2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements VFS file and inode operations for regular files, device
25 * nodes and symlinks as well as address space operations.
27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28 * the page is dirty and is used for optimization purposes - dirty pages are
29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30 * the budget for this page. The @PG_checked flag is set if full budgeting is
31 * required for the page e.g., when it corresponds to a file hole or it is
32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33 * it is OK to fail in this function, and the budget is released in
34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35 * information about how the page was budgeted, to make it possible to release
36 * the budget properly.
38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39 * implement. However, this is not true for 'ubifs_writepage()', which may be
40 * called with @i_mutex unlocked. For example, when flusher thread is doing
41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49 * set as well. However, UBIFS disables readahead.
53 #include <linux/mount.h>
54 #include <linux/slab.h>
55 #include <linux/migrate.h>
57 static int read_block(struct inode *inode, void *addr, unsigned int block,
58 struct ubifs_data_node *dn)
60 struct ubifs_info *c = inode->i_sb->s_fs_info;
61 int err, len, out_len;
65 data_key_init(c, &key, inode->i_ino, block);
66 err = ubifs_tnc_lookup(c, &key, dn);
69 /* Not found, so it must be a hole */
70 memset(addr, 0, UBIFS_BLOCK_SIZE);
74 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
75 ubifs_inode(inode)->creat_sqnum);
76 len = le32_to_cpu(dn->size);
77 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
80 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
82 if (ubifs_crypt_is_encrypted(inode)) {
83 err = ubifs_decrypt(inode, dn, &dlen, block);
88 out_len = UBIFS_BLOCK_SIZE;
89 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
90 le16_to_cpu(dn->compr_type));
91 if (err || len != out_len)
95 * Data length can be less than a full block, even for blocks that are
96 * not the last in the file (e.g., as a result of making a hole and
97 * appending data). Ensure that the remainder is zeroed out.
99 if (len < UBIFS_BLOCK_SIZE)
100 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
105 ubifs_err(c, "bad data node (block %u, inode %lu)",
106 block, inode->i_ino);
107 ubifs_dump_node(c, dn);
111 static int do_readpage(struct page *page)
115 unsigned int block, beyond;
116 struct ubifs_data_node *dn;
117 struct inode *inode = page->mapping->host;
118 struct ubifs_info *c = inode->i_sb->s_fs_info;
119 loff_t i_size = i_size_read(inode);
121 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
122 inode->i_ino, page->index, i_size, page->flags);
123 ubifs_assert(c, !PageChecked(page));
124 ubifs_assert(c, !PagePrivate(page));
128 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
129 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
130 if (block >= beyond) {
131 /* Reading beyond inode */
132 SetPageChecked(page);
133 memset(addr, 0, PAGE_SIZE);
137 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
147 if (block >= beyond) {
148 /* Reading beyond inode */
150 memset(addr, 0, UBIFS_BLOCK_SIZE);
152 ret = read_block(inode, addr, block, dn);
157 } else if (block + 1 == beyond) {
158 int dlen = le32_to_cpu(dn->size);
159 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
161 if (ilen && ilen < dlen)
162 memset(addr + ilen, 0, dlen - ilen);
165 if (++i >= UBIFS_BLOCKS_PER_PAGE)
168 addr += UBIFS_BLOCK_SIZE;
171 struct ubifs_info *c = inode->i_sb->s_fs_info;
172 if (err == -ENOENT) {
173 /* Not found, so it must be a hole */
174 SetPageChecked(page);
178 ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
179 page->index, inode->i_ino, err);
186 SetPageUptodate(page);
187 ClearPageError(page);
188 flush_dcache_page(page);
194 ClearPageUptodate(page);
196 flush_dcache_page(page);
202 * release_new_page_budget - release budget of a new page.
203 * @c: UBIFS file-system description object
205 * This is a helper function which releases budget corresponding to the budget
206 * of one new page of data.
208 static void release_new_page_budget(struct ubifs_info *c)
210 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
212 ubifs_release_budget(c, &req);
216 * release_existing_page_budget - release budget of an existing page.
217 * @c: UBIFS file-system description object
219 * This is a helper function which releases budget corresponding to the budget
220 * of changing one one page of data which already exists on the flash media.
222 static void release_existing_page_budget(struct ubifs_info *c)
224 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
226 ubifs_release_budget(c, &req);
229 static int write_begin_slow(struct address_space *mapping,
230 loff_t pos, unsigned len, struct page **pagep,
233 struct inode *inode = mapping->host;
234 struct ubifs_info *c = inode->i_sb->s_fs_info;
235 pgoff_t index = pos >> PAGE_SHIFT;
236 struct ubifs_budget_req req = { .new_page = 1 };
237 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
240 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
241 inode->i_ino, pos, len, inode->i_size);
244 * At the slow path we have to budget before locking the page, because
245 * budgeting may force write-back, which would wait on locked pages and
246 * deadlock if we had the page locked. At this point we do not know
247 * anything about the page, so assume that this is a new page which is
248 * written to a hole. This corresponds to largest budget. Later the
249 * budget will be amended if this is not true.
