GNU Linux-libre 5.19-rc6-gnu
[releases.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    https://www.ecma.ch/
15  *    https://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 #include <linux/iversion.h>
61
62 #include "udf_sb.h"
63 #include "udf_i.h"
64
65 #include <linux/init.h>
66 #include <linux/uaccess.h>
67
68 enum {
69         VDS_POS_PRIMARY_VOL_DESC,
70         VDS_POS_UNALLOC_SPACE_DESC,
71         VDS_POS_LOGICAL_VOL_DESC,
72         VDS_POS_IMP_USE_VOL_DESC,
73         VDS_POS_LENGTH
74 };
75
76 #define VSD_FIRST_SECTOR_OFFSET         32768
77 #define VSD_MAX_SECTOR_OFFSET           0x800000
78
79 /*
80  * Maximum number of Terminating Descriptor / Logical Volume Integrity
81  * Descriptor redirections. The chosen numbers are arbitrary - just that we
82  * hopefully don't limit any real use of rewritten inode on write-once media
83  * but avoid looping for too long on corrupted media.
84  */
85 #define UDF_MAX_TD_NESTING 64
86 #define UDF_MAX_LVID_NESTING 1000
87
88 enum { UDF_MAX_LINKS = 0xffff };
89
90 /* These are the "meat" - everything else is stuffing */
91 static int udf_fill_super(struct super_block *, void *, int);
92 static void udf_put_super(struct super_block *);
93 static int udf_sync_fs(struct super_block *, int);
94 static int udf_remount_fs(struct super_block *, int *, char *);
95 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
96 static void udf_open_lvid(struct super_block *);
97 static void udf_close_lvid(struct super_block *);
98 static unsigned int udf_count_free(struct super_block *);
99 static int udf_statfs(struct dentry *, struct kstatfs *);
100 static int udf_show_options(struct seq_file *, struct dentry *);
101
102 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
103 {
104         struct logicalVolIntegrityDesc *lvid;
105         unsigned int partnum;
106         unsigned int offset;
107
108         if (!UDF_SB(sb)->s_lvid_bh)
109                 return NULL;
110         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
111         partnum = le32_to_cpu(lvid->numOfPartitions);
112         /* The offset is to skip freeSpaceTable and sizeTable arrays */
113         offset = partnum * 2 * sizeof(uint32_t);
114         return (struct logicalVolIntegrityDescImpUse *)
115                                         (((uint8_t *)(lvid + 1)) + offset);
116 }
117
118 /* UDF filesystem type */
119 static struct dentry *udf_mount(struct file_system_type *fs_type,
120                       int flags, const char *dev_name, void *data)
121 {
122         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
123 }
124
125 static struct file_system_type udf_fstype = {
126         .owner          = THIS_MODULE,
127         .name           = "udf",
128         .mount          = udf_mount,
129         .kill_sb        = kill_block_super,
130         .fs_flags       = FS_REQUIRES_DEV,
131 };
132 MODULE_ALIAS_FS("udf");
133
134 static struct kmem_cache *udf_inode_cachep;
135
136 static struct inode *udf_alloc_inode(struct super_block *sb)
137 {
138         struct udf_inode_info *ei;
139         ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
140         if (!ei)
141                 return NULL;
142
143         ei->i_unique = 0;
144         ei->i_lenExtents = 0;
145         ei->i_lenStreams = 0;
146         ei->i_next_alloc_block = 0;
147         ei->i_next_alloc_goal = 0;
148         ei->i_strat4096 = 0;
149         ei->i_streamdir = 0;
150         init_rwsem(&ei->i_data_sem);
151         ei->cached_extent.lstart = -1;
152         spin_lock_init(&ei->i_extent_cache_lock);
153         inode_set_iversion(&ei->vfs_inode, 1);
154
155         return &ei->vfs_inode;
156 }
157
158 static void udf_free_in_core_inode(struct inode *inode)
159 {
160         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
161 }
162
163 static void init_once(void *foo)
164 {
165         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
166
167         ei->i_data = NULL;
168         inode_init_once(&ei->vfs_inode);
169 }
170
171 static int __init init_inodecache(void)
172 {
173         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
174                                              sizeof(struct udf_inode_info),
175                                              0, (SLAB_RECLAIM_ACCOUNT |
176                                                  SLAB_MEM_SPREAD |
177                                                  SLAB_ACCOUNT),
178                                              init_once);
179         if (!udf_inode_cachep)
180                 return -ENOMEM;
181         return 0;
182 }
183
184 static void destroy_inodecache(void)
185 {
186         /*
187          * Make sure all delayed rcu free inodes are flushed before we
188          * destroy cache.
189          */
190         rcu_barrier();
191         kmem_cache_destroy(udf_inode_cachep);
192 }
193
194 /* Superblock operations */
195 static const struct super_operations udf_sb_ops = {
196         .alloc_inode    = udf_alloc_inode,
197         .free_inode     = udf_free_in_core_inode,
198         .write_inode    = udf_write_inode,
199         .evict_inode    = udf_evict_inode,
200         .put_super      = udf_put_super,
201         .sync_fs        = udf_sync_fs,
202         .statfs         = udf_statfs,
203         .remount_fs     = udf_remount_fs,
204         .show_options   = udf_show_options,
205 };
206
207 struct udf_options {
208         unsigned char novrs;
209         unsigned int blocksize;
210         unsigned int session;
211         unsigned int lastblock;
212         unsigned int anchor;
213         unsigned int flags;
214         umode_t umask;
215         kgid_t gid;
216         kuid_t uid;
217         umode_t fmode;
218         umode_t dmode;
219         struct nls_table *nls_map;
220 };
221
222 static int __init init_udf_fs(void)
223 {
224         int err;
225
226         err = init_inodecache();
227         if (err)
228                 goto out1;
229         err = register_filesystem(&udf_fstype);
230         if (err)
231                 goto out;
232
233         return 0;
234
235 out:
236         destroy_inodecache();
237
238 out1:
239         return err;
240 }
241
242 static void __exit exit_udf_fs(void)
243 {
244         unregister_filesystem(&udf_fstype);
245         destroy_inodecache();
246 }
247
248 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
249 {
250         struct udf_sb_info *sbi = UDF_SB(sb);
251
252         sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
253         if (!sbi->s_partmaps) {
254                 sbi->s_partitions = 0;
255                 return -ENOMEM;
256         }
257
258         sbi->s_partitions = count;
259         return 0;
260 }
261
262 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
263 {
264         int i;
265         int nr_groups = bitmap->s_nr_groups;
266
267         for (i = 0; i < nr_groups; i++)
268                 brelse(bitmap->s_block_bitmap[i]);
269
270         kvfree(bitmap);
271 }
272
273 static void udf_free_partition(struct udf_part_map *map)
274 {
275         int i;
276         struct udf_meta_data *mdata;
277
278         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
279                 iput(map->s_uspace.s_table);
280         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
281                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
282         if (map->s_partition_type == UDF_SPARABLE_MAP15)
283                 for (i = 0; i < 4; i++)
284                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
285         else if (map->s_partition_type == UDF_METADATA_MAP25) {
286                 mdata = &map->s_type_specific.s_metadata;
287                 iput(mdata->s_metadata_fe);
288                 mdata->s_metadata_fe = NULL;
289
290                 iput(mdata->s_mirror_fe);
291                 mdata->s_mirror_fe = NULL;
292
293                 iput(mdata->s_bitmap_fe);
294                 mdata->s_bitmap_fe = NULL;
295         }
296 }
297
298 static void udf_sb_free_partitions(struct super_block *sb)
299 {
300         struct udf_sb_info *sbi = UDF_SB(sb);
301         int i;
302
303         if (!sbi->s_partmaps)
304                 return;
305         for (i = 0; i < sbi->s_partitions; i++)
306                 udf_free_partition(&sbi->s_partmaps[i]);
307         kfree(sbi->s_partmaps);
308         sbi->s_partmaps = NULL;
309 }
310
311 static int udf_show_options(struct seq_file *seq, struct dentry *root)
312 {
313         struct super_block *sb = root->d_sb;
314         struct udf_sb_info *sbi = UDF_SB(sb);
315
316         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
317                 seq_puts(seq, ",nostrict");
318         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
319                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
320         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
321                 seq_puts(seq, ",unhide");
322         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
323                 seq_puts(seq, ",undelete");
324         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
325                 seq_puts(seq, ",noadinicb");
326         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
327                 seq_puts(seq, ",shortad");
328         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
329                 seq_puts(seq, ",uid=forget");
330         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
331                 seq_puts(seq, ",gid=forget");
332         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
333                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
334         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
335                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
336         if (sbi->s_umask != 0)
337                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
338         if (sbi->s_fmode != UDF_INVALID_MODE)
339                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
340         if (sbi->s_dmode != UDF_INVALID_MODE)
341                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
342         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
343                 seq_printf(seq, ",session=%d", sbi->s_session);
344         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
345                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
346         if (sbi->s_anchor != 0)
347                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
348         if (sbi->s_nls_map)
349                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
350         else
351                 seq_puts(seq, ",iocharset=utf8");
352
353         return 0;
354 }
355
356 /*
357  * udf_parse_options
358  *
359  * PURPOSE
360  *      Parse mount options.
361  *
362  * DESCRIPTION
363  *      The following mount options are supported:
364  *
365  *      gid=            Set the default group.
366  *      umask=          Set the default umask.
367  *      mode=           Set the default file permissions.
368  *      dmode=          Set the default directory permissions.
369  *      uid=            Set the default user.
370  *      bs=             Set the block size.
371  *      unhide          Show otherwise hidden files.
372  *      undelete        Show deleted files in lists.
