GNU Linux-libre 4.14.262-gnu1
[releases.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include <linux/ctype.h>
36 #include "ubifs.h"
37
38 static DEFINE_SPINLOCK(dbg_lock);
39
40 static const char *get_key_fmt(int fmt)
41 {
42         switch (fmt) {
43         case UBIFS_SIMPLE_KEY_FMT:
44                 return "simple";
45         default:
46                 return "unknown/invalid format";
47         }
48 }
49
50 static const char *get_key_hash(int hash)
51 {
52         switch (hash) {
53         case UBIFS_KEY_HASH_R5:
54                 return "R5";
55         case UBIFS_KEY_HASH_TEST:
56                 return "test";
57         default:
58                 return "unknown/invalid name hash";
59         }
60 }
61
62 static const char *get_key_type(int type)
63 {
64         switch (type) {
65         case UBIFS_INO_KEY:
66                 return "inode";
67         case UBIFS_DENT_KEY:
68                 return "direntry";
69         case UBIFS_XENT_KEY:
70                 return "xentry";
71         case UBIFS_DATA_KEY:
72                 return "data";
73         case UBIFS_TRUN_KEY:
74                 return "truncate";
75         default:
76                 return "unknown/invalid key";
77         }
78 }
79
80 static const char *get_dent_type(int type)
81 {
82         switch (type) {
83         case UBIFS_ITYPE_REG:
84                 return "file";
85         case UBIFS_ITYPE_DIR:
86                 return "dir";
87         case UBIFS_ITYPE_LNK:
88                 return "symlink";
89         case UBIFS_ITYPE_BLK:
90                 return "blkdev";
91         case UBIFS_ITYPE_CHR:
92                 return "char dev";
93         case UBIFS_ITYPE_FIFO:
94                 return "fifo";
95         case UBIFS_ITYPE_SOCK:
96                 return "socket";
97         default:
98                 return "unknown/invalid type";
99         }
100 }
101
102 const char *dbg_snprintf_key(const struct ubifs_info *c,
103                              const union ubifs_key *key, char *buffer, int len)
104 {
105         char *p = buffer;
106         int type = key_type(c, key);
107
108         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
109                 switch (type) {
110                 case UBIFS_INO_KEY:
111                         len -= snprintf(p, len, "(%lu, %s)",
112                                         (unsigned long)key_inum(c, key),
113                                         get_key_type(type));
114                         break;
115                 case UBIFS_DENT_KEY:
116                 case UBIFS_XENT_KEY:
117                         len -= snprintf(p, len, "(%lu, %s, %#08x)",
118                                         (unsigned long)key_inum(c, key),
119                                         get_key_type(type), key_hash(c, key));
120                         break;
121                 case UBIFS_DATA_KEY:
122                         len -= snprintf(p, len, "(%lu, %s, %u)",
123                                         (unsigned long)key_inum(c, key),
124                                         get_key_type(type), key_block(c, key));
125                         break;
126                 case UBIFS_TRUN_KEY:
127                         len -= snprintf(p, len, "(%lu, %s)",
128                                         (unsigned long)key_inum(c, key),
129                                         get_key_type(type));
130                         break;
131                 default:
132                         len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
133                                         key->u32[0], key->u32[1]);
134                 }
135         } else
136                 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
137         ubifs_assert(len > 0);
138         return p;
139 }
140
141 const char *dbg_ntype(int type)
142 {
143         switch (type) {
144         case UBIFS_PAD_NODE:
145                 return "padding node";
146         case UBIFS_SB_NODE:
147                 return "superblock node";
148         case UBIFS_MST_NODE:
149                 return "master node";
150         case UBIFS_REF_NODE:
151                 return "reference node";
152         case UBIFS_INO_NODE:
153                 return "inode node";
154         case UBIFS_DENT_NODE:
155                 return "direntry node";
156         case UBIFS_XENT_NODE:
157                 return "xentry node";
158         case UBIFS_DATA_NODE:
159                 return "data node";
160         case UBIFS_TRUN_NODE:
161                 return "truncate node";
162         case UBIFS_IDX_NODE:
163                 return "indexing node";
164         case UBIFS_CS_NODE:
165                 return "commit start node";
166         case UBIFS_ORPH_NODE:
167                 return "orphan node";
168         default:
169                 return "unknown node";
170         }
171 }
172
173 static const char *dbg_gtype(int type)
174 {
175         switch (type) {
176         case UBIFS_NO_NODE_GROUP:
177                 return "no node group";
178         case UBIFS_IN_NODE_GROUP:
179                 return "in node group";
180         case UBIFS_LAST_OF_NODE_GROUP:
181                 return "last of node group";
182         default:
183                 return "unknown";
184         }
185 }
186
187 const char *dbg_cstate(int cmt_state)