252 /* We are appending data, budget for inode change */
255 err = ubifs_budget_space(c, &req);
259 page = grab_cache_page_write_begin(mapping, index, flags);
260 if (unlikely(!page)) {
261 ubifs_release_budget(c, &req);
265 if (!PageUptodate(page)) {
266 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
267 SetPageChecked(page);
269 err = do_readpage(page);
273 ubifs_release_budget(c, &req);
278 SetPageUptodate(page);
279 ClearPageError(page);
282 if (PagePrivate(page))
284 * The page is dirty, which means it was budgeted twice:
285 * o first time the budget was allocated by the task which
286 * made the page dirty and set the PG_private flag;
287 * o and then we budgeted for it for the second time at the
288 * very beginning of this function.
290 * So what we have to do is to release the page budget we
293 release_new_page_budget(c);
294 else if (!PageChecked(page))
296 * We are changing a page which already exists on the media.
297 * This means that changing the page does not make the amount
298 * of indexing information larger, and this part of the budget
299 * which we have already acquired may be released.
301 ubifs_convert_page_budget(c);
304 struct ubifs_inode *ui = ubifs_inode(inode);
307 * 'ubifs_write_end()' is optimized from the fast-path part of
308 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
309 * if data is appended.
311 mutex_lock(&ui->ui_mutex);
314 * The inode is dirty already, so we may free the
315 * budget we allocated.
317 ubifs_release_dirty_inode_budget(c, ui);
325 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
326 * @c: UBIFS file-system description object
327 * @page: page to allocate budget for
328 * @ui: UBIFS inode object the page belongs to
329 * @appending: non-zero if the page is appended
331 * This is a helper function for 'ubifs_write_begin()' which allocates budget
332 * for the operation. The budget is allocated differently depending on whether
333 * this is appending, whether the page is dirty or not, and so on. This
334 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
335 * in case of success and %-ENOSPC in case of failure.
337 static int allocate_budget(struct ubifs_info *c, struct page *page,
338 struct ubifs_inode *ui, int appending)
340 struct ubifs_budget_req req = { .fast = 1 };
342 if (PagePrivate(page)) {
345 * The page is dirty and we are not appending, which
346 * means no budget is needed at all.
350 mutex_lock(&ui->ui_mutex);
353 * The page is dirty and we are appending, so the inode
354 * has to be marked as dirty. However, it is already
355 * dirty, so we do not need any budget. We may return,
356 * but @ui->ui_mutex hast to be left locked because we
357 * should prevent write-back from flushing the inode
358 * and freeing the budget. The lock will be released in
359 * 'ubifs_write_end()'.
364 * The page is dirty, we are appending, the inode is clean, so
365 * we need to budget the inode change.
369 if (PageChecked(page))
371 * The page corresponds to a hole and does not
372 * exist on the media. So changing it makes
373 * make the amount of indexing information
374 * larger, and we have to budget for a new
380 * Not a hole, the change will not add any new
381 * indexing information, budget for page
384 req.dirtied_page = 1;
387 mutex_lock(&ui->ui_mutex);
390 * The inode is clean but we will have to mark
391 * it as dirty because we are appending. This
398 return ubifs_budget_space(c, &req);
402 * This function is called when a page of data is going to be written. Since
403 * the page of data will not necessarily go to the flash straight away, UBIFS
404 * has to reserve space on the media for it, which is done by means of
407 * This is the hot-path of the file-system and we are trying to optimize it as
408 * much as possible. For this reasons it is split on 2 parts - slow and fast.
410 * There many budgeting cases:
411 * o a new page is appended - we have to budget for a new page and for
412 * changing the inode; however, if the inode is already dirty, there is
413 * no need to budget for it;
414 * o an existing clean page is changed - we have budget for it; if the page
415 * does not exist on the media (a hole), we have to budget for a new
416 * page; otherwise, we may budget for changing an existing page; the
417 * difference between these cases is that changing an existing page does
418 * not introduce anything new to the FS indexing information, so it does
419 * not grow, and smaller budget is acquired in this case;
420 * o an existing dirty page is changed - no need to budget at all, because
421 * the page budget has been acquired by earlier, when the page has been
424 * UBIFS budgeting sub-system may force write-back if it thinks there is no
425 * space to reserve. This imposes some locking restrictions and makes it
426 * impossible to take into account the above cases, and makes it impossible to
427 * optimize budgeting.
429 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
430 * there is a plenty of flash space and the budget will be acquired quickly,
431 * without forcing write-back. The slow path does not make this assumption.
433 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
434 loff_t pos, unsigned len, unsigned flags,
435 struct page **pagep, void **fsdata)
437 struct inode *inode = mapping->host;
438 struct ubifs_info *c = inode->i_sb->s_fs_info;
439 struct ubifs_inode *ui = ubifs_inode(inode);
440 pgoff_t index = pos >> PAGE_SHIFT;
441 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
442 int skipped_read = 0;
445 ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
446 ubifs_assert(c, !c->ro_media && !c->ro_mount);
448 if (unlikely(c->ro_error))
451 /* Try out the fast-path part first */
452 page = grab_cache_page_write_begin(mapping, index, flags);
456 if (!PageUptodate(page)) {
457 /* The page is not loaded from the flash */
458 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
460 * We change whole page so no need to load it. But we
461 * do not know whether this page exists on the media or
462 * not, so we assume the latter because it requires
463 * larger budget. The assumption is that it is better
464 * to budget a bit more than to read the page from the
465 * media. Thus, we are setting the @PG_checked flag
468 SetPageChecked(page);
471 err = do_readpage(page);
479 SetPageUptodate(page);
480 ClearPageError(page);
483 err = allocate_budget(c, page, ui, appending);
485 ubifs_assert(c, err == -ENOSPC);
487 * If we skipped reading the page because we were going to
488 * write all of it, then it is not up to date.