373  *      adinicb         Embed data in the inode (default)
374  *      noadinicb       Don't embed data in the inode
375  *      shortad         Use short ad's
376  *      longad          Use long ad's (default)
377  *      nostrict        Unset strict conformance
378  *      iocharset=      Set the NLS character set
379  *
380  *      The remaining are for debugging and disaster recovery:
381  *
382  *      novrs           Skip volume sequence recognition
383  *
384  *      The following expect a offset from 0.
385  *
386  *      session=        Set the CDROM session (default= last session)
387  *      anchor=         Override standard anchor location. (default= 256)
388  *      volume=         Override the VolumeDesc location. (unused)
389  *      partition=      Override the PartitionDesc location. (unused)
390  *      lastblock=      Set the last block of the filesystem/
391  *
392  *      The following expect a offset from the partition root.
393  *
394  *      fileset=        Override the fileset block location. (unused)
395  *      rootdir=        Override the root directory location. (unused)
396  *              WARNING: overriding the rootdir to a non-directory may
397  *              yield highly unpredictable results.
398  *
399  * PRE-CONDITIONS
400  *      options         Pointer to mount options string.
401  *      uopts           Pointer to mount options variable.
402  *
403  * POST-CONDITIONS
404  *      <return>        1       Mount options parsed okay.
405  *      <return>        0       Error parsing mount options.
406  *
407  * HISTORY
408  *      July 1, 1997 - Andrew E. Mileski
409  *      Written, tested, and released.
410  */
411
412 enum {
413         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
414         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
415         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
416         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
417         Opt_rootdir, Opt_utf8, Opt_iocharset,
418         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
419         Opt_fmode, Opt_dmode
420 };
421
422 static const match_table_t tokens = {
423         {Opt_novrs,     "novrs"},
424         {Opt_nostrict,  "nostrict"},
425         {Opt_bs,        "bs=%u"},
426         {Opt_unhide,    "unhide"},
427         {Opt_undelete,  "undelete"},
428         {Opt_noadinicb, "noadinicb"},
429         {Opt_adinicb,   "adinicb"},
430         {Opt_shortad,   "shortad"},
431         {Opt_longad,    "longad"},
432         {Opt_uforget,   "uid=forget"},
433         {Opt_uignore,   "uid=ignore"},
434         {Opt_gforget,   "gid=forget"},
435         {Opt_gignore,   "gid=ignore"},
436         {Opt_gid,       "gid=%u"},
437         {Opt_uid,       "uid=%u"},
438         {Opt_umask,     "umask=%o"},
439         {Opt_session,   "session=%u"},
440         {Opt_lastblock, "lastblock=%u"},
441         {Opt_anchor,    "anchor=%u"},
442         {Opt_volume,    "volume=%u"},
443         {Opt_partition, "partition=%u"},
444         {Opt_fileset,   "fileset=%u"},
445         {Opt_rootdir,   "rootdir=%u"},
446         {Opt_utf8,      "utf8"},
447         {Opt_iocharset, "iocharset=%s"},
448         {Opt_fmode,     "mode=%o"},
449         {Opt_dmode,     "dmode=%o"},
450         {Opt_err,       NULL}
451 };
452
453 static int udf_parse_options(char *options, struct udf_options *uopt,
454                              bool remount)
455 {
456         char *p;
457         int option;
458         unsigned int uv;
459
460         uopt->novrs = 0;
461         uopt->session = 0xFFFFFFFF;
462         uopt->lastblock = 0;
463         uopt->anchor = 0;
464
465         if (!options)
466                 return 1;
467
468         while ((p = strsep(&options, ",")) != NULL) {
469                 substring_t args[MAX_OPT_ARGS];
470                 int token;
471                 unsigned n;
472                 if (!*p)
473                         continue;
474
475                 token = match_token(p, tokens, args);
476                 switch (token) {
477                 case Opt_novrs:
478                         uopt->novrs = 1;
479                         break;
480                 case Opt_bs:
481                         if (match_int(&args[0], &option))
482                                 return 0;
483                         n = option;
484                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
485                                 return 0;
486                         uopt->blocksize = n;
487                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
488                         break;
489                 case Opt_unhide:
490                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
491                         break;
492                 case Opt_undelete:
493                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
494                         break;
495                 case Opt_noadinicb:
496                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
497                         break;
498                 case Opt_adinicb:
499                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
500                         break;
501                 case Opt_shortad:
502                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
503                         break;
504                 case Opt_longad:
505                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
506                         break;
507                 case Opt_gid:
508                         if (match_uint(args, &uv))
509                                 return 0;
510                         uopt->gid = make_kgid(current_user_ns(), uv);
511                         if (!gid_valid(uopt->gid))
512                                 return 0;
513                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
514                         break;
515                 case Opt_uid:
516                         if (match_uint(args, &uv))
517                                 return 0;
518                         uopt->uid = make_kuid(current_user_ns(), uv);
519                         if (!uid_valid(uopt->uid))
520                                 return 0;
521                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
522                         break;
523                 case Opt_umask:
524                         if (match_octal(args, &option))
525                                 return 0;
526                         uopt->umask = option;
527                         break;
528                 case Opt_nostrict:
529                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
530                         break;
531                 case Opt_session:
532                         if (match_int(args, &option))
533                                 return 0;
534                         uopt->session = option;
535                         if (!remount)
536                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
537                         break;
538                 case Opt_lastblock:
539                         if (match_int(args, &option))
540                                 return 0;
541                         uopt->lastblock = option;
542                         if (!remount)
543                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
544                         break;
545                 case Opt_anchor:
546                         if (match_int(args, &option))
547                                 return 0;
548                         uopt->anchor = option;
549                         break;
550                 case Opt_volume:
551                 case Opt_partition:
552                 case Opt_fileset:
553                 case Opt_rootdir:
554                         /* Ignored (never implemented properly) */
555                         break;
556                 case Opt_utf8:
557                         if (!remount) {
558                                 unload_nls(uopt->nls_map);
559                                 uopt->nls_map = NULL;
560                         }
561                         break;
562                 case Opt_iocharset:
563                         if (!remount) {
564                                 unload_nls(uopt->nls_map);
565                                 uopt->nls_map = NULL;
566                         }
567                         /* When nls_map is not loaded then UTF-8 is used */
568                         if (!remount && strcmp(args[0].from, "utf8") != 0) {
569                                 uopt->nls_map = load_nls(args[0].from);
570                                 if (!uopt->nls_map) {
571                                         pr_err("iocharset %s not found\n",
572                                                 args[0].from);
573                                         return 0;
574                                 }
575                         }
576                         break;
577                 case Opt_uforget:
578                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
579                         break;
580                 case Opt_uignore:
581                 case Opt_gignore:
582                         /* These options are superseeded by uid=<number> */
583                         break;
584                 case Opt_gforget:
585                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
586                         break;
587                 case Opt_fmode:
588                         if (match_octal(args, &option))
589                                 return 0;
590                         uopt->fmode = option & 0777;
591                         break;
592                 case Opt_dmode:
593                         if (match_octal(args, &option))
594                                 return 0;
595                         uopt->dmode = option & 0777;
596                         break;
597                 default:
598                         pr_err("bad mount option \"%s\" or missing value\n", p);
599                         return 0;
600                 }
601         }
602         return 1;
603 }
604
605 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
606 {
607         struct udf_options uopt;
608         struct udf_sb_info *sbi = UDF_SB(sb);
609         int error = 0;
610
611         if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
612                 return -EACCES;
613
614         sync_filesystem(sb);
615
616         uopt.flags = sbi->s_flags;
617         uopt.uid   = sbi->s_uid;
618         uopt.gid   = sbi->s_gid;
619         uopt.umask = sbi->s_umask;
620         uopt.fmode = sbi->s_fmode;
621         uopt.dmode = sbi->s_dmode;
622         uopt.nls_map = NULL;
623
624         if (!udf_parse_options(options, &uopt, true))
625                 return -EINVAL;
626
627         write_lock(&sbi->s_cred_lock);
628         sbi->s_flags = uopt.flags;
629         sbi->s_uid   = uopt.uid;
630         sbi->s_gid   = uopt.gid;
631         sbi->s_umask = uopt.umask;
632         sbi->s_fmode = uopt.fmode;
633         sbi->s_dmode = uopt.dmode;
634         write_unlock(&sbi->s_cred_lock);
635
636         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
637                 goto out_unlock;
638
639         if (*flags & SB_RDONLY)
640                 udf_close_lvid(sb);
641         else
642                 udf_open_lvid(sb);
643
644 out_unlock:
645         return error;
646 }
647
648 /*
649  * Check VSD descriptor. Returns -1 in case we are at the end of volume
650  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
651  * we found one of NSR descriptors we are looking for.
652  */
653 static int identify_vsd(const struct volStructDesc *vsd)
654 {
655         int ret = 0;
656
657         if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
658                 switch (vsd->structType) {
659                 case 0:
660                         udf_debug("ISO9660 Boot Record found\n");
661                         break;
662                 case 1:
663                         udf_debug("ISO9660 Primary Volume Descriptor found\n");
664                         break;
665                 case 2:
666                         udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
667                         break;
668                 case 3:
669                         udf_debug("ISO9660 Volume Partition Descriptor found\n");
670                         break;
671                 case 255:
672                         udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
673                         break;
674                 default:
675                         udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
676                         break;
677                 }
678         } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
679                 ; /* ret = 0 */
680         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
681                 ret = 1;
682         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
683                 ret = 1;
684         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
685                 ; /* ret = 0 */
686         else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
687                 ; /* ret = 0 */
688         else {
689                 /* TEA01 or invalid id : end of volume recognition area */
690                 ret = -1;
691         }
692
693         return ret;
694 }
695
696 /*
697  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
698  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
699  * @return   1 if NSR02 or NSR03 found,
700  *          -1 if first sector read error, 0 otherwise
701  */
702 static int udf_check_vsd(struct super_block *sb)
703 {
704         struct volStructDesc *vsd = NULL;
705         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
706         int sectorsize;
707         struct buffer_head *bh = NULL;
708         int nsr = 0;
709         struct udf_sb_info *sbi;
710         loff_t session_offset;
711
712         sbi = UDF_SB(sb);
713         if (sb->s_blocksize < sizeof(struct volStructDesc))
714                 sectorsize = sizeof(struct volStructDesc);
715         else
716                 sectorsize = sb->s_blocksize;
717
718         session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
719         sector += session_offset;
720
721         udf_debug("Starting at sector %u (%lu byte sectors)\n",
722                   (unsigned int)(sector >> sb->s_blocksize_bits),
723                   sb->s_blocksize);
724         /* Process the sequence (if applicable). The hard limit on the sector
725          * offset is arbitrary, hopefully large enough so that all valid UDF
726          * filesystems will be recognised. There is no mention of an upper
727          * bound to the size of the volume recognition area in the standard.
