2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements commit-related functionality of the LEB properties
28 #include <linux/crc16.h>
29 #include <linux/slab.h>
30 #include <linux/random.h>
33 static int dbg_populate_lsave(struct ubifs_info *c);
36 * first_dirty_cnode - find first dirty cnode.
37 * @c: UBIFS file-system description object
38 * @nnode: nnode at which to start
40 * This function returns the first dirty cnode or %NULL if there is not one.
42 static struct ubifs_cnode *first_dirty_cnode(const struct ubifs_info *c, struct ubifs_nnode *nnode)
44 ubifs_assert(c, nnode);
48 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
49 struct ubifs_cnode *cnode;
51 cnode = nnode->nbranch[i].cnode;
53 test_bit(DIRTY_CNODE, &cnode->flags)) {
54 if (cnode->level == 0)
56 nnode = (struct ubifs_nnode *)cnode;
62 return (struct ubifs_cnode *)nnode;
67 * next_dirty_cnode - find next dirty cnode.
68 * @c: UBIFS file-system description object
69 * @cnode: cnode from which to begin searching
71 * This function returns the next dirty cnode or %NULL if there is not one.
73 static struct ubifs_cnode *next_dirty_cnode(const struct ubifs_info *c, struct ubifs_cnode *cnode)
75 struct ubifs_nnode *nnode;
78 ubifs_assert(c, cnode);
79 nnode = cnode->parent;
82 for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
83 cnode = nnode->nbranch[i].cnode;
84 if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
85 if (cnode->level == 0)
86 return cnode; /* cnode is a pnode */
87 /* cnode is a nnode */
88 return first_dirty_cnode(c, (struct ubifs_nnode *)cnode);
91 return (struct ubifs_cnode *)nnode;
95 * get_cnodes_to_commit - create list of dirty cnodes to commit.
96 * @c: UBIFS file-system description object
98 * This function returns the number of cnodes to commit.
100 static int get_cnodes_to_commit(struct ubifs_info *c)
102 struct ubifs_cnode *cnode, *cnext;
108 if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
111 c->lpt_cnext = first_dirty_cnode(c, c->nroot);
112 cnode = c->lpt_cnext;
117 ubifs_assert(c, !test_bit(COW_CNODE, &cnode->flags));
118 __set_bit(COW_CNODE, &cnode->flags);
119 cnext = next_dirty_cnode(c, cnode);
121 cnode->cnext = c->lpt_cnext;
124 cnode->cnext = cnext;
128 dbg_cmt("committing %d cnodes", cnt);
129 dbg_lp("committing %d cnodes", cnt);
130 ubifs_assert(c, cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
135 * upd_ltab - update LPT LEB properties.
136 * @c: UBIFS file-system description object
138 * @free: amount of free space
139 * @dirty: amount of dirty space to add
141 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
143 dbg_lp("LEB %d free %d dirty %d to %d +%d",
144 lnum, c->ltab[lnum - c->lpt_first].free,
145 c->ltab[lnum - c->lpt_first].dirty, free, dirty);
146 ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last);
147 c->ltab[lnum - c->lpt_first].free = free;
148 c->ltab[lnum - c->lpt_first].dirty += dirty;
152 * alloc_lpt_leb - allocate an LPT LEB that is empty.
153 * @c: UBIFS file-system description object
154 * @lnum: LEB number is passed and returned here
156 * This function finds the next empty LEB in the ltab starting from @lnum. If a
157 * an empty LEB is found it is returned in @lnum and the function returns %0.
158 * Otherwise the function returns -ENOSPC. Note however, that LPT is designed
159 * never to run out of space.
161 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
165 n = *lnum - c->lpt_first + 1;
166 for (i = n; i < c->lpt_lebs; i++) {
167 if (c->ltab[i].tgc || c->ltab[i].cmt)
169 if (c->ltab[i].free == c->leb_size) {
171 *lnum = i + c->lpt_first;
176 for (i = 0; i < n; i++) {
177 if (c->ltab[i].tgc || c->ltab[i].cmt)
179 if (c->ltab[i].free == c->leb_size) {
181 *lnum = i + c->lpt_first;
189 * layout_cnodes - layout cnodes for commit.
190 * @c: UBIFS file-system description object
192 * This function returns %0 on success and a negative error code on failure.
194 static int layout_cnodes(struct ubifs_info *c)
196 int lnum, offs, len, alen, done_lsave, done_ltab, err;
197 struct ubifs_cnode *cnode;
199 err = dbg_chk_lpt_sz(c, 0, 0);
202 cnode = c->lpt_cnext;
205 lnum = c->nhead_lnum;
206 offs = c->nhead_offs;
207 /* Try to place lsave and ltab nicely */
208 done_lsave = !c->big_lpt;
210 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
212 c->lsave_lnum = lnum;
213 c->lsave_offs = offs;
215 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
218 if (offs + c->ltab_sz <= c->leb_size) {
223 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
229 c->dirty_nn_cnt -= 1;
232 c->dirty_pn_cnt -= 1;
234 while (offs + len > c->leb_size) {
235 alen = ALIGN(offs, c->min_io_size);
236 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
237 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
238 err = alloc_lpt_leb(c, &lnum);
242 ubifs_assert(c, lnum >= c->lpt_first &&
243 lnum <= c->lpt_last);
244 /* Try to place lsave and ltab nicely */
247 c->lsave_lnum = lnum;
248 c->lsave_offs = offs;
250 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
258 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
264 cnode->parent->nbranch[cnode->iip].lnum = lnum;
265 cnode->parent->nbranch[cnode->iip].offs = offs;
271 dbg_chk_lpt_sz(c, 1, len);
272 cnode = cnode->cnext;
273 } while (cnode && cnode != c->lpt_cnext);
275 /* Make sure to place LPT's save table */
277 if (offs + c->lsave_sz > c->leb_size) {
278 alen = ALIGN(offs, c->min_io_size);
279 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
280 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
281 err = alloc_lpt_leb(c, &lnum);
285 ubifs_assert(c, lnum >= c->lpt_first &&
286 lnum <= c->lpt_last);
289 c->lsave_lnum = lnum;
290 c->lsave_offs = offs;
292 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
295 /* Make sure to place LPT's own lprops table */
297 if (offs + c->ltab_sz > c->leb_size) {
298 alen = ALIGN(offs, c->min_io_size);
299 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
300 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
301 err = alloc_lpt_leb(c, &lnum);
305 ubifs_assert(c, lnum >= c->lpt_first &&
306 lnum <= c->lpt_last);
311 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
314 alen = ALIGN(offs, c->min_io_size);
315 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
316 dbg_chk_lpt_sz(c, 4, alen - offs);
317 err = dbg_chk_lpt_sz(c, 3, alen);
323 ubifs_err(c, "LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
324 lnum, offs, len, done_ltab, done_lsave);
325 ubifs_dump_lpt_info(c);
326 ubifs_dump_lpt_lebs(c);
332 * realloc_lpt_leb - allocate an LPT LEB that is empty.