491 ClearPageChecked(page);
492 ClearPageUptodate(page);
495 * Budgeting failed which means it would have to force
496 * write-back but didn't, because we set the @fast flag in the
497 * request. Write-back cannot be done now, while we have the
498 * page locked, because it would deadlock. Unlock and free
499 * everything and fall-back to slow-path.
502 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
503 mutex_unlock(&ui->ui_mutex);
508 return write_begin_slow(mapping, pos, len, pagep, flags);
512 * Whee, we acquired budgeting quickly - without involving
513 * garbage-collection, committing or forcing write-back. We return
514 * with @ui->ui_mutex locked if we are appending pages, and unlocked
515 * otherwise. This is an optimization (slightly hacky though).
523 * cancel_budget - cancel budget.
524 * @c: UBIFS file-system description object
525 * @page: page to cancel budget for
526 * @ui: UBIFS inode object the page belongs to
527 * @appending: non-zero if the page is appended
529 * This is a helper function for a page write operation. It unlocks the
530 * @ui->ui_mutex in case of appending.
532 static void cancel_budget(struct ubifs_info *c, struct page *page,
533 struct ubifs_inode *ui, int appending)
537 ubifs_release_dirty_inode_budget(c, ui);
538 mutex_unlock(&ui->ui_mutex);
540 if (!PagePrivate(page)) {
541 if (PageChecked(page))
542 release_new_page_budget(c);
544 release_existing_page_budget(c);
548 static int ubifs_write_end(struct file *file, struct address_space *mapping,
549 loff_t pos, unsigned len, unsigned copied,
550 struct page *page, void *fsdata)
552 struct inode *inode = mapping->host;
553 struct ubifs_inode *ui = ubifs_inode(inode);
554 struct ubifs_info *c = inode->i_sb->s_fs_info;
555 loff_t end_pos = pos + len;
556 int appending = !!(end_pos > inode->i_size);
558 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
559 inode->i_ino, pos, page->index, len, copied, inode->i_size);
561 if (unlikely(copied < len && len == PAGE_SIZE)) {
563 * VFS copied less data to the page that it intended and
564 * declared in its '->write_begin()' call via the @len
565 * argument. If the page was not up-to-date, and @len was
566 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
567 * not load it from the media (for optimization reasons). This
568 * means that part of the page contains garbage. So read the
571 dbg_gen("copied %d instead of %d, read page and repeat",
573 cancel_budget(c, page, ui, appending);
574 ClearPageChecked(page);
577 * Return 0 to force VFS to repeat the whole operation, or the
578 * error code if 'do_readpage()' fails.
580 copied = do_readpage(page);
584 if (!PagePrivate(page)) {
585 SetPagePrivate(page);
586 atomic_long_inc(&c->dirty_pg_cnt);
587 __set_page_dirty_nobuffers(page);
591 i_size_write(inode, end_pos);
592 ui->ui_size = end_pos;
594 * Note, we do not set @I_DIRTY_PAGES (which means that the
595 * inode has dirty pages), this has been done in
596 * '__set_page_dirty_nobuffers()'.
598 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
599 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
600 mutex_unlock(&ui->ui_mutex);
610 * populate_page - copy data nodes into a page for bulk-read.
611 * @c: UBIFS file-system description object
613 * @bu: bulk-read information
614 * @n: next zbranch slot
616 * This function returns %0 on success and a negative error code on failure.
618 static int populate_page(struct ubifs_info *c, struct page *page,
619 struct bu_info *bu, int *n)
621 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
622 struct inode *inode = page->mapping->host;
623 loff_t i_size = i_size_read(inode);
624 unsigned int page_block;
628 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
629 inode->i_ino, page->index, i_size, page->flags);
631 addr = zaddr = kmap(page);
633 end_index = (i_size - 1) >> PAGE_SHIFT;
634 if (!i_size || page->index > end_index) {
636 memset(addr, 0, PAGE_SIZE);
640 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
642 int err, len, out_len, dlen;
646 memset(addr, 0, UBIFS_BLOCK_SIZE);
647 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
648 struct ubifs_data_node *dn;
650 dn = bu->buf + (bu->zbranch[nn].offs - offs);
652 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
653 ubifs_inode(inode)->creat_sqnum);
655 len = le32_to_cpu(dn->size);
656 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
659 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
660 out_len = UBIFS_BLOCK_SIZE;
662 if (ubifs_crypt_is_encrypted(inode)) {
663 err = ubifs_decrypt(inode, dn, &dlen, page_block);
668 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
669 le16_to_cpu(dn->compr_type));
670 if (err || len != out_len)
673 if (len < UBIFS_BLOCK_SIZE)
674 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
677 read = (i << UBIFS_BLOCK_SHIFT) + len;
678 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
683 memset(addr, 0, UBIFS_BLOCK_SIZE);
685 if (++i >= UBIFS_BLOCKS_PER_PAGE)
687 addr += UBIFS_BLOCK_SIZE;
691 if (end_index == page->index) {
692 int len = i_size & (PAGE_SIZE - 1);
694 if (len && len < read)
695 memset(zaddr + len, 0, read - len);
700 SetPageChecked(page);
704 SetPageUptodate(page);
705 ClearPageError(page);
706 flush_dcache_page(page);
712 ClearPageUptodate(page);
714 flush_dcache_page(page);
716 ubifs_err(c, "bad data node (block %u, inode %lu)",
717 page_block, inode->i_ino);
722 * ubifs_do_bulk_read - do bulk-read.
