GNU Linux-libre 6.1.86-gnu
[releases.git] / fs / udf / inode.c
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42
43 #include "udf_i.h"
44 #include "udf_sb.h"
45
46 #define EXTENT_MERGE_SIZE 5
47
48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49                          FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50                          FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53                          FE_PERM_O_DELETE)
54
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int udf_insert_aext(struct inode *, struct extent_position,
61                            struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63                               struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65                                  struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68                               int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73         struct udf_inode_info *iinfo = UDF_I(inode);
74
75         if (iinfo->cached_extent.lstart != -1) {
76                 brelse(iinfo->cached_extent.epos.bh);
77                 iinfo->cached_extent.lstart = -1;
78         }
79 }
80
81 /* Invalidate extent cache */
82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84         struct udf_inode_info *iinfo = UDF_I(inode);
85
86         spin_lock(&iinfo->i_extent_cache_lock);
87         __udf_clear_extent_cache(inode);
88         spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90
91 /* Return contents of extent cache */
92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93                                  loff_t *lbcount, struct extent_position *pos)
94 {
95         struct udf_inode_info *iinfo = UDF_I(inode);
96         int ret = 0;
97
98         spin_lock(&iinfo->i_extent_cache_lock);
99         if ((iinfo->cached_extent.lstart <= bcount) &&
100             (iinfo->cached_extent.lstart != -1)) {
101                 /* Cache hit */
102                 *lbcount = iinfo->cached_extent.lstart;
103                 memcpy(pos, &iinfo->cached_extent.epos,
104                        sizeof(struct extent_position));
105                 if (pos->bh)
106                         get_bh(pos->bh);
107                 ret = 1;
108         }
109         spin_unlock(&iinfo->i_extent_cache_lock);
110         return ret;
111 }
112
113 /* Add extent to extent cache */
114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115                                     struct extent_position *pos)
116 {
117         struct udf_inode_info *iinfo = UDF_I(inode);
118
119         spin_lock(&iinfo->i_extent_cache_lock);
120         /* Invalidate previously cached extent */
121         __udf_clear_extent_cache(inode);
122         if (pos->bh)
123                 get_bh(pos->bh);
124         memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125         iinfo->cached_extent.lstart = estart;
126         switch (iinfo->i_alloc_type) {
127         case ICBTAG_FLAG_AD_SHORT:
128                 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129                 break;
130         case ICBTAG_FLAG_AD_LONG:
131                 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132                 break;
133         }
134         spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136
137 void udf_evict_inode(struct inode *inode)
138 {
139         struct udf_inode_info *iinfo = UDF_I(inode);
140         int want_delete = 0;
141
142         if (!is_bad_inode(inode)) {
143                 if (!inode->i_nlink) {
144                         want_delete = 1;
145                         udf_setsize(inode, 0);
146                         udf_update_inode(inode, IS_SYNC(inode));
147                 }
148                 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149                     inode->i_size != iinfo->i_lenExtents) {
150                         udf_warn(inode->i_sb,
151                                  "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152                                  inode->i_ino, inode->i_mode,
153                                  (unsigned long long)inode->i_size,
154                                  (unsigned long long)iinfo->i_lenExtents);
155                 }
156         }
157         truncate_inode_pages_final(&inode->i_data);
158         invalidate_inode_buffers(inode);
159         clear_inode(inode);
160         kfree(iinfo->i_data);
161         iinfo->i_data = NULL;
162         udf_clear_extent_cache(inode);
163         if (want_delete) {
164                 udf_free_inode(inode);
165         }
166 }
167
168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170         struct inode *inode = mapping->host;
171         struct udf_inode_info *iinfo = UDF_I(inode);
172         loff_t isize = inode->i_size;
173
174         if (to > isize) {
175                 truncate_pagecache(inode, isize);
176                 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177                         down_write(&iinfo->i_data_sem);
178                         udf_clear_extent_cache(inode);
179                         udf_truncate_extents(inode);
180                         up_write(&iinfo->i_data_sem);
181                 }
182         }
183 }
184
185 static int udf_writepage(struct page *page, struct writeback_control *wbc)
186 {
187         return block_write_full_page(page, udf_get_block, wbc);
188 }
189
190 static int udf_writepages(struct address_space *mapping,
191                         struct writeback_control *wbc)
192 {
193         return mpage_writepages(mapping, wbc, udf_get_block);
194 }
195
196 static int udf_read_folio(struct file *file, struct folio *folio)
197 {
198         return mpage_read_folio(folio, udf_get_block);
199 }
200
201 static void udf_readahead(struct readahead_control *rac)
202 {
203         mpage_readahead(rac, udf_get_block);
204 }
205
206 static int udf_write_begin(struct file *file, struct address_space *mapping,
207                         loff_t pos, unsigned len,
208                         struct page **pagep, void **fsdata)
209 {
210         int ret;
211
212         ret = block_write_begin(mapping, pos, len, pagep, udf_get_block);
213         if (unlikely(ret))
214                 udf_write_failed(mapping, pos + len);
215         return ret;
216 }
217
218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219 {
220         struct file *file = iocb->ki_filp;
221         struct address_space *mapping = file->f_mapping;
222         struct inode *inode = mapping->host;
223         size_t count = iov_iter_count(iter);
224         ssize_t ret;
225
226         ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227         if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228                 udf_write_failed(mapping, iocb->ki_pos + count);
229         return ret;
230 }
231
232 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233 {
234         return generic_block_bmap(mapping, block, udf_get_block);
235 }
236
237 const struct address_space_operations udf_aops = {
238         .dirty_folio    = block_dirty_folio,
239         .invalidate_folio = block_invalidate_folio,
240         .read_folio     = udf_read_folio,
241         .readahead      = udf_readahead,
242         .writepage      = udf_writepage,
243         .writepages     = udf_writepages,
244         .write_begin    = udf_write_begin,
245         .write_end      = generic_write_end,
246         .direct_IO      = udf_direct_IO,
247         .bmap           = udf_bmap,
248 };
249
250 /*
251  * Expand file stored in ICB to a normal one-block-file
252  *
253  * This function requires i_data_sem for writing and releases it.
254  * This function requires i_mutex held
255  */
256 int udf_expand_file_adinicb(struct inode *inode)
257 {
258         struct page *page;
259         char *kaddr;
260         struct udf_inode_info *iinfo = UDF_I(inode);
261         int err;
262
263         WARN_ON_ONCE(!inode_is_locked(inode));
264         if (!iinfo->i_lenAlloc) {
265                 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
266                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
267                 else
268                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
269                 /* from now on we have normal address_space methods */
270                 inode->i_data.a_ops = &udf_aops;
271                 up_write(&iinfo->i_data_sem);
272                 mark_inode_dirty(inode);
273                 return 0;
274         }
275         /*
276          * Release i_data_sem so that we can lock a page - page lock ranks
277          * above i_data_sem. i_mutex still protects us against file changes.
