GNU Linux-libre 6.9.1-gnu
[releases.git] / fs / ubifs / tnc_misc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10
11 /*
12  * This file contains miscelanious TNC-related functions shared betweend
13  * different files. This file does not form any logically separate TNC
14  * sub-system. The file was created because there is a lot of TNC code and
15  * putting it all in one file would make that file too big and unreadable.
16  */
17
18 #include "ubifs.h"
19
20 /**
21  * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal.
22  * @c: UBIFS file-system description object
23  * @zr: root of the subtree to traverse
24  * @znode: previous znode
25  *
26  * This function implements levelorder TNC traversal. The LNC is ignored.
27  * Returns the next element or %NULL if @znode is already the last one.
28  */
29 struct ubifs_znode *ubifs_tnc_levelorder_next(const struct ubifs_info *c,
30                                               struct ubifs_znode *zr,
31                                               struct ubifs_znode *znode)
32 {
33         int level, iip, level_search = 0;
34         struct ubifs_znode *zn;
35
36         ubifs_assert(c, zr);
37
38         if (unlikely(!znode))
39                 return zr;
40
41         if (unlikely(znode == zr)) {
42                 if (znode->level == 0)
43                         return NULL;
44                 return ubifs_tnc_find_child(zr, 0);
45         }
46
47         level = znode->level;
48
49         iip = znode->iip;
50         while (1) {
51                 ubifs_assert(c, znode->level <= zr->level);
52
53                 /*
54                  * First walk up until there is a znode with next branch to
55                  * look at.
56                  */
57                 while (znode->parent != zr && iip >= znode->parent->child_cnt) {
58                         znode = znode->parent;
59                         iip = znode->iip;
60                 }
61
62                 if (unlikely(znode->parent == zr &&
63                              iip >= znode->parent->child_cnt)) {
64                         /* This level is done, switch to the lower one */
65                         level -= 1;
66                         if (level_search || level < 0)
67                                 /*
68                                  * We were already looking for znode at lower
69                                  * level ('level_search'). As we are here
70                                  * again, it just does not exist. Or all levels
71                                  * were finished ('level < 0').
72                                  */
73                                 return NULL;
74
75                         level_search = 1;
76                         iip = -1;
77                         znode = ubifs_tnc_find_child(zr, 0);
78                         ubifs_assert(c, znode);
79                 }
80
81                 /* Switch to the next index */
82                 zn = ubifs_tnc_find_child(znode->parent, iip + 1);
83                 if (!zn) {
84                         /* No more children to look at, we have walk up */
85                         iip = znode->parent->child_cnt;
86                         continue;
87                 }
88
89                 /* Walk back down to the level we came from ('level') */
90                 while (zn->level != level) {
91                         znode = zn;
92                         zn = ubifs_tnc_find_child(zn, 0);
93                         if (!zn) {
94                                 /*
95                                  * This path is not too deep so it does not
96                                  * reach 'level'. Try next path.
97                                  */
98                                 iip = znode->iip;
99                                 break;
100                         }
101                 }
102
103                 if (zn) {
104                         ubifs_assert(c, zn->level >= 0);
105                         return zn;
106                 }
107         }
108 }
109
110 /**
111  * ubifs_search_zbranch - search znode branch.
112  * @c: UBIFS file-system description object
113  * @znode: znode to search in
114  * @key: key to search for
115  * @n: znode branch slot number is returned here
116  *
117  * This is a helper function which search branch with key @key in @znode using
118  * binary search. The result of the search may be:
119  *   o exact match, then %1 is returned, and the slot number of the branch is
120  *     stored in @n;
121  *   o no exact match, then %0 is returned and the slot number of the left
122  *     closest branch is returned in @n; the slot if all keys in this znode are
123  *     greater than @key, then %-1 is returned in @n.