723 * @c: UBIFS file-system description object
724 * @bu: bulk-read information
725 * @page1: first page to read
727 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
729 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
732 pgoff_t offset = page1->index, end_index;
733 struct address_space *mapping = page1->mapping;
734 struct inode *inode = mapping->host;
735 struct ubifs_inode *ui = ubifs_inode(inode);
736 int err, page_idx, page_cnt, ret = 0, n = 0;
737 int allocate = bu->buf ? 0 : 1;
739 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
741 err = ubifs_tnc_get_bu_keys(c, bu);
746 /* Turn off bulk-read at the end of the file */
747 ui->read_in_a_row = 1;
751 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
754 * This happens when there are multiple blocks per page and the
755 * blocks for the first page we are looking for, are not
756 * together. If all the pages were like this, bulk-read would
757 * reduce performance, so we turn it off for a while.
765 * Allocate bulk-read buffer depending on how many data
766 * nodes we are going to read.
768 bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
769 bu->zbranch[bu->cnt - 1].len -
771 ubifs_assert(c, bu->buf_len > 0);
772 ubifs_assert(c, bu->buf_len <= c->leb_size);
773 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
778 err = ubifs_tnc_bulk_read(c, bu);
783 err = populate_page(c, page1, bu, &n);
790 isize = i_size_read(inode);
793 end_index = ((isize - 1) >> PAGE_SHIFT);
795 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
796 pgoff_t page_offset = offset + page_idx;
799 if (page_offset > end_index)
801 page = pagecache_get_page(mapping, page_offset,
802 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT,
806 if (!PageUptodate(page))
807 err = populate_page(c, page, bu, &n);
814 ui->last_page_read = offset + page_idx - 1;
822 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
826 ui->read_in_a_row = ui->bulk_read = 0;
831 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
832 * @page: page from which to start bulk-read.
834 * Some flash media are capable of reading sequentially at faster rates. UBIFS
835 * bulk-read facility is designed to take advantage of that, by reading in one
836 * go consecutive data nodes that are also located consecutively in the same
837 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
839 static int ubifs_bulk_read(struct page *page)
841 struct inode *inode = page->mapping->host;
842 struct ubifs_info *c = inode->i_sb->s_fs_info;
843 struct ubifs_inode *ui = ubifs_inode(inode);
844 pgoff_t index = page->index, last_page_read = ui->last_page_read;
846 int err = 0, allocated = 0;
848 ui->last_page_read = index;
853 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
854 * so don't bother if we cannot lock the mutex.
856 if (!mutex_trylock(&ui->ui_mutex))
859 if (index != last_page_read + 1) {
860 /* Turn off bulk-read if we stop reading sequentially */
861 ui->read_in_a_row = 1;
867 if (!ui->bulk_read) {
868 ui->read_in_a_row += 1;
869 if (ui->read_in_a_row < 3)
871 /* Three reads in a row, so switch on bulk-read */
876 * If possible, try to use pre-allocated bulk-read information, which
877 * is protected by @c->bu_mutex.
879 if (mutex_trylock(&c->bu_mutex))
882 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
890 bu->buf_len = c->max_bu_buf_len;
891 data_key_init(c, &bu->key, inode->i_ino,
892 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
893 err = ubifs_do_bulk_read(c, bu, page);
896 mutex_unlock(&c->bu_mutex);
901 mutex_unlock(&ui->ui_mutex);
905 static int ubifs_readpage(struct file *file, struct page *page)
907 if (ubifs_bulk_read(page))
914 static int do_writepage(struct page *page, int len)
916 int err = 0, i, blen;
920 struct inode *inode = page->mapping->host;
921 struct ubifs_info *c = inode->i_sb->s_fs_info;
924 struct ubifs_inode *ui = ubifs_inode(inode);
925 spin_lock(&ui->ui_lock);
926 ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT);
927 spin_unlock(&ui->ui_lock);
930 /* Update radix tree tags */
931 set_page_writeback(page);
934 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
937 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
938 data_key_init(c, &key, inode->i_ino, block);
939 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
942 if (++i >= UBIFS_BLOCKS_PER_PAGE)
950 ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
951 page->index, inode->i_ino, err);
952 ubifs_ro_mode(c, err);
955 ubifs_assert(c, PagePrivate(page));
956 if (PageChecked(page))
957 release_new_page_budget(c);
959 release_existing_page_budget(c);
961 atomic_long_dec(&c->dirty_pg_cnt);
962 ClearPagePrivate(page);
963 ClearPageChecked(page);
967 end_page_writeback(page);
972 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
973 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
974 * situation when a we have an inode with size 0, then a megabyte of data is
975 * appended to the inode, then write-back starts and flushes some amount of the
976 * dirty pages, the journal becomes full, commit happens and finishes, and then
977 * an unclean reboot happens. When the file system is mounted next time, the
978 * inode size would still be 0, but there would be many pages which are beyond
979 * the inode size, they would be indexed and consume flash space. Because the
980 * journal has been committed, the replay would not be able to detect this
981 * situation and correct the inode size. This means UBIFS would have to scan
982 * whole index and correct all inode sizes, which is long an unacceptable.