278          */
279         up_write(&iinfo->i_data_sem);
280
281         page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
282         if (!page)
283                 return -ENOMEM;
284
285         if (!PageUptodate(page)) {
286                 kaddr = kmap_atomic(page);
287                 memset(kaddr + iinfo->i_lenAlloc, 0x00,
288                        PAGE_SIZE - iinfo->i_lenAlloc);
289                 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
290                         iinfo->i_lenAlloc);
291                 flush_dcache_page(page);
292                 SetPageUptodate(page);
293                 kunmap_atomic(kaddr);
294         }
295         down_write(&iinfo->i_data_sem);
296         memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
297                iinfo->i_lenAlloc);
298         iinfo->i_lenAlloc = 0;
299         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
300                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
301         else
302                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
303         /* from now on we have normal address_space methods */
304         inode->i_data.a_ops = &udf_aops;
305         set_page_dirty(page);
306         unlock_page(page);
307         up_write(&iinfo->i_data_sem);
308         err = filemap_fdatawrite(inode->i_mapping);
309         if (err) {
310                 /* Restore everything back so that we don't lose data... */
311                 lock_page(page);
312                 down_write(&iinfo->i_data_sem);
313                 kaddr = kmap_atomic(page);
314                 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
315                 kunmap_atomic(kaddr);
316                 unlock_page(page);
317                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
318                 inode->i_data.a_ops = &udf_adinicb_aops;
319                 iinfo->i_lenAlloc = inode->i_size;
320                 up_write(&iinfo->i_data_sem);
321         }
322         put_page(page);
323         mark_inode_dirty(inode);
324
325         return err;
326 }
327
328 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
329                                             udf_pblk_t *block, int *err)
330 {
331         udf_pblk_t newblock;
332         struct buffer_head *dbh = NULL;
333         struct kernel_lb_addr eloc;
334         uint8_t alloctype;
335         struct extent_position epos;
336
337         struct udf_fileident_bh sfibh, dfibh;
338         loff_t f_pos = udf_ext0_offset(inode);
339         int size = udf_ext0_offset(inode) + inode->i_size;
340         struct fileIdentDesc cfi, *sfi, *dfi;
341         struct udf_inode_info *iinfo = UDF_I(inode);
342
343         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344                 alloctype = ICBTAG_FLAG_AD_SHORT;
345         else
346                 alloctype = ICBTAG_FLAG_AD_LONG;
347
348         if (!inode->i_size) {
349                 iinfo->i_alloc_type = alloctype;
350                 mark_inode_dirty(inode);
351                 return NULL;
352         }
353
354         /* alloc block, and copy data to it */
355         *block = udf_new_block(inode->i_sb, inode,
356                                iinfo->i_location.partitionReferenceNum,
357                                iinfo->i_location.logicalBlockNum, err);
358         if (!(*block))
359                 return NULL;
360         newblock = udf_get_pblock(inode->i_sb, *block,
361                                   iinfo->i_location.partitionReferenceNum,
362                                 0);
363         if (!newblock)
364                 return NULL;
365         dbh = udf_tgetblk(inode->i_sb, newblock);
366         if (!dbh)
367                 return NULL;
368         lock_buffer(dbh);
369         memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370         set_buffer_uptodate(dbh);
371         unlock_buffer(dbh);
372         mark_buffer_dirty_inode(dbh, inode);
373
374         sfibh.soffset = sfibh.eoffset =
375                         f_pos & (inode->i_sb->s_blocksize - 1);
376         sfibh.sbh = sfibh.ebh = NULL;
377         dfibh.soffset = dfibh.eoffset = 0;
378         dfibh.sbh = dfibh.ebh = dbh;
379         while (f_pos < size) {
380                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381                 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382                                          NULL, NULL, NULL);
383                 if (!sfi) {
384                         brelse(dbh);
385                         return NULL;
386                 }
387                 iinfo->i_alloc_type = alloctype;
388                 sfi->descTag.tagLocation = cpu_to_le32(*block);
389                 dfibh.soffset = dfibh.eoffset;
390                 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391                 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392                 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393                                  udf_get_fi_ident(sfi))) {
394                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
395                         brelse(dbh);
396                         return NULL;
397                 }
398         }
399         mark_buffer_dirty_inode(dbh, inode);
400
401         memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
402         iinfo->i_lenAlloc = 0;
403         eloc.logicalBlockNum = *block;
404         eloc.partitionReferenceNum =
405                                 iinfo->i_location.partitionReferenceNum;
406         iinfo->i_lenExtents = inode->i_size;
407         epos.bh = NULL;
408         epos.block = iinfo->i_location;
409         epos.offset = udf_file_entry_alloc_offset(inode);
410         udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
411         /* UniqueID stuff */
412
413         brelse(epos.bh);
414         mark_inode_dirty(inode);
415         return dbh;
416 }
417
418 static int udf_get_block(struct inode *inode, sector_t block,
419                          struct buffer_head *bh_result, int create)
420 {
421         int err, new;
422         sector_t phys = 0;
423         struct udf_inode_info *iinfo;
424
425         if (!create) {
426                 phys = udf_block_map(inode, block);
427                 if (phys)
428                         map_bh(bh_result, inode->i_sb, phys);
429                 return 0;
430         }
431
432         err = -EIO;
433         new = 0;
434         iinfo = UDF_I(inode);
435
436         down_write(&iinfo->i_data_sem);
437         if (block == iinfo->i_next_alloc_block + 1) {
438                 iinfo->i_next_alloc_block++;
439                 iinfo->i_next_alloc_goal++;
440         }
441
442         /*
443          * Block beyond EOF and prealloc extents? Just discard preallocation
444          * as it is not useful and complicates things.
445          */
446         if (((loff_t)block) << inode->i_blkbits >= iinfo->i_lenExtents)
447                 udf_discard_prealloc(inode);
448         udf_clear_extent_cache(inode);
449         phys = inode_getblk(inode, block, &err, &new);
450         if (!phys)
451                 goto abort;
452
453         if (new)
454                 set_buffer_new(bh_result);
455         map_bh(bh_result, inode->i_sb, phys);
456
457 abort:
458         up_write(&iinfo->i_data_sem);
459         return err;
460 }
461
462 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
463                                       int create, int *err)
464 {
465         struct buffer_head *bh;
466         struct buffer_head dummy;
467
468         dummy.b_state = 0;
469         dummy.b_blocknr = -1000;
470         *err = udf_get_block(inode, block, &dummy, create);
471         if (!*err && buffer_mapped(&dummy)) {
472                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
473                 if (buffer_new(&dummy)) {
474                         lock_buffer(bh);
475                         memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
476                         set_buffer_uptodate(bh);
477                         unlock_buffer(bh);
478                         mark_buffer_dirty_inode(bh, inode);
479                 }
480                 return bh;
481         }
482
483         return NULL;
484 }
485
486 /* Extend the file with new blocks totaling 'new_block_bytes',
487  * return the number of extents added
488  */
489 static int udf_do_extend_file(struct inode *inode,
490                               struct extent_position *last_pos,
491                               struct kernel_long_ad *last_ext,
492                               loff_t new_block_bytes)
493 {
494         uint32_t add;
495         int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
496         struct super_block *sb = inode->i_sb;
497         struct udf_inode_info *iinfo;
498         int err;
499
500         /* The previous extent is fake and we should not extend by anything
501          * - there's nothing to do... */
502         if (!new_block_bytes && fake)
503                 return 0;
504
505         iinfo = UDF_I(inode);
506         /* Round the last extent up to a multiple of block size */
507         if (last_ext->extLength & (sb->s_blocksize - 1)) {
508                 last_ext->extLength =
509                         (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
510                         (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
511                           sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
512                 iinfo->i_lenExtents =
513                         (iinfo->i_lenExtents + sb->s_blocksize - 1) &
514                         ~(sb->s_blocksize - 1);
515         }
516
517         /* Can we merge with the previous extent? */
518         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
519                                         EXT_NOT_RECORDED_NOT_ALLOCATED) {
520                 add = (1 << 30) - sb->s_blocksize -
521                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522                 if (add > new_block_bytes)
523                         add = new_block_bytes;
524                 new_block_bytes -= add;
525                 last_ext->extLength += add;
526         }
527
528         if (fake) {
529                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
530                                    last_ext->extLength, 1);
531                 if (err < 0)
532                         goto out_err;
533                 count++;
534         } else {
535                 struct kernel_lb_addr tmploc;
536                 uint32_t tmplen;
537
538                 udf_write_aext(inode, last_pos, &last_ext->extLocation,
539                                 last_ext->extLength, 1);
540
541                 /*
542                  * We've rewritten the last extent. If we are going to add
543                  * more extents, we may need to enter possible following
544                  * empty indirect extent.
545                  */
546                 if (new_block_bytes)
547                         udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
548         }
549
550         /* Managed to do everything necessary? */
551         if (!new_block_bytes)
552                 goto out;
553
554         /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
555         last_ext->extLocation.logicalBlockNum = 0;
556         last_ext->extLocation.partitionReferenceNum = 0;
557         add = (1 << 30) - sb->s_blocksize;
558         last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
559
560         /* Create enough extents to cover the whole hole */
561         while (new_block_bytes > add) {
562                 new_block_bytes -= add;
563                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
564                                    last_ext->extLength, 1);
565                 if (err)
566                         goto out_err;
567                 count++;
568         }
569         if (new_block_bytes) {
570                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
571                         new_block_bytes;
572                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
573                                    last_ext->extLength, 1);
574                 if (err)
575                         goto out_err;
576                 count++;
577         }
578
579 out:
580         /* last_pos should point to the last written extent... */
581         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
582                 last_pos->offset -= sizeof(struct short_ad);
583         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
584                 last_pos->offset -= sizeof(struct long_ad);
585         else
586                 return -EIO;
587
588         return count;
589 out_err:
590         /* Remove extents we've created so far */
591         udf_clear_extent_cache(inode);
592         udf_truncate_extents(inode);
593         return err;
594 }
595
596 /* Extend the final block of the file to final_block_len bytes */
597 static void udf_do_extend_final_block(struct inode *inode,
598                                       struct extent_position *last_pos,
599                                       struct kernel_long_ad *last_ext,
600                                       uint32_t new_elen)
601 {
602         uint32_t added_bytes;
603
604         /*
605          * Extent already large enough? It may be already rounded up to block
606          * size...
607          */
608         if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
609                 return;
610         added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
611         last_ext->extLength += added_bytes;
612         UDF_I(inode)->i_lenExtents += added_bytes;
613
614         udf_write_aext(inode, last_pos, &last_ext->extLocation,
615                         last_ext->extLength, 1);
616 }
617
618 static int udf_extend_file(struct inode *inode, loff_t newsize)
619 {
620
621         struct extent_position epos;
622         struct kernel_lb_addr eloc;
623         uint32_t elen;
624         int8_t etype;
625         struct super_block *sb = inode->i_sb;
626         sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
627         loff_t new_elen;
628         int adsize;
629         struct udf_inode_info *iinfo = UDF_I(inode);
630         struct kernel_long_ad extent;
631         int err = 0;
632         bool within_last_ext;
633
634         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
635                 adsize = sizeof(struct short_ad);
636         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
637                 adsize = sizeof(struct long_ad);
638         else
639                 BUG();
640
641         /*
642          * When creating hole in file, just don't bother with preserving
643          * preallocation. It likely won't be very useful anyway.