728          *  The limit will prevent the code to read all the sectors of a
729          * specially crafted image (like a bluray disc full of CD001 sectors),
730          * potentially causing minutes or even hours of uninterruptible I/O
731          * activity. This actually happened with uninitialised SSD partitions
732          * (all 0xFF) before the check for the limit and all valid IDs were
733          * added */
734         for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
735                 /* Read a block */
736                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
737                 if (!bh)
738                         break;
739
740                 vsd = (struct volStructDesc *)(bh->b_data +
741                                               (sector & (sb->s_blocksize - 1)));
742                 nsr = identify_vsd(vsd);
743                 /* Found NSR or end? */
744                 if (nsr) {
745                         brelse(bh);
746                         break;
747                 }
748                 /*
749                  * Special handling for improperly formatted VRS (e.g., Win10)
750                  * where components are separated by 2048 bytes even though
751                  * sectors are 4K
752                  */
753                 if (sb->s_blocksize == 4096) {
754                         nsr = identify_vsd(vsd + 1);
755                         /* Ignore unknown IDs... */
756                         if (nsr < 0)
757                                 nsr = 0;
758                 }
759                 brelse(bh);
760         }
761
762         if (nsr > 0)
763                 return 1;
764         else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
765                 return -1;
766         else
767                 return 0;
768 }
769
770 static int udf_verify_domain_identifier(struct super_block *sb,
771                                         struct regid *ident, char *dname)
772 {
773         struct domainIdentSuffix *suffix;
774
775         if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
776                 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
777                 goto force_ro;
778         }
779         if (ident->flags & ENTITYID_FLAGS_DIRTY) {
780                 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
781                          dname);
782                 goto force_ro;
783         }
784         suffix = (struct domainIdentSuffix *)ident->identSuffix;
785         if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
786             (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
787                 if (!sb_rdonly(sb)) {
788                         udf_warn(sb, "Descriptor for %s marked write protected."
789                                  " Forcing read only mount.\n", dname);
790                 }
791                 goto force_ro;
792         }
793         return 0;
794
795 force_ro:
796         if (!sb_rdonly(sb))
797                 return -EACCES;
798         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
799         return 0;
800 }
801
802 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
803                             struct kernel_lb_addr *root)
804 {
805         int ret;
806
807         ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
808         if (ret < 0)
809                 return ret;
810
811         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
812         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
813
814         udf_debug("Rootdir at block=%u, partition=%u\n",
815                   root->logicalBlockNum, root->partitionReferenceNum);
816         return 0;
817 }
818
819 static int udf_find_fileset(struct super_block *sb,
820                             struct kernel_lb_addr *fileset,
821                             struct kernel_lb_addr *root)
822 {
823         struct buffer_head *bh = NULL;
824         uint16_t ident;
825         int ret;
826
827         if (fileset->logicalBlockNum == 0xFFFFFFFF &&
828             fileset->partitionReferenceNum == 0xFFFF)
829                 return -EINVAL;
830
831         bh = udf_read_ptagged(sb, fileset, 0, &ident);
832         if (!bh)
833                 return -EIO;
834         if (ident != TAG_IDENT_FSD) {
835                 brelse(bh);
836                 return -EINVAL;
837         }
838
839         udf_debug("Fileset at block=%u, partition=%u\n",
840                   fileset->logicalBlockNum, fileset->partitionReferenceNum);
841
842         UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
843         ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
844         brelse(bh);
845         return ret;
846 }
847
848 /*
849  * Load primary Volume Descriptor Sequence
850  *
851  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
852  * should be tried.
853  */
854 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
855 {
856         struct primaryVolDesc *pvoldesc;
857         uint8_t *outstr;
858         struct buffer_head *bh;
859         uint16_t ident;
860         int ret;
861         struct timestamp *ts;
862
863         outstr = kmalloc(128, GFP_NOFS);
864         if (!outstr)
865                 return -ENOMEM;
866
867         bh = udf_read_tagged(sb, block, block, &ident);
868         if (!bh) {
869                 ret = -EAGAIN;
870                 goto out2;
871         }
872
873         if (ident != TAG_IDENT_PVD) {
874                 ret = -EIO;
875                 goto out_bh;
876         }
877
878         pvoldesc = (struct primaryVolDesc *)bh->b_data;
879
880         udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
881                               pvoldesc->recordingDateAndTime);
882         ts = &pvoldesc->recordingDateAndTime;
883         udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
884                   le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
885                   ts->minute, le16_to_cpu(ts->typeAndTimezone));
886
887         ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
888         if (ret < 0) {
889                 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
890                 pr_warn("incorrect volume identification, setting to "
891                         "'InvalidName'\n");
892         } else {
893                 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
894         }
895         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
896
897         ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
898         if (ret < 0) {
899                 ret = 0;
900                 goto out_bh;
901         }
902         outstr[ret] = 0;
903         udf_debug("volSetIdent[] = '%s'\n", outstr);
904
905         ret = 0;
906 out_bh:
907         brelse(bh);
908 out2:
909         kfree(outstr);
910         return ret;
911 }
912
913 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
914                                         u32 meta_file_loc, u32 partition_ref)
915 {
916         struct kernel_lb_addr addr;
917         struct inode *metadata_fe;
918
919         addr.logicalBlockNum = meta_file_loc;
920         addr.partitionReferenceNum = partition_ref;
921
922         metadata_fe = udf_iget_special(sb, &addr);
923
924         if (IS_ERR(metadata_fe)) {
925                 udf_warn(sb, "metadata inode efe not found\n");
926                 return metadata_fe;
927         }
928         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
929                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
930                 iput(metadata_fe);
931                 return ERR_PTR(-EIO);
932         }
933
934         return metadata_fe;
935 }
936
937 static int udf_load_metadata_files(struct super_block *sb, int partition,
938                                    int type1_index)
939 {
940         struct udf_sb_info *sbi = UDF_SB(sb);
941         struct udf_part_map *map;
942         struct udf_meta_data *mdata;
943         struct kernel_lb_addr addr;
944         struct inode *fe;
945
946         map = &sbi->s_partmaps[partition];
947         mdata = &map->s_type_specific.s_metadata;
948         mdata->s_phys_partition_ref = type1_index;
949
950         /* metadata address */
951         udf_debug("Metadata file location: block = %u part = %u\n",
952                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
953
954         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
955                                          mdata->s_phys_partition_ref);
956         if (IS_ERR(fe)) {
957                 /* mirror file entry */
958                 udf_debug("Mirror metadata file location: block = %u part = %u\n",
959                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
960
961                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
962                                                  mdata->s_phys_partition_ref);
963
964                 if (IS_ERR(fe)) {
965                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
966                         return PTR_ERR(fe);
967                 }
968                 mdata->s_mirror_fe = fe;
969         } else
970                 mdata->s_metadata_fe = fe;
971
972
973         /*
974          * bitmap file entry
975          * Note:
976          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
977         */
978         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
979                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
980                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
981
982                 udf_debug("Bitmap file location: block = %u part = %u\n",
983                           addr.logicalBlockNum, addr.partitionReferenceNum);
984
985                 fe = udf_iget_special(sb, &addr);
986                 if (IS_ERR(fe)) {
987                         if (sb_rdonly(sb))
988                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
989                         else {
990                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
991                                 return PTR_ERR(fe);
992                         }
993                 } else
994                         mdata->s_bitmap_fe = fe;
995         }
996
997         udf_debug("udf_load_metadata_files Ok\n");
998         return 0;
999 }
1000
1001 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1002 {
1003         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1004         return DIV_ROUND_UP(map->s_partition_len +
1005                             (sizeof(struct spaceBitmapDesc) << 3),
1006                             sb->s_blocksize * 8);
1007 }
1008
1009 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1010 {
1011         struct udf_bitmap *bitmap;
1012         int nr_groups = udf_compute_nr_groups(sb, index);
1013
1014         bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1015                           GFP_KERNEL);
1016         if (!bitmap)
1017                 return NULL;
1018
1019         bitmap->s_nr_groups = nr_groups;
1020         return bitmap;
1021 }
1022
1023 static int check_partition_desc(struct super_block *sb,
1024                                 struct partitionDesc *p,
1025                                 struct udf_part_map *map)
1026 {
1027         bool umap, utable, fmap, ftable;
1028         struct partitionHeaderDesc *phd;
1029
1030         switch (le32_to_cpu(p->accessType)) {
1031         case PD_ACCESS_TYPE_READ_ONLY:
1032         case PD_ACCESS_TYPE_WRITE_ONCE:
1033         case PD_ACCESS_TYPE_NONE:
1034                 goto force_ro;
1035         }
1036
1037         /* No Partition Header Descriptor? */
1038         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1039             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1040                 goto force_ro;
1041
1042         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1043         utable = phd->unallocSpaceTable.extLength;
1044         umap = phd->unallocSpaceBitmap.extLength;
1045         ftable = phd->freedSpaceTable.extLength;
1046         fmap = phd->freedSpaceBitmap.extLength;
1047
1048         /* No allocation info? */
1049         if (!utable && !umap && !ftable && !fmap)
1050                 goto force_ro;
1051
1052         /* We don't support blocks that require erasing before overwrite */
1053         if (ftable || fmap)
1054                 goto force_ro;
1055         /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1056         if (utable && umap)
1057                 goto force_ro;
1058
1059         if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1060             map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1061             map->s_partition_type == UDF_METADATA_MAP25)
1062                 goto force_ro;
1063
1064         return 0;
1065 force_ro:
1066         if (!sb_rdonly(sb))
1067                 return -EACCES;
1068         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1069         return 0;
1070 }
1071
1072 static int udf_fill_partdesc_info(struct super_block *sb,
1073                 struct partitionDesc *p, int p_index)
1074 {
1075         struct udf_part_map *map;
1076         struct udf_sb_info *sbi = UDF_SB(sb);
1077         struct partitionHeaderDesc *phd;
1078         int err;
1079
1080         map = &sbi->s_partmaps[p_index];
1081
1082         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1083         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1084
1085         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1086                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1087         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1088                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1089         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1090                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1091         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1092                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1093
1094         udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1095                   p_index, map->s_partition_type,
1096                   map->s_partition_root, map->s_partition_len);
1097
1098         err = check_partition_desc(sb, p, map);
1099         if (err)
1100                 return err;
1101
1102         /*
1103          * Skip loading allocation info it we cannot ever write to the fs.