984 * To prevent situations like this, UBIFS writes pages back only if they are
985 * within the last synchronized inode size, i.e. the size which has been
986 * written to the flash media last time. Otherwise, UBIFS forces inode
987 * write-back, thus making sure the on-flash inode contains current inode size,
988 * and then keeps writing pages back.
990 * Some locking issues explanation. 'ubifs_writepage()' first is called with
991 * the page locked, and it locks @ui_mutex. However, write-back does take inode
992 * @i_mutex, which means other VFS operations may be run on this inode at the
993 * same time. And the problematic one is truncation to smaller size, from where
994 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
995 * then drops the truncated pages. And while dropping the pages, it takes the
996 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
997 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
998 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
1000 * XXX(truncate): with the new truncate sequence this is not true anymore,
1001 * and the calls to truncate_setsize can be move around freely. They should
1002 * be moved to the very end of the truncate sequence.
1004 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
1005 * inode size. How do we do this if @inode->i_size may became smaller while we
1006 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
1007 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
1008 * internally and updates it under @ui_mutex.
1010 * Q: why we do not worry that if we race with truncation, we may end up with a
1011 * situation when the inode is truncated while we are in the middle of
1012 * 'do_writepage()', so we do write beyond inode size?
1013 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1014 * on the page lock and it would not write the truncated inode node to the
1015 * journal before we have finished.
1017 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1019 struct inode *inode = page->mapping->host;
1020 struct ubifs_info *c = inode->i_sb->s_fs_info;
1021 struct ubifs_inode *ui = ubifs_inode(inode);
1022 loff_t i_size = i_size_read(inode), synced_i_size;
1023 pgoff_t end_index = i_size >> PAGE_SHIFT;
1024 int err, len = i_size & (PAGE_SIZE - 1);
1027 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1028 inode->i_ino, page->index, page->flags);
1029 ubifs_assert(c, PagePrivate(page));
1031 /* Is the page fully outside @i_size? (truncate in progress) */
1032 if (page->index > end_index || (page->index == end_index && !len)) {
1037 spin_lock(&ui->ui_lock);
1038 synced_i_size = ui->synced_i_size;
1039 spin_unlock(&ui->ui_lock);
1041 /* Is the page fully inside @i_size? */
1042 if (page->index < end_index) {
1043 if (page->index >= synced_i_size >> PAGE_SHIFT) {
1044 err = inode->i_sb->s_op->write_inode(inode, NULL);
1048 * The inode has been written, but the write-buffer has
1049 * not been synchronized, so in case of an unclean
1050 * reboot we may end up with some pages beyond inode
1051 * size, but they would be in the journal (because
1052 * commit flushes write buffers) and recovery would deal
1056 return do_writepage(page, PAGE_SIZE);
1060 * The page straddles @i_size. It must be zeroed out on each and every
1061 * writepage invocation because it may be mmapped. "A file is mapped
1062 * in multiples of the page size. For a file that is not a multiple of
1063 * the page size, the remaining memory is zeroed when mapped, and
1064 * writes to that region are not written out to the file."
1066 kaddr = kmap_atomic(page);
1067 memset(kaddr + len, 0, PAGE_SIZE - len);
1068 flush_dcache_page(page);
1069 kunmap_atomic(kaddr);
1071 if (i_size > synced_i_size) {
1072 err = inode->i_sb->s_op->write_inode(inode, NULL);
1077 return do_writepage(page, len);
1085 * do_attr_changes - change inode attributes.
1086 * @inode: inode to change attributes for
1087 * @attr: describes attributes to change
1089 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1091 if (attr->ia_valid & ATTR_UID)
1092 inode->i_uid = attr->ia_uid;
1093 if (attr->ia_valid & ATTR_GID)
1094 inode->i_gid = attr->ia_gid;
1095 if (attr->ia_valid & ATTR_ATIME)
1096 inode->i_atime = timespec64_trunc(attr->ia_atime,
1097 inode->i_sb->s_time_gran);
1098 if (attr->ia_valid & ATTR_MTIME)
1099 inode->i_mtime = timespec64_trunc(attr->ia_mtime,
1100 inode->i_sb->s_time_gran);
1101 if (attr->ia_valid & ATTR_CTIME)
1102 inode->i_ctime = timespec64_trunc(attr->ia_ctime,
1103 inode->i_sb->s_time_gran);
1104 if (attr->ia_valid & ATTR_MODE) {
1105 umode_t mode = attr->ia_mode;
1107 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1109 inode->i_mode = mode;
1114 * do_truncation - truncate an inode.
1115 * @c: UBIFS file-system description object
1116 * @inode: inode to truncate
1117 * @attr: inode attribute changes description
1119 * This function implements VFS '->setattr()' call when the inode is truncated
1120 * to a smaller size. Returns zero in case of success and a negative error code
1121 * in case of failure.
1123 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1124 const struct iattr *attr)
1127 struct ubifs_budget_req req;
1128 loff_t old_size = inode->i_size, new_size = attr->ia_size;
1129 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1130 struct ubifs_inode *ui = ubifs_inode(inode);
1132 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1133 memset(&req, 0, sizeof(struct ubifs_budget_req));
1136 * If this is truncation to a smaller size, and we do not truncate on a
1137 * block boundary, budget for changing one data block, because the last
1138 * block will be re-written.
1140 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1141 req.dirtied_page = 1;
1143 req.dirtied_ino = 1;
1144 /* A funny way to budget for truncation node */
1145 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1146 err = ubifs_budget_space(c, &req);
1149 * Treat truncations to zero as deletion and always allow them,
1150 * just like we do for '->unlink()'.
1152 if (new_size || err != -ENOSPC)
1157 truncate_setsize(inode, new_size);
1160 pgoff_t index = new_size >> PAGE_SHIFT;
1163 page = find_lock_page(inode->i_mapping, index);
1165 if (PageDirty(page)) {
1167 * 'ubifs_jnl_truncate()' will try to truncate
1168 * the last data node, but it contains
1169 * out-of-date data because the page is dirty.
1170 * Write the page now, so that
1171 * 'ubifs_jnl_truncate()' will see an already
1172 * truncated (and up to date) data node.
1174 ubifs_assert(c, PagePrivate(page));
1176 clear_page_dirty_for_io(page);
1177 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1180 err = do_writepage(page, offset);
1185 * We could now tell 'ubifs_jnl_truncate()' not
1186 * to read the last block.
1190 * We could 'kmap()' the page and pass the data
1191 * to 'ubifs_jnl_truncate()' to save it from
1192 * having to read it.
1200 mutex_lock(&ui->ui_mutex);
1201 ui->ui_size = inode->i_size;
1202 /* Truncation changes inode [mc]time */
1203 inode->i_mtime = inode->i_ctime = current_time(inode);
1204 /* Other attributes may be changed at the same time as well */
1205 do_attr_changes(inode, attr);
1206 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1207 mutex_unlock(&ui->ui_mutex);
1211 ubifs_release_budget(c, &req);
1213 c->bi.nospace = c->bi.nospace_rp = 0;
1220 * do_setattr - change inode attributes.
1221 * @c: UBIFS file-system description object
1222 * @inode: inode to change attributes for
1223 * @attr: inode attribute changes description
1225 * This function implements VFS '->setattr()' call for all cases except
1226 * truncations to smaller size. Returns zero in case of success and a negative
1227 * error code in case of failure.
1229 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1230 const struct iattr *attr)
1233 loff_t new_size = attr->ia_size;
1234 struct ubifs_inode *ui = ubifs_inode(inode);
1235 struct ubifs_budget_req req = { .dirtied_ino = 1,
1236 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1238 err = ubifs_budget_space(c, &req);
1242 if (attr->ia_valid & ATTR_SIZE) {
1243 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1244 truncate_setsize(inode, new_size);
1247 mutex_lock(&ui->ui_mutex);
1248 if (attr->ia_valid & ATTR_SIZE) {
1249 /* Truncation changes inode [mc]time */
1250 inode->i_mtime = inode->i_ctime = current_time(inode);
1251 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1252 ui->ui_size = inode->i_size;
1255 do_attr_changes(inode, attr);
1257 release = ui->dirty;
1258 if (attr->ia_valid & ATTR_SIZE)
1260 * Inode length changed, so we have to make sure
1261 * @I_DIRTY_DATASYNC is set.
1263 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1265 mark_inode_dirty_sync(inode);
1266 mutex_unlock(&ui->ui_mutex);
1269 ubifs_release_budget(c, &req);
1271 err = inode->i_sb->s_op->write_inode(inode, NULL);
1275 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1278 struct inode *inode = d_inode(dentry);
1279 struct ubifs_info *c = inode->i_sb->s_fs_info;
1281 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1282 inode->i_ino, inode->i_mode, attr->ia_valid);
1283 err = setattr_prepare(dentry, attr);
1287 err = dbg_check_synced_i_size(c, inode);
1291 err = fscrypt_prepare_setattr(dentry, attr);
1295 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1296 /* Truncation to a smaller size */
1297 err = do_truncation(c, inode, attr);
1299 err = do_setattr(c, inode, attr);
1304 static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1305 unsigned int length)
1307 struct inode *inode = page->mapping->host;
1308 struct ubifs_info *c = inode->i_sb->s_fs_info;
1310 ubifs_assert(c, PagePrivate(page));
1311 if (offset || length < PAGE_SIZE)
1312 /* Partial page remains dirty */
1315 if (PageChecked(page))
1316 release_new_page_budget(c);
1318 release_existing_page_budget(c);
1320 atomic_long_dec(&c->dirty_pg_cnt);
1321 ClearPagePrivate(page);
1322 ClearPageChecked(page);
1325 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1327 struct inode *inode = file->f_mapping->host;
1328 struct ubifs_info *c = inode->i_sb->s_fs_info;
1331 dbg_gen("syncing inode %lu", inode->i_ino);
1335 * For some really strange reasons VFS does not filter out
1336 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1340 err = file_write_and_wait_range(file, start, end);
1345 /* Synchronize the inode unless this is a 'datasync()' call. */
1346 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1347 err = inode->i_sb->s_op->write_inode(inode, NULL);
1353 * Nodes related to this inode may still sit in a write-buffer. Flush
1356 err = ubifs_sync_wbufs_by_inode(c, inode);
1358 inode_unlock(inode);
1363 * mctime_update_needed - check if mtime or ctime update is needed.