644          */
645         udf_discard_prealloc(inode);
646
647         etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
648         within_last_ext = (etype != -1);
649         /* We don't expect extents past EOF... */
650         WARN_ON_ONCE(within_last_ext &&
651                      elen > ((loff_t)offset + 1) << inode->i_blkbits);
652
653         if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
654             (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
655                 /* File has no extents at all or has empty last
656                  * indirect extent! Create a fake extent... */
657                 extent.extLocation.logicalBlockNum = 0;
658                 extent.extLocation.partitionReferenceNum = 0;
659                 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
660         } else {
661                 epos.offset -= adsize;
662                 etype = udf_next_aext(inode, &epos, &extent.extLocation,
663                                       &extent.extLength, 0);
664                 extent.extLength |= etype << 30;
665         }
666
667         new_elen = ((loff_t)offset << inode->i_blkbits) |
668                                         (newsize & (sb->s_blocksize - 1));
669
670         /* File has extent covering the new size (could happen when extending
671          * inside a block)?
672          */
673         if (within_last_ext) {
674                 /* Extending file within the last file block */
675                 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
676         } else {
677                 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
678         }
679
680         if (err < 0)
681                 goto out;
682         err = 0;
683         iinfo->i_lenExtents = newsize;
684 out:
685         brelse(epos.bh);
686         return err;
687 }
688
689 static sector_t inode_getblk(struct inode *inode, sector_t block,
690                              int *err, int *new)
691 {
692         struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
693         struct extent_position prev_epos, cur_epos, next_epos;
694         int count = 0, startnum = 0, endnum = 0;
695         uint32_t elen = 0, tmpelen;
696         struct kernel_lb_addr eloc, tmpeloc;
697         int c = 1;
698         loff_t lbcount = 0, b_off = 0;
699         udf_pblk_t newblocknum, newblock = 0;
700         sector_t offset = 0;
701         int8_t etype;
702         struct udf_inode_info *iinfo = UDF_I(inode);
703         udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
704         int lastblock = 0;
705         bool isBeyondEOF;
706
707         *err = 0;
708         *new = 0;
709         prev_epos.offset = udf_file_entry_alloc_offset(inode);
710         prev_epos.block = iinfo->i_location;
711         prev_epos.bh = NULL;
712         cur_epos = next_epos = prev_epos;
713         b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
714
715         /* find the extent which contains the block we are looking for.
716            alternate between laarr[0] and laarr[1] for locations of the
717            current extent, and the previous extent */
718         do {
719                 if (prev_epos.bh != cur_epos.bh) {
720                         brelse(prev_epos.bh);
721                         get_bh(cur_epos.bh);
722                         prev_epos.bh = cur_epos.bh;
723                 }
724                 if (cur_epos.bh != next_epos.bh) {
725                         brelse(cur_epos.bh);
726                         get_bh(next_epos.bh);
727                         cur_epos.bh = next_epos.bh;
728                 }
729
730                 lbcount += elen;
731
732                 prev_epos.block = cur_epos.block;
733                 cur_epos.block = next_epos.block;
734
735                 prev_epos.offset = cur_epos.offset;
736                 cur_epos.offset = next_epos.offset;
737
738                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
739                 if (etype == -1)
740                         break;
741
742                 c = !c;
743
744                 laarr[c].extLength = (etype << 30) | elen;
745                 laarr[c].extLocation = eloc;
746
747                 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
748                         pgoal = eloc.logicalBlockNum +
749                                 ((elen + inode->i_sb->s_blocksize - 1) >>
750                                  inode->i_sb->s_blocksize_bits);
751
752                 count++;
753         } while (lbcount + elen <= b_off);
754
755         b_off -= lbcount;
756         offset = b_off >> inode->i_sb->s_blocksize_bits;
757         /*
758          * Move prev_epos and cur_epos into indirect extent if we are at
759          * the pointer to it
760          */
761         udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
762         udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
763
764         /* if the extent is allocated and recorded, return the block
765            if the extent is not a multiple of the blocksize, round up */
766
767         if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
768                 if (elen & (inode->i_sb->s_blocksize - 1)) {
769                         elen = EXT_RECORDED_ALLOCATED |
770                                 ((elen + inode->i_sb->s_blocksize - 1) &
771                                  ~(inode->i_sb->s_blocksize - 1));
772                         udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
773                 }
774                 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
775                 goto out_free;
776         }
777
778         /* Are we beyond EOF and preallocated extent? */
779         if (etype == -1) {
780                 int ret;
781                 loff_t hole_len;
782
783                 isBeyondEOF = true;
784                 if (count) {
785                         if (c)
786                                 laarr[0] = laarr[1];
787                         startnum = 1;
788                 } else {
789                         /* Create a fake extent when there's not one */
790                         memset(&laarr[0].extLocation, 0x00,
791                                 sizeof(struct kernel_lb_addr));
792                         laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
793                         /* Will udf_do_extend_file() create real extent from
794                            a fake one? */
795                         startnum = (offset > 0);
796                 }
797                 /* Create extents for the hole between EOF and offset */
798                 hole_len = (loff_t)offset << inode->i_blkbits;
799                 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
800                 if (ret < 0) {
801                         *err = ret;
802                         goto out_free;
803                 }
804                 c = 0;
805                 offset = 0;
806                 count += ret;
807                 /*
808                  * Is there any real extent? - otherwise we overwrite the fake
809                  * one...
810                  */
811                 if (count)
812                         c = !c;
813                 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
814                         inode->i_sb->s_blocksize;
815                 memset(&laarr[c].extLocation, 0x00,
816                         sizeof(struct kernel_lb_addr));
817                 count++;
818                 endnum = c + 1;
819                 lastblock = 1;
820         } else {
821                 isBeyondEOF = false;
822                 endnum = startnum = ((count > 2) ? 2 : count);
823
824                 /* if the current extent is in position 0,
825                    swap it with the previous */
826                 if (!c && count != 1) {
827                         laarr[2] = laarr[0];
828                         laarr[0] = laarr[1];
829                         laarr[1] = laarr[2];
830                         c = 1;
831                 }
832
833                 /* if the current block is located in an extent,
834                    read the next extent */
835                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
836                 if (etype != -1) {
837                         laarr[c + 1].extLength = (etype << 30) | elen;
838                         laarr[c + 1].extLocation = eloc;
839                         count++;
840                         startnum++;
841                         endnum++;
842                 } else
843                         lastblock = 1;
844         }
845
846         /* if the current extent is not recorded but allocated, get the
847          * block in the extent corresponding to the requested block */
848         if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
849                 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
850         else { /* otherwise, allocate a new block */
851                 if (iinfo->i_next_alloc_block == block)
852                         goal = iinfo->i_next_alloc_goal;
853
854                 if (!goal) {
855                         if (!(goal = pgoal)) /* XXX: what was intended here? */
856                                 goal = iinfo->i_location.logicalBlockNum + 1;
857                 }
858
859                 newblocknum = udf_new_block(inode->i_sb, inode,
860                                 iinfo->i_location.partitionReferenceNum,
861                                 goal, err);
862                 if (!newblocknum) {
863                         *err = -ENOSPC;
864                         goto out_free;
865                 }
866                 if (isBeyondEOF)
867                         iinfo->i_lenExtents += inode->i_sb->s_blocksize;
868         }
869
870         /* if the extent the requsted block is located in contains multiple
871          * blocks, split the extent into at most three extents. blocks prior
872          * to requested block, requested block, and blocks after requested
873          * block */
874         udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
875
876         /* We preallocate blocks only for regular files. It also makes sense
877          * for directories but there's a problem when to drop the
878          * preallocation. We might use some delayed work for that but I feel
879          * it's overengineering for a filesystem like UDF. */
880         if (S_ISREG(inode->i_mode))
881                 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
882
883         /* merge any continuous blocks in laarr */
884         udf_merge_extents(inode, laarr, &endnum);
885
886         /* write back the new extents, inserting new extents if the new number
887          * of extents is greater than the old number, and deleting extents if
888          * the new number of extents is less than the old number */
889         *err = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
890         if (*err < 0)
891                 goto out_free;
892
893         newblock = udf_get_pblock(inode->i_sb, newblocknum,
894                                 iinfo->i_location.partitionReferenceNum, 0);
895         if (!newblock) {
896                 *err = -EIO;
897                 goto out_free;
898         }
899         *new = 1;
900         iinfo->i_next_alloc_block = block;
901         iinfo->i_next_alloc_goal = newblocknum;
902         inode->i_ctime = current_time(inode);
903
904         if (IS_SYNC(inode))
905                 udf_sync_inode(inode);
906         else
907                 mark_inode_dirty(inode);
908 out_free:
909         brelse(prev_epos.bh);
910         brelse(cur_epos.bh);
911         brelse(next_epos.bh);
912         return newblock;
913 }
914
915 static void udf_split_extents(struct inode *inode, int *c, int offset,
916                                udf_pblk_t newblocknum,
917                                struct kernel_long_ad *laarr, int *endnum)
918 {
919         unsigned long blocksize = inode->i_sb->s_blocksize;
920         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
921
922         if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
923             (laarr[*c].extLength >> 30) ==
924                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
925                 int curr = *c;
926                 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
927                             blocksize - 1) >> blocksize_bits;
928                 int8_t etype = (laarr[curr].extLength >> 30);
929
930                 if (blen == 1)
931                         ;
932                 else if (!offset || blen == offset + 1) {
933                         laarr[curr + 2] = laarr[curr + 1];
934                         laarr[curr + 1] = laarr[curr];
935                 } else {
936                         laarr[curr + 3] = laarr[curr + 1];
937                         laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
938                 }
939
940                 if (offset) {
941                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
942                                 udf_free_blocks(inode->i_sb, inode,
943                                                 &laarr[curr].extLocation,
944                                                 0, offset);
945                                 laarr[curr].extLength =
946                                         EXT_NOT_RECORDED_NOT_ALLOCATED |
947                                         (offset << blocksize_bits);
948                                 laarr[curr].extLocation.logicalBlockNum = 0;
949                                 laarr[curr].extLocation.