1104          * This is a correctness thing as we may have decided to force ro mount
1105          * to avoid allocation info we don't support.
1106          */
1107         if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1108                 return 0;
1109
1110         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1111         if (phd->unallocSpaceTable.extLength) {
1112                 struct kernel_lb_addr loc = {
1113                         .logicalBlockNum = le32_to_cpu(
1114                                 phd->unallocSpaceTable.extPosition),
1115                         .partitionReferenceNum = p_index,
1116                 };
1117                 struct inode *inode;
1118
1119                 inode = udf_iget_special(sb, &loc);
1120                 if (IS_ERR(inode)) {
1121                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1122                                   p_index);
1123                         return PTR_ERR(inode);
1124                 }
1125                 map->s_uspace.s_table = inode;
1126                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1127                 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1128                           p_index, map->s_uspace.s_table->i_ino);
1129         }
1130
1131         if (phd->unallocSpaceBitmap.extLength) {
1132                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1133                 if (!bitmap)
1134                         return -ENOMEM;
1135                 map->s_uspace.s_bitmap = bitmap;
1136                 bitmap->s_extPosition = le32_to_cpu(
1137                                 phd->unallocSpaceBitmap.extPosition);
1138                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1139                 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1140                           p_index, bitmap->s_extPosition);
1141         }
1142
1143         return 0;
1144 }
1145
1146 static void udf_find_vat_block(struct super_block *sb, int p_index,
1147                                int type1_index, sector_t start_block)
1148 {
1149         struct udf_sb_info *sbi = UDF_SB(sb);
1150         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1151         sector_t vat_block;
1152         struct kernel_lb_addr ino;
1153         struct inode *inode;
1154
1155         /*
1156          * VAT file entry is in the last recorded block. Some broken disks have
1157          * it a few blocks before so try a bit harder...
1158          */
1159         ino.partitionReferenceNum = type1_index;
1160         for (vat_block = start_block;
1161              vat_block >= map->s_partition_root &&
1162              vat_block >= start_block - 3; vat_block--) {
1163                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1164                 inode = udf_iget_special(sb, &ino);
1165                 if (!IS_ERR(inode)) {
1166                         sbi->s_vat_inode = inode;
1167                         break;
1168                 }
1169         }
1170 }
1171
1172 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1173 {
1174         struct udf_sb_info *sbi = UDF_SB(sb);
1175         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1176         struct buffer_head *bh = NULL;
1177         struct udf_inode_info *vati;
1178         uint32_t pos;
1179         struct virtualAllocationTable20 *vat20;
1180         sector_t blocks = sb_bdev_nr_blocks(sb);
1181
1182         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1183         if (!sbi->s_vat_inode &&
1184             sbi->s_last_block != blocks - 1) {
1185                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1186                           (unsigned long)sbi->s_last_block,
1187                           (unsigned long)blocks - 1);
1188                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1189         }
1190         if (!sbi->s_vat_inode)
1191                 return -EIO;
1192
1193         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1194                 map->s_type_specific.s_virtual.s_start_offset = 0;
1195                 map->s_type_specific.s_virtual.s_num_entries =
1196                         (sbi->s_vat_inode->i_size - 36) >> 2;
1197         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1198                 vati = UDF_I(sbi->s_vat_inode);
1199                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1200                         pos = udf_block_map(sbi->s_vat_inode, 0);
1201                         bh = sb_bread(sb, pos);
1202                         if (!bh)
1203                                 return -EIO;
1204                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1205                 } else {
1206                         vat20 = (struct virtualAllocationTable20 *)
1207                                                         vati->i_data;
1208                 }
1209
1210                 map->s_type_specific.s_virtual.s_start_offset =
1211                         le16_to_cpu(vat20->lengthHeader);
1212                 map->s_type_specific.s_virtual.s_num_entries =
1213                         (sbi->s_vat_inode->i_size -
1214                                 map->s_type_specific.s_virtual.
1215                                         s_start_offset) >> 2;
1216                 brelse(bh);
1217         }
1218         return 0;
1219 }
1220
1221 /*
1222  * Load partition descriptor block
1223  *
1224  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1225  * sequence.
1226  */
1227 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1228 {
1229         struct buffer_head *bh;
1230         struct partitionDesc *p;
1231         struct udf_part_map *map;
1232         struct udf_sb_info *sbi = UDF_SB(sb);
1233         int i, type1_idx;
1234         uint16_t partitionNumber;
1235         uint16_t ident;
1236         int ret;
1237
1238         bh = udf_read_tagged(sb, block, block, &ident);
1239         if (!bh)
1240                 return -EAGAIN;
1241         if (ident != TAG_IDENT_PD) {
1242                 ret = 0;
1243                 goto out_bh;
1244         }
1245
1246         p = (struct partitionDesc *)bh->b_data;
1247         partitionNumber = le16_to_cpu(p->partitionNumber);
1248
1249         /* First scan for TYPE1 and SPARABLE partitions */
1250         for (i = 0; i < sbi->s_partitions; i++) {
1251                 map = &sbi->s_partmaps[i];
1252                 udf_debug("Searching map: (%u == %u)\n",
1253                           map->s_partition_num, partitionNumber);
1254                 if (map->s_partition_num == partitionNumber &&
1255                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1256                      map->s_partition_type == UDF_SPARABLE_MAP15))
1257                         break;
1258         }
1259
1260         if (i >= sbi->s_partitions) {
1261                 udf_debug("Partition (%u) not found in partition map\n",
1262                           partitionNumber);
1263                 ret = 0;
1264                 goto out_bh;
1265         }
1266
1267         ret = udf_fill_partdesc_info(sb, p, i);
1268         if (ret < 0)
1269                 goto out_bh;
1270
1271         /*
1272          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1273          * PHYSICAL partitions are already set up
1274          */
1275         type1_idx = i;
1276         map = NULL; /* supress 'maybe used uninitialized' warning */
1277         for (i = 0; i < sbi->s_partitions; i++) {
1278                 map = &sbi->s_partmaps[i];
1279
1280                 if (map->s_partition_num == partitionNumber &&
1281                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1282                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1283                      map->s_partition_type == UDF_METADATA_MAP25))
1284                         break;
1285         }
1286
1287         if (i >= sbi->s_partitions) {
1288                 ret = 0;
1289                 goto out_bh;
1290         }
1291
1292         ret = udf_fill_partdesc_info(sb, p, i);
1293         if (ret < 0)
1294                 goto out_bh;
1295
1296         if (map->s_partition_type == UDF_METADATA_MAP25) {
1297                 ret = udf_load_metadata_files(sb, i, type1_idx);
1298                 if (ret < 0) {
1299                         udf_err(sb, "error loading MetaData partition map %d\n",
1300                                 i);
1301                         goto out_bh;
1302                 }
1303         } else {
1304                 /*
1305                  * If we have a partition with virtual map, we don't handle
1306                  * writing to it (we overwrite blocks instead of relocating
1307                  * them).