333 * @c: UBIFS file-system description object
334 * @lnum: LEB number is passed and returned here
336 * This function duplicates exactly the results of the function alloc_lpt_leb.
337 * It is used during end commit to reallocate the same LEB numbers that were
338 * allocated by alloc_lpt_leb during start commit.
340 * This function finds the next LEB that was allocated by the alloc_lpt_leb
341 * function starting from @lnum. If a LEB is found it is returned in @lnum and
342 * the function returns %0. Otherwise the function returns -ENOSPC.
343 * Note however, that LPT is designed never to run out of space.
345 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
349 n = *lnum - c->lpt_first + 1;
350 for (i = n; i < c->lpt_lebs; i++)
351 if (c->ltab[i].cmt) {
353 *lnum = i + c->lpt_first;
357 for (i = 0; i < n; i++)
358 if (c->ltab[i].cmt) {
360 *lnum = i + c->lpt_first;
367 * write_cnodes - write cnodes for commit.
368 * @c: UBIFS file-system description object
370 * This function returns %0 on success and a negative error code on failure.
372 static int write_cnodes(struct ubifs_info *c)
374 int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
375 struct ubifs_cnode *cnode;
376 void *buf = c->lpt_buf;
378 cnode = c->lpt_cnext;
381 lnum = c->nhead_lnum;
382 offs = c->nhead_offs;
384 /* Ensure empty LEB is unmapped */
386 err = ubifs_leb_unmap(c, lnum);
390 /* Try to place lsave and ltab nicely */
391 done_lsave = !c->big_lpt;
393 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
395 ubifs_pack_lsave(c, buf + offs, c->lsave);
397 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
400 if (offs + c->ltab_sz <= c->leb_size) {
402 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
404 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
407 /* Loop for each cnode */
413 while (offs + len > c->leb_size) {
416 alen = ALIGN(wlen, c->min_io_size);
417 memset(buf + offs, 0xff, alen - wlen);
418 err = ubifs_leb_write(c, lnum, buf + from, from,
423 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
424 err = realloc_lpt_leb(c, &lnum);
428 ubifs_assert(c, lnum >= c->lpt_first &&
429 lnum <= c->lpt_last);
430 err = ubifs_leb_unmap(c, lnum);
433 /* Try to place lsave and ltab nicely */
436 ubifs_pack_lsave(c, buf + offs, c->lsave);
438 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
443 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
445 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
451 ubifs_pack_nnode(c, buf + offs,
452 (struct ubifs_nnode *)cnode);
454 ubifs_pack_pnode(c, buf + offs,
455 (struct ubifs_pnode *)cnode);
457 * The reason for the barriers is the same as in case of TNC.
458 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
459 * 'dirty_cow_pnode()' are the functions for which this is
462 clear_bit(DIRTY_CNODE, &cnode->flags);
463 smp_mb__before_atomic();
464 clear_bit(COW_CNODE, &cnode->flags);
465 smp_mb__after_atomic();
467 dbg_chk_lpt_sz(c, 1, len);
468 cnode = cnode->cnext;
469 } while (cnode && cnode != c->lpt_cnext);
471 /* Make sure to place LPT's save table */
473 if (offs + c->lsave_sz > c->leb_size) {
475 alen = ALIGN(wlen, c->min_io_size);
476 memset(buf + offs, 0xff, alen - wlen);
477 err = ubifs_leb_write(c, lnum, buf + from, from, alen);
480 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
481 err = realloc_lpt_leb(c, &lnum);
485 ubifs_assert(c, lnum >= c->lpt_first &&
486 lnum <= c->lpt_last);
487 err = ubifs_leb_unmap(c, lnum);
492 ubifs_pack_lsave(c, buf + offs, c->lsave);
494 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
497 /* Make sure to place LPT's own lprops table */
499 if (offs + c->ltab_sz > c->leb_size) {
501 alen = ALIGN(wlen, c->min_io_size);
502 memset(buf + offs, 0xff, alen - wlen);
503 err = ubifs_leb_write(c, lnum, buf + from, from, alen);
506 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
507 err = realloc_lpt_leb(c, &lnum);
511 ubifs_assert(c, lnum >= c->lpt_first &&
512 lnum <= c->lpt_last);
513 err = ubifs_leb_unmap(c, lnum);
517 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
519 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
522 /* Write remaining data in buffer */
524 alen = ALIGN(wlen, c->min_io_size);
525 memset(buf + offs, 0xff, alen - wlen);
526 err = ubifs_leb_write(c, lnum, buf + from, from, alen);
530 dbg_chk_lpt_sz(c, 4, alen - wlen);
531 err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
535 c->nhead_lnum = lnum;
536 c->nhead_offs = ALIGN(offs, c->min_io_size);
538 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
539 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
540 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
542 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
547 ubifs_err(c, "LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
548 lnum, offs, len, done_ltab, done_lsave);
549 ubifs_dump_lpt_info(c);
550 ubifs_dump_lpt_lebs(c);
556 * next_pnode_to_dirty - find next pnode to dirty.