1364 * @inode: the inode to do the check for
1365 * @now: current time
1367 * This helper function checks if the inode mtime/ctime should be updated or
1368 * not. If current values of the time-stamps are within the UBIFS inode time
1369 * granularity, they are not updated. This is an optimization.
1371 static inline int mctime_update_needed(const struct inode *inode,
1372 const struct timespec64 *now)
1374 if (!timespec64_equal(&inode->i_mtime, now) ||
1375 !timespec64_equal(&inode->i_ctime, now))
1380 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1382 * ubifs_update_time - update time of inode.
1383 * @inode: inode to update
1385 * This function updates time of the inode.
1387 int ubifs_update_time(struct inode *inode, struct timespec64 *time,
1390 struct ubifs_inode *ui = ubifs_inode(inode);
1391 struct ubifs_info *c = inode->i_sb->s_fs_info;
1392 struct ubifs_budget_req req = { .dirtied_ino = 1,
1393 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1396 err = ubifs_budget_space(c, &req);
1400 mutex_lock(&ui->ui_mutex);
1401 if (flags & S_ATIME)
1402 inode->i_atime = *time;
1403 if (flags & S_CTIME)
1404 inode->i_ctime = *time;
1405 if (flags & S_MTIME)
1406 inode->i_mtime = *time;
1408 release = ui->dirty;
1409 __mark_inode_dirty(inode, I_DIRTY_SYNC);
1410 mutex_unlock(&ui->ui_mutex);
1412 ubifs_release_budget(c, &req);
1418 * update_mctime - update mtime and ctime of an inode.
1419 * @inode: inode to update
1421 * This function updates mtime and ctime of the inode if it is not equivalent to
1422 * current time. Returns zero in case of success and a negative error code in
1425 static int update_mctime(struct inode *inode)
1427 struct timespec64 now = current_time(inode);
1428 struct ubifs_inode *ui = ubifs_inode(inode);
1429 struct ubifs_info *c = inode->i_sb->s_fs_info;
1431 if (mctime_update_needed(inode, &now)) {
1433 struct ubifs_budget_req req = { .dirtied_ino = 1,
1434 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1436 err = ubifs_budget_space(c, &req);
1440 mutex_lock(&ui->ui_mutex);
1441 inode->i_mtime = inode->i_ctime = current_time(inode);
1442 release = ui->dirty;
1443 mark_inode_dirty_sync(inode);
1444 mutex_unlock(&ui->ui_mutex);
1446 ubifs_release_budget(c, &req);
1452 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1454 int err = update_mctime(file_inode(iocb->ki_filp));
1458 return generic_file_write_iter(iocb, from);
1461 static int ubifs_set_page_dirty(struct page *page)
1464 struct inode *inode = page->mapping->host;
1465 struct ubifs_info *c = inode->i_sb->s_fs_info;
1467 ret = __set_page_dirty_nobuffers(page);
1469 * An attempt to dirty a page without budgeting for it - should not
1472 ubifs_assert(c, ret == 0);
1476 #ifdef CONFIG_MIGRATION
1477 static int ubifs_migrate_page(struct address_space *mapping,
1478 struct page *newpage, struct page *page, enum migrate_mode mode)
1482 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
1483 if (rc != MIGRATEPAGE_SUCCESS)
1486 if (PagePrivate(page)) {
1487 ClearPagePrivate(page);
1488 SetPagePrivate(newpage);
1491 if (mode != MIGRATE_SYNC_NO_COPY)
1492 migrate_page_copy(newpage, page);
1494 migrate_page_states(newpage, page);
1495 return MIGRATEPAGE_SUCCESS;
1499 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1501 struct inode *inode = page->mapping->host;
1502 struct ubifs_info *c = inode->i_sb->s_fs_info;
1505 * An attempt to release a dirty page without budgeting for it - should
1508 if (PageWriteback(page))
1510 ubifs_assert(c, PagePrivate(page));
1512 ClearPagePrivate(page);
1513 ClearPageChecked(page);
1518 * mmap()d file has taken write protection fault and is being made writable.
1519 * UBIFS must ensure page is budgeted for.