124  */
125 int ubifs_search_zbranch(const struct ubifs_info *c,
126                          const struct ubifs_znode *znode,
127                          const union ubifs_key *key, int *n)
128 {
129         int beg = 0, end = znode->child_cnt, mid;
130         int cmp;
131         const struct ubifs_zbranch *zbr = &znode->zbranch[0];
132
133         ubifs_assert(c, end > beg);
134
135         while (end > beg) {
136                 mid = (beg + end) >> 1;
137                 cmp = keys_cmp(c, key, &zbr[mid].key);
138                 if (cmp > 0)
139                         beg = mid + 1;
140                 else if (cmp < 0)
141                         end = mid;
142                 else {
143                         *n = mid;
144                         return 1;
145                 }
146         }
147
148         *n = end - 1;
149
150         /* The insert point is after *n */
151         ubifs_assert(c, *n >= -1 && *n < znode->child_cnt);
152         if (*n == -1)
153                 ubifs_assert(c, keys_cmp(c, key, &zbr[0].key) < 0);
154         else
155                 ubifs_assert(c, keys_cmp(c, key, &zbr[*n].key) > 0);
156         if (*n + 1 < znode->child_cnt)
157                 ubifs_assert(c, keys_cmp(c, key, &zbr[*n + 1].key) < 0);
158
159         return 0;
160 }
161
162 /**
163  * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal.
164  * @znode: znode to start at (root of the sub-tree to traverse)
165  *
166  * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is
167  * ignored.
168  */
169 struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode)
170 {
171         if (unlikely(!znode))
172                 return NULL;
173
174         while (znode->level > 0) {
175                 struct ubifs_znode *child;
176
177                 child = ubifs_tnc_find_child(znode, 0);
178                 if (!child)
179                         return znode;
180                 znode = child;
181         }
182
183         return znode;
184 }
185
186 /**
187  * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal.
188  * @c: UBIFS file-system description object
189  * @znode: previous znode
190  *
191  * This function implements postorder TNC traversal. The LNC is ignored.
192  * Returns the next element or %NULL if @znode is already the last one.
193  */
194 struct ubifs_znode *ubifs_tnc_postorder_next(const struct ubifs_info *c,
195                                              struct ubifs_znode *znode)
196 {
197         struct ubifs_znode *zn;
198
199         ubifs_assert(c, znode);
200         if (unlikely(!znode->parent))
201                 return NULL;
202
203         /* Switch to the next index in the parent */
204         zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1);
205         if (!zn)
206                 /* This is in fact the last child, return parent */
207                 return znode->parent;
208
209         /* Go to the first znode in this new subtree */
210         return ubifs_tnc_postorder_first(zn);
211 }
212
213 /**
214  * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree.
215  * @c: UBIFS file-system description object
216  * @znode: znode defining subtree to destroy
217  *
218  * This function destroys subtree of the TNC tree. Returns number of clean
219  * znodes in the subtree.
220  */
221 long ubifs_destroy_tnc_subtree(const struct ubifs_info *c,
222                                struct ubifs_znode *znode)
223 {
224         struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode);
225         long clean_freed = 0;
226         int n;
227
228         ubifs_assert(c, zn);
229         while (1) {
230                 for (n = 0; n < zn->child_cnt; n++) {
231                         if (!zn->zbranch[n].znode)
232                                 continue;
233
234                         if (zn->level > 0 &&
235                             !ubifs_zn_dirty(zn->zbranch[n].znode))
236                                 clean_freed += 1;
237
238                         cond_resched();
239                         kfree(zn->zbranch[n].znode);
240                 }
241
242                 if (zn == znode) {
243                         if (!ubifs_zn_dirty(zn))
244                                 clean_freed += 1;
245                         kfree(zn);
246                         return clean_freed;
247                 }
248
249                 zn = ubifs_tnc_postorder_next(c, zn);
250         }
251 }
252
253 /**
254  * ubifs_destroy_tnc_tree - destroy all znodes connected to the TNC tree.
255  * @c: UBIFS file-system description object
256  *
257  * This function destroys the whole TNC tree and updates clean global znode
258  * count.
259  */
260 void ubifs_destroy_tnc_tree(struct ubifs_info *c)
261 {
262         long n, freed;
263
264         if (!c->zroot.znode)
265                 return;
266
267         n = atomic_long_read(&c->clean_zn_cnt);
268         freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
269         ubifs_assert(c, freed == n);
270         atomic_long_sub(n, &ubifs_clean_zn_cnt);
271
272         c->zroot.znode = NULL;
273 }
274
275 /**
276  * read_znode - read an indexing node from flash and fill znode.