557 * @c: UBIFS file-system description object
560 * This function returns the next pnode to dirty or %NULL if there are no more
561 * pnodes. Note that pnodes that have never been written (lnum == 0) are
564 static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
565 struct ubifs_pnode *pnode)
567 struct ubifs_nnode *nnode;
570 /* Try to go right */
571 nnode = pnode->parent;
572 for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
573 if (nnode->nbranch[iip].lnum)
574 return ubifs_get_pnode(c, nnode, iip);
577 /* Go up while can't go right */
579 iip = nnode->iip + 1;
580 nnode = nnode->parent;
583 for (; iip < UBIFS_LPT_FANOUT; iip++) {
584 if (nnode->nbranch[iip].lnum)
587 } while (iip >= UBIFS_LPT_FANOUT);
590 nnode = ubifs_get_nnode(c, nnode, iip);
592 return (void *)nnode;
594 /* Go down to level 1 */
595 while (nnode->level > 1) {
596 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
597 if (nnode->nbranch[iip].lnum)
600 if (iip >= UBIFS_LPT_FANOUT) {
602 * Should not happen, but we need to keep going
607 nnode = ubifs_get_nnode(c, nnode, iip);
609 return (void *)nnode;
612 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
613 if (nnode->nbranch[iip].lnum)
615 if (iip >= UBIFS_LPT_FANOUT)
616 /* Should not happen, but we need to keep going if it does */
618 return ubifs_get_pnode(c, nnode, iip);
622 * pnode_lookup - lookup a pnode in the LPT.
623 * @c: UBIFS file-system description object
624 * @i: pnode number (0 to (main_lebs - 1) / UBIFS_LPT_FANOUT))
626 * This function returns a pointer to the pnode on success or a negative
627 * error code on failure.
629 static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
631 int err, h, iip, shft;
632 struct ubifs_nnode *nnode;
635 err = ubifs_read_nnode(c, NULL, 0);
639 i <<= UBIFS_LPT_FANOUT_SHIFT;
641 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
642 for (h = 1; h < c->lpt_hght; h++) {
643 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
644 shft -= UBIFS_LPT_FANOUT_SHIFT;
645 nnode = ubifs_get_nnode(c, nnode, iip);
647 return ERR_CAST(nnode);
649 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
650 return ubifs_get_pnode(c, nnode, iip);
654 * add_pnode_dirt - add dirty space to LPT LEB properties.
655 * @c: UBIFS file-system description object
656 * @pnode: pnode for which to add dirt
658 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
660 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
665 * do_make_pnode_dirty - mark a pnode dirty.
666 * @c: UBIFS file-system description object
667 * @pnode: pnode to mark dirty
669 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
671 /* Assumes cnext list is empty i.e. not called during commit */
672 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
673 struct ubifs_nnode *nnode;
675 c->dirty_pn_cnt += 1;
676 add_pnode_dirt(c, pnode);
677 /* Mark parent and ancestors dirty too */
678 nnode = pnode->parent;
680 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
681 c->dirty_nn_cnt += 1;
682 ubifs_add_nnode_dirt(c, nnode);
683 nnode = nnode->parent;
691 * make_tree_dirty - mark the entire LEB properties tree dirty.
692 * @c: UBIFS file-system description object
694 * This function is used by the "small" LPT model to cause the entire LEB
695 * properties tree to be written. The "small" LPT model does not use LPT
696 * garbage collection because it is more efficient to write the entire tree
697 * (because it is small).
699 * This function returns %0 on success and a negative error code on failure.
701 static int make_tree_dirty(struct ubifs_info *c)
703 struct ubifs_pnode *pnode;
705 pnode = pnode_lookup(c, 0);
707 return PTR_ERR(pnode);
710 do_make_pnode_dirty(c, pnode);
711 pnode = next_pnode_to_dirty(c, pnode);
713 return PTR_ERR(pnode);
719 * need_write_all - determine if the LPT area is running out of free space.
720 * @c: UBIFS file-system description object
722 * This function returns %1 if the LPT area is running out of free space and %0
725 static int need_write_all(struct ubifs_info *c)
730 for (i = 0; i < c->lpt_lebs; i++) {
731 if (i + c->lpt_first == c->nhead_lnum)
732 free += c->leb_size - c->nhead_offs;
733 else if (c->ltab[i].free == c->leb_size)
735 else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
738 /* Less than twice the size left */
739 if (free <= c->lpt_sz * 2)
745 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
746 * @c: UBIFS file-system description object
748 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
749 * free space and so may be reused as soon as the next commit is completed.
750 * This function is called during start commit to mark LPT LEBs for trivial GC.
752 static void lpt_tgc_start(struct ubifs_info *c)
756 for (i = 0; i < c->lpt_lebs; i++) {
757 if (i + c->lpt_first == c->nhead_lnum)
759 if (c->ltab[i].dirty > 0 &&
760 c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
762 c->ltab[i].free = c->leb_size;
763 c->ltab[i].dirty = 0;
764 dbg_lp("LEB %d", i + c->lpt_first);
770 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
771 * @c: UBIFS file-system description object
773 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
774 * free space and so may be reused as soon as the next commit is completed.
775 * This function is called after the commit is completed (master node has been
776 * written) and un-maps LPT LEBs that were marked for trivial GC.