1308                  */
1309                 if (!sb_rdonly(sb)) {
1310                         ret = -EACCES;
1311                         goto out_bh;
1312                 }
1313                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1314                 ret = udf_load_vat(sb, i, type1_idx);
1315                 if (ret < 0)
1316                         goto out_bh;
1317         }
1318         ret = 0;
1319 out_bh:
1320         /* In case loading failed, we handle cleanup in udf_fill_super */
1321         brelse(bh);
1322         return ret;
1323 }
1324
1325 static int udf_load_sparable_map(struct super_block *sb,
1326                                  struct udf_part_map *map,
1327                                  struct sparablePartitionMap *spm)
1328 {
1329         uint32_t loc;
1330         uint16_t ident;
1331         struct sparingTable *st;
1332         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1333         int i;
1334         struct buffer_head *bh;
1335
1336         map->s_partition_type = UDF_SPARABLE_MAP15;
1337         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1338         if (!is_power_of_2(sdata->s_packet_len)) {
1339                 udf_err(sb, "error loading logical volume descriptor: "
1340                         "Invalid packet length %u\n",
1341                         (unsigned)sdata->s_packet_len);
1342                 return -EIO;
1343         }
1344         if (spm->numSparingTables > 4) {
1345                 udf_err(sb, "error loading logical volume descriptor: "
1346                         "Too many sparing tables (%d)\n",
1347                         (int)spm->numSparingTables);
1348                 return -EIO;
1349         }
1350         if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1351                 udf_err(sb, "error loading logical volume descriptor: "
1352                         "Too big sparing table size (%u)\n",
1353                         le32_to_cpu(spm->sizeSparingTable));
1354                 return -EIO;
1355         }
1356
1357         for (i = 0; i < spm->numSparingTables; i++) {
1358                 loc = le32_to_cpu(spm->locSparingTable[i]);
1359                 bh = udf_read_tagged(sb, loc, loc, &ident);
1360                 if (!bh)
1361                         continue;
1362
1363                 st = (struct sparingTable *)bh->b_data;
1364                 if (ident != 0 ||
1365                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1366                             strlen(UDF_ID_SPARING)) ||
1367                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1368                                                         sb->s_blocksize) {
1369                         brelse(bh);
1370                         continue;
1371                 }
1372
1373                 sdata->s_spar_map[i] = bh;
1374         }
1375         map->s_partition_func = udf_get_pblock_spar15;
1376         return 0;
1377 }
1378
1379 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1380                                struct kernel_lb_addr *fileset)
1381 {
1382         struct logicalVolDesc *lvd;
1383         int i, offset;
1384         uint8_t type;
1385         struct udf_sb_info *sbi = UDF_SB(sb);
1386         struct genericPartitionMap *gpm;
1387         uint16_t ident;
1388         struct buffer_head *bh;
1389         unsigned int table_len;
1390         int ret;
1391
1392         bh = udf_read_tagged(sb, block, block, &ident);
1393         if (!bh)
1394                 return -EAGAIN;
1395         BUG_ON(ident != TAG_IDENT_LVD);
1396         lvd = (struct logicalVolDesc *)bh->b_data;
1397         table_len = le32_to_cpu(lvd->mapTableLength);
1398         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1399                 udf_err(sb, "error loading logical volume descriptor: "
1400                         "Partition table too long (%u > %lu)\n", table_len,
1401                         sb->s_blocksize - sizeof(*lvd));
1402                 ret = -EIO;
1403                 goto out_bh;
1404         }
1405
1406         ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1407                                            "logical volume");
1408         if (ret)
1409                 goto out_bh;
1410         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1411         if (ret)
1412                 goto out_bh;
1413
1414         for (i = 0, offset = 0;
1415              i < sbi->s_partitions && offset < table_len;
1416              i++, offset += gpm->partitionMapLength) {
1417                 struct udf_part_map *map = &sbi->s_partmaps[i];
1418                 gpm = (struct genericPartitionMap *)
1419                                 &(lvd->partitionMaps[offset]);
1420                 type = gpm->partitionMapType;
1421                 if (type == 1) {
1422                         struct genericPartitionMap1 *gpm1 =
1423                                 (struct genericPartitionMap1 *)gpm;
1424                         map->s_partition_type = UDF_TYPE1_MAP15;
1425                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1426                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1427                         map->s_partition_func = NULL;
1428                 } else if (type == 2) {
1429                         struct udfPartitionMap2 *upm2 =
1430                                                 (struct udfPartitionMap2 *)gpm;
1431                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1432                                                 strlen(UDF_ID_VIRTUAL))) {
1433                                 u16 suf =
1434                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1435                                                         identSuffix)[0]);
1436                                 if (suf < 0x0200) {
1437                                         map->s_partition_type =
1438                                                         UDF_VIRTUAL_MAP15;
1439                                         map->s_partition_func =
1440                                                         udf_get_pblock_virt15;
1441                                 } else {
1442                                         map->s_partition_type =
1443                                                         UDF_VIRTUAL_MAP20;
1444                                         map->s_partition_func =
1445                                                         udf_get_pblock_virt20;
1446                                 }
1447                         } else if (!strncmp(upm2->partIdent.ident,
1448                                                 UDF_ID_SPARABLE,
1449                                                 strlen(UDF_ID_SPARABLE))) {
1450                                 ret = udf_load_sparable_map(sb, map,
1451                                         (struct sparablePartitionMap *)gpm);
1452                                 if (ret < 0)
1453                                         goto out_bh;
1454                         } else if (!strncmp(upm2->partIdent.ident,
1455                                                 UDF_ID_METADATA,
1456                                                 strlen(UDF_ID_METADATA))) {
1457                                 struct udf_meta_data *mdata =
1458                                         &map->s_type_specific.s_metadata;
1459                                 struct metadataPartitionMap *mdm =
1460                                                 (struct metadataPartitionMap *)
1461                                                 &(lvd->partitionMaps[offset]);
1462                                 udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1463                                           i, type, UDF_ID_METADATA);
1464
1465                                 map->s_partition_type = UDF_METADATA_MAP25;
1466                                 map->s_partition_func = udf_get_pblock_meta25;
1467
1468                                 mdata->s_meta_file_loc   =
1469                                         le32_to_cpu(mdm->metadataFileLoc);
1470                                 mdata->s_mirror_file_loc =
1471                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1472                                 mdata->s_bitmap_file_loc =
1473                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1474                                 mdata->s_alloc_unit_size =
1475                                         le32_to_cpu(mdm->allocUnitSize);
1476                                 mdata->s_align_unit_size =
1477                                         le16_to_cpu(mdm->alignUnitSize);
1478                                 if (mdm->flags & 0x01)
1479                                         mdata->s_flags |= MF_DUPLICATE_MD;
1480
1481                                 udf_debug("Metadata Ident suffix=0x%x\n",
1482                                           le16_to_cpu(*(__le16 *)
1483                                                       mdm->partIdent.identSuffix));
1484                                 udf_debug("Metadata part num=%u\n",
1485                                           le16_to_cpu(mdm->partitionNum));
1486                                 udf_debug("Metadata part alloc unit size=%u\n",
1487                                           le32_to_cpu(mdm->allocUnitSize));
1488                                 udf_debug("Metadata file loc=%u\n",
1489                                           le32_to_cpu(mdm->metadataFileLoc));
1490                                 udf_debug("Mirror file loc=%u\n",
1491                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1492                                 udf_debug("Bitmap file loc=%u\n",
1493                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1494                                 udf_debug("Flags: %d %u\n",
1495                                           mdata->s_flags, mdm->flags);
1496                         } else {
1497                                 udf_debug("Unknown ident: %s\n",
1498                                           upm2->partIdent.ident);
1499                                 continue;
1500                         }
1501                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1502                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1503                 }
1504                 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1505                           i, map->s_partition_num, type, map->s_volumeseqnum);
1506         }
1507
1508         if (fileset) {
1509                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1510
1511                 *fileset = lelb_to_cpu(la->extLocation);
1512                 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1513                           fileset->logicalBlockNum,
1514                           fileset->partitionReferenceNum);
1515         }
1516         if (lvd->integritySeqExt.extLength)
1517                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1518         ret = 0;
1519
1520         if (!sbi->s_lvid_bh) {
1521                 /* We can't generate unique IDs without a valid LVID */
1522                 if (sb_rdonly(sb)) {
1523                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1524                 } else {
1525                         udf_warn(sb, "Damaged or missing LVID, forcing "
1526                                      "readonly mount\n");
1527                         ret = -EACCES;
1528                 }
1529         }
1530 out_bh:
1531         brelse(bh);
1532         return ret;
1533 }
1534
1535 /*
1536  * Find the prevailing Logical Volume Integrity Descriptor.
1537  */
1538 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1539 {
1540         struct buffer_head *bh, *final_bh;
1541         uint16_t ident;
1542         struct udf_sb_info *sbi = UDF_SB(sb);
1543         struct logicalVolIntegrityDesc *lvid;
1544         int indirections = 0;
1545         u32 parts, impuselen;
1546
1547         while (++indirections <= UDF_MAX_LVID_NESTING) {
1548                 final_bh = NULL;
1549                 while (loc.extLength > 0 &&
1550                         (bh = udf_read_tagged(sb, loc.extLocation,
1551                                         loc.extLocation, &ident))) {
1552                         if (ident != TAG_IDENT_LVID) {
1553                                 brelse(bh);
1554                                 break;
1555                         }
1556
1557                         brelse(final_bh);
1558                         final_bh = bh;
1559
1560                         loc.extLength -= sb->s_blocksize;
1561                         loc.extLocation++;
1562                 }
1563
1564                 if (!final_bh)
1565                         return;
1566
1567                 brelse(sbi->s_lvid_bh);
1568                 sbi->s_lvid_bh = final_bh;
1569
1570                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1571                 if (lvid->nextIntegrityExt.extLength == 0)
1572                         goto check;
1573
1574                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1575         }
1576
1577         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1578                 UDF_MAX_LVID_NESTING);
1579 out_err:
1580         brelse(sbi->s_lvid_bh);
1581         sbi->s_lvid_bh = NULL;
1582         return;
1583 check:
1584         parts = le32_to_cpu(lvid->numOfPartitions);
1585         impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1586         if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1587             sizeof(struct logicalVolIntegrityDesc) + impuselen +
1588             2 * parts * sizeof(u32) > sb->s_blocksize) {
1589                 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1590                          "ignoring.\n", parts, impuselen);
1591                 goto out_err;
1592         }
1593 }
1594
1595 /*
1596  * Step for reallocation of table of partition descriptor sequence numbers.
1597  * Must be power of 2.