277  * @c: UBIFS file-system description object
278  * @zzbr: the zbranch describing the node to read
279  * @znode: znode to read to
280  *
281  * This function reads an indexing node from the flash media and fills znode
282  * with the read data. Returns zero in case of success and a negative error
283  * code in case of failure. The read indexing node is validated and if anything
284  * is wrong with it, this function prints complaint messages and returns
285  * %-EINVAL.
286  */
287 static int read_znode(struct ubifs_info *c, struct ubifs_zbranch *zzbr,
288                       struct ubifs_znode *znode)
289 {
290         int lnum = zzbr->lnum;
291         int offs = zzbr->offs;
292         int len = zzbr->len;
293         int i, err, type, cmp;
294         struct ubifs_idx_node *idx;
295
296         idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
297         if (!idx)
298                 return -ENOMEM;
299
300         err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
301         if (err < 0) {
302                 kfree(idx);
303                 return err;
304         }
305
306         err = ubifs_node_check_hash(c, idx, zzbr->hash);
307         if (err) {
308                 ubifs_bad_hash(c, idx, zzbr->hash, lnum, offs);
309                 kfree(idx);
310                 return err;
311         }
312
313         znode->child_cnt = le16_to_cpu(idx->child_cnt);
314         znode->level = le16_to_cpu(idx->level);
315
316         dbg_tnc("LEB %d:%d, level %d, %d branch",
317                 lnum, offs, znode->level, znode->child_cnt);
318
319         if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) {
320                 ubifs_err(c, "current fanout %d, branch count %d",
321                           c->fanout, znode->child_cnt);
322                 ubifs_err(c, "max levels %d, znode level %d",
323                           UBIFS_MAX_LEVELS, znode->level);
324                 err = 1;
325                 goto out_dump;
326         }
327
328         for (i = 0; i < znode->child_cnt; i++) {
329                 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
330                 struct ubifs_zbranch *zbr = &znode->zbranch[i];
331
332                 key_read(c, &br->key, &zbr->key);
333                 zbr->lnum = le32_to_cpu(br->lnum);
334                 zbr->offs = le32_to_cpu(br->offs);
335                 zbr->len  = le32_to_cpu(br->len);
336                 ubifs_copy_hash(c, ubifs_branch_hash(c, br), zbr->hash);
337                 zbr->znode = NULL;
338
339                 /* Validate branch */
340
341                 if (zbr->lnum < c->main_first ||
342                     zbr->lnum >= c->leb_cnt || zbr->offs < 0 ||
343                     zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) {
344                         ubifs_err(c, "bad branch %d", i);
345                         err = 2;
346                         goto out_dump;
347                 }
348
349                 switch (key_type(c, &zbr->key)) {
350                 case UBIFS_INO_KEY:
351                 case UBIFS_DATA_KEY:
352                 case UBIFS_DENT_KEY:
353                 case UBIFS_XENT_KEY:
354                         break;
355                 default:
356                         ubifs_err(c, "bad key type at slot %d: %d",
357                                   i, key_type(c, &zbr->key));
358                         err = 3;
359                         goto out_dump;
360                 }
361
362                 if (znode->level)
363                         continue;
364
365                 type = key_type(c, &zbr->key);
366                 if (c->ranges[type].max_len == 0) {
367                         if (zbr->len != c->ranges[type].len) {
368                                 ubifs_err(c, "bad target node (type %d) length (%d)",
369                                           type, zbr->len);
370                                 ubifs_err(c, "have to be %d", c->ranges[type].len);
371                                 err = 4;
372                                 goto out_dump;
373                         }
374                 } else if (zbr->len < c->ranges[type].min_len ||
375                            zbr->len > c->ranges[type].max_len) {
376                         ubifs_err(c, "bad target node (type %d) length (%d)",
377                                   type, zbr->len);
378                         ubifs_err(c, "have to be in range of %d-%d",
379                                   c->ranges[type].min_len,
380                                   c->ranges[type].max_len);
381                         err = 5;
382                         goto out_dump;
383                 }
384         }
385
386         /*
387          * Ensure that the next key is greater or equivalent to the
388          * previous one.