778 static int lpt_tgc_end(struct ubifs_info *c)
782 for (i = 0; i < c->lpt_lebs; i++)
783 if (c->ltab[i].tgc) {
784 err = ubifs_leb_unmap(c, i + c->lpt_first);
788 dbg_lp("LEB %d", i + c->lpt_first);
794 * populate_lsave - fill the lsave array with important LEB numbers.
795 * @c: the UBIFS file-system description object
797 * This function is only called for the "big" model. It records a small number
798 * of LEB numbers of important LEBs. Important LEBs are ones that are (from
799 * most important to least important): empty, freeable, freeable index, dirty
800 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
801 * their pnodes into memory. That will stop us from having to scan the LPT
802 * straight away. For the "small" model we assume that scanning the LPT is no
805 static void populate_lsave(struct ubifs_info *c)
807 struct ubifs_lprops *lprops;
808 struct ubifs_lpt_heap *heap;
811 ubifs_assert(c, c->big_lpt);
812 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
813 c->lpt_drty_flgs |= LSAVE_DIRTY;
814 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
817 if (dbg_populate_lsave(c))
820 list_for_each_entry(lprops, &c->empty_list, list) {
821 c->lsave[cnt++] = lprops->lnum;
822 if (cnt >= c->lsave_cnt)
825 list_for_each_entry(lprops, &c->freeable_list, list) {
826 c->lsave[cnt++] = lprops->lnum;
827 if (cnt >= c->lsave_cnt)
830 list_for_each_entry(lprops, &c->frdi_idx_list, list) {
831 c->lsave[cnt++] = lprops->lnum;
832 if (cnt >= c->lsave_cnt)
835 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
836 for (i = 0; i < heap->cnt; i++) {
837 c->lsave[cnt++] = heap->arr[i]->lnum;
838 if (cnt >= c->lsave_cnt)
841 heap = &c->lpt_heap[LPROPS_DIRTY - 1];
842 for (i = 0; i < heap->cnt; i++) {
843 c->lsave[cnt++] = heap->arr[i]->lnum;
844 if (cnt >= c->lsave_cnt)
847 heap = &c->lpt_heap[LPROPS_FREE - 1];
848 for (i = 0; i < heap->cnt; i++) {
849 c->lsave[cnt++] = heap->arr[i]->lnum;
850 if (cnt >= c->lsave_cnt)
853 /* Fill it up completely */
854 while (cnt < c->lsave_cnt)
855 c->lsave[cnt++] = c->main_first;
859 * nnode_lookup - lookup a nnode in the LPT.
860 * @c: UBIFS file-system description object
863 * This function returns a pointer to the nnode on success or a negative
864 * error code on failure.
866 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
869 struct ubifs_nnode *nnode;
872 err = ubifs_read_nnode(c, NULL, 0);
878 iip = i & (UBIFS_LPT_FANOUT - 1);
879 i >>= UBIFS_LPT_FANOUT_SHIFT;
882 nnode = ubifs_get_nnode(c, nnode, iip);
890 * make_nnode_dirty - find a nnode and, if found, make it dirty.
891 * @c: UBIFS file-system description object
892 * @node_num: nnode number of nnode to make dirty
893 * @lnum: LEB number where nnode was written
894 * @offs: offset where nnode was written
896 * This function is used by LPT garbage collection. LPT garbage collection is
897 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
898 * simply involves marking all the nodes in the LEB being garbage-collected as
899 * dirty. The dirty nodes are written next commit, after which the LEB is free
902 * This function returns %0 on success and a negative error code on failure.
904 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
907 struct ubifs_nnode *nnode;
909 nnode = nnode_lookup(c, node_num);
911 return PTR_ERR(nnode);
913 struct ubifs_nbranch *branch;
915 branch = &nnode->parent->nbranch[nnode->iip];
916 if (branch->lnum != lnum || branch->offs != offs)
917 return 0; /* nnode is obsolete */
918 } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
919 return 0; /* nnode is obsolete */
920 /* Assumes cnext list is empty i.e. not called during commit */
921 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
922 c->dirty_nn_cnt += 1;
923 ubifs_add_nnode_dirt(c, nnode);
924 /* Mark parent and ancestors dirty too */
925 nnode = nnode->parent;
927 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
928 c->dirty_nn_cnt += 1;
929 ubifs_add_nnode_dirt(c, nnode);
930 nnode = nnode->parent;
939 * make_pnode_dirty - find a pnode and, if found, make it dirty.
940 * @c: UBIFS file-system description object
941 * @node_num: pnode number of pnode to make dirty
942 * @lnum: LEB number where pnode was written
943 * @offs: offset where pnode was written
945 * This function is used by LPT garbage collection. LPT garbage collection is
946 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
947 * simply involves marking all the nodes in the LEB being garbage-collected as
948 * dirty. The dirty nodes are written next commit, after which the LEB is free
951 * This function returns %0 on success and a negative error code on failure.
953 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
956 struct ubifs_pnode *pnode;
957 struct ubifs_nbranch *branch;
959 pnode = pnode_lookup(c, node_num);
961 return PTR_ERR(pnode);
962 branch = &pnode->parent->nbranch[pnode->iip];
963 if (branch->lnum != lnum || branch->offs != offs)
965 do_make_pnode_dirty(c, pnode);
970 * make_ltab_dirty - make ltab node dirty.
971 * @c: UBIFS file-system description object
972 * @lnum: LEB number where ltab was written
973 * @offs: offset where ltab was written
975 * This function is used by LPT garbage collection. LPT garbage collection is
976 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
977 * simply involves marking all the nodes in the LEB being garbage-collected as
978 * dirty. The dirty nodes are written next commit, after which the LEB is free
981 * This function returns %0 on success and a negative error code on failure.
983 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
985 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
986 return 0; /* This ltab node is obsolete */
987 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
988 c->lpt_drty_flgs |= LTAB_DIRTY;
989 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
995 * make_lsave_dirty - make lsave node dirty.