188 {
189         switch (cmt_state) {
190         case COMMIT_RESTING:
191                 return "commit resting";
192         case COMMIT_BACKGROUND:
193                 return "background commit requested";
194         case COMMIT_REQUIRED:
195                 return "commit required";
196         case COMMIT_RUNNING_BACKGROUND:
197                 return "BACKGROUND commit running";
198         case COMMIT_RUNNING_REQUIRED:
199                 return "commit running and required";
200         case COMMIT_BROKEN:
201                 return "broken commit";
202         default:
203                 return "unknown commit state";
204         }
205 }
206
207 const char *dbg_jhead(int jhead)
208 {
209         switch (jhead) {
210         case GCHD:
211                 return "0 (GC)";
212         case BASEHD:
213                 return "1 (base)";
214         case DATAHD:
215                 return "2 (data)";
216         default:
217                 return "unknown journal head";
218         }
219 }
220
221 static void dump_ch(const struct ubifs_ch *ch)
222 {
223         pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
224         pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
225         pr_err("\tnode_type      %d (%s)\n", ch->node_type,
226                dbg_ntype(ch->node_type));
227         pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
228                dbg_gtype(ch->group_type));
229         pr_err("\tsqnum          %llu\n",
230                (unsigned long long)le64_to_cpu(ch->sqnum));
231         pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
232 }
233
234 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
235 {
236         const struct ubifs_inode *ui = ubifs_inode(inode);
237         struct fscrypt_name nm = {0};
238         union ubifs_key key;
239         struct ubifs_dent_node *dent, *pdent = NULL;
240         int count = 2;
241
242         pr_err("Dump in-memory inode:");
243         pr_err("\tinode          %lu\n", inode->i_ino);
244         pr_err("\tsize           %llu\n",
245                (unsigned long long)i_size_read(inode));
246         pr_err("\tnlink          %u\n", inode->i_nlink);
247         pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
248         pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
249         pr_err("\tatime          %u.%u\n",
250                (unsigned int)inode->i_atime.tv_sec,
251                (unsigned int)inode->i_atime.tv_nsec);
252         pr_err("\tmtime          %u.%u\n",
253                (unsigned int)inode->i_mtime.tv_sec,
254                (unsigned int)inode->i_mtime.tv_nsec);
255         pr_err("\tctime          %u.%u\n",
256                (unsigned int)inode->i_ctime.tv_sec,
257                (unsigned int)inode->i_ctime.tv_nsec);
258         pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
259         pr_err("\txattr_size     %u\n", ui->xattr_size);
260         pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
261         pr_err("\txattr_names    %u\n", ui->xattr_names);
262         pr_err("\tdirty          %u\n", ui->dirty);
263         pr_err("\txattr          %u\n", ui->xattr);
264         pr_err("\tbulk_read      %u\n", ui->bulk_read);
265         pr_err("\tsynced_i_size  %llu\n",
266                (unsigned long long)ui->synced_i_size);
267         pr_err("\tui_size        %llu\n",
268                (unsigned long long)ui->ui_size);
269         pr_err("\tflags          %d\n", ui->flags);
270         pr_err("\tcompr_type     %d\n", ui->compr_type);
271         pr_err("\tlast_page_read %lu\n", ui->last_page_read);
272         pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
273         pr_err("\tdata_len       %d\n", ui->data_len);
274
275         if (!S_ISDIR(inode->i_mode))
276                 return;
277
278         pr_err("List of directory entries:\n");
279         ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
280
281         lowest_dent_key(c, &key, inode->i_ino);
282         while (1) {
283                 dent = ubifs_tnc_next_ent(c, &key, &nm);
284                 if (IS_ERR(dent)) {
285                         if (PTR_ERR(dent) != -ENOENT)
286                                 pr_err("error %ld\n", PTR_ERR(dent));
287                         break;
288                 }
289
290                 pr_err("\t%d: inode %llu, type %s, len %d\n",
291                        count++, (unsigned long long) le64_to_cpu(dent->inum),
292                        get_dent_type(dent->type),
293                        le16_to_cpu(dent->nlen));
294
295                 fname_name(&nm) = dent->name;
296                 fname_len(&nm) = le16_to_cpu(dent->nlen);
297                 kfree(pdent);
298                 pdent = dent;
299                 key_read(c, &dent->key, &key);
300         }
301         kfree(pdent);
302 }
303
304 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
305 {
306         int i, n;
307         union ubifs_key key;
308         const struct ubifs_ch *ch = node;
309         char key_buf[DBG_KEY_BUF_LEN];
310
311         /* If the magic is incorrect, just hexdump the first bytes */
312         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
313                 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
314                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