1598  */
1599 #define PART_DESC_ALLOC_STEP 32
1600
1601 struct part_desc_seq_scan_data {
1602         struct udf_vds_record rec;
1603         u32 partnum;
1604 };
1605
1606 struct desc_seq_scan_data {
1607         struct udf_vds_record vds[VDS_POS_LENGTH];
1608         unsigned int size_part_descs;
1609         unsigned int num_part_descs;
1610         struct part_desc_seq_scan_data *part_descs_loc;
1611 };
1612
1613 static struct udf_vds_record *handle_partition_descriptor(
1614                                 struct buffer_head *bh,
1615                                 struct desc_seq_scan_data *data)
1616 {
1617         struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1618         int partnum;
1619         int i;
1620
1621         partnum = le16_to_cpu(desc->partitionNumber);
1622         for (i = 0; i < data->num_part_descs; i++)
1623                 if (partnum == data->part_descs_loc[i].partnum)
1624                         return &(data->part_descs_loc[i].rec);
1625         if (data->num_part_descs >= data->size_part_descs) {
1626                 struct part_desc_seq_scan_data *new_loc;
1627                 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1628
1629                 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1630                 if (!new_loc)
1631                         return ERR_PTR(-ENOMEM);
1632                 memcpy(new_loc, data->part_descs_loc,
1633                        data->size_part_descs * sizeof(*new_loc));
1634                 kfree(data->part_descs_loc);
1635                 data->part_descs_loc = new_loc;
1636                 data->size_part_descs = new_size;
1637         }
1638         return &(data->part_descs_loc[data->num_part_descs++].rec);
1639 }
1640
1641
1642 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1643                 struct buffer_head *bh, struct desc_seq_scan_data *data)
1644 {
1645         switch (ident) {
1646         case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1647                 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1648         case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1649                 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1650         case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1651                 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1652         case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1653                 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1654         case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1655                 return handle_partition_descriptor(bh, data);
1656         }
1657         return NULL;
1658 }
1659
1660 /*
1661  * Process a main/reserve volume descriptor sequence.
1662  *   @block             First block of first extent of the sequence.
1663  *   @lastblock         Lastblock of first extent of the sequence.
1664  *   @fileset           There we store extent containing root fileset
1665  *
1666  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1667  * sequence
1668  */
1669 static noinline int udf_process_sequence(
1670                 struct super_block *sb,
1671                 sector_t block, sector_t lastblock,
1672                 struct kernel_lb_addr *fileset)
1673 {
1674         struct buffer_head *bh = NULL;
1675         struct udf_vds_record *curr;
1676         struct generic_desc *gd;
1677         struct volDescPtr *vdp;
1678         bool done = false;
1679         uint32_t vdsn;
1680         uint16_t ident;
1681         int ret;
1682         unsigned int indirections = 0;
1683         struct desc_seq_scan_data data;
1684         unsigned int i;
1685
1686         memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1687         data.size_part_descs = PART_DESC_ALLOC_STEP;
1688         data.num_part_descs = 0;
1689         data.part_descs_loc = kcalloc(data.size_part_descs,
1690                                       sizeof(*data.part_descs_loc),
1691                                       GFP_KERNEL);
1692         if (!data.part_descs_loc)
1693                 return -ENOMEM;
1694
1695         /*
1696          * Read the main descriptor sequence and find which descriptors
1697          * are in it.
1698          */
1699         for (; (!done && block <= lastblock); block++) {
1700                 bh = udf_read_tagged(sb, block, block, &ident);
1701                 if (!bh)
1702                         break;
1703
1704                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1705                 gd = (struct generic_desc *)bh->b_data;
1706                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1707                 switch (ident) {
1708                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1709                         if (++indirections > UDF_MAX_TD_NESTING) {
1710                                 udf_err(sb, "too many Volume Descriptor "
1711                                         "Pointers (max %u supported)\n",
1712                                         UDF_MAX_TD_NESTING);
1713                                 brelse(bh);
1714                                 ret = -EIO;
1715                                 goto out;
1716                         }
1717
1718                         vdp = (struct volDescPtr *)bh->b_data;
1719                         block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1720                         lastblock = le32_to_cpu(
1721                                 vdp->nextVolDescSeqExt.extLength) >>
1722                                 sb->s_blocksize_bits;
1723                         lastblock += block - 1;
1724                         /* For loop is going to increment 'block' again */
1725                         block--;
1726                         break;
1727                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1728                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1729                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1730                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1731                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1732                         curr = get_volume_descriptor_record(ident, bh, &data);
1733                         if (IS_ERR(curr)) {
1734                                 brelse(bh);
1735                                 ret = PTR_ERR(curr);
1736                                 goto out;
1737                         }
1738                         /* Descriptor we don't care about? */
1739                         if (!curr)
1740                                 break;
1741                         if (vdsn >= curr->volDescSeqNum) {
1742                                 curr->volDescSeqNum = vdsn;
1743                                 curr->block = block;
1744                         }
1745                         break;
1746                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1747                         done = true;
1748                         break;
1749                 }
1750                 brelse(bh);
1751         }
1752         /*
1753          * Now read interesting descriptors again and process them
1754          * in a suitable order
1755          */
1756         if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1757                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1758                 ret = -EAGAIN;
1759                 goto out;
1760         }
1761         ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1762         if (ret < 0)
1763                 goto out;
1764
1765         if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1766                 ret = udf_load_logicalvol(sb,
1767                                 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1768                                 fileset);
1769                 if (ret < 0)
1770                         goto out;
1771         }
1772
1773         /* Now handle prevailing Partition Descriptors */
1774         for (i = 0; i < data.num_part_descs; i++) {
1775                 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1776                 if (ret < 0)
1777                         goto out;
1778         }
1779         ret = 0;
1780 out:
1781         kfree(data.part_descs_loc);
1782         return ret;
1783 }
1784
1785 /*
1786  * Load Volume Descriptor Sequence described by anchor in bh
1787  *
1788  * Returns <0 on error, 0 on success
1789  */
1790 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1791                              struct kernel_lb_addr *fileset)
1792 {
1793         struct anchorVolDescPtr *anchor;
1794         sector_t main_s, main_e, reserve_s, reserve_e;
1795         int ret;
1796
1797         anchor = (struct anchorVolDescPtr *)bh->b_data;
1798
1799         /* Locate the main sequence */
1800         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1801         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1802         main_e = main_e >> sb->s_blocksize_bits;
1803         main_e += main_s - 1;
1804
1805         /* Locate the reserve sequence */
1806         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1807         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1808         reserve_e = reserve_e >> sb->s_blocksize_bits;
1809         reserve_e += reserve_s - 1;
1810
1811         /* Process the main & reserve sequences */
1812         /* responsible for finding the PartitionDesc(s) */
1813         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1814         if (ret != -EAGAIN)
1815                 return ret;
1816         udf_sb_free_partitions(sb);
1817         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1818         if (ret < 0) {
1819                 udf_sb_free_partitions(sb);
1820                 /* No sequence was OK, return -EIO */
1821                 if (ret == -EAGAIN)
1822                         ret = -EIO;
1823         }
1824         return ret;
1825 }
1826
1827 /*
1828  * Check whether there is an anchor block in the given block and
1829  * load Volume Descriptor Sequence if so.
1830  *
1831  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1832  * block
1833  */
1834 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1835                                   struct kernel_lb_addr *fileset)
1836 {
1837         struct buffer_head *bh;
1838         uint16_t ident;
1839         int ret;
1840
1841         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1842             udf_fixed_to_variable(block) >= sb_bdev_nr_blocks(sb))
1843                 return -EAGAIN;
1844
1845         bh = udf_read_tagged(sb, block, block, &ident);
1846         if (!bh)
1847                 return -EAGAIN;
1848         if (ident != TAG_IDENT_AVDP) {
1849                 brelse(bh);
1850                 return -EAGAIN;
1851         }
1852         ret = udf_load_sequence(sb, bh, fileset);
1853         brelse(bh);
1854         return ret;
1855 }
1856
1857 /*
1858  * Search for an anchor volume descriptor pointer.
1859  *
1860  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1861  * of anchors.
1862  */
1863 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1864                             struct kernel_lb_addr *fileset)
1865 {
1866         sector_t last[6];
1867         int i;
1868         struct udf_sb_info *sbi = UDF_SB(sb);
1869         int last_count = 0;
1870         int ret;
1871
1872         /* First try user provided anchor */
1873         if (sbi->s_anchor) {
1874                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1875                 if (ret != -EAGAIN)
1876                         return ret;
1877         }
1878         /*
1879          * according to spec, anchor is in either:
1880          *     block 256
1881          *     lastblock-256
1882          *     lastblock
1883          *  however, if the disc isn't closed, it could be 512.
1884          */
1885         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1886         if (ret != -EAGAIN)
1887                 return ret;
1888         /*
1889          * The trouble is which block is the last one. Drives often misreport
1890          * this so we try various possibilities.
1891          */
1892         last[last_count++] = *lastblock;
1893         if (*lastblock >= 1)
1894                 last[last_count++] = *lastblock - 1;
1895         last[last_count++] = *lastblock + 1;
1896         if (*lastblock >= 2)
1897                 last[last_count++] = *lastblock - 2;
1898         if (*lastblock >= 150)
1899                 last[last_count++] = *lastblock - 150;
1900         if (*lastblock >= 152)
1901                 last[last_count++] = *lastblock - 152;
1902
1903         for (i = 0; i < last_count; i++) {
1904                 if (last[i] >= sb_bdev_nr_blocks(sb))
1905                         continue;
1906                 ret = udf_check_anchor_block(sb, last[i], fileset);
1907                 if (ret != -EAGAIN) {
1908                         if (!ret)
1909                                 *lastblock = last[i];
1910                         return ret;
1911                 }
1912                 if (last[i] < 256)
1913                         continue;
1914                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1915                 if (ret != -EAGAIN) {
1916                         if (!ret)
1917                                 *lastblock = last[i];
1918                         return ret;
1919                 }
1920         }
1921
1922         /* Finally try block 512 in case media is open */
1923         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1924 }
1925
1926 /*
1927  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1928  * area specified by it. The function expects sbi->s_lastblock to be the last
1929  * block on the media.
1930  *
1931  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1932  * was not found.