389          */
390         for (i = 0; i < znode->child_cnt - 1; i++) {
391                 const union ubifs_key *key1, *key2;
392
393                 key1 = &znode->zbranch[i].key;
394                 key2 = &znode->zbranch[i + 1].key;
395
396                 cmp = keys_cmp(c, key1, key2);
397                 if (cmp > 0) {
398                         ubifs_err(c, "bad key order (keys %d and %d)", i, i + 1);
399                         err = 6;
400                         goto out_dump;
401                 } else if (cmp == 0 && !is_hash_key(c, key1)) {
402                         /* These can only be keys with colliding hash */
403                         ubifs_err(c, "keys %d and %d are not hashed but equivalent",
404                                   i, i + 1);
405                         err = 7;
406                         goto out_dump;
407                 }
408         }
409
410         kfree(idx);
411         return 0;
412
413 out_dump:
414         ubifs_err(c, "bad indexing node at LEB %d:%d, error %d", lnum, offs, err);
415         ubifs_dump_node(c, idx, c->max_idx_node_sz);
416         kfree(idx);
417         return -EINVAL;
418 }
419
420 /**
421  * ubifs_load_znode - load znode to TNC cache.
422  * @c: UBIFS file-system description object
423  * @zbr: znode branch
424  * @parent: znode's parent
425  * @iip: index in parent
426  *
427  * This function loads znode pointed to by @zbr into the TNC cache and
428  * returns pointer to it in case of success and a negative error code in case
429  * of failure.
430  */
431 struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
432                                      struct ubifs_zbranch *zbr,
433                                      struct ubifs_znode *parent, int iip)
434 {
435         int err;
436         struct ubifs_znode *znode;
437
438         ubifs_assert(c, !zbr->znode);
439         /*
440          * A slab cache is not presently used for znodes because the znode size
441          * depends on the fanout which is stored in the superblock.
442          */
443         znode = kzalloc(c->max_znode_sz, GFP_NOFS);
444         if (!znode)
445                 return ERR_PTR(-ENOMEM);
446
447         err = read_znode(c, zbr, znode);
448         if (err)
449                 goto out;
450
451         atomic_long_inc(&c->clean_zn_cnt);
452
453         /*
454          * Increment the global clean znode counter as well. It is OK that
455          * global and per-FS clean znode counters may be inconsistent for some
456          * short time (because we might be preempted at this point), the global
457          * one is only used in shrinker.
458          */
459         atomic_long_inc(&ubifs_clean_zn_cnt);
460
461         zbr->znode = znode;
462         znode->parent = parent;
463         znode->time = ktime_get_seconds();
464         znode->iip = iip;
465
466         return znode;
467
468 out:
469         kfree(znode);
470         return ERR_PTR(err);
471 }
472
473 /**
474  * ubifs_tnc_read_node - read a leaf node from the flash media.
475  * @c: UBIFS file-system description object
476  * @zbr: key and position of the node
477  * @node: node is returned here
478  *
479  * This function reads a node defined by @zbr from the flash media. Returns
480  * zero in case of success or a negative error code in case of failure.
481  */
482 int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
483                         void *node)
484 {
485         union ubifs_key key1, *key = &zbr->key;
486         int err, type = key_type(c, key);
487         struct ubifs_wbuf *wbuf;
488
489         /*
490          * 'zbr' has to point to on-flash node. The node may sit in a bud and
491          * may even be in a write buffer, so we have to take care about this.
492          */
493         wbuf = ubifs_get_wbuf(c, zbr->lnum);
494         if (wbuf)
495                 err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len,
496                                            zbr->lnum, zbr->offs);
497         else
498                 err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum,
499                                       zbr->offs);
500
501         if (err) {
502                 dbg_tnck(key, "key ");
503                 return err;
504         }
505
506         /* Make sure the key of the read node is correct */
507         key_read(c, node + UBIFS_KEY_OFFSET, &key1);
508         if (!keys_eq(c, key, &key1)) {
509                 ubifs_err(c, "bad key in node at LEB %d:%d",
510                           zbr->lnum, zbr->offs);
511                 dbg_tnck(key, "looked for key ");
512                 dbg_tnck(&key1, "but found node's key ");
513                 ubifs_dump_node(c, node, zbr->len);
514                 return -EINVAL;
515         }
516
517         err = ubifs_node_check_hash(c, node, zbr->hash);
518         if (err) {
519                 ubifs_bad_hash(c, node, zbr->hash, zbr->lnum, zbr->offs);
520                 return err;
521         }
522
523         return 0;
524 }