315                                (void *)node, UBIFS_CH_SZ, 1);
316                 return;
317         }
318
319         spin_lock(&dbg_lock);
320         dump_ch(node);
321
322         switch (ch->node_type) {
323         case UBIFS_PAD_NODE:
324         {
325                 const struct ubifs_pad_node *pad = node;
326
327                 pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
328                 break;
329         }
330         case UBIFS_SB_NODE:
331         {
332                 const struct ubifs_sb_node *sup = node;
333                 unsigned int sup_flags = le32_to_cpu(sup->flags);
334
335                 pr_err("\tkey_hash       %d (%s)\n",
336                        (int)sup->key_hash, get_key_hash(sup->key_hash));
337                 pr_err("\tkey_fmt        %d (%s)\n",
338                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
339                 pr_err("\tflags          %#x\n", sup_flags);
340                 pr_err("\tbig_lpt        %u\n",
341                        !!(sup_flags & UBIFS_FLG_BIGLPT));
342                 pr_err("\tspace_fixup    %u\n",
343                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
344                 pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
345                 pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
346                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
347                 pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
348                 pr_err("\tmax_bud_bytes  %llu\n",
349                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
350                 pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
351                 pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
352                 pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
353                 pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
354                 pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
355                 pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
356                 pr_err("\tdefault_compr  %u\n",
357                        (int)le16_to_cpu(sup->default_compr));
358                 pr_err("\trp_size        %llu\n",
359                        (unsigned long long)le64_to_cpu(sup->rp_size));
360                 pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
361                 pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
362                 pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
363                 pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
364                 pr_err("\tUUID           %pUB\n", sup->uuid);
365                 break;
366         }
367         case UBIFS_MST_NODE:
368         {
369                 const struct ubifs_mst_node *mst = node;
370
371                 pr_err("\thighest_inum   %llu\n",
372                        (unsigned long long)le64_to_cpu(mst->highest_inum));
373                 pr_err("\tcommit number  %llu\n",
374                        (unsigned long long)le64_to_cpu(mst->cmt_no));
375                 pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
376                 pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
377                 pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
378                 pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
379                 pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
380                 pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
381                 pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
382                 pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
383                 pr_err("\tindex_size     %llu\n",
384                        (unsigned long long)le64_to_cpu(mst->index_size));
385                 pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
386                 pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
387                 pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
388                 pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
389                 pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
390                 pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
391                 pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
392                 pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
393                 pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
394                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
395                 pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
396                 pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
397                 pr_err("\ttotal_free     %llu\n",
398                        (unsigned long long)le64_to_cpu(mst->total_free));
399                 pr_err("\ttotal_dirty    %llu\n",
400                        (unsigned long long)le64_to_cpu(mst->total_dirty));
401                 pr_err("\ttotal_used     %llu\n",
402                        (unsigned long long)le64_to_cpu(mst->total_used));
403                 pr_err("\ttotal_dead     %llu\n",
404                        (unsigned long long)le64_to_cpu(mst->total_dead));
405                 pr_err("\ttotal_dark     %llu\n",