1933  */
1934 static int udf_find_anchor(struct super_block *sb,
1935                            struct kernel_lb_addr *fileset)
1936 {
1937         struct udf_sb_info *sbi = UDF_SB(sb);
1938         sector_t lastblock = sbi->s_last_block;
1939         int ret;
1940
1941         ret = udf_scan_anchors(sb, &lastblock, fileset);
1942         if (ret != -EAGAIN)
1943                 goto out;
1944
1945         /* No anchor found? Try VARCONV conversion of block numbers */
1946         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1947         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1948         /* Firstly, we try to not convert number of the last block */
1949         ret = udf_scan_anchors(sb, &lastblock, fileset);
1950         if (ret != -EAGAIN)
1951                 goto out;
1952
1953         lastblock = sbi->s_last_block;
1954         /* Secondly, we try with converted number of the last block */
1955         ret = udf_scan_anchors(sb, &lastblock, fileset);
1956         if (ret < 0) {
1957                 /* VARCONV didn't help. Clear it. */
1958                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1959         }
1960 out:
1961         if (ret == 0)
1962                 sbi->s_last_block = lastblock;
1963         return ret;
1964 }
1965
1966 /*
1967  * Check Volume Structure Descriptor, find Anchor block and load Volume
1968  * Descriptor Sequence.
1969  *
1970  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1971  * block was not found.
1972  */
1973 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1974                         int silent, struct kernel_lb_addr *fileset)
1975 {
1976         struct udf_sb_info *sbi = UDF_SB(sb);
1977         int nsr = 0;
1978         int ret;
1979
1980         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1981                 if (!silent)
1982                         udf_warn(sb, "Bad block size\n");
1983                 return -EINVAL;
1984         }
1985         sbi->s_last_block = uopt->lastblock;
1986         if (!uopt->novrs) {
1987                 /* Check that it is NSR02 compliant */
1988                 nsr = udf_check_vsd(sb);
1989                 if (!nsr) {
1990                         if (!silent)
1991                                 udf_warn(sb, "No VRS found\n");
1992                         return -EINVAL;
1993                 }
1994                 if (nsr == -1)
1995                         udf_debug("Failed to read sector at offset %d. "
1996                                   "Assuming open disc. Skipping validity "
1997                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1998                 if (!sbi->s_last_block)
1999                         sbi->s_last_block = udf_get_last_block(sb);
2000         } else {
2001                 udf_debug("Validity check skipped because of novrs option\n");
2002         }
2003
2004         /* Look for anchor block and load Volume Descriptor Sequence */
2005         sbi->s_anchor = uopt->anchor;
2006         ret = udf_find_anchor(sb, fileset);
2007         if (ret < 0) {
2008                 if (!silent && ret == -EAGAIN)
2009                         udf_warn(sb, "No anchor found\n");
2010                 return ret;
2011         }
2012         return 0;
2013 }
2014
2015 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2016 {
2017         struct timespec64 ts;
2018
2019         ktime_get_real_ts64(&ts);
2020         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2021         lvid->descTag.descCRC = cpu_to_le16(
2022                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2023                         le16_to_cpu(lvid->descTag.descCRCLength)));
2024         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2025 }
2026
2027 static void udf_open_lvid(struct super_block *sb)
2028 {
2029         struct udf_sb_info *sbi = UDF_SB(sb);
2030         struct buffer_head *bh = sbi->s_lvid_bh;
2031         struct logicalVolIntegrityDesc *lvid;
2032         struct logicalVolIntegrityDescImpUse *lvidiu;
2033
2034         if (!bh)
2035                 return;
2036         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2037         lvidiu = udf_sb_lvidiu(sb);
2038         if (!lvidiu)
2039                 return;
2040
2041         mutex_lock(&sbi->s_alloc_mutex);
2042         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2043         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2044         if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2045                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2046         else
2047                 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2048
2049         udf_finalize_lvid(lvid);
2050         mark_buffer_dirty(bh);
2051         sbi->s_lvid_dirty = 0;
2052         mutex_unlock(&sbi->s_alloc_mutex);
2053         /* Make opening of filesystem visible on the media immediately */
2054         sync_dirty_buffer(bh);
2055 }
2056
2057 static void udf_close_lvid(struct super_block *sb)
2058 {
2059         struct udf_sb_info *sbi = UDF_SB(sb);
2060         struct buffer_head *bh = sbi->s_lvid_bh;
2061         struct logicalVolIntegrityDesc *lvid;
2062         struct logicalVolIntegrityDescImpUse *lvidiu;
2063
2064         if (!bh)
2065                 return;
2066         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2067         lvidiu = udf_sb_lvidiu(sb);
2068         if (!lvidiu)
2069                 return;
2070
2071         mutex_lock(&sbi->s_alloc_mutex);
2072         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2073         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2074         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2075                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2076         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2077                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2078         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2079                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2080         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2081                 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2082
2083         /*
2084          * We set buffer uptodate unconditionally here to avoid spurious
2085          * warnings from mark_buffer_dirty() when previous EIO has marked
2086          * the buffer as !uptodate
2087          */
2088         set_buffer_uptodate(bh);
2089         udf_finalize_lvid(lvid);
2090         mark_buffer_dirty(bh);
2091         sbi->s_lvid_dirty = 0;
2092         mutex_unlock(&sbi->s_alloc_mutex);
2093         /* Make closing of filesystem visible on the media immediately */
2094         sync_dirty_buffer(bh);
2095 }
2096
2097 u64 lvid_get_unique_id(struct super_block *sb)
2098 {
2099         struct buffer_head *bh;
2100         struct udf_sb_info *sbi = UDF_SB(sb);
2101         struct logicalVolIntegrityDesc *lvid;
2102         struct logicalVolHeaderDesc *lvhd;
2103         u64 uniqueID;
2104         u64 ret;
2105
2106         bh = sbi->s_lvid_bh;
2107         if (!bh)
2108                 return 0;
2109
2110         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2111         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2112
2113         mutex_lock(&sbi->s_alloc_mutex);
2114         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2115         if (!(++uniqueID & 0xFFFFFFFF))
2116                 uniqueID += 16;
2117         lvhd->uniqueID = cpu_to_le64(uniqueID);
2118         udf_updated_lvid(sb);
2119         mutex_unlock(&sbi->s_alloc_mutex);
2120
2121         return ret;
2122 }
2123
2124 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2125 {
2126         int ret = -EINVAL;
2127         struct inode *inode = NULL;
2128         struct udf_options uopt;
2129         struct kernel_lb_addr rootdir, fileset;
2130         struct udf_sb_info *sbi;
2131         bool lvid_open = false;
2132
2133         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2134         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2135         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2136         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2137         uopt.umask = 0;
2138         uopt.fmode = UDF_INVALID_MODE;
2139         uopt.dmode = UDF_INVALID_MODE;
2140         uopt.nls_map = NULL;
2141
2142         sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2143         if (!sbi)
2144                 return -ENOMEM;
2145
2146         sb->s_fs_info = sbi;
2147
2148         mutex_init(&sbi->s_alloc_mutex);
2149
2150         if (!udf_parse_options((char *)options, &uopt, false))
2151                 goto parse_options_failure;
2152
2153         fileset.logicalBlockNum = 0xFFFFFFFF;
2154         fileset.partitionReferenceNum = 0xFFFF;
2155
2156         sbi->s_flags = uopt.flags;
2157         sbi->s_uid = uopt.uid;
2158         sbi->s_gid = uopt.gid;
2159         sbi->s_umask = uopt.umask;
2160         sbi->s_fmode = uopt.fmode;
2161         sbi->s_dmode = uopt.dmode;
2162         sbi->s_nls_map = uopt.nls_map;
2163         rwlock_init(&sbi->s_cred_lock);
2164
2165         if (uopt.session == 0xFFFFFFFF)
2166                 sbi->s_session = udf_get_last_session(sb);
2167         else
2168                 sbi->s_session = uopt.session;
2169
2170         udf_debug("Multi-session=%d\n", sbi->s_session);
2171
2172         /* Fill in the rest of the superblock */
2173         sb->s_op = &udf_sb_ops;
2174         sb->s_export_op = &udf_export_ops;
2175
2176         sb->s_magic = UDF_SUPER_MAGIC;
2177         sb->s_time_gran = 1000;
2178
2179         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2180                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2181         } else {
2182                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2183                 while (uopt.blocksize <= 4096) {
2184                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2185                         if (ret < 0) {
2186                                 if (!silent && ret != -EACCES) {
2187                                         pr_notice("Scanning with blocksize %u failed\n",
2188                                                   uopt.blocksize);
2189                                 }
2190                                 brelse(sbi->s_lvid_bh);
2191                                 sbi->s_lvid_bh = NULL;
2192                                 /*
2193                                  * EACCES is special - we want to propagate to
2194                                  * upper layers that we cannot handle RW mount.
2195                                  */
2196                                 if (ret == -EACCES)
2197                                         break;
2198                         } else
2199                                 break;
2200
2201                         uopt.blocksize <<= 1;
2202                 }
2203         }
2204         if (ret < 0) {
2205                 if (ret == -EAGAIN) {
2206                         udf_warn(sb, "No partition found (1)\n");
2207                         ret = -EINVAL;
2208                 }
2209                 goto error_out;
2210         }
2211
2212         udf_debug("Lastblock=%u\n", sbi->s_last_block);
2213
2214         if (sbi->s_lvid_bh) {
2215                 struct logicalVolIntegrityDescImpUse *lvidiu =
2216                                                         udf_sb_lvidiu(sb);
2217                 uint16_t minUDFReadRev;
2218                 uint16_t minUDFWriteRev;
2219
2220                 if (!lvidiu) {
2221                         ret = -EINVAL;
2222                         goto error_out;
2223                 }
2224                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2225                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2226                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2227                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2228                                 minUDFReadRev,
2229                                 UDF_MAX_READ_VERSION);
2230                         ret = -EINVAL;
2231                         goto error_out;
2232                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2233                         if (!sb_rdonly(sb)) {
2234                                 ret = -EACCES;
2235                                 goto error_out;
2236                         }
2237                         UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2238                 }
2239
2240                 sbi->s_udfrev = minUDFWriteRev;
2241
2242                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2243                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2244                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2245                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2246         }
2247
2248         if (!sbi->s_partitions) {
2249                 udf_warn(sb, "No partition found (2)\n");
2250                 ret = -EINVAL;
2251                 goto error_out;
2252         }
2253
2254         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2255                         UDF_PART_FLAG_READ_ONLY) {
2256                 if (!sb_rdonly(sb)) {
2257                         ret = -EACCES;
2258                         goto error_out;
2259                 }
2260                 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2261         }
2262
2263         ret = udf_find_fileset(sb, &fileset, &rootdir);
2264         if (ret < 0) {
2265                 udf_warn(sb, "No fileset found\n");
2266                 goto error_out;
2267         }
2268
2269         if (!silent) {
2270                 struct timestamp ts;
2271                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2272                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2273                          sbi->s_volume_ident,
2274                          le16_to_cpu(ts.year), ts.month, ts.day,
2275                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2276         }
2277         if (!sb_rdonly(sb)) {
2278                 udf_open_lvid(sb);
2279                 lvid_open = true;
2280         }
2281
2282         /* Assign the root inode */
2283         /* assign inodes by physical block number */
2284         /* perhaps it's not extensible enough, but for now ... */
2285         inode = udf_iget(sb, &rootdir);
2286         if (IS_ERR(inode)) {
2287                 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2288                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2289                 ret = PTR_ERR(inode);
2290                 goto error_out;
2291         }
2292
2293         /* Allocate a dentry for the root inode */
2294         sb->s_root = d_make_root(inode);
2295         if (!sb->s_root) {
2296                 udf_err(sb, "Couldn't allocate root dentry\n");
2297                 ret = -ENOMEM;
2298                 goto error_out;
2299         }
2300         sb->s_maxbytes = MAX_LFS_FILESIZE;
2301         sb->s_max_links = UDF_MAX_LINKS;
2302         return 0;
2303
2304 error_out:
2305         iput(sbi->s_vat_inode);
2306 parse_options_failure:
2307         unload_nls(uopt.nls_map);
2308         if (lvid_open)
2309                 udf_close_lvid(sb);
2310         brelse(sbi->s_lvid_bh);
2311         udf_sb_free_partitions(sb);
2312         kfree(sbi);
2313         sb->s_fs_info = NULL;
2314
2315         return ret;
2316 }
2317
2318 void _udf_err(struct super_block *sb, const char *function,
2319               const char *fmt, ...)
2320 {
2321         struct va_format vaf;
2322         va_list args;
2323
2324         va_start(args, fmt);
2325
2326         vaf.fmt = fmt;
2327         vaf.va = &args;
2328
2329         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2330
2331         va_end(args);
2332 }
2333
2334 void _udf_warn(struct super_block *sb, const char *function,
2335                const char *fmt, ...)
2336 {
2337         struct va_format vaf;
2338         va_list args;
2339
2340         va_start(args, fmt);
2341
2342         vaf.fmt = fmt;
2343         vaf.va = &args;
2344
2345         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2346
2347         va_end(args);
2348 }
2349
2350 static void udf_put_super(struct super_block *sb)
2351 {
2352         struct udf_sb_info *sbi;
2353
2354         sbi = UDF_SB(sb);
2355
2356         iput(sbi->s_vat_inode);
2357         unload_nls(sbi->s_nls_map);
2358         if (!sb_rdonly(sb))
2359                 udf_close_lvid(sb);
2360         brelse(sbi->s_lvid_bh);
2361         udf_sb_free_partitions(sb);
2362         mutex_destroy(&sbi->s_alloc_mutex);
2363         kfree(sb->s_fs_info);
2364         sb->s_fs_info = NULL;
2365 }
2366
2367 static int udf_sync_fs(struct super_block *sb, int wait)
2368 {
2369         struct udf_sb_info *sbi = UDF_SB(sb);
2370
2371         mutex_lock(&sbi->s_alloc_mutex);
2372         if (sbi->s_lvid_dirty) {
2373                 struct buffer_head *bh = sbi->s_lvid_bh;
2374                 struct logicalVolIntegrityDesc *lvid;
2375
2376                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2377                 udf_finalize_lvid(lvid);
2378
2379                 /*
2380                  * Blockdevice will be synced later so we don't have to submit
2381                  * the buffer for IO
2382                  */
2383                 mark_buffer_dirty(bh);
2384                 sbi->s_lvid_dirty = 0;
2385         }
2386         mutex_unlock(&sbi->s_alloc_mutex);
2387
2388         return 0;
2389 }
2390
2391 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2392 {
2393         struct super_block *sb = dentry->d_sb;
2394         struct udf_sb_info *sbi = UDF_SB(sb);
2395         struct logicalVolIntegrityDescImpUse *lvidiu;
2396         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2397
2398         lvidiu = udf_sb_lvidiu(sb);
2399         buf->f_type = UDF_SUPER_MAGIC;
2400         buf->f_bsize = sb->s_blocksize;
2401         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2402         buf->f_bfree = udf_count_free(sb);
2403         buf->f_bavail = buf->f_bfree;
2404         /*
2405          * Let's pretend each free block is also a free 'inode' since UDF does
2406          * not have separate preallocated table of inodes.
2407          */
2408         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2409                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2410                         + buf->f_bfree;
2411         buf->f_ffree = buf->f_bfree;
2412         buf->f_namelen = UDF_NAME_LEN;
2413         buf->f_fsid = u64_to_fsid(id);
2414
2415         return 0;
2416 }
2417
2418 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2419                                           struct udf_bitmap *bitmap)
2420 {
2421         struct buffer_head *bh = NULL;
2422         unsigned int accum = 0;
2423         int index;
2424         udf_pblk_t block = 0, newblock;
2425         struct kernel_lb_addr loc;
2426         uint32_t bytes;
2427         uint8_t *ptr;
2428         uint16_t ident;
2429         struct spaceBitmapDesc *bm;
2430
2431         loc.logicalBlockNum = bitmap->s_extPosition;
2432         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2433         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2434
2435         if (!bh) {
2436                 udf_err(sb, "udf_count_free failed\n");
2437                 goto out;
2438         } else if (ident != TAG_IDENT_SBD) {
2439                 brelse(bh);
2440                 udf_err(sb, "udf_count_free failed\n");
2441                 goto out;
2442         }
2443
2444         bm = (struct spaceBitmapDesc *)bh->b_data;
2445         bytes = le32_to_cpu(bm->numOfBytes);
2446         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2447         ptr = (uint8_t *)bh->b_data;
2448
2449         while (bytes > 0) {
2450                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2451                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2452                                         cur_bytes * 8);
2453                 bytes -= cur_bytes;
2454                 if (bytes) {
2455                         brelse(bh);
2456                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2457                         bh = udf_tread(sb, newblock);
2458                         if (!bh) {
2459                                 udf_debug("read failed\n");
2460                                 goto out;
2461                         }
2462                         index = 0;
2463                         ptr = (uint8_t *)bh->b_data;
2464                 }
2465         }
2466         brelse(bh);
2467 out:
2468         return accum;
2469 }
2470
2471 static unsigned int udf_count_free_table(struct super_block *sb,
2472                                          struct inode *table)
2473 {
2474         unsigned int accum = 0;
2475         uint32_t elen;
2476         struct kernel_lb_addr eloc;
2477         struct extent_position epos;
2478
2479         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2480         epos.block = UDF_I(table)->i_location;
2481         epos.offset = sizeof(struct unallocSpaceEntry);
2482         epos.bh = NULL;
2483
2484         while (udf_next_aext(table, &epos, &eloc, &elen, 1) != -1)
2485                 accum += (elen >> table->i_sb->s_blocksize_bits);
2486
2487         brelse(epos.bh);
2488         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2489
2490         return accum;
2491 }
2492
2493 static unsigned int udf_count_free(struct super_block *sb)
2494 {
2495         unsigned int accum = 0;
2496         struct udf_sb_info *sbi = UDF_SB(sb);
2497         struct udf_part_map *map;
2498         unsigned int part = sbi->s_partition;
2499         int ptype = sbi->s_partmaps[part].s_partition_type;
2500
2501         if (ptype == UDF_METADATA_MAP25) {
2502                 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2503                                                         s_phys_partition_ref;
2504         } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2505                 /*
2506                  * Filesystems with VAT are append-only and we cannot write to
2507                  * them. Let's just report 0 here.
2508                  */
2509                 return 0;
2510         }
2511
2512         if (sbi->s_lvid_bh) {
2513                 struct logicalVolIntegrityDesc *lvid =
2514                         (struct logicalVolIntegrityDesc *)
2515                         sbi->s_lvid_bh->b_data;
2516                 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2517                         accum = le32_to_cpu(
2518                                         lvid->freeSpaceTable[part]);
2519                         if (accum == 0xFFFFFFFF)
2520                                 accum = 0;
2521                 }
2522         }
2523
2524         if (accum)
2525                 return accum;
2526
2527         map = &sbi->s_partmaps[part];
2528         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2529                 accum += udf_count_free_bitmap(sb,
2530                                                map->s_uspace.s_bitmap);
2531         }
2532         if (accum)
2533                 return accum;
2534
2535         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2536                 accum += udf_count_free_table(sb,
2537                                               map->s_uspace.s_table);
2538         }
2539         return accum;
2540 }
2541
2542 MODULE_AUTHOR("Ben Fennema");
2543 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2544 MODULE_LICENSE("GPL");
2545 module_init(init_udf_fs)
2546 module_exit(exit_udf_fs)