996 * @c: UBIFS file-system description object
997 * @lnum: LEB number where lsave was written
998 * @offs: offset where lsave was written
1000 * This function is used by LPT garbage collection. LPT garbage collection is
1001 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1002 * simply involves marking all the nodes in the LEB being garbage-collected as
1003 * dirty. The dirty nodes are written next commit, after which the LEB is free
1006 * This function returns %0 on success and a negative error code on failure.
1008 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1010 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1011 return 0; /* This lsave node is obsolete */
1012 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1013 c->lpt_drty_flgs |= LSAVE_DIRTY;
1014 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1020 * make_node_dirty - make node dirty.
1021 * @c: UBIFS file-system description object
1022 * @node_type: LPT node type
1023 * @node_num: node number
1024 * @lnum: LEB number where node was written
1025 * @offs: offset where node was written
1027 * This function is used by LPT garbage collection. LPT garbage collection is
1028 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1029 * simply involves marking all the nodes in the LEB being garbage-collected as
1030 * dirty. The dirty nodes are written next commit, after which the LEB is free
1033 * This function returns %0 on success and a negative error code on failure.
1035 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1038 switch (node_type) {
1039 case UBIFS_LPT_NNODE:
1040 return make_nnode_dirty(c, node_num, lnum, offs);
1041 case UBIFS_LPT_PNODE:
1042 return make_pnode_dirty(c, node_num, lnum, offs);
1043 case UBIFS_LPT_LTAB:
1044 return make_ltab_dirty(c, lnum, offs);
1045 case UBIFS_LPT_LSAVE:
1046 return make_lsave_dirty(c, lnum, offs);
1052 * get_lpt_node_len - return the length of a node based on its type.
1053 * @c: UBIFS file-system description object
1054 * @node_type: LPT node type
1056 static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1058 switch (node_type) {
1059 case UBIFS_LPT_NNODE:
1061 case UBIFS_LPT_PNODE:
1063 case UBIFS_LPT_LTAB:
1065 case UBIFS_LPT_LSAVE:
1072 * get_pad_len - return the length of padding in a buffer.
1073 * @c: UBIFS file-system description object
1075 * @len: length of buffer
1077 static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1081 if (c->min_io_size == 1)
1083 offs = c->leb_size - len;
1084 pad_len = ALIGN(offs, c->min_io_size) - offs;
1089 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1090 * @c: UBIFS file-system description object
1092 * @node_num: node number is returned here
1094 static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1097 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1098 int pos = 0, node_type;
1100 node_type = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_TYPE_BITS);
1101 *node_num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits);
1106 * is_a_node - determine if a buffer contains a node.
1107 * @c: UBIFS file-system description object
1109 * @len: length of buffer
1111 * This function returns %1 if the buffer contains a node or %0 if it does not.
1113 static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1115 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1116 int pos = 0, node_type, node_len;
1117 uint16_t crc, calc_crc;
1119 if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1121 node_type = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_TYPE_BITS);
1122 if (node_type == UBIFS_LPT_NOT_A_NODE)
1124 node_len = get_lpt_node_len(c, node_type);
1125 if (!node_len || node_len > len)
1129 crc = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_CRC_BITS);
1130 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1131 node_len - UBIFS_LPT_CRC_BYTES);
1132 if (crc != calc_crc)
1138 * lpt_gc_lnum - garbage collect a LPT LEB.
1139 * @c: UBIFS file-system description object
1140 * @lnum: LEB number to garbage collect
1142 * LPT garbage collection is used only for the "big" LPT model
1143 * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes
1144 * in the LEB being garbage-collected as dirty. The dirty nodes are written
1145 * next commit, after which the LEB is free to be reused.
1147 * This function returns %0 on success and a negative error code on failure.
1149 static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1151 int err, len = c->leb_size, node_type, node_num, node_len, offs;
1152 void *buf = c->lpt_buf;
1154 dbg_lp("LEB %d", lnum);
1156 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1161 if (!is_a_node(c, buf, len)) {
1164 pad_len = get_pad_len(c, buf, len);
1172 node_type = get_lpt_node_type(c, buf, &node_num);
1173 node_len = get_lpt_node_len(c, node_type);
1174 offs = c->leb_size - len;
1175 ubifs_assert(c, node_len != 0);
1176 mutex_lock(&c->lp_mutex);
1177 err = make_node_dirty(c, node_type, node_num, lnum, offs);
1178 mutex_unlock(&c->lp_mutex);
1188 * lpt_gc - LPT garbage collection.
1189 * @c: UBIFS file-system description object
1191 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1192 * Returns %0 on success and a negative error code on failure.
1194 static int lpt_gc(struct ubifs_info *c)
1196 int i, lnum = -1, dirty = 0;
1198 mutex_lock(&c->lp_mutex);
1199 for (i = 0; i < c->lpt_lebs; i++) {
1200 ubifs_assert(c, !c->ltab[i].tgc);
1201 if (i + c->lpt_first == c->nhead_lnum ||
1202 c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1204 if (c->ltab[i].dirty > dirty) {
1205 dirty = c->ltab[i].dirty;
1206 lnum = i + c->lpt_first;
1209 mutex_unlock(&c->lp_mutex);
1212 return lpt_gc_lnum(c, lnum);
1216 * ubifs_lpt_start_commit - UBIFS commit starts.
1217 * @c: the UBIFS file-system description object
1219 * This function has to be called when UBIFS starts the commit operation.
1220 * This function "freezes" all currently dirty LEB properties and does not
1221 * change them anymore. Further changes are saved and tracked separately
1222 * because they are not part of this commit. This function returns zero in case
1223 * of success and a negative error code in case of failure.
1225 int ubifs_lpt_start_commit(struct ubifs_info *c)
1231 mutex_lock(&c->lp_mutex);
1232 err = dbg_chk_lpt_free_spc(c);
1235 err = dbg_check_ltab(c);
1239 if (c->check_lpt_free) {
1241 * We ensure there is enough free space in
1242 * ubifs_lpt_post_commit() by marking nodes dirty. That
1243 * information is lost when we unmount, so we also need
1244 * to check free space once after mounting also.
1246 c->check_lpt_free = 0;
1247 while (need_write_all(c)) {
1248 mutex_unlock(&c->lp_mutex);
1252 mutex_lock(&c->lp_mutex);
1258 if (!c->dirty_pn_cnt) {
1259 dbg_cmt("no cnodes to commit");
1264 if (!c->big_lpt && need_write_all(c)) {
1265 /* If needed, write everything */
1266 err = make_tree_dirty(c);
1275 cnt = get_cnodes_to_commit(c);
1276 ubifs_assert(c, cnt != 0);
1278 err = layout_cnodes(c);
1282 /* Copy the LPT's own lprops for end commit to write */
1283 memcpy(c->ltab_cmt, c->ltab,
1284 sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1285 c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1288 mutex_unlock(&c->lp_mutex);
1293 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1294 * @c: UBIFS file-system description object
1296 static void free_obsolete_cnodes(struct ubifs_info *c)
1298 struct ubifs_cnode *cnode, *cnext;
1300 cnext = c->lpt_cnext;
1305 cnext = cnode->cnext;
1306 if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1309 cnode->cnext = NULL;
1310 } while (cnext != c->lpt_cnext);
1311 c->lpt_cnext = NULL;
1315 * ubifs_lpt_end_commit - finish the commit operation.
1316 * @c: the UBIFS file-system description object
1318 * This function has to be called when the commit operation finishes. It
1319 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1320 * the media. Returns zero in case of success and a negative error code in case
1323 int ubifs_lpt_end_commit(struct ubifs_info *c)
1332 err = write_cnodes(c);
1336 mutex_lock(&c->lp_mutex);
1337 free_obsolete_cnodes(c);
1338 mutex_unlock(&c->lp_mutex);
1344 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1345 * @c: UBIFS file-system description object
1347 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1348 * commit for the "big" LPT model.
1350 int ubifs_lpt_post_commit(struct ubifs_info *c)
1354 mutex_lock(&c->lp_mutex);
1355 err = lpt_tgc_end(c);
1359 while (need_write_all(c)) {
1360 mutex_unlock(&c->lp_mutex);
1364 mutex_lock(&c->lp_mutex);
1367 mutex_unlock(&c->lp_mutex);
1372 * first_nnode - find the first nnode in memory.
1373 * @c: UBIFS file-system description object
1374 * @hght: height of tree where nnode found is returned here
1376 * This function returns a pointer to the nnode found or %NULL if no nnode is
1377 * found. This function is a helper to 'ubifs_lpt_free()'.
1379 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1381 struct ubifs_nnode *nnode;
1388 for (h = 1; h < c->lpt_hght; h++) {
1390 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1391 if (nnode->nbranch[i].nnode) {
1393 nnode = nnode->nbranch[i].nnode;
1405 * next_nnode - find the next nnode in memory.
1406 * @c: UBIFS file-system description object
1407 * @nnode: nnode from which to start.
1408 * @hght: height of tree where nnode is, is passed and returned here
1410 * This function returns a pointer to the nnode found or %NULL if no nnode is
1411 * found. This function is a helper to 'ubifs_lpt_free()'.
1413 static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1414 struct ubifs_nnode *nnode, int *hght)
1416 struct ubifs_nnode *parent;
1417 int iip, h, i, found;
1419 parent = nnode->parent;
1422 if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1426 for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1427 nnode = parent->nbranch[iip].nnode;
1435 for (h = *hght + 1; h < c->lpt_hght; h++) {
1437 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1438 if (nnode->nbranch[i].nnode) {
1440 nnode = nnode->nbranch[i].nnode;
1452 * ubifs_lpt_free - free resources owned by the LPT.
1453 * @c: UBIFS file-system description object
1454 * @wr_only: free only resources used for writing
1456 void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1458 struct ubifs_nnode *nnode;
1461 /* Free write-only things first */
1463 free_obsolete_cnodes(c); /* Leftover from a failed commit */
1475 /* Now free the rest */
1477 nnode = first_nnode(c, &hght);
1479 for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1480 kfree(nnode->nbranch[i].nnode);
1481 nnode = next_nnode(c, nnode, &hght);
1483 for (i = 0; i < LPROPS_HEAP_CNT; i++)
1484 kfree(c->lpt_heap[i].arr);
1485 kfree(c->dirty_idx.arr);
1488 kfree(c->lpt_nod_buf);
1492 * Everything below is related to debugging.
1496 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1498 * @len: buffer length
1500 static int dbg_is_all_ff(uint8_t *buf, int len)
1504 for (i = 0; i < len; i++)
1511 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1512 * @c: the UBIFS file-system description object
1513 * @lnum: LEB number where nnode was written
1514 * @offs: offset where nnode was written
1516 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1518 struct ubifs_nnode *nnode;
1521 /* Entire tree is in memory so first_nnode / next_nnode are OK */
1522 nnode = first_nnode(c, &hght);
1523 for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1524 struct ubifs_nbranch *branch;
1527 if (nnode->parent) {
1528 branch = &nnode->parent->nbranch[nnode->iip];
1529 if (branch->lnum != lnum || branch->offs != offs)
1531 if (test_bit(DIRTY_CNODE, &nnode->flags))
1535 if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1537 if (test_bit(DIRTY_CNODE, &nnode->flags))
1546 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1547 * @c: the UBIFS file-system description object
1548 * @lnum: LEB number where pnode was written
1549 * @offs: offset where pnode was written
1551 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1555 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1556 for (i = 0; i < cnt; i++) {
1557 struct ubifs_pnode *pnode;
1558 struct ubifs_nbranch *branch;
1561 pnode = pnode_lookup(c, i);
1563 return PTR_ERR(pnode);
1564 branch = &pnode->parent->nbranch[pnode->iip];
1565 if (branch->lnum != lnum || branch->offs != offs)
1567 if (test_bit(DIRTY_CNODE, &pnode->flags))
1575 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1576 * @c: the UBIFS file-system description object
1577 * @lnum: LEB number where ltab node was written
1578 * @offs: offset where ltab node was written
1580 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1582 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1584 return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1588 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1589 * @c: the UBIFS file-system description object
1590 * @lnum: LEB number where lsave node was written
1591 * @offs: offset where lsave node was written
1593 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1595 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1597 return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1601 * dbg_is_node_dirty - determine if a node is dirty.
1602 * @c: the UBIFS file-system description object
1603 * @node_type: node type
1604 * @lnum: LEB number where node was written
1605 * @offs: offset where node was written
1607 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1610 switch (node_type) {
1611 case UBIFS_LPT_NNODE:
1612 return dbg_is_nnode_dirty(c, lnum, offs);
1613 case UBIFS_LPT_PNODE:
1614 return dbg_is_pnode_dirty(c, lnum, offs);
1615 case UBIFS_LPT_LTAB:
1616 return dbg_is_ltab_dirty(c, lnum, offs);
1617 case UBIFS_LPT_LSAVE:
1618 return dbg_is_lsave_dirty(c, lnum, offs);
1624 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1625 * @c: the UBIFS file-system description object
1626 * @lnum: LEB number where node was written
1628 * This function returns %0 on success and a negative error code on failure.
1630 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1632 int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1636 if (!dbg_is_chk_lprops(c))
1639 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1641 ubifs_err(c, "cannot allocate memory for ltab checking");
1645 dbg_lp("LEB %d", lnum);
1647 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1652 if (!is_a_node(c, p, len)) {
1655 pad_len = get_pad_len(c, p, len);
1662 if (!dbg_is_all_ff(p, len)) {
1663 ubifs_err(c, "invalid empty space in LEB %d at %d",
1664 lnum, c->leb_size - len);
1667 i = lnum - c->lpt_first;
1668 if (len != c->ltab[i].free) {
1669 ubifs_err(c, "invalid free space in LEB %d (free %d, expected %d)",
1670 lnum, len, c->ltab[i].free);
1673 if (dirty != c->ltab[i].dirty) {
1674 ubifs_err(c, "invalid dirty space in LEB %d (dirty %d, expected %d)",
1675 lnum, dirty, c->ltab[i].dirty);
1680 node_type = get_lpt_node_type(c, p, &node_num);
1681 node_len = get_lpt_node_len(c, node_type);
1682 ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1696 * dbg_check_ltab - check the free and dirty space in the ltab.
1697 * @c: the UBIFS file-system description object
1699 * This function returns %0 on success and a negative error code on failure.
1701 int dbg_check_ltab(struct ubifs_info *c)
1703 int lnum, err, i, cnt;
1705 if (!dbg_is_chk_lprops(c))
1708 /* Bring the entire tree into memory */
1709 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1710 for (i = 0; i < cnt; i++) {
1711 struct ubifs_pnode *pnode;
1713 pnode = pnode_lookup(c, i);
1715 return PTR_ERR(pnode);
1720 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1724 /* Check each LEB */
1725 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1726 err = dbg_check_ltab_lnum(c, lnum);
1728 ubifs_err(c, "failed at LEB %d", lnum);
1733 dbg_lp("succeeded");
1738 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1739 * @c: the UBIFS file-system description object
1741 * This function returns %0 on success and a negative error code on failure.
1743 int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1748 if (!dbg_is_chk_lprops(c))
1751 for (i = 0; i < c->lpt_lebs; i++) {
1752 if (c->ltab[i].tgc || c->ltab[i].cmt)
1754 if (i + c->lpt_first == c->nhead_lnum)
1755 free += c->leb_size - c->nhead_offs;
1756 else if (c->ltab[i].free == c->leb_size)
1757 free += c->leb_size;
1759 if (free < c->lpt_sz) {
1760 ubifs_err(c, "LPT space error: free %lld lpt_sz %lld",
1762 ubifs_dump_lpt_info(c);
1763 ubifs_dump_lpt_lebs(c);
1771 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1772 * @c: the UBIFS file-system description object
1773 * @action: what to do
1774 * @len: length written
1776 * This function returns %0 on success and a negative error code on failure.
1777 * The @action argument may be one of:
1778 * o %0 - LPT debugging checking starts, initialize debugging variables;
1779 * o %1 - wrote an LPT node, increase LPT size by @len bytes;
1780 * o %2 - switched to a different LEB and wasted @len bytes;
1781 * o %3 - check that we've written the right number of bytes.