1521 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1523 struct page *page = vmf->page;
1524 struct inode *inode = file_inode(vmf->vma->vm_file);
1525 struct ubifs_info *c = inode->i_sb->s_fs_info;
1526 struct timespec64 now = current_time(inode);
1527 struct ubifs_budget_req req = { .new_page = 1 };
1528 int err, update_time;
1530 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1531 i_size_read(inode));
1532 ubifs_assert(c, !c->ro_media && !c->ro_mount);
1534 if (unlikely(c->ro_error))
1535 return VM_FAULT_SIGBUS; /* -EROFS */
1538 * We have not locked @page so far so we may budget for changing the
1539 * page. Note, we cannot do this after we locked the page, because
1540 * budgeting may cause write-back which would cause deadlock.
1542 * At the moment we do not know whether the page is dirty or not, so we
1543 * assume that it is not and budget for a new page. We could look at
1544 * the @PG_private flag and figure this out, but we may race with write
1545 * back and the page state may change by the time we lock it, so this
1546 * would need additional care. We do not bother with this at the
1547 * moment, although it might be good idea to do. Instead, we allocate
1548 * budget for a new page and amend it later on if the page was in fact
1551 * The budgeting-related logic of this function is similar to what we
1552 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1553 * for more comments.
1555 update_time = mctime_update_needed(inode, &now);
1558 * We have to change inode time stamp which requires extra
1561 req.dirtied_ino = 1;
1563 err = ubifs_budget_space(c, &req);
1564 if (unlikely(err)) {
1566 ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1568 return VM_FAULT_SIGBUS;
1572 if (unlikely(page->mapping != inode->i_mapping ||
1573 page_offset(page) > i_size_read(inode))) {
1574 /* Page got truncated out from underneath us */
1578 if (PagePrivate(page))
1579 release_new_page_budget(c);
1581 if (!PageChecked(page))
1582 ubifs_convert_page_budget(c);
1583 SetPagePrivate(page);
1584 atomic_long_inc(&c->dirty_pg_cnt);
1585 __set_page_dirty_nobuffers(page);
1590 struct ubifs_inode *ui = ubifs_inode(inode);
1592 mutex_lock(&ui->ui_mutex);
1593 inode->i_mtime = inode->i_ctime = current_time(inode);
1594 release = ui->dirty;
1595 mark_inode_dirty_sync(inode);
1596 mutex_unlock(&ui->ui_mutex);
1598 ubifs_release_dirty_inode_budget(c, ui);
1601 wait_for_stable_page(page);
1602 return VM_FAULT_LOCKED;
1606 ubifs_release_budget(c, &req);
1607 return VM_FAULT_SIGBUS;
1610 static const struct vm_operations_struct ubifs_file_vm_ops = {
1611 .fault = filemap_fault,
1612 .map_pages = filemap_map_pages,
1613 .page_mkwrite = ubifs_vm_page_mkwrite,
1616 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1620 err = generic_file_mmap(file, vma);
1623 vma->vm_ops = &ubifs_file_vm_ops;
1624 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1625 file_accessed(file);
1630 static const char *ubifs_get_link(struct dentry *dentry,
1631 struct inode *inode,
1632 struct delayed_call *done)
1634 struct ubifs_inode *ui = ubifs_inode(inode);
1636 if (!IS_ENCRYPTED(inode))
1640 return ERR_PTR(-ECHILD);
1642 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1645 static int ubifs_symlink_getattr(const struct path *path, struct kstat *stat,
1646 u32 request_mask, unsigned int query_flags)
1648 ubifs_getattr(path, stat, request_mask, query_flags);
1650 if (IS_ENCRYPTED(d_inode(path->dentry)))
1651 return fscrypt_symlink_getattr(path, stat);
1655 const struct address_space_operations ubifs_file_address_operations = {
1656 .readpage = ubifs_readpage,
1657 .writepage = ubifs_writepage,
1658 .write_begin = ubifs_write_begin,
1659 .write_end = ubifs_write_end,
1660 .invalidatepage = ubifs_invalidatepage,
1661 .set_page_dirty = ubifs_set_page_dirty,
1662 #ifdef CONFIG_MIGRATION
1663 .migratepage = ubifs_migrate_page,
1665 .releasepage = ubifs_releasepage,
1668 const struct inode_operations ubifs_file_inode_operations = {
1669 .setattr = ubifs_setattr,
1670 .getattr = ubifs_getattr,
1671 #ifdef CONFIG_UBIFS_FS_XATTR
1672 .listxattr = ubifs_listxattr,
1674 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1675 .update_time = ubifs_update_time,
1679 const struct inode_operations ubifs_symlink_inode_operations = {
1680 .get_link = ubifs_get_link,
1681 .setattr = ubifs_setattr,
1682 .getattr = ubifs_symlink_getattr,
1683 #ifdef CONFIG_UBIFS_FS_XATTR
1684 .listxattr = ubifs_listxattr,
1686 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1687 .update_time = ubifs_update_time,
1691 const struct file_operations ubifs_file_operations = {
1692 .llseek = generic_file_llseek,
1693 .read_iter = generic_file_read_iter,
1694 .write_iter = ubifs_write_iter,
1695 .mmap = ubifs_file_mmap,
1696 .fsync = ubifs_fsync,
1697 .unlocked_ioctl = ubifs_ioctl,
1698 .splice_read = generic_file_splice_read,
1699 .splice_write = iter_file_splice_write,
1700 .open = fscrypt_file_open,
1701 #ifdef CONFIG_COMPAT
1702 .compat_ioctl = ubifs_compat_ioctl,