block of the filesystem/
392 * The following expect a offset from the partition root.
394 * fileset= Override the fileset block location. (unused)
395 * rootdir= Override the root directory location. (unused)
396 * WARNING: overriding the rootdir to a non-directory may
397 * yield highly unpredictable results.
400 * options Pointer to mount options string.
401 * uopts Pointer to mount options variable.
404 * <return> 1 Mount options parsed okay.
405 * <return> 0 Error parsing mount options.
408 * July 1, 1997 - Andrew E. Mileski
409 * Written, tested, and released.
413 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
414 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
415 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
416 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
417 Opt_rootdir, Opt_utf8, Opt_iocharset,
418 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
422 static const match_table_t tokens = {
423 {Opt_novrs, "novrs"},
424 {Opt_nostrict, "nostrict"},
426 {Opt_unhide, "unhide"},
427 {Opt_undelete, "undelete"},
428 {Opt_noadinicb, "noadinicb"},
429 {Opt_adinicb, "adinicb"},
430 {Opt_shortad, "shortad"},
431 {Opt_longad, "longad"},
432 {Opt_uforget, "uid=forget"},
433 {Opt_uignore, "uid=ignore"},
434 {Opt_gforget, "gid=forget"},
435 {Opt_gignore, "gid=ignore"},
438 {Opt_umask, "umask=%o"},
439 {Opt_session, "session=%u"},
440 {Opt_lastblock, "lastblock=%u"},
441 {Opt_anchor, "anchor=%u"},
442 {Opt_volume, "volume=%u"},
443 {Opt_partition, "partition=%u"},
444 {Opt_fileset, "fileset=%u"},
445 {Opt_rootdir, "rootdir=%u"},
447 {Opt_iocharset, "iocharset=%s"},
448 {Opt_fmode, "mode=%o"},
449 {Opt_dmode, "dmode=%o"},
453 static int udf_parse_options(char *options, struct udf_options *uopt,
461 uopt->session = 0xFFFFFFFF;
468 while ((p = strsep(&options, ",")) != NULL) {
469 substring_t args[MAX_OPT_ARGS];
475 token = match_token(p, tokens, args);
481 if (match_int(&args[0], &option))
484 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
487 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
490 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
493 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
496 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
499 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
502 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
505 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
508 if (match_uint(args, &uv))
510 uopt->gid = make_kgid(current_user_ns(), uv);
511 if (!gid_valid(uopt->gid))
513 uopt->flags |= (1 << UDF_FLAG_GID_SET);
516 if (match_uint(args, &uv))
518 uopt->uid = make_kuid(current_user_ns(), uv);
519 if (!uid_valid(uopt->uid))
521 uopt->flags |= (1 << UDF_FLAG_UID_SET);
524 if (match_octal(args, &option))
526 uopt->umask = option;
529 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
532 if (match_int(args, &option))
534 uopt->session = option;
536 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
539 if (match_int(args, &option))
541 uopt->lastblock = option;
543 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
546 if (match_int(args, &option))
548 uopt->anchor = option;
554 /* Ignored (never implemented properly) */
558 unload_nls(uopt->nls_map);
559 uopt->nls_map = NULL;
564 unload_nls(uopt->nls_map);
565 uopt->nls_map = NULL;
567 /* When nls_map is not loaded then UTF-8 is used */
568 if (!remount && strcmp(args[0].from, "utf8") != 0) {
569 uopt->nls_map = load_nls(args[0].from);
570 if (!uopt->nls_map) {
571 pr_err("iocharset %s not found\n",
578 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
582 /* These options are superseeded by uid=<number> */
585 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
588 if (match_octal(args, &option))
590 uopt->fmode = option & 0777;
593 if (match_octal(args, &option))
595 uopt->dmode = option & 0777;
598 pr_err("bad mount option \"%s\" or missing value\n", p);
605 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
607 struct udf_options uopt;
608 struct udf_sb_info *sbi = UDF_SB(sb);
611 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
616 uopt.flags = sbi->s_flags;
617 uopt.uid = sbi->s_uid;
618 uopt.gid = sbi->s_gid;
619 uopt.umask = sbi->s_umask;
620 uopt.fmode = sbi->s_fmode;
621 uopt.dmode = sbi->s_dmode;
624 if (!udf_parse_options(options, &uopt, true))
627 write_lock(&sbi->s_cred_lock);
628 sbi->s_flags = uopt.flags;
629 sbi->s_uid = uopt.uid;
630 sbi->s_gid = uopt.gid;
631 sbi->s_umask = uopt.umask;
632 sbi->s_fmode = uopt.fmode;
633 sbi->s_dmode = uopt.dmode;
634 write_unlock(&sbi->s_cred_lock);
636 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
639 if (*flags & SB_RDONLY)
649 * Check VSD descriptor. Returns -1 in case we are at the end of volume
650 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
651 * we found one of NSR descriptors we are looking for.
653 static int identify_vsd(const struct volStructDesc *vsd)
657 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
658 switch (vsd->structType) {
660 udf_debug("ISO9660 Boot Record found\n");
663 udf_debug("ISO9660 Primary Volume Descriptor found\n");
666 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
669 udf_debug("ISO9660 Volume Partition Descriptor found\n");
672 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
675 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
678 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
680 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
682 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
684 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
686 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
689 /* TEA01 or invalid id : end of volume recognition area */
697 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
698 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
699 * @return 1 if NSR02 or NSR03 found,
700 * -1 if first sector read error, 0 otherwise
702 static int udf_check_vsd(struct super_block *sb)
704 struct volStructDesc *vsd = NULL;
705 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
707 struct buffer_head *bh = NULL;
709 struct udf_sb_info *sbi;
710 loff_t session_offset;
713 if (sb->s_blocksize < sizeof(struct volStructDesc))
714 sectorsize = sizeof(struct volStructDesc);
716 sectorsize = sb->s_blocksize;
718 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
719 sector += session_offset;
721 udf_debug("Starting at sector %u (%lu byte sectors)\n",
722 (unsigned int)(sector >> sb->s_blocksize_bits),
724 /* Process the sequence (if applicable). The hard limit on the sector
725 * offset is arbitrary, hopefully large enough so that all valid UDF
726 * filesystems will be recognised. There is no mention of an upper
727 * bound to the size of the volume recognition area in the standard.
728 * The limit will prevent the code to read all the sectors of a
729 * specially crafted image (like a bluray disc full of CD001 sectors),
730 * potentially causing minutes or even hours of uninterruptible I/O
731 * activity. This actually happened with uninitialised SSD partitions
732 * (all 0xFF) before the check for the limit and all valid IDs were
734 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
736 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
740 vsd = (struct volStructDesc *)(bh->b_data +
741 (sector & (sb->s_blocksize - 1)));
742 nsr = identify_vsd(vsd);
743 /* Found NSR or end? */
749 * Special handling for improperly formatted VRS (e.g., Win10)
750 * where components are separated by 2048 bytes even though
753 if (sb->s_blocksize == 4096) {
754 nsr = identify_vsd(vsd + 1);
755 /* Ignore unknown IDs... */
764 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
770 static int udf_verify_domain_identifier(struct super_block *sb,
771 struct regid *ident, char *dname)
773 struct domainIdentSuffix *suffix;
775 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
776 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
779 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
780 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
784 suffix = (struct domainIdentSuffix *)ident->identSuffix;
785 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
786 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
787 if (!sb_rdonly(sb)) {
788 udf_warn(sb, "Descriptor for %s marked write protected."
789 " Forcing read only mount.\n", dname);
798 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
802 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
803 struct kernel_lb_addr *root)
807 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
811 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
812 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
814 udf_debug("Rootdir at block=%u, partition=%u\n",
815 root->logicalBlockNum, root->partitionReferenceNum);
819 static int udf_find_fileset(struct super_block *sb,
820 struct kernel_lb_addr *fileset,
821 struct kernel_lb_addr *root)
823 struct buffer_head *bh = NULL;
827 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
828 fileset->partitionReferenceNum == 0xFFFF)
831 bh = udf_read_ptagged(sb, fileset, 0, &ident);
834 if (ident != TAG_IDENT_FSD) {
839 udf_debug("Fileset at block=%u, partition=%u\n",
840 fileset->logicalBlockNum, fileset->partitionReferenceNum);
842 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
843 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
849 * Load primary Volume Descriptor Sequence
851 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
854 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
856 struct primaryVolDesc *pvoldesc;
858 struct buffer_head *bh;
861 struct timestamp *ts;
863 outstr = kmalloc(128, GFP_NOFS);
867 bh = udf_read_tagged(sb, block, block, &ident);
873 if (ident != TAG_IDENT_PVD) {
878 pvoldesc = (struct primaryVolDesc *)bh->b_data;
880 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
881 pvoldesc->recordingDateAndTime);
882 ts = &pvoldesc->recordingDateAndTime;
883 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
884 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
885 ts->minute, le16_to_cpu(ts->typeAndTimezone));
887 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
889 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
890 pr_warn("incorrect volume identification, setting to "
893 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
895 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
897 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
903 udf_debug("volSetIdent[] = '%s'\n", outstr);
913 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
914 u32 meta_file_loc, u32 partition_ref)
916 struct kernel_lb_addr addr;
917 struct inode *metadata_fe;
919 addr.logicalBlockNum = meta_file_loc;
920 addr.partitionReferenceNum = partition_ref;
922 metadata_fe = udf_iget_special(sb, &addr);
924 if (IS_ERR(metadata_fe)) {
925 udf_warn(sb, "metadata inode efe not found\n");
928 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
929 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
931 return ERR_PTR(-EIO);
937 static int udf_load_metadata_files(struct super_block *sb, int partition,
940 struct udf_sb_info *sbi = UDF_SB(sb);
941 struct udf_part_map *map;
942 struct udf_meta_data *mdata;
943 struct kernel_lb_addr addr;
946 map = &sbi->s_partmaps[partition];
947 mdata = &map->s_type_specific.s_metadata;
948 mdata->s_phys_partition_ref = type1_index;
950 /* metadata address */
951 udf_debug("Metadata file location: block = %u part = %u\n",
952 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
954 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
955 mdata->s_phys_partition_ref);
957 /* mirror file entry */
958 udf_debug("Mirror metadata file location: block = %u part = %u\n",
959 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
961 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
962 mdata->s_phys_partition_ref);
965 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
968 mdata->s_mirror_fe = fe;
970 mdata->s_metadata_fe = fe;
976 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
978 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
979 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
980 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
982 udf_debug("Bitmap file location: block = %u part = %u\n",
983 addr.logicalBlockNum, addr.partitionReferenceNum);
985 fe = udf_iget_special(sb, &addr);
988 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
990 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
994 mdata->s_bitmap_fe = fe;
997 udf_debug("udf_load_metadata_files Ok\n");
1001 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1003 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1004 return DIV_ROUND_UP(map->s_partition_len +
1005 (sizeof(struct spaceBitmapDesc) << 3),
1006 sb->s_blocksize * 8);
1009 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1011 struct udf_bitmap *bitmap;
1012 int nr_groups = udf_compute_nr_groups(sb, index);
1014 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1019 bitmap->s_nr_groups = nr_groups;
1023 static int check_partition_desc(struct super_block *sb,
1024 struct partitionDesc *p,
1025 struct udf_part_map *map)
1027 bool umap, utable, fmap, ftable;
1028 struct partitionHeaderDesc *phd;
1030 switch (le32_to_cpu(p->accessType)) {
1031 case PD_ACCESS_TYPE_READ_ONLY:
1032 case PD_ACCESS_TYPE_WRITE_ONCE:
1033 case PD_ACCESS_TYPE_NONE:
1037 /* No Partition Header Descriptor? */
1038 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1039 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1042 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1043 utable = phd->unallocSpaceTable.extLength;
1044 umap = phd->unallocSpaceBitmap.extLength;
1045 ftable = phd->freedSpaceTable.extLength;
1046 fmap = phd->freedSpaceBitmap.extLength;
1048 /* No allocation info? */
1049 if (!utable && !umap && !ftable && !fmap)
1052 /* We don't support blocks that require erasing before overwrite */
1055 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1059 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1060 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1061 map->s_partition_type == UDF_METADATA_MAP25)
1068 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1072 static int udf_fill_partdesc_info(struct super_block *sb,
1073 struct partitionDesc *p, int p_index)
1075 struct udf_part_map *map;
1076 struct udf_sb_info *sbi = UDF_SB(sb);
1077 struct partitionHeaderDesc *phd;
1080 map = &sbi->s_partmaps[p_index];
1082 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1083 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1085 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1086 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1087 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1088 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1089 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1090 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1091 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1092 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1094 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1095 p_index, map->s_partition_type,
1096 map->s_partition_root, map->s_partition_len);
1098 err = check_partition_desc(sb, p, map);
1103 * Skip loading allocation info it we cannot ever write to the fs.
1104 * This is a correctness thing as we may have decided to force ro mount
1105 * to avoid allocation info we don't support.
1107 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1110 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1111 if (phd->unallocSpaceTable.extLength) {
1112 struct kernel_lb_addr loc = {
1113 .logicalBlockNum = le32_to_cpu(
1114 phd->unallocSpaceTable.extPosition),
1115 .partitionReferenceNum = p_index,
1117 struct inode *inode;
1119 inode = udf_iget_special(sb, &loc);
1120 if (IS_ERR(inode)) {
1121 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1123 return PTR_ERR(inode);
1125 map->s_uspace.s_table = inode;
1126 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1127 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1128 p_index, map->s_uspace.s_table->i_ino);
1131 if (phd->unallocSpaceBitmap.extLength) {
1132 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1135 map->s_uspace.s_bitmap = bitmap;
1136 bitmap->s_extPosition = le32_to_cpu(
1137 phd->unallocSpaceBitmap.extPosition);
1138 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1139 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1140 p_index, bitmap->s_extPosition);
1146 static void udf_find_vat_block(struct super_block *sb, int p_index,
1147 int type1_index, sector_t start_block)
1149 struct udf_sb_info *sbi = UDF_SB(sb);
1150 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1152 struct kernel_lb_addr ino;
1153 struct inode *inode;
1156 * VAT file entry is in the last recorded block. Some broken disks have
1157 * it a few blocks before so try a bit harder...
1159 ino.partitionReferenceNum = type1_index;
1160 for (vat_block = start_block;
1161 vat_block >= map->s_partition_root &&
1162 vat_block >= start_block - 3; vat_block--) {
1163 ino.logicalBlockNum = vat_block - map->s_partition_root;
1164 inode = udf_iget_special(sb, &ino);
1165 if (!IS_ERR(inode)) {
1166 sbi->s_vat_inode = inode;
1172 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1174 struct udf_sb_info *sbi = UDF_SB(sb);
1175 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1176 struct buffer_head *bh = NULL;
1177 struct udf_inode_info *vati;
1179 struct virtualAllocationTable20 *vat20;
1180 sector_t blocks = sb_bdev_nr_blocks(sb);
1182 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1183 if (!sbi->s_vat_inode &&
1184 sbi->s_last_block != blocks - 1) {
1185 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1186 (unsigned long)sbi->s_last_block,
1187 (unsigned long)blocks - 1);
1188 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1190 if (!sbi->s_vat_inode)
1193 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1194 map->s_type_specific.s_virtual.s_start_offset = 0;
1195 map->s_type_specific.s_virtual.s_num_entries =
1196 (sbi->s_vat_inode->i_size - 36) >> 2;
1197 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1198 vati = UDF_I(sbi->s_vat_inode);
1199 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1200 pos = udf_block_map(sbi->s_vat_inode, 0);
1201 bh = sb_bread(sb, pos);
1204 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1206 vat20 = (struct virtualAllocationTable20 *)
1210 map->s_type_specific.s_virtual.s_start_offset =
1211 le16_to_cpu(vat20->lengthHeader);
1212 map->s_type_specific.s_virtual.s_num_entries =
1213 (sbi->s_vat_inode->i_size -
1214 map->s_type_specific.s_virtual.
1215 s_start_offset) >> 2;
1222 * Load partition descriptor block
1224 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1227 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1229 struct buffer_head *bh;
1230 struct partitionDesc *p;
1231 struct udf_part_map *map;
1232 struct udf_sb_info *sbi = UDF_SB(sb);
1234 uint16_t partitionNumber;
1238 bh = udf_read_tagged(sb, block, block, &ident);
1241 if (ident != TAG_IDENT_PD) {
1246 p = (struct partitionDesc *)bh->b_data;
1247 partitionNumber = le16_to_cpu(p->partitionNumber);
1249 /* First scan for TYPE1 and SPARABLE partitions */
1250 for (i = 0; i < sbi->s_partitions; i++) {
1251 map = &sbi->s_partmaps[i];
1252 udf_debug("Searching map: (%u == %u)\n",
1253 map->s_partition_num, partitionNumber);
1254 if (map->s_partition_num == partitionNumber &&
1255 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1256 map->s_partition_type == UDF_SPARABLE_MAP15))
1260 if (i >= sbi->s_partitions) {
1261 udf_debug("Partition (%u) not found in partition map\n",
1267 ret = udf_fill_partdesc_info(sb, p, i);
1272 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1273 * PHYSICAL partitions are already set up
1276 map = NULL; /* supress 'maybe used uninitialized' warning */
1277 for (i = 0; i < sbi->s_partitions; i++) {
1278 map = &sbi->s_partmaps[i];
1280 if (map->s_partition_num == partitionNumber &&
1281 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1282 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1283 map->s_partition_type == UDF_METADATA_MAP25))
1287 if (i >= sbi->s_partitions) {
1292 ret = udf_fill_partdesc_info(sb, p, i);
1296 if (map->s_partition_type == UDF_METADATA_MAP25) {
1297 ret = udf_load_metadata_files(sb, i, type1_idx);
1299 udf_err(sb, "error loading MetaData partition map %d\n",
1305 * If we have a partition with virtual map, we don't handle
1306 * writing to it (we overwrite blocks instead of relocating
1309 if (!sb_rdonly(sb)) {
1313 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1314 ret = udf_load_vat(sb, i, type1_idx);
1320 /* In case loading failed, we handle cleanup in udf_fill_super */
1325 static int udf_load_sparable_map(struct super_block *sb,
1326 struct udf_part_map *map,
1327 struct sparablePartitionMap *spm)
1331 struct sparingTable *st;
1332 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1334 struct buffer_head *bh;
1336 map->s_partition_type = UDF_SPARABLE_MAP15;
1337 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1338 if (!is_power_of_2(sdata->s_packet_len)) {
1339 udf_err(sb, "error loading logical volume descriptor: "
1340 "Invalid packet length %u\n",
1341 (unsigned)sdata->s_packet_len);
1344 if (spm->numSparingTables > 4) {
1345 udf_err(sb, "error loading logical volume descriptor: "
1346 "Too many sparing tables (%d)\n",
1347 (int)spm->numSparingTables);
1350 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1351 udf_err(sb, "error loading logical volume descriptor: "
1352 "Too big sparing table size (%u)\n",
1353 le32_to_cpu(spm->sizeSparingTable));
1357 for (i = 0; i < spm->numSparingTables; i++) {
1358 loc = le32_to_cpu(spm->locSparingTable[i]);
1359 bh = udf_read_tagged(sb, loc, loc, &ident);
1363 st = (struct sparingTable *)bh->b_data;
1365 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1366 strlen(UDF_ID_SPARING)) ||
1367 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1373 sdata->s_spar_map[i] = bh;
1375 map->s_partition_func = udf_get_pblock_spar15;
1379 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1380 struct kernel_lb_addr *fileset)
1382 struct logicalVolDesc *lvd;
1385 struct udf_sb_info *sbi = UDF_SB(sb);
1386 struct genericPartitionMap *gpm;
1388 struct buffer_head *bh;
1389 unsigned int table_len;
1392 bh = udf_read_tagged(sb, block, block, &ident);
1395 BUG_ON(ident != TAG_IDENT_LVD);
1396 lvd = (struct logicalVolDesc *)bh->b_data;
1397 table_len = le32_to_cpu(lvd->mapTableLength);
1398 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1399 udf_err(sb, "error loading logical volume descriptor: "
1400 "Partition table too long (%u > %lu)\n", table_len,
1401 sb->s_blocksize - sizeof(*lvd));
1406 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1410 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1414 for (i = 0, offset = 0;
1415 i < sbi->s_partitions && offset < table_len;
1416 i++, offset += gpm->partitionMapLength) {
1417 struct udf_part_map *map = &sbi->s_partmaps[i];
1418 gpm = (struct genericPartitionMap *)
1419 &(lvd->partitionMaps[offset]);
1420 type = gpm->partitionMapType;
1422 struct genericPartitionMap1 *gpm1 =
1423 (struct genericPartitionMap1 *)gpm;
1424 map->s_partition_type = UDF_TYPE1_MAP15;
1425 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1426 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1427 map->s_partition_func = NULL;
1428 } else if (type == 2) {
1429 struct udfPartitionMap2 *upm2 =
1430 (struct udfPartitionMap2 *)gpm;
1431 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1432 strlen(UDF_ID_VIRTUAL))) {
1434 le16_to_cpu(((__le16 *)upm2->partIdent.
1437 map->s_partition_type =
1439 map->s_partition_func =
1440 udf_get_pblock_virt15;
1442 map->s_partition_type =
1444 map->s_partition_func =
1445 udf_get_pblock_virt20;
1447 } else if (!strncmp(upm2->partIdent.ident,
1449 strlen(UDF_ID_SPARABLE))) {
1450 ret = udf_load_sparable_map(sb, map,
1451 (struct sparablePartitionMap *)gpm);
1454 } else if (!strncmp(upm2->partIdent.ident,
1456 strlen(UDF_ID_METADATA))) {
1457 struct udf_meta_data *mdata =
1458 &map->s_type_specific.s_metadata;
1459 struct metadataPartitionMap *mdm =
1460 (struct metadataPartitionMap *)
1461 &(lvd->partitionMaps[offset]);
1462 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1463 i, type, UDF_ID_METADATA);
1465 map->s_partition_type = UDF_METADATA_MAP25;
1466 map->s_partition_func = udf_get_pblock_meta25;
1468 mdata->s_meta_file_loc =
1469 le32_to_cpu(mdm->metadataFileLoc);
1470 mdata->s_mirror_file_loc =
1471 le32_to_cpu(mdm->metadataMirrorFileLoc);
1472 mdata->s_bitmap_file_loc =
1473 le32_to_cpu(mdm->metadataBitmapFileLoc);
1474 mdata->s_alloc_unit_size =
1475 le32_to_cpu(mdm->allocUnitSize);
1476 mdata->s_align_unit_size =
1477 le16_to_cpu(mdm->alignUnitSize);
1478 if (mdm->flags & 0x01)
1479 mdata->s_flags |= MF_DUPLICATE_MD;
1481 udf_debug("Metadata Ident suffix=0x%x\n",
1482 le16_to_cpu(*(__le16 *)
1483 mdm->partIdent.identSuffix));
1484 udf_debug("Metadata part num=%u\n",
1485 le16_to_cpu(mdm->partitionNum));
1486 udf_debug("Metadata part alloc unit size=%u\n",
1487 le32_to_cpu(mdm->allocUnitSize));
1488 udf_debug("Metadata file loc=%u\n",
1489 le32_to_cpu(mdm->metadataFileLoc));
1490 udf_debug("Mirror file loc=%u\n",
1491 le32_to_cpu(mdm->metadataMirrorFileLoc));
1492 udf_debug("Bitmap file loc=%u\n",
1493 le32_to_cpu(mdm->metadataBitmapFileLoc));
1494 udf_debug("Flags: %d %u\n",
1495 mdata->s_flags, mdm->flags);
1497 udf_debug("Unknown ident: %s\n",
1498 upm2->partIdent.ident);
1501 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1502 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1504 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1505 i, map->s_partition_num, type, map->s_volumeseqnum);
1509 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1511 *fileset = lelb_to_cpu(la->extLocation);
1512 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1513 fileset->logicalBlockNum,
1514 fileset->partitionReferenceNum);
1516 if (lvd->integritySeqExt.extLength)
1517 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1520 if (!sbi->s_lvid_bh) {
1521 /* We can't generate unique IDs without a valid LVID */
1522 if (sb_rdonly(sb)) {
1523 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1525 udf_warn(sb, "Damaged or missing LVID, forcing "
1526 "readonly mount\n");
1536 * Find the prevailing Logical Volume Integrity Descriptor.
1538 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1540 struct buffer_head *bh, *final_bh;
1542 struct udf_sb_info *sbi = UDF_SB(sb);
1543 struct logicalVolIntegrityDesc *lvid;
1544 int indirections = 0;
1545 u32 parts, impuselen;
1547 while (++indirections <= UDF_MAX_LVID_NESTING) {
1549 while (loc.extLength > 0 &&
1550 (bh = udf_read_tagged(sb, loc.extLocation,
1551 loc.extLocation, &ident))) {
1552 if (ident != TAG_IDENT_LVID) {
1560 loc.extLength -= sb->s_blocksize;
1567 brelse(sbi->s_lvid_bh);
1568 sbi->s_lvid_bh = final_bh;
1570 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1571 if (lvid->nextIntegrityExt.extLength == 0)
1574 loc = leea_to_cpu(lvid->nextIntegrityExt);
1577 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1578 UDF_MAX_LVID_NESTING);
1580 brelse(sbi->s_lvid_bh);
1581 sbi->s_lvid_bh = NULL;
1584 parts = le32_to_cpu(lvid->numOfPartitions);
1585 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1586 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1587 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1588 2 * parts * sizeof(u32) > sb->s_blocksize) {
1589 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1590 "ignoring.\n", parts, impuselen);
1596 * Step for reallocation of table of partition descriptor sequence numbers.
1597 * Must be power of 2.
1599 #define PART_DESC_ALLOC_STEP 32
1601 struct part_desc_seq_scan_data {
1602 struct udf_vds_record rec;
1606 struct desc_seq_scan_data {
1607 struct udf_vds_record vds[VDS_POS_LENGTH];
1608 unsigned int size_part_descs;
1609 unsigned int num_part_descs;
1610 struct part_desc_seq_scan_data *part_descs_loc;
1613 static struct udf_vds_record *handle_partition_descriptor(
1614 struct buffer_head *bh,
1615 struct desc_seq_scan_data *data)
1617 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1621 partnum = le16_to_cpu(desc->partitionNumber);
1622 for (i = 0; i < data->num_part_descs; i++)
1623 if (partnum == data->part_descs_loc[i].partnum)
1624 return &(data->part_descs_loc[i].rec);
1625 if (data->num_part_descs >= data->size_part_descs) {
1626 struct part_desc_seq_scan_data *new_loc;
1627 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1629 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1631 return ERR_PTR(-ENOMEM);
1632 memcpy(new_loc, data->part_descs_loc,
1633 data->size_part_descs * sizeof(*new_loc));
1634 kfree(data->part_descs_loc);
1635 data->part_descs_loc = new_loc;
1636 data->size_part_descs = new_size;
1638 return &(data->part_descs_loc[data->num_part_descs++].rec);
1642 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1643 struct buffer_head *bh, struct desc_seq_scan_data *data)
1646 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1647 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1648 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1649 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1650 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1651 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1652 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1653 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1654 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1655 return handle_partition_descriptor(bh, data);
1661 * Process a main/reserve volume descriptor sequence.
1662 * @block First block of first extent of the sequence.
1663 * @lastblock Lastblock of first extent of the sequence.
1664 * @fileset There we store extent containing root fileset
1666 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1669 static noinline int udf_process_sequence(
1670 struct super_block *sb,
1671 sector_t block, sector_t lastblock,
1672 struct kernel_lb_addr *fileset)
1674 struct buffer_head *bh = NULL;
1675 struct udf_vds_record *curr;
1676 struct generic_desc *gd;
1677 struct volDescPtr *vdp;
1682 unsigned int indirections = 0;
1683 struct desc_seq_scan_data data;
1686 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1687 data.size_part_descs = PART_DESC_ALLOC_STEP;
1688 data.num_part_descs = 0;
1689 data.part_descs_loc = kcalloc(data.size_part_descs,
1690 sizeof(*data.part_descs_loc),
1692 if (!data.part_descs_loc)
1696 * Read the main descriptor sequence and find which descriptors
1699 for (; (!done && block <= lastblock); block++) {
1700 bh = udf_read_tagged(sb, block, block, &ident);
1704 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1705 gd = (struct generic_desc *)bh->b_data;
1706 vdsn = le32_to_cpu(gd->volDescSeqNum);
1708 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1709 if (++indirections > UDF_MAX_TD_NESTING) {
1710 udf_err(sb, "too many Volume Descriptor "
1711 "Pointers (max %u supported)\n",
1712 UDF_MAX_TD_NESTING);
1718 vdp = (struct volDescPtr *)bh->b_data;
1719 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1720 lastblock = le32_to_cpu(
1721 vdp->nextVolDescSeqExt.extLength) >>
1722 sb->s_blocksize_bits;
1723 lastblock += block - 1;
1724 /* For loop is going to increment 'block' again */
1727 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1728 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1729 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1730 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1731 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1732 curr = get_volume_descriptor_record(ident, bh, &data);
1735 ret = PTR_ERR(curr);
1738 /* Descriptor we don't care about? */
1741 if (vdsn >= curr->volDescSeqNum) {
1742 curr->volDescSeqNum = vdsn;
1743 curr->block = block;
1746 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1753 * Now read interesting descriptors again and process them
1754 * in a suitable order
1756 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1757 udf_err(sb, "Primary Volume Descriptor not found!\n");
1761 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1765 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1766 ret = udf_load_logicalvol(sb,
1767 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1773 /* Now handle prevailing Partition Descriptors */
1774 for (i = 0; i < data.num_part_descs; i++) {
1775 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1781 kfree(data.part_descs_loc);
1786 * Load Volume Descriptor Sequence described by anchor in bh
1788 * Returns <0 on error, 0 on success
1790 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1791 struct kernel_lb_addr *fileset)
1793 struct anchorVolDescPtr *anchor;
1794 sector_t main_s, main_e, reserve_s, reserve_e;
1797 anchor = (struct anchorVolDescPtr *)bh->b_data;
1799 /* Locate the main sequence */
1800 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1801 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1802 main_e = main_e >> sb->s_blocksize_bits;
1803 main_e += main_s - 1;
1805 /* Locate the reserve sequence */
1806 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1807 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1808 reserve_e = reserve_e >> sb->s_blocksize_bits;
1809 reserve_e += reserve_s - 1;
1811 /* Process the main & reserve sequences */
1812 /* responsible for finding the PartitionDesc(s) */
1813 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1816 udf_sb_free_partitions(sb);
1817 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1819 udf_sb_free_partitions(sb);
1820 /* No sequence was OK, return -EIO */
1828 * Check whether there is an anchor block in the given block and
1829 * load Volume Descriptor Sequence if so.
1831 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1834 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1835 struct kernel_lb_addr *fileset)
1837 struct buffer_head *bh;
1841 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1842 udf_fixed_to_variable(block) >= sb_bdev_nr_blocks(sb))
1845 bh = udf_read_tagged(sb, block, block, &ident);
1848 if (ident != TAG_IDENT_AVDP) {
1852 ret = udf_load_sequence(sb, bh, fileset);
1858 * Search for an anchor volume descriptor pointer.
1860 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1863 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1864 struct kernel_lb_addr *fileset)
1868 struct udf_sb_info *sbi = UDF_SB(sb);
1872 /* First try user provided anchor */
1873 if (sbi->s_anchor) {
1874 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1879 * according to spec, anchor is in either:
1883 * however, if the disc isn't closed, it could be 512.
1885 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1889 * The trouble is which block is the last one. Drives often misreport
1890 * this so we try various possibilities.
1892 last[last_count++] = *lastblock;
1893 if (*lastblock >= 1)
1894 last[last_count++] = *lastblock - 1;
1895 last[last_count++] = *lastblock + 1;
1896 if (*lastblock >= 2)
1897 last[last_count++] = *lastblock - 2;
1898 if (*lastblock >= 150)
1899 last[last_count++] = *lastblock - 150;
1900 if (*lastblock >= 152)
1901 last[last_count++] = *lastblock - 152;
1903 for (i = 0; i < last_count; i++) {
1904 if (last[i] >= sb_bdev_nr_blocks(sb))
1906 ret = udf_check_anchor_block(sb, last[i], fileset);
1907 if (ret != -EAGAIN) {
1909 *lastblock = last[i];
1914 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1915 if (ret != -EAGAIN) {
1917 *lastblock = last[i];
1922 /* Finally try block 512 in case media is open */
1923 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1927 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1928 * area specified by it. The function expects sbi->s_lastblock to be the last
1929 * block on the media.
1931 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1934 static int udf_find_anchor(struct super_block *sb,
1935 struct kernel_lb_addr *fileset)
1937 struct udf_sb_info *sbi = UDF_SB(sb);
1938 sector_t lastblock = sbi->s_last_block;
1941 ret = udf_scan_anchors(sb, &lastblock, fileset);
1945 /* No anchor found? Try VARCONV conversion of block numbers */
1946 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1947 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1948 /* Firstly, we try to not convert number of the last block */
1949 ret = udf_scan_anchors(sb, &lastblock, fileset);
1953 lastblock = sbi->s_last_block;
1954 /* Secondly, we try with converted number of the last block */
1955 ret = udf_scan_anchors(sb, &lastblock, fileset);
1957 /* VARCONV didn't help. Clear it. */
1958 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1962 sbi->s_last_block = lastblock;
1967 * Check Volume Structure Descriptor, find Anchor block and load Volume
1968 * Descriptor Sequence.
1970 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1971 * block was not found.
1973 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1974 int silent, struct kernel_lb_addr *fileset)
1976 struct udf_sb_info *sbi = UDF_SB(sb);
1980 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1982 udf_warn(sb, "Bad block size\n");
1985 sbi->s_last_block = uopt->lastblock;
1987 /* Check that it is NSR02 compliant */
1988 nsr = udf_check_vsd(sb);
1991 udf_warn(sb, "No VRS found\n");
1995 udf_debug("Failed to read sector at offset %d. "
1996 "Assuming open disc. Skipping validity "
1997 "check\n", VSD_FIRST_SECTOR_OFFSET);
1998 if (!sbi->s_last_block)
1999 sbi->s_last_block = udf_get_last_block(sb);
2001 udf_debug("Validity check skipped because of novrs option\n");
2004 /* Look for anchor block and load Volume Descriptor Sequence */
2005 sbi->s_anchor = uopt->anchor;
2006 ret = udf_find_anchor(sb, fileset);
2008 if (!silent && ret == -EAGAIN)
2009 udf_warn(sb, "No anchor found\n");
2015 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2017 struct timespec64 ts;
2019 ktime_get_real_ts64(&ts);
2020 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2021 lvid->descTag.descCRC = cpu_to_le16(
2022 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2023 le16_to_cpu(lvid->descTag.descCRCLength)));
2024 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2027 static void udf_open_lvid(struct super_block *sb)
2029 struct udf_sb_info *sbi = UDF_SB(sb);
2030 struct buffer_head *bh = sbi->s_lvid_bh;
2031 struct logicalVolIntegrityDesc *lvid;
2032 struct logicalVolIntegrityDescImpUse *lvidiu;
2036 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2037 lvidiu = udf_sb_lvidiu(sb);
2041 mutex_lock(&sbi->s_alloc_mutex);
2042 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2043 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2044 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2045 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2047 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2049 udf_finalize_lvid(lvid);
2050 mark_buffer_dirty(bh);
2051 sbi->s_lvid_dirty = 0;
2052 mutex_unlock(&sbi->s_alloc_mutex);
2053 /* Make opening of filesystem visible on the media immediately */
2054 sync_dirty_buffer(bh);
2057 static void udf_close_lvid(struct super_block *sb)
2059 struct udf_sb_info *sbi = UDF_SB(sb);
2060 struct buffer_head *bh = sbi->s_lvid_bh;
2061 struct logicalVolIntegrityDesc *lvid;
2062 struct logicalVolIntegrityDescImpUse *lvidiu;
2066 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2067 lvidiu = udf_sb_lvidiu(sb);
2071 mutex_lock(&sbi->s_alloc_mutex);
2072 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2073 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2074 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2075 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2076 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2077 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2078 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2079 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2080 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2081 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2084 * We set buffer uptodate unconditionally here to avoid spurious
2085 * warnings from mark_buffer_dirty() when previous EIO has marked
2086 * the buffer as !uptodate
2088 set_buffer_uptodate(bh);
2089 udf_finalize_lvid(lvid);
2090 mark_buffer_dirty(bh);
2091 sbi->s_lvid_dirty = 0;
2092 mutex_unlock(&sbi->s_alloc_mutex);
2093 /* Make closing of filesystem visible on the media immediately */
2094 sync_dirty_buffer(bh);
2097 u64 lvid_get_unique_id(struct super_block *sb)
2099 struct buffer_head *bh;
2100 struct udf_sb_info *sbi = UDF_SB(sb);
2101 struct logicalVolIntegrityDesc *lvid;
2102 struct logicalVolHeaderDesc *lvhd;
2106 bh = sbi->s_lvid_bh;
2110 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2111 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2113 mutex_lock(&sbi->s_alloc_mutex);
2114 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2115 if (!(++uniqueID & 0xFFFFFFFF))
2117 lvhd->uniqueID = cpu_to_le64(uniqueID);
2118 udf_updated_lvid(sb);
2119 mutex_unlock(&sbi->s_alloc_mutex);
2124 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2127 struct inode *inode = NULL;
2128 struct udf_options uopt;
2129 struct kernel_lb_addr rootdir, fileset;
2130 struct udf_sb_info *sbi;
2131 bool lvid_open = false;
2133 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2134 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2135 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2136 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2138 uopt.fmode = UDF_INVALID_MODE;
2139 uopt.dmode = UDF_INVALID_MODE;
2140 uopt.nls_map = NULL;
2142 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2146 sb->s_fs_info = sbi;
2148 mutex_init(&sbi->s_alloc_mutex);
2150 if (!udf_parse_options((char *)options, &uopt, false))
2151 goto parse_options_failure;
2153 fileset.logicalBlockNum = 0xFFFFFFFF;
2154 fileset.partitionReferenceNum = 0xFFFF;
2156 sbi->s_flags = uopt.flags;
2157 sbi->s_uid = uopt.uid;
2158 sbi->s_gid = uopt.gid;
2159 sbi->s_umask = uopt.umask;
2160 sbi->s_fmode = uopt.fmode;
2161 sbi->s_dmode = uopt.dmode;
2162 sbi->s_nls_map = uopt.nls_map;
2163 rwlock_init(&sbi->s_cred_lock);
2165 if (uopt.session == 0xFFFFFFFF)
2166 sbi->s_session = udf_get_last_session(sb);
2168 sbi->s_session = uopt.session;
2170 udf_debug("Multi-session=%d\n", sbi->s_session);
2172 /* Fill in the rest of the superblock */
2173 sb->s_op = &udf_sb_ops;
2174 sb->s_export_op = &udf_export_ops;
2176 sb->s_magic = UDF_SUPER_MAGIC;
2177 sb->s_time_gran = 1000;
2179 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2180 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2182 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2183 while (uopt.blocksize <= 4096) {
2184 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2186 if (!silent && ret != -EACCES) {
2187 pr_notice("Scanning with blocksize %u failed\n",
2190 brelse(sbi->s_lvid_bh);
2191 sbi->s_lvid_bh = NULL;
2193 * EACCES is special - we want to propagate to
2194 * upper layers that we cannot handle RW mount.
2201 uopt.blocksize <<= 1;
2205 if (ret == -EAGAIN) {
2206 udf_warn(sb, "No partition found (1)\n");
2212 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2214 if (sbi->s_lvid_bh) {
2215 struct logicalVolIntegrityDescImpUse *lvidiu =
2217 uint16_t minUDFReadRev;
2218 uint16_t minUDFWriteRev;
2224 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2225 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2226 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2227 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2229 UDF_MAX_READ_VERSION);
2232 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2233 if (!sb_rdonly(sb)) {
2237 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2240 sbi->s_udfrev = minUDFWriteRev;
2242 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2243 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2244 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2245 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2248 if (!sbi->s_partitions) {
2249 udf_warn(sb, "No partition found (2)\n");
2254 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2255 UDF_PART_FLAG_READ_ONLY) {
2256 if (!sb_rdonly(sb)) {
2260 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2263 ret = udf_find_fileset(sb, &fileset, &rootdir);
2265 udf_warn(sb, "No fileset found\n");
2270 struct timestamp ts;
2271 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2272 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2273 sbi->s_volume_ident,
2274 le16_to_cpu(ts.year), ts.month, ts.day,
2275 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2277 if (!sb_rdonly(sb)) {
2282 /* Assign the root inode */
2283 /* assign inodes by physical block number */
2284 /* perhaps it's not extensible enough, but for now ... */
2285 inode = udf_iget(sb, &rootdir);
2286 if (IS_ERR(inode)) {
2287 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2288 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2289 ret = PTR_ERR(inode);
2293 /* Allocate a dentry for the root inode */
2294 sb->s_root = d_make_root(inode);
2296 udf_err(sb, "Couldn't allocate root dentry\n");
2300 sb->s_maxbytes = MAX_LFS_FILESIZE;
2301 sb->s_max_links = UDF_MAX_LINKS;
2305 iput(sbi->s_vat_inode);
2306 parse_options_failure:
2307 unload_nls(uopt.nls_map);
2310 brelse(sbi->s_lvid_bh);
2311 udf_sb_free_partitions(sb);
2313 sb->s_fs_info = NULL;
2318 void _udf_err(struct super_block *sb, const char *function,
2319 const char *fmt, ...)
2321 struct va_format vaf;
2324 va_start(args, fmt);
2329 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2334 void _udf_warn(struct super_block *sb, const char *function,
2335 const char *fmt, ...)
2337 struct va_format vaf;
2340 va_start(args, fmt);
2345 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2350 static void udf_put_super(struct super_block *sb)
2352 struct udf_sb_info *sbi;
2356 iput(sbi->s_vat_inode);
2357 unload_nls(sbi->s_nls_map);
2360 brelse(sbi->s_lvid_bh);
2361 udf_sb_free_partitions(sb);
2362 mutex_destroy(&sbi->s_alloc_mutex);
2363 kfree(sb->s_fs_info);
2364 sb->s_fs_info = NULL;
2367 static int udf_sync_fs(struct super_block *sb, int wait)
2369 struct udf_sb_info *sbi = UDF_SB(sb);
2371 mutex_lock(&sbi->s_alloc_mutex);
2372 if (sbi->s_lvid_dirty) {
2373 struct buffer_head *bh = sbi->s_lvid_bh;
2374 struct logicalVolIntegrityDesc *lvid;
2376 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2377 udf_finalize_lvid(lvid);
2380 * Blockdevice will be synced later so we don't have to submit
2383 mark_buffer_dirty(bh);
2384 sbi->s_lvid_dirty = 0;
2386 mutex_unlock(&sbi->s_alloc_mutex);
2391 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2393 struct super_block *sb = dentry->d_sb;
2394 struct udf_sb_info *sbi = UDF_SB(sb);
2395 struct logicalVolIntegrityDescImpUse *lvidiu;
2396 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2398 lvidiu = udf_sb_lvidiu(sb);
2399 buf->f_type = UDF_SUPER_MAGIC;
2400 buf->f_bsize = sb->s_blocksize;
2401 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2402 buf->f_bfree = udf_count_free(sb);
2403 buf->f_bavail = buf->f_bfree;
2405 * Let's pretend each free block is also a free 'inode' since UDF does
2406 * not have separate preallocated table of inodes.
2408 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2409 le32_to_cpu(lvidiu->numDirs)) : 0)
2411 buf->f_ffree = buf->f_bfree;
2412 buf->f_namelen = UDF_NAME_LEN;
2413 buf->f_fsid = u64_to_fsid(id);
2418 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2419 struct udf_bitmap *bitmap)
2421 struct buffer_head *bh = NULL;
2422 unsigned int accum = 0;
2424 udf_pblk_t block = 0, newblock;
2425 struct kernel_lb_addr loc;
2429 struct spaceBitmapDesc *bm;
2431 loc.logicalBlockNum = bitmap->s_extPosition;
2432 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2433 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2436 udf_err(sb, "udf_count_free failed\n");
2438 } else if (ident != TAG_IDENT_SBD) {
2440 udf_err(sb, "udf_count_free failed\n");
2444 bm = (struct spaceBitmapDesc *)bh->b_data;
2445 bytes = le32_to_cpu(bm->numOfBytes);
2446 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2447 ptr = (uint8_t *)bh->b_data;
2450 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2451 accum += bitmap_weight((const unsigned long *)(ptr + index),
2456 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2457 bh = udf_tread(sb, newblock);
2459 udf_debug("read failed\n");
2463 ptr = (uint8_t *)bh->b_data;
2471 static unsigned int udf_count_free_table(struct super_block *sb,
2472 struct inode *table)
2474 unsigned int accum = 0;
2476 struct kernel_lb_addr eloc;
2477 struct extent_position epos;
2479 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2480 epos.block = UDF_I(table)->i_location;
2481 epos.offset = sizeof(struct unallocSpaceEntry);
2484 while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2485 accum += (elen >> table->i_sb->s_blocksize_bits);
2488 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2493 static unsigned int udf_count_free(struct super_block *sb)
2495 unsigned int accum = 0;
2496 struct udf_sb_info *sbi = UDF_SB(sb);
2497 struct udf_part_map *map;
2498 unsigned int part = sbi->s_partition;
2499 int ptype = sbi->s_partmaps[part].s_partition_type;
2501 if (ptype == UDF_METADATA_MAP25) {
2502 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2503 s_phys_partition_ref;
2504 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2506 * Filesystems with VAT are append-only and we cannot write to
2507 * them. Let's just report 0 here.
2512 if (sbi->s_lvid_bh) {
2513 struct logicalVolIntegrityDesc *lvid =
2514 (struct logicalVolIntegrityDesc *)
2515 sbi->s_lvid_bh->b_data;
2516 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2517 accum = le32_to_cpu(
2518 lvid->freeSpaceTable[part]);
2519 if (accum == 0xFFFFFFFF)
2527 map = &sbi->s_partmaps[part];
2528 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2529 accum += udf_count_free_bitmap(sb,
2530 map->s_uspace.s_bitmap);
2535 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2536 accum += udf_count_free_table(sb,
2537 map->s_uspace.s_table);
2542 MODULE_AUTHOR("Ben Fennema");
2543 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2544 MODULE_LICENSE("GPL");
2545 module_init(init_udf_fs)
2546 module_exit(exit_udf_fs)