406                        (unsigned long long)le64_to_cpu(mst->total_dark));
407                 break;
408         }
409         case UBIFS_REF_NODE:
410         {
411                 const struct ubifs_ref_node *ref = node;
412
413                 pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
414                 pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
415                 pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
416                 break;
417         }
418         case UBIFS_INO_NODE:
419         {
420                 const struct ubifs_ino_node *ino = node;
421
422                 key_read(c, &ino->key, &key);
423                 pr_err("\tkey            %s\n",
424                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
425                 pr_err("\tcreat_sqnum    %llu\n",
426                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
427                 pr_err("\tsize           %llu\n",
428                        (unsigned long long)le64_to_cpu(ino->size));
429                 pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
430                 pr_err("\tatime          %lld.%u\n",
431                        (long long)le64_to_cpu(ino->atime_sec),
432                        le32_to_cpu(ino->atime_nsec));
433                 pr_err("\tmtime          %lld.%u\n",
434                        (long long)le64_to_cpu(ino->mtime_sec),
435                        le32_to_cpu(ino->mtime_nsec));
436                 pr_err("\tctime          %lld.%u\n",
437                        (long long)le64_to_cpu(ino->ctime_sec),
438                        le32_to_cpu(ino->ctime_nsec));
439                 pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
440                 pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
441                 pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
442                 pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
443                 pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
444                 pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
445                 pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
446                 pr_err("\tcompr_type     %#x\n",
447                        (int)le16_to_cpu(ino->compr_type));
448                 pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
449                 break;
450         }
451         case UBIFS_DENT_NODE:
452         case UBIFS_XENT_NODE:
453         {
454                 const struct ubifs_dent_node *dent = node;
455                 int nlen = le16_to_cpu(dent->nlen);
456
457                 key_read(c, &dent->key, &key);
458                 pr_err("\tkey            %s\n",
459                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
460                 pr_err("\tinum           %llu\n",
461                        (unsigned long long)le64_to_cpu(dent->inum));
462                 pr_err("\ttype           %d\n", (int)dent->type);
463                 pr_err("\tnlen           %d\n", nlen);
464                 pr_err("\tname           ");
465
466                 if (nlen > UBIFS_MAX_NLEN)
467                         pr_err("(bad name length, not printing, bad or corrupted node)");
468                 else {
469                         for (i = 0; i < nlen && dent->name[i]; i++)
470                                 pr_cont("%c", isprint(dent->name[i]) ?
471                                         dent->name[i] : '?');
472                 }
473                 pr_cont("\n");
474
475                 break;
476         }
477         case UBIFS_DATA_NODE:
478         {
479                 const struct ubifs_data_node *dn = node;
480                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
481
482                 key_read(c, &dn->key, &key);
483                 pr_err("\tkey            %s\n",
484                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
485                 pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
486                 pr_err("\tcompr_typ      %d\n",
487                        (int)le16_to_cpu(dn->compr_type));
488                 pr_err("\tdata size      %d\n", dlen);
489                 pr_err("\tdata:\n");
490                 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
491                                (void *)&dn->data, dlen, 0);
492                 break;
493         }
494         case UBIFS_TRUN_NODE:
495         {
496                 const struct ubifs_trun_node *trun = node;
497
498                 pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
499                 pr_err("\told_size       %llu\n",
500                        (unsigned long long)le64_to_cpu(trun->old_size));
501                 pr_err("\tnew_size       %llu\n",
502                        (unsigned long long)le64_to_cpu(trun->new_size));
503                 break;
504         }
505         case UBIFS_IDX_NODE:
506         {
507                 const struct ubifs_idx_node *idx = node;
508
509                 n = le16_to_cpu(idx->child_cnt);
510                 pr_err("\tchild_cnt      %d\n", n);
511                 pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
512                 pr_err("\tBranches:\n");
513
514                 for (i = 0; i < n && i < c->fanout - 1; i++) {
515                         const struct ubifs_branch *br;