1782 * o %4 - wasted @len bytes;
1784 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1786 struct ubifs_debug_info *d = c->dbg;
1787 long long chk_lpt_sz, lpt_sz;
1790 if (!dbg_is_chk_lprops(c))
1797 d->chk_lpt_lebs = 0;
1798 d->chk_lpt_wastage = 0;
1799 if (c->dirty_pn_cnt > c->pnode_cnt) {
1800 ubifs_err(c, "dirty pnodes %d exceed max %d",
1801 c->dirty_pn_cnt, c->pnode_cnt);
1804 if (c->dirty_nn_cnt > c->nnode_cnt) {
1805 ubifs_err(c, "dirty nnodes %d exceed max %d",
1806 c->dirty_nn_cnt, c->nnode_cnt);
1811 d->chk_lpt_sz += len;
1814 d->chk_lpt_sz += len;
1815 d->chk_lpt_wastage += len;
1816 d->chk_lpt_lebs += 1;
1819 chk_lpt_sz = c->leb_size;
1820 chk_lpt_sz *= d->chk_lpt_lebs;
1821 chk_lpt_sz += len - c->nhead_offs;
1822 if (d->chk_lpt_sz != chk_lpt_sz) {
1823 ubifs_err(c, "LPT wrote %lld but space used was %lld",
1824 d->chk_lpt_sz, chk_lpt_sz);
1827 if (d->chk_lpt_sz > c->lpt_sz) {
1828 ubifs_err(c, "LPT wrote %lld but lpt_sz is %lld",
1829 d->chk_lpt_sz, c->lpt_sz);
1832 if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1833 ubifs_err(c, "LPT layout size %lld but wrote %lld",
1834 d->chk_lpt_sz, d->chk_lpt_sz2);
1837 if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1838 ubifs_err(c, "LPT new nhead offs: expected %d was %d",
1839 d->new_nhead_offs, len);
1842 lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1843 lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1844 lpt_sz += c->ltab_sz;
1846 lpt_sz += c->lsave_sz;
1847 if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1848 ubifs_err(c, "LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1849 d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1853 ubifs_dump_lpt_info(c);
1854 ubifs_dump_lpt_lebs(c);
1857 d->chk_lpt_sz2 = d->chk_lpt_sz;
1859 d->chk_lpt_wastage = 0;
1860 d->chk_lpt_lebs = 0;
1861 d->new_nhead_offs = len;
1864 d->chk_lpt_sz += len;
1865 d->chk_lpt_wastage += len;
1873 * dump_lpt_leb - dump an LPT LEB.
1874 * @c: UBIFS file-system description object
1875 * @lnum: LEB number to dump
1877 * This function dumps an LEB from LPT area. Nodes in this area are very
1878 * different to nodes in the main area (e.g., they do not have common headers,
1879 * they do not have 8-byte alignments, etc), so we have a separate function to
1880 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1882 static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1884 int err, len = c->leb_size, node_type, node_num, node_len, offs;
1887 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
1888 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1890 ubifs_err(c, "cannot allocate memory to dump LPT");
1894 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1899 offs = c->leb_size - len;
1900 if (!is_a_node(c, p, len)) {
1903 pad_len = get_pad_len(c, p, len);
1905 pr_err("LEB %d:%d, pad %d bytes\n",
1906 lnum, offs, pad_len);
1912 pr_err("LEB %d:%d, free %d bytes\n",
1917 node_type = get_lpt_node_type(c, p, &node_num);
1918 switch (node_type) {
1919 case UBIFS_LPT_PNODE:
1921 node_len = c->pnode_sz;
1923 pr_err("LEB %d:%d, pnode num %d\n",
1924 lnum, offs, node_num);
1926 pr_err("LEB %d:%d, pnode\n", lnum, offs);
1929 case UBIFS_LPT_NNODE:
1932 struct ubifs_nnode nnode;
1934 node_len = c->nnode_sz;
1936 pr_err("LEB %d:%d, nnode num %d, ",
1937 lnum, offs, node_num);
1939 pr_err("LEB %d:%d, nnode, ",
1941 err = ubifs_unpack_nnode(c, p, &nnode);
1943 pr_err("failed to unpack_node, error %d\n",
1947 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1948 pr_cont("%d:%d", nnode.nbranch[i].lnum,
1949 nnode.nbranch[i].offs);
1950 if (i != UBIFS_LPT_FANOUT - 1)
1956 case UBIFS_LPT_LTAB:
1957 node_len = c->ltab_sz;
1958 pr_err("LEB %d:%d, ltab\n", lnum, offs);
1960 case UBIFS_LPT_LSAVE:
1961 node_len = c->lsave_sz;
1962 pr_err("LEB %d:%d, lsave len\n", lnum, offs);
1965 ubifs_err(c, "LPT node type %d not recognized", node_type);
1973 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
1980 * ubifs_dump_lpt_lebs - dump LPT lebs.
1981 * @c: UBIFS file-system description object
1983 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1986 void ubifs_dump_lpt_lebs(const struct ubifs_info *c)
1990 pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid);
1991 for (i = 0; i < c->lpt_lebs; i++)
1992 dump_lpt_leb(c, i + c->lpt_first);
1993 pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid);
1997 * dbg_populate_lsave - debugging version of 'populate_lsave()'
1998 * @c: UBIFS file-system description object
2000 * This is a debugging version for 'populate_lsave()' which populates lsave
2001 * with random LEBs instead of useful LEBs, which is good for test coverage.
2002 * Returns zero if lsave has not been populated (this debugging feature is
2003 * disabled) an non-zero if lsave has been populated.
2005 static int dbg_populate_lsave(struct ubifs_info *c)
2007 struct ubifs_lprops *lprops;
2008 struct ubifs_lpt_heap *heap;
2011 if (!dbg_is_chk_gen(c))
2013 if (prandom_u32() & 3)
2016 for (i = 0; i < c->lsave_cnt; i++)
2017 c->lsave[i] = c->main_first;
2019 list_for_each_entry(lprops, &c->empty_list, list)
2020 c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2021 list_for_each_entry(lprops, &c->freeable_list, list)
2022 c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2023 list_for_each_entry(lprops, &c->frdi_idx_list, list)
2024 c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2026 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
2027 for (i = 0; i < heap->cnt; i++)
2028 c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2029 heap = &c->lpt_heap[LPROPS_DIRTY - 1];
2030 for (i = 0; i < heap->cnt; i++)
2031 c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2032 heap = &c->lpt_heap[LPROPS_FREE - 1];
2033 for (i = 0; i < heap->cnt; i++)
2034 c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;