950                                                 partitionReferenceNum = 0;
951                         } else
952                                 laarr[curr].extLength = (etype << 30) |
953                                         (offset << blocksize_bits);
954                         curr++;
955                         (*c)++;
956                         (*endnum)++;
957                 }
958
959                 laarr[curr].extLocation.logicalBlockNum = newblocknum;
960                 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
961                         laarr[curr].extLocation.partitionReferenceNum =
962                                 UDF_I(inode)->i_location.partitionReferenceNum;
963                 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
964                         blocksize;
965                 curr++;
966
967                 if (blen != offset + 1) {
968                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
969                                 laarr[curr].extLocation.logicalBlockNum +=
970                                                                 offset + 1;
971                         laarr[curr].extLength = (etype << 30) |
972                                 ((blen - (offset + 1)) << blocksize_bits);
973                         curr++;
974                         (*endnum)++;
975                 }
976         }
977 }
978
979 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
980                                  struct kernel_long_ad *laarr,
981                                  int *endnum)
982 {
983         int start, length = 0, currlength = 0, i;
984
985         if (*endnum >= (c + 1)) {
986                 if (!lastblock)
987                         return;
988                 else
989                         start = c;
990         } else {
991                 if ((laarr[c + 1].extLength >> 30) ==
992                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
993                         start = c + 1;
994                         length = currlength =
995                                 (((laarr[c + 1].extLength &
996                                         UDF_EXTENT_LENGTH_MASK) +
997                                 inode->i_sb->s_blocksize - 1) >>
998                                 inode->i_sb->s_blocksize_bits);
999                 } else
1000                         start = c;
1001         }
1002
1003         for (i = start + 1; i <= *endnum; i++) {
1004                 if (i == *endnum) {
1005                         if (lastblock)
1006                                 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1007                 } else if ((laarr[i].extLength >> 30) ==
1008                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1009                         length += (((laarr[i].extLength &
1010                                                 UDF_EXTENT_LENGTH_MASK) +
1011                                     inode->i_sb->s_blocksize - 1) >>
1012                                     inode->i_sb->s_blocksize_bits);
1013                 } else
1014                         break;
1015         }
1016
1017         if (length) {
1018                 int next = laarr[start].extLocation.logicalBlockNum +
1019                         (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1020                           inode->i_sb->s_blocksize - 1) >>
1021                           inode->i_sb->s_blocksize_bits);
1022                 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1023                                 laarr[start].extLocation.partitionReferenceNum,
1024                                 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1025                                 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1026                                 currlength);
1027                 if (numalloc)   {
1028                         if (start == (c + 1))
1029                                 laarr[start].extLength +=
1030                                         (numalloc <<
1031                                          inode->i_sb->s_blocksize_bits);
1032                         else {
1033                                 memmove(&laarr[c + 2], &laarr[c + 1],
1034                                         sizeof(struct long_ad) * (*endnum - (c + 1)));
1035                                 (*endnum)++;
1036                                 laarr[c + 1].extLocation.logicalBlockNum = next;
1037                                 laarr[c + 1].extLocation.partitionReferenceNum =
1038                                         laarr[c].extLocation.
1039                                                         partitionReferenceNum;
1040                                 laarr[c + 1].extLength =
1041                                         EXT_NOT_RECORDED_ALLOCATED |
1042                                         (numalloc <<
1043                                          inode->i_sb->s_blocksize_bits);
1044                                 start = c + 1;
1045                         }
1046
1047                         for (i = start + 1; numalloc && i < *endnum; i++) {
1048                                 int elen = ((laarr[i].extLength &
1049                                                 UDF_EXTENT_LENGTH_MASK) +
1050                                             inode->i_sb->s_blocksize - 1) >>
1051                                             inode->i_sb->s_blocksize_bits;
1052
1053                                 if (elen > numalloc) {
1054                                         laarr[i].extLength -=
1055                                                 (numalloc <<
1056                                                  inode->i_sb->s_blocksize_bits);
1057                                         numalloc = 0;
1058                                 } else {
1059                                         numalloc -= elen;
1060                                         if (*endnum > (i + 1))
1061                                                 memmove(&laarr[i],
1062                                                         &laarr[i + 1],
1063                                                         sizeof(struct long_ad) *
1064                                                         (*endnum - (i + 1)));
1065                                         i--;
1066                                         (*endnum)--;
1067                                 }
1068                         }
1069                         UDF_I(inode)->i_lenExtents +=
1070                                 numalloc << inode->i_sb->s_blocksize_bits;
1071                 }
1072         }
1073 }
1074
1075 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1076                               int *endnum)
1077 {
1078         int i;
1079         unsigned long blocksize = inode->i_sb->s_blocksize;
1080         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1081
1082         for (i = 0; i < (*endnum - 1); i++) {
1083                 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1084                 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1085
1086                 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1087                         (((li->extLength >> 30) ==
1088                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1089                         ((lip1->extLocation.logicalBlockNum -
1090                           li->extLocation.logicalBlockNum) ==
1091                         (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1092                         blocksize - 1) >> blocksize_bits)))) {
1093
1094                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1095                              (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1096                              blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1097                                 li->extLength = lip1->extLength +
1098                                         (((li->extLength &
1099                                                 UDF_EXTENT_LENGTH_MASK) +
1100                                          blocksize - 1) & ~(blocksize - 1));
1101                                 if (*endnum > (i + 2))
1102                                         memmove(&laarr[i + 1], &laarr[i + 2],
1103                                                 sizeof(struct long_ad) *
1104                                                 (*endnum - (i + 2)));
1105                                 i--;
1106                                 (*endnum)--;
1107                         }
1108                 } else if (((li->extLength >> 30) ==
1109                                 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1110                            ((lip1->extLength >> 30) ==
1111                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1112                         udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1113                                         ((li->extLength &
1114                                           UDF_EXTENT_LENGTH_MASK) +
1115                                          blocksize - 1) >> blocksize_bits);
1116                         li->extLocation.logicalBlockNum = 0;
1117                         li->extLocation.partitionReferenceNum = 0;
1118
1119                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1120                              (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1121                              blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1122                                 lip1->extLength = (lip1->extLength -
1123                                                    (li->extLength &
1124                                                    UDF_EXTENT_LENGTH_MASK) +
1125                                                    UDF_EXTENT_LENGTH_MASK) &
1126                                                    ~(blocksize - 1);
1127                                 li->extLength = (li->extLength &
1128                                                  UDF_EXTENT_FLAG_MASK) +
1129                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
1130                                                 blocksize;
1131                         } else {
1132                                 li->extLength = lip1->extLength +
1133                                         (((li->extLength &
1134                                                 UDF_EXTENT_LENGTH_MASK) +
1135                                           blocksize - 1) & ~(blocksize - 1));
1136                                 if (*endnum > (i + 2))
1137                                         memmove(&laarr[i + 1], &laarr[i + 2],
1138                                                 sizeof(struct long_ad) *
1139                                                 (*endnum - (i + 2)));
1140                                 i--;
1141                                 (*endnum)--;
1142                         }
1143                 } else if ((li->extLength >> 30) ==
1144                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1145                         udf_free_blocks(inode->i_sb, inode,
1146                                         &li->extLocation, 0,
1147                                         ((li->extLength &
1148                                                 UDF_EXTENT_LENGTH_MASK) +
1149                                          blocksize - 1) >> blocksize_bits);
1150                         li->extLocation.logicalBlockNum = 0;
1151                         li->extLocation.partitionReferenceNum = 0;
1152                         li->extLength = (li->extLength &
1153                                                 UDF_EXTENT_LENGTH_MASK) |
1154                                                 EXT_NOT_RECORDED_NOT_ALLOCATED;
1155                 }
1156         }
1157 }
1158
1159 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1160                               int startnum, int endnum,
1161                               struct extent_position *epos)
1162 {
1163         int start = 0, i;
1164         struct kernel_lb_addr tmploc;
1165         uint32_t tmplen;
1166         int err;
1167
1168         if (startnum > endnum) {
1169                 for (i = 0; i < (startnum - endnum); i++)
1170                         udf_delete_aext(inode, *epos);
1171         } else if (startnum < endnum) {
1172                 for (i = 0; i < (endnum - startnum); i++) {
1173                         err = udf_insert_aext(inode, *epos,
1174                                               laarr[i].extLocation,
1175                                               laarr[i].extLength);
1176                         /*
1177                          * If we fail here, we are likely corrupting the extent
1178                          * list and leaking blocks. At least stop early to
1179                          * limit the damage.
1180                          */
1181                         if (err < 0)
1182                                 return err;
1183                         udf_next_aext(inode, epos, &laarr[i].extLocation,
1184                                       &laarr[i].extLength, 1);
1185                         start++;
1186                 }
1187         }
1188
1189         for (i = start; i < endnum; i++) {
1190                 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1191                 udf_write_aext(inode, epos, &laarr[i].extLocation,
1192                                laarr[i].extLength, 1);
1193         }
1194         return 0;
1195 }
1196
1197 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1198                               int create, int *err)
1199 {
1200         struct buffer_head *bh = NULL;
1201
1202         bh = udf_getblk(inode, block, create, err);
1203         if (!bh)
1204                 return NULL;
1205
1206         if (bh_read(bh, 0) >= 0)
1207                 return bh;
1208
1209         brelse(bh);
1210         *err = -EIO;
1211         return NULL;
1212 }
1213
1214 int udf_setsize(struct inode *inode, loff_t newsize)
1215 {
1216         int err;
1217         struct udf_inode_info *iinfo;
1218         unsigned int bsize = i_blocksize(inode);
1219
1220         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1221               S_ISLNK(inode->i_mode)))
1222                 return -EINVAL;
1223         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1224                 return -EPERM;
1225
1226         iinfo = UDF_I(inode);
1227         if (newsize > inode->i_size) {
1228                 down_write(&iinfo->i_data_sem);
1229                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1230                         if (bsize <
1231                             (udf_file_entry_alloc_offset(inode) + newsize)) {
1232                                 err = udf_expand_file_adinicb(inode);
1233                                 if (err)
1234                                         return err;
1235                                 down_write(&iinfo->i_data_sem);
1236                         } else {
1237                                 iinfo->i_lenAlloc = newsize;
1238                                 goto set_size;
1239                         }
1240                 }
1241                 err = udf_extend_file(inode, newsize);
1242                 if (err) {
1243                         up_write(&iinfo->i_data_sem);
1244                         return err;
1245                 }
1246 set_size:
1247                 up_write(&iinfo->i_data_sem);
1248                 truncate_setsize(inode, newsize);
1249         } else {
1250                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1251                         down_write(&iinfo->i_data_sem);
1252                         udf_clear_extent_cache(inode);
1253                         memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1254                                0x00, bsize - newsize -
1255                                udf_file_entry_alloc_offset(inode));
1256                         iinfo->i_lenAlloc = newsize;
1257                         truncate_setsize(inode, newsize);
1258                         up_write(&iinfo->i_data_sem);
1259                         goto update_time;
1260                 }
1261                 err = block_truncate_page(inode->i_mapping, newsize,
1262                                           udf_get_block);
1263                 if (err)
1264                         return err;
1265                 truncate_setsize(inode, newsize);
1266                 down_write(&iinfo->i_data_sem);
1267                 udf_clear_extent_cache(inode);
1268                 err = udf_truncate_extents(inode);
1269                 up_write(&iinfo->i_data_sem);
1270                 if (err)
1271                         return err;
1272         }
1273 update_time:
1274         inode->i_mtime = inode->i_ctime = current_time(inode);
1275         if (IS_SYNC(inode))
1276                 udf_sync_inode(inode);
1277         else
1278                 mark_inode_dirty(inode);
1279         return 0;
1280 }
1281
1282 /*
1283  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1284  * arbitrary - just that we hopefully don't limit any real use of rewritten
1285  * inode on write-once media but avoid looping for too long on corrupted media.
1286  */
1287 #define UDF_MAX_ICB_NESTING 1024
1288
1289 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1290 {
1291         struct buffer_head *bh = NULL;
1292         struct fileEntry *fe;
1293         struct extendedFileEntry *efe;
1294         uint16_t ident;
1295         struct udf_inode_info *iinfo = UDF_I(inode);
1296         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1297         struct kernel_lb_addr *iloc = &iinfo->i_location;
1298         unsigned int link_count;
1299         unsigned int indirections = 0;
1300         int bs = inode->i_sb->s_blocksize;
1301         int ret = -EIO;
1302         uint32_t uid, gid;
1303
1304 reread:
1305         if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1306                 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1307                           iloc->partitionReferenceNum, sbi->s_partitions);
1308                 return -EIO;
1309         }
1310
1311         if (iloc->logicalBlockNum >=
1312             sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1313                 udf_debug("block=%u, partition=%u out of range\n",
1314                           iloc->logicalBlockNum, iloc->partitionReferenceNum);
1315                 return -EIO;
1316         }
1317
1318         /*
1319          * Set defaults, but the inode is still incomplete!
1320          * Note: get_new_inode() sets the following on a new inode:
1321          *      i_sb = sb
1322          *      i_no = ino
1323          *      i_flags = sb->s_flags
1324          *      i_state = 0
1325          * clean_inode(): zero fills and sets
1326          *      i_count = 1
1327          *      i_nlink = 1
1328          *      i_op = NULL;
1329          */
1330         bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1331         if (!bh) {
1332                 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1333                 return -EIO;
1334         }
1335
1336         if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1337             ident != TAG_IDENT_USE) {
1338                 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1339                         inode->i_ino, ident);
1340                 goto out;
1341         }
1342
1343         fe = (struct fileEntry *)bh->b_data;
1344         efe = (struct extendedFileEntry *)bh->b_data;
1345
1346         if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1347                 struct buffer_head *ibh;
1348
1349                 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1350                 if (ident == TAG_IDENT_IE && ibh) {
1351                         struct kernel_lb_addr loc;
1352                         struct indirectEntry *ie;
1353
1354                         ie = (struct indirectEntry *)ibh->b_data;
1355                         loc = lelb_to_cpu(ie->indirectICB.extLocation);
1356
1357                         if (ie->indirectICB.extLength) {
1358                                 brelse(ibh);
1359                                 memcpy(&iinfo->i_location, &loc,
1360                                        sizeof(struct kernel_lb_addr));
1361                                 if (++indirections > UDF_MAX_ICB_NESTING) {
1362                                         udf_err(inode->i_sb,
1363                                                 "too many ICBs in ICB hierarchy"
1364                                                 " (max %d supported)\n",
1365                                                 UDF_MAX_ICB_NESTING);
1366                                         goto out;
1367                                 }
1368                                 brelse(bh);
1369                                 goto reread;
1370                         }
1371                 }
1372                 brelse(ibh);
1373         } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1374                 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1375                         le16_to_cpu(fe->icbTag.strategyType));
1376                 goto out;
1377         }
1378         if (fe->icbTag.strategyType == cpu_to_le16(4))
1379                 iinfo->i_strat4096 = 0;
1380         else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1381                 iinfo->i_strat4096 = 1;
1382
1383         iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1384                                                         ICBTAG_FLAG_AD_MASK;
1385         if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1386             iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1387             iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1388                 ret = -EIO;
1389                 goto out;
1390         }
1391         iinfo->i_hidden = hidden_inode;
1392         iinfo->i_unique = 0;
1393         iinfo->i_lenEAttr = 0;
1394         iinfo->i_lenExtents = 0;
1395         iinfo->i_lenAlloc = 0;
1396         iinfo->i_next_alloc_block = 0;
1397         iinfo->i_next_alloc_goal = 0;
1398         if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1399                 iinfo->i_efe = 1;
1400                 iinfo->i_use = 0;
1401                 ret = udf_alloc_i_data(inode, bs -
1402                                         sizeof(struct extendedFileEntry));
1403                 if (ret)
1404                         goto out;
1405                 memcpy(iinfo->i_data,
1406                        bh->b_data + sizeof(struct extendedFileEntry),
1407                        bs - sizeof(struct extendedFileEntry));
1408         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1409                 iinfo->i_efe = 0;
1410                 iinfo->i_use = 0;
1411                 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1412                 if (ret)
1413                         goto out;
1414                 memcpy(iinfo->i_data,
1415                        bh->b_data + sizeof(struct fileEntry),
1416                        bs - sizeof(struct fileEntry));
1417         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1418                 iinfo->i_efe = 0;
1419                 iinfo->i_use = 1;
1420                 iinfo->i_lenAlloc = le32_to_cpu(
1421                                 ((struct unallocSpaceEntry *)bh->b_data)->
1422                                  lengthAllocDescs);
1423                 ret = udf_alloc_i_data(inode, bs -
1424                                         sizeof(struct unallocSpaceEntry));
1425                 if (ret)
1426                         goto out;
1427                 memcpy(iinfo->i_data,
1428                        bh->b_data + sizeof(struct unallocSpaceEntry),
1429                        bs - sizeof(struct unallocSpaceEntry));
1430                 return 0;
1431         }
1432
1433         ret = -EIO;
1434         read_lock(&sbi->s_cred_lock);
1435         uid = le32_to_cpu(fe->uid);
1436         if (uid == UDF_INVALID_ID ||
1437             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1438                 inode->i_uid = sbi->s_uid;
1439         else
1440                 i_uid_write(inode, uid);
1441
1442         gid = le32_to_cpu(fe->gid);
1443         if (gid == UDF_INVALID_ID ||
1444             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1445                 inode->i_gid = sbi->s_gid;
1446         else
1447                 i_gid_write(inode, gid);
1448
1449         if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1450                         sbi->s_fmode != UDF_INVALID_MODE)
1451                 inode->i_mode = sbi->s_fmode;
1452         else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1453                         sbi->s_dmode != UDF_INVALID_MODE)
1454                 inode->i_mode = sbi->s_dmode;
1455         else
1456                 inode->i_mode = udf_convert_permissions(fe);
1457         inode->i_mode &= ~sbi->s_umask;
1458         iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1459
1460         read_unlock(&sbi->s_cred_lock);
1461
1462         link_count = le16_to_cpu(fe->fileLinkCount);
1463         if (!link_count) {
1464                 if (!hidden_inode) {
1465                         ret = -ESTALE;
1466                         goto out;
1467                 }
1468                 link_count = 1;
1469         }
1470         set_nlink(inode, link_count);
1471
1472         inode->i_size = le64_to_cpu(fe->informationLength);
1473         iinfo->i_lenExtents = inode->i_size;
1474
1475         if (iinfo->i_efe == 0) {
1476                 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1477                         (inode->i_sb->s_blocksize_bits - 9);
1478
1479                 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1480                 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1481                 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1482
1483                 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1484                 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1485                 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1486                 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1487                 iinfo->i_streamdir = 0;
1488                 iinfo->i_lenStreams = 0;
1489         } else {
1490                 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1491                     (inode->i_sb->s_blocksize_bits - 9);
1492
1493                 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1494                 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1495                 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1496                 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1497
1498                 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1499                 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1500                 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1501                 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1502
1503                 /* Named streams */
1504                 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1505                 iinfo->i_locStreamdir =
1506                         lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1507                 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1508                 if (iinfo->i_lenStreams >= inode->i_size)
1509                         iinfo->i_lenStreams -= inode->i_size;
1510                 else
1511                         iinfo->i_lenStreams = 0;
1512         }
1513         inode->i_generation = iinfo->i_unique;
1514
1515         /*
1516          * Sanity check length of allocation descriptors and extended attrs to
1517          * avoid integer overflows
1518          */
1519         if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1520                 goto out;
1521         /* Now do exact checks */
1522         if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1523                 goto out;
1524         /* Sanity checks for files in ICB so that we don't get confused later */
1525         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1526                 /*
1527                  * For file in ICB data is stored in allocation descriptor
1528                  * so sizes should match
1529                  */
1530                 if (iinfo->i_lenAlloc != inode->i_size)
1531                         goto out;
1532                 /* File in ICB has to fit in there... */
1533                 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1534                         goto out;
1535         }
1536
1537         switch (fe->icbTag.fileType) {
1538         case ICBTAG_FILE_TYPE_DIRECTORY:
1539                 inode->i_op = &udf_dir_inode_operations;
1540                 inode->i_fop = &udf_dir_operations;
1541                 inode->i_mode |= S_IFDIR;
1542                 inc_nlink(inode);
1543                 break;
1544         case ICBTAG_FILE_TYPE_REALTIME:
1545         case ICBTAG_FILE_TYPE_REGULAR:
1546         case ICBTAG_FILE_TYPE_UNDEF:
1547         case ICBTAG_FILE_TYPE_VAT20:
1548                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1549                         inode->i_data.a_ops = &udf_adinicb_aops;
1550                 else
1551                         inode->i_data.a_ops = &udf_aops;
1552                 inode->i_op = &udf_file_inode_operations;
1553                 inode->i_fop = &udf_file_operations;
1554                 inode->i_mode |= S_IFREG;
1555                 break;
1556         case ICBTAG_FILE_TYPE_BLOCK:
1557                 inode->i_mode |= S_IFBLK;
1558                 break;
1559         case ICBTAG_FILE_TYPE_CHAR:
1560                 inode->i_mode |= S_IFCHR;
1561                 break;
1562         case ICBTAG_FILE_TYPE_FIFO:
1563                 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1564                 break;
1565         case ICBTAG_FILE_TYPE_SOCKET:
1566                 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1567                 break;
1568         case ICBTAG_FILE_TYPE_SYMLINK:
1569                 inode->i_data.a_ops = &udf_symlink_aops;
1570                 inode->i_op = &udf_symlink_inode_operations;
1571                 inode_nohighmem(inode);
1572                 inode->i_mode = S_IFLNK | 0777;
1573                 break;
1574         case ICBTAG_FILE_TYPE_MAIN:
1575                 udf_debug("METADATA FILE-----\n");
1576                 break;
1577         case ICBTAG_FILE_TYPE_MIRROR:
1578                 udf_debug("METADATA MIRROR FILE-----\n");
1579                 break;
1580         case ICBTAG_FILE_TYPE_BITMAP:
1581                 udf_debug("METADATA BITMAP FILE-----\n");
1582                 break;
1583         default:
1584                 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1585                         inode->i_ino, fe->icbTag.fileType);
1586                 goto out;
1587         }
1588         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1589                 struct deviceSpec *dsea =
1590                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1591                 if (dsea) {
1592                         init_special_inode(inode, inode->i_mode,
1593                                 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1594                                       le32_to_cpu(dsea->minorDeviceIdent)));
1595                         /* Developer ID ??? */
1596                 } else
1597                         goto out;
1598         }
1599         ret = 0;
1600 out:
1601         brelse(bh);
1602         return ret;
1603 }
1604
1605 static int udf_alloc_i_data(struct inode *inode, size_t size)
1606 {
1607         struct udf_inode_info *iinfo = UDF_I(inode);
1608         iinfo->i_data = kmalloc(size, GFP_KERNEL);
1609         if (!iinfo->i_data)
1610                 return -ENOMEM;
1611         return 0;
1612 }
1613
1614 static umode_t udf_convert_permissions(struct fileEntry *fe)
1615 {
1616         umode_t mode;
1617         uint32_t permissions;
1618         uint32_t flags;
1619
1620         permissions = le32_to_cpu(fe->permissions);
1621         flags = le16_to_cpu(fe->icbTag.flags);
1622
1623         mode =  ((permissions) & 0007) |
1624                 ((permissions >> 2) & 0070) |
1625                 ((permissions >> 4) & 0700) |
1626                 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1627                 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1628                 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1629
1630         return mode;
1631 }
1632
1633 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1634 {
1635         struct udf_inode_info *iinfo = UDF_I(inode);
1636
1637         /*
1638          * UDF 2.01 sec. 3.3.3.3 Note 2:
1639          * In Unix, delete permission tracks write
1640          */
1641         iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1642         if (mode & 0200)
1643                 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1644         if (mode & 0020)
1645                 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1646         if (mode & 0002)
1647                 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1648 }
1649
1650 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1651 {
1652         return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1653 }
1654
1655 static int udf_sync_inode(struct inode *inode)
1656 {
1657         return udf_update_inode(inode, 1);
1658 }
1659
1660 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1661 {
1662         if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1663             (iinfo->i_crtime.tv_sec == time.tv_sec &&
1664              iinfo->i_crtime.tv_nsec > time.tv_nsec))
1665                 iinfo->i_crtime = time;
1666 }
1667
1668 static int udf_update_inode(struct inode *inode, int do_sync)
1669 {
1670         struct buffer_head *bh = NULL;
1671         struct fileEntry *fe;
1672         struct extendedFileEntry *efe;
1673         uint64_t lb_recorded;
1674         uint32_t udfperms;
1675         uint16_t icbflags;
1676         uint16_t crclen;
1677         int err = 0;
1678         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1679         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1680         struct udf_inode_info *iinfo = UDF_I(inode);
1681
1682         bh = udf_tgetblk(inode->i_sb,
1683                         udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1684         if (!bh) {
1685                 udf_debug("getblk failure\n");
1686                 return -EIO;
1687         }
1688
1689         lock_buffer(bh);
1690         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1691         fe = (struct fileEntry *)bh->b_data;
1692         efe = (struct extendedFileEntry *)bh->b_data;
1693
1694         if (iinfo->i_use) {
1695                 struct unallocSpaceEntry *use =
1696                         (struct unallocSpaceEntry *)bh->b_data;
1697
1698                 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1699                 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1700                        iinfo->i_data, inode->i_sb->s_blocksize -
1701                                         sizeof(struct unallocSpaceEntry));
1702                 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1703                 crclen = sizeof(struct unallocSpaceEntry);
1704
1705                 goto finish;
1706         }
1707
1708         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1709                 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1710         else
1711                 fe->uid = cpu_to_le32(i_uid_read(inode));
1712
1713         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1714                 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1715         else
1716                 fe->gid = cpu_to_le32(i_gid_read(inode));
1717
1718         udfperms = ((inode->i_mode & 0007)) |
1719                    ((inode->i_mode & 0070) << 2) |
1720                    ((inode->i_mode & 0700) << 4);
1721
1722         udfperms |= iinfo->i_extraPerms;
1723         fe->permissions = cpu_to_le32(udfperms);
1724
1725         if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1726                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1727         else {
1728                 if (iinfo->i_hidden)
1729                         fe->fileLinkCount = cpu_to_le16(0);
1730                 else
1731                         fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1732         }
1733
1734         fe->informationLength = cpu_to_le64(inode->i_size);
1735
1736         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1737                 struct regid *eid;
1738                 struct deviceSpec *dsea =
1739                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1740                 if (!dsea) {
1741                         dsea = (struct deviceSpec *)
1742                                 udf_add_extendedattr(inode,
1743                                                      sizeof(struct deviceSpec) +
1744                                                      sizeof(struct regid), 12, 0x3);
1745                         dsea->attrType = cpu_to_le32(12);
1746                         dsea->attrSubtype = 1;
1747                         dsea->attrLength = cpu_to_le32(
1748                                                 sizeof(struct deviceSpec) +
1749                                                 sizeof(struct regid));
1750                         dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1751                 }
1752                 eid = (struct regid *)dsea->impUse;
1753                 memset(eid, 0, sizeof(*eid));
1754                 strcpy(eid->ident, UDF_ID_DEVELOPER);
1755                 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1756                 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1757                 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1758                 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1759         }
1760
1761         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1762                 lb_recorded = 0; /* No extents => no blocks! */
1763         else
1764                 lb_recorded =
1765                         (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1766                         (blocksize_bits - 9);
1767
1768         if (iinfo->i_efe == 0) {
1769                 memcpy(bh->b_data + sizeof(struct fileEntry),
1770                        iinfo->i_data,
1771                        inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1772                 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1773
1774                 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1775                 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1776                 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1777                 memset(&(fe->impIdent), 0, sizeof(struct regid));
1778                 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1779                 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1780                 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1781                 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1782                 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1783                 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1784                 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1785                 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1786                 crclen = sizeof(struct fileEntry);
1787         } else {
1788                 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1789                        iinfo->i_data,
1790                        inode->i_sb->s_blocksize -
1791                                         sizeof(struct extendedFileEntry));
1792                 efe->objectSize =
1793                         cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1794                 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1795
1796                 if (iinfo->i_streamdir) {
1797                         struct long_ad *icb_lad = &efe->streamDirectoryICB;
1798
1799                         icb_lad->extLocation =
1800                                 cpu_to_lelb(iinfo->i_locStreamdir);
1801                         icb_lad->extLength =
1802                                 cpu_to_le32(inode->i_sb->s_blocksize);
1803                 }
1804
1805                 udf_adjust_time(iinfo, inode->i_atime);
1806                 udf_adjust_time(iinfo, inode->i_mtime);
1807                 udf_adjust_time(iinfo, inode->i_ctime);
1808
1809                 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1810                 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1811                 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1812                 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1813
1814                 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1815                 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1816                 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1817                 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1818                 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1819                 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1820                 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1821                 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1822                 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1823                 crclen = sizeof(struct extendedFileEntry);
1824         }
1825
1826 finish:
1827         if (iinfo->i_strat4096) {
1828                 fe->icbTag.strategyType = cpu_to_le16(4096);
1829                 fe->icbTag.strategyParameter = cpu_to_le16(1);
1830                 fe->icbTag.numEntries = cpu_to_le16(2);
1831         } else {
1832                 fe->icbTag.strategyType = cpu_to_le16(4);
1833                 fe->icbTag.numEntries = cpu_to_le16(1);
1834         }
1835
1836         if (iinfo->i_use)
1837                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1838         else if (S_ISDIR(inode->i_mode))
1839                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1840         else if (S_ISREG(inode->i_mode))
1841                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1842         else if (S_ISLNK(inode->i_mode))
1843                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1844         else if (S_ISBLK(inode->i_mode))
1845                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1846         else if (S_ISCHR(inode->i_mode))
1847                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1848         else if (S_ISFIFO(inode->i_mode))
1849                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1850         else if (S_ISSOCK(inode->i_mode))
1851                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1852
1853         icbflags =      iinfo->i_alloc_type |
1854                         ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1855                         ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1856                         ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1857                         (le16_to_cpu(fe->icbTag.flags) &
1858                                 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1859                                 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1860
1861         fe->icbTag.flags = cpu_to_le16(icbflags);
1862         if (sbi->s_udfrev >= 0x0200)
1863                 fe->descTag.descVersion = cpu_to_le16(3);
1864         else
1865                 fe->descTag.descVersion = cpu_to_le16(2);
1866         fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1867         fe->descTag.tagLocation = cpu_to_le32(
1868                                         iinfo->i_location.logicalBlockNum);
1869         crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1870         fe->descTag.descCRCLength = cpu_to_le16(crclen);
1871         fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1872                                                   crclen));
1873         fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1874
1875         set_buffer_uptodate(bh);
1876         unlock_buffer(bh);
1877
1878         /* write the data blocks */
1879         mark_buffer_dirty(bh);
1880         if (do_sync) {
1881                 sync_dirty_buffer(bh);
1882                 if (buffer_write_io_error(bh)) {
1883                         udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1884                                  inode->i_ino);
1885                         err = -EIO;
1886                 }
1887         }
1888         brelse(bh);
1889
1890         return err;
1891 }
1892
1893 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1894                          bool hidden_inode)
1895 {
1896         unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1897         struct inode *inode = iget_locked(sb, block);
1898         int err;
1899
1900         if (!inode)
1901                 return ERR_PTR(-ENOMEM);
1902
1903         if (!(inode->i_state & I_NEW)) {
1904                 if (UDF_I(inode)->i_hidden != hidden_inode) {
1905                         iput(inode);
1906                         return ERR_PTR(-EFSCORRUPTED);
1907                 }
1908                 return inode;
1909         }
1910
1911         memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1912         err = udf_read_inode(inode, hidden_inode);
1913         if (err < 0) {
1914                 iget_failed(inode);
1915                 return ERR_PTR(err);
1916         }
1917         unlock_new_inode(inode);
1918
1919         return inode;
1920 }
1921
1922 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1923                             struct extent_position *epos)
1924 {
1925         struct super_block *sb = inode->i_sb;
1926         struct buffer_head *bh;
1927         struct allocExtDesc *aed;
1928         struct extent_position nepos;
1929         struct kernel_lb_addr neloc;
1930         int ver, adsize;
1931
1932         if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1933                 adsize = sizeof(struct short_ad);
1934         else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1935                 adsize = sizeof(struct long_ad);
1936         else
1937                 return -EIO;
1938
1939         neloc.logicalBlockNum = block;
1940         neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1941
1942         bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1943         if (!bh)
1944                 return -EIO;
1945         lock_buffer(bh);
1946         memset(bh->b_data, 0x00, sb->s_blocksize);
1947         set_buffer_uptodate(bh);
1948         unlock_buffer(bh);
1949         mark_buffer_dirty_inode(bh, inode);
1950
1951         aed = (struct allocExtDesc *)(bh->b_data);
1952         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1953                 aed->previousAllocExtLocation =
1954                                 cpu_to_le32(epos->block.logicalBlockNum);
1955         }
1956         aed->lengthAllocDescs = cpu_to_le32(0);
1957         if (UDF_SB(sb)->s_udfrev >= 0x0200)
1958                 ver = 3;
1959         else
1960                 ver = 2;
1961         udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1962                     sizeof(struct tag));
1963
1964         nepos.block = neloc;
1965         nepos.offset = sizeof(struct allocExtDesc);
1966         nepos.bh = bh;
1967
1968         /*
1969          * Do we have to copy current last extent to make space for indirect
1970          * one?
1971          */
1972         if (epos->offset + adsize > sb->s_blocksize) {
1973                 struct kernel_lb_addr cp_loc;
1974                 uint32_t cp_len;
1975                 int cp_type;
1976
1977                 epos->offset -= adsize;
1978                 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1979                 cp_len |= ((uint32_t)cp_type) << 30;
1980
1981                 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1982                 udf_write_aext(inode, epos, &nepos.block,
1983                                sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1984         } else {
1985                 __udf_add_aext(inode, epos, &nepos.block,
1986                                sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1987         }
1988
1989         brelse(epos->bh);
1990         *epos = nepos;
1991
1992         return 0;
1993 }
1994
1995 /*
1996  * Append extent at the given position - should be the first free one in inode
1997  * / indirect extent. This function assumes there is enough space in the inode
1998  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1999  */
2000 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2001                    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2002 {
2003         struct udf_inode_info *iinfo = UDF_I(inode);
2004         struct allocExtDesc *aed;
2005         int adsize;
2006
2007         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2008                 adsize = sizeof(struct short_ad);
2009         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2010                 adsize = sizeof(struct long_ad);
2011         else
2012                 return -EIO;
2013
2014         if (!epos->bh) {
2015                 WARN_ON(iinfo->i_lenAlloc !=
2016                         epos->offset - udf_file_entry_alloc_offset(inode));
2017         } else {
2018                 aed = (struct allocExtDesc *)epos->bh->b_data;
2019                 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2020                         epos->offset - sizeof(struct allocExtDesc));
2021                 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2022         }
2023
2024         udf_write_aext(inode, epos, eloc, elen, inc);
2025
2026         if (!epos->bh) {
2027                 iinfo->i_lenAlloc += adsize;
2028                 mark_inode_dirty(inode);
2029         } else {
2030                 aed = (struct allocExtDesc *)epos->bh->b_data;
2031                 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2032                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2033                                 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2034                         udf_update_tag(epos->bh->b_data,
2035                                         epos->offset + (inc ? 0 : adsize));
2036                 else
2037                         udf_update_tag(epos->bh->b_data,
2038                                         sizeof(struct allocExtDesc));
2039                 mark_buffer_dirty_inode(epos->bh, inode);
2040         }
2041
2042         return 0;
2043 }
2044
2045 /*
2046  * Append extent at given position - should be the first free one in inode
2047  * / indirect extent. Takes care of allocating and linking indirect blocks.
2048  */
2049 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2050                  struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2051 {
2052         int adsize;
2053         struct super_block *sb = inode->i_sb;
2054
2055         if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2056                 adsize = sizeof(struct short_ad);
2057         else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2058                 adsize = sizeof(struct long_ad);
2059         else
2060                 return -EIO;
2061
2062         if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2063                 int err;
2064                 udf_pblk_t new_block;
2065
2066                 new_block = udf_new_block(sb, NULL,
2067                                           epos->block.partitionReferenceNum,
2068                                           epos->block.logicalBlockNum, &err);
2069                 if (!new_block)
2070                         return -ENOSPC;
2071
2072                 err = udf_setup_indirect_aext(inode, new_block, epos);
2073                 if (err)
2074                         return err;
2075         }
2076
2077         return __udf_add_aext(inode, epos, eloc, elen, inc);
2078 }
2079
2080 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2081                     struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2082 {
2083         int adsize;
2084         uint8_t *ptr;
2085         struct short_ad *sad;
2086         struct long_ad *lad;
2087         struct udf_inode_info *iinfo = UDF_I(inode);
2088
2089         if (!epos->bh)
2090                 ptr = iinfo->i_data + epos->offset -
2091                         udf_file_entry_alloc_offset(inode) +
2092                         iinfo->i_lenEAttr;
2093         else
2094                 ptr = epos->bh->b_data + epos->offset;
2095
2096         switch (iinfo->i_alloc_type) {
2097         case ICBTAG_FLAG_AD_SHORT:
2098                 sad = (struct short_ad *)ptr;
2099                 sad->extLength = cpu_to_le32(elen);
2100                 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2101                 adsize = sizeof(struct short_ad);
2102                 break;
2103         case ICBTAG_FLAG_AD_LONG:
2104                 lad = (struct long_ad *)ptr;
2105                 lad->extLength = cpu_to_le32(elen);
2106                 lad->extLocation = cpu_to_lelb(*eloc);
2107                 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2108                 adsize = sizeof(struct long_ad);
2109                 break;
2110         default:
2111                 return;
2112         }
2113
2114         if (epos->bh) {
2115                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2116                     UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2117                         struct allocExtDesc *aed =
2118                                 (struct allocExtDesc *)epos->bh->b_data;
2119                         udf_update_tag(epos->bh->b_data,
2120                                        le32_to_cpu(aed->lengthAllocDescs) +
2121                                        sizeof(struct allocExtDesc));
2122                 }
2123                 mark_buffer_dirty_inode(epos->bh, inode);
2124         } else {
2125                 mark_inode_dirty(inode);
2126         }
2127
2128         if (inc)
2129                 epos->offset += adsize;
2130 }
2131
2132 /*
2133  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2134  * someone does some weird stuff.
2135  */
2136 #define UDF_MAX_INDIR_EXTS 16
2137
2138 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2139                      struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2140 {
2141         int8_t etype;
2142         unsigned int indirections = 0;
2143
2144         while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2145                (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2146                 udf_pblk_t block;
2147
2148                 if (++indirections > UDF_MAX_INDIR_EXTS) {
2149                         udf_err(inode->i_sb,
2150                                 "too many indirect extents in inode %lu\n",
2151                                 inode->i_ino);
2152                         return -1;
2153                 }
2154
2155                 epos->block = *eloc;
2156                 epos->offset = sizeof(struct allocExtDesc);
2157                 brelse(epos->bh);
2158                 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2159                 epos->bh = udf_tread(inode->i_sb, block);
2160                 if (!epos->bh) {
2161                         udf_debug("reading block %u failed!\n", block);
2162                         return -1;
2163                 }
2164         }
2165
2166         return etype;
2167 }
2168
2169 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2170                         struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2171 {
2172         int alen;
2173         int8_t etype;
2174         uint8_t *ptr;
2175         struct short_ad *sad;
2176         struct long_ad *lad;
2177         struct udf_inode_info *iinfo = UDF_I(inode);
2178
2179         if (!epos->bh) {
2180                 if (!epos->offset)
2181                         epos->offset = udf_file_entry_alloc_offset(inode);
2182                 ptr = iinfo->i_data + epos->offset -
2183                         udf_file_entry_alloc_offset(inode) +
2184                         iinfo->i_lenEAttr;
2185                 alen = udf_file_entry_alloc_offset(inode) +
2186                                                         iinfo->i_lenAlloc;
2187         } else {
2188                 if (!epos->offset)
2189                         epos->offset = sizeof(struct allocExtDesc);
2190                 ptr = epos->bh->b_data + epos->offset;
2191                 alen = sizeof(struct allocExtDesc) +
2192                         le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2193                                                         lengthAllocDescs);
2194         }
2195
2196         switch (iinfo->i_alloc_type) {
2197         case ICBTAG_FLAG_AD_SHORT:
2198                 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2199                 if (!sad)
2200                         return -1;
2201                 etype = le32_to_cpu(sad->extLength) >> 30;
2202                 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2203                 eloc->partitionReferenceNum =
2204                                 iinfo->i_location.partitionReferenceNum;
2205                 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2206                 break;
2207         case ICBTAG_FLAG_AD_LONG:
2208                 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2209                 if (!lad)
2210                         return -1;
2211                 etype = le32_to_cpu(lad->extLength) >> 30;
2212                 *eloc = lelb_to_cpu(lad->extLocation);
2213                 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2214                 break;
2215         default:
2216                 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2217                 return -1;
2218         }
2219
2220         return etype;
2221 }
2222
2223 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2224                            struct kernel_lb_addr neloc, uint32_t nelen)
2225 {
2226         struct kernel_lb_addr oeloc;
2227         uint32_t oelen;
2228         int8_t etype;
2229         int err;
2230
2231         if (epos.bh)
2232                 get_bh(epos.bh);
2233
2234         while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2235                 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2236                 neloc = oeloc;
2237                 nelen = (etype << 30) | oelen;
2238         }
2239         err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2240         brelse(epos.bh);
2241
2242         return err;
2243 }
2244
2245 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2246 {
2247         struct extent_position oepos;
2248         int adsize;
2249         int8_t etype;
2250         struct allocExtDesc *aed;
2251         struct udf_inode_info *iinfo;
2252         struct kernel_lb_addr eloc;
2253         uint32_t elen;
2254
2255         if (epos.bh) {
2256                 get_bh(epos.bh);
2257                 get_bh(epos.bh);
2258         }
2259
2260         iinfo = UDF_I(inode);
2261         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2262                 adsize = sizeof(struct short_ad);
2263         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2264                 adsize = sizeof(struct long_ad);
2265         else
2266                 adsize = 0;
2267
2268         oepos = epos;
2269         if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2270                 return -1;
2271
2272         while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2273                 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2274                 if (oepos.bh != epos.bh) {
2275                         oepos.block = epos.block;
2276                         brelse(oepos.bh);
2277                         get_bh(epos.bh);
2278                         oepos.bh = epos.bh;
2279                         oepos.offset = epos.offset - adsize;
2280                 }
2281         }
2282         memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2283         elen = 0;
2284
2285         if (epos.bh != oepos.bh) {
2286                 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2287                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2289                 if (!oepos.bh) {
2290                         iinfo->i_lenAlloc -= (adsize * 2);
2291                         mark_inode_dirty(inode);
2292                 } else {
2293                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2294                         le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2295                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2296                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2297                                 udf_update_tag(oepos.bh->b_data,
2298                                                 oepos.offset - (2 * adsize));
2299                         else
2300                                 udf_update_tag(oepos.bh->b_data,
2301                                                 sizeof(struct allocExtDesc));
2302                         mark_buffer_dirty_inode(oepos.bh, inode);
2303                 }
2304         } else {
2305                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2306                 if (!oepos.bh) {
2307                         iinfo->i_lenAlloc -= adsize;
2308                         mark_inode_dirty(inode);
2309                 } else {
2310                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2311                         le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2312                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2313                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2314                                 udf_update_tag(oepos.bh->b_data,
2315                                                 epos.offset - adsize);
2316                         else
2317                                 udf_update_tag(oepos.bh->b_data,
2318                                                 sizeof(struct allocExtDesc));
2319                         mark_buffer_dirty_inode(oepos.bh, inode);
2320                 }
2321         }
2322
2323         brelse(epos.bh);
2324         brelse(oepos.bh);
2325
2326         return (elen >> 30);
2327 }
2328
2329 int8_t inode_bmap(struct inode *inode, sector_t block,
2330                   struct extent_position *pos, struct kernel_lb_addr *eloc,
2331                   uint32_t *elen, sector_t *offset)
2332 {
2333         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2334         loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2335         int8_t etype;
2336         struct udf_inode_info *iinfo;
2337
2338         iinfo = UDF_I(inode);
2339         if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2340                 pos->offset = 0;
2341                 pos->block = iinfo->i_location;
2342                 pos->bh = NULL;
2343         }
2344         *elen = 0;
2345         do {
2346                 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2347                 if (etype == -1) {
2348                         *offset = (bcount - lbcount) >> blocksize_bits;
2349                         iinfo->i_lenExtents = lbcount;
2350                         return -1;
2351                 }
2352                 lbcount += *elen;
2353         } while (lbcount <= bcount);
2354         /* update extent cache */
2355         udf_update_extent_cache(inode, lbcount - *elen, pos);
2356         *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2357
2358         return etype;
2359 }
2360
2361 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2362 {
2363         struct kernel_lb_addr eloc;
2364         uint32_t elen;
2365         sector_t offset;
2366         struct extent_position epos = {};
2367         udf_pblk_t ret;
2368
2369         down_read(&UDF_I(inode)->i_data_sem);
2370
2371         if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2372                                                 (EXT_RECORDED_ALLOCATED >> 30))
2373                 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2374         else
2375                 ret = 0;
2376
2377         up_read(&UDF_I(inode)->i_data_sem);
2378         brelse(epos.bh);
2379
2380         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2381                 return udf_fixed_to_variable(ret);
2382         else
2383                 return ret;
2384 }