516
517                         br = ubifs_idx_branch(c, idx, i);
518                         key_read(c, &br->key, &key);
519                         pr_err("\t%d: LEB %d:%d len %d key %s\n",
520                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
521                                le32_to_cpu(br->len),
522                                dbg_snprintf_key(c, &key, key_buf,
523                                                 DBG_KEY_BUF_LEN));
524                 }
525                 break;
526         }
527         case UBIFS_CS_NODE:
528                 break;
529         case UBIFS_ORPH_NODE:
530         {
531                 const struct ubifs_orph_node *orph = node;
532
533                 pr_err("\tcommit number  %llu\n",
534                        (unsigned long long)
535                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
536                 pr_err("\tlast node flag %llu\n",
537                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
538                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
539                 pr_err("\t%d orphan inode numbers:\n", n);
540                 for (i = 0; i < n; i++)
541                         pr_err("\t  ino %llu\n",
542                                (unsigned long long)le64_to_cpu(orph->inos[i]));
543                 break;
544         }
545         default:
546                 pr_err("node type %d was not recognized\n",
547                        (int)ch->node_type);
548         }
549         spin_unlock(&dbg_lock);
550 }
551
552 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
553 {
554         spin_lock(&dbg_lock);
555         pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
556                req->new_ino, req->dirtied_ino);
557         pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
558                req->new_ino_d, req->dirtied_ino_d);
559         pr_err("\tnew_page    %d, dirtied_page %d\n",
560                req->new_page, req->dirtied_page);
561         pr_err("\tnew_dent    %d, mod_dent     %d\n",
562                req->new_dent, req->mod_dent);
563         pr_err("\tidx_growth  %d\n", req->idx_growth);
564         pr_err("\tdata_growth %d dd_growth     %d\n",
565                req->data_growth, req->dd_growth);
566         spin_unlock(&dbg_lock);
567 }
568
569 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
570 {
571         spin_lock(&dbg_lock);
572         pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
573                current->pid, lst->empty_lebs, lst->idx_lebs);
574         pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
575                lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
576         pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
577                lst->total_used, lst->total_dark, lst->total_dead);
578         spin_unlock(&dbg_lock);
579 }
580
581 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
582 {
583         int i;
584         struct rb_node *rb;
585         struct ubifs_bud *bud;
586         struct ubifs_gced_idx_leb *idx_gc;
587         long long available, outstanding, free;
588
589         spin_lock(&c->space_lock);
590         spin_lock(&dbg_lock);
591         pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
592                current->pid, bi->data_growth + bi->dd_growth,
593                bi->data_growth + bi->dd_growth + bi->idx_growth);
594         pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
595                bi->data_growth, bi->dd_growth, bi->idx_growth);
596         pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
597                bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
598         pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
599                bi->page_budget, bi->inode_budget, bi->dent_budget);
600         pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
601         pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
602                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
603
604         if (bi != &c->bi)
605                 /*
606                  * If we are dumping saved budgeting data, do not print
607                  * additional information which is about the current state, not
608                  * the old one which corresponded to the saved budgeting data.
609                  */
610                 goto out_unlock;
611
612         pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
613                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
614         pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
615                atomic_long_read(&c->dirty_pg_cnt),
616                atomic_long_read(&c->dirty_zn_cnt),
617                atomic_long_read(&c->clean_zn_cnt));
618         pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
619
620         /* If we are in R/O mode, journal heads do not exist */
621         if (c->jheads)
622                 for (i = 0; i < c->jhead_cnt; i++)
623                         pr_err("\tjhead %s\t LEB %d\n",
624                                dbg_jhead(c->jheads[i].wbuf.jhead),
625                                c->jheads[i].wbuf.lnum);
626         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
627                 bud = rb_entry(rb, struct ubifs_bud, rb);
628                 pr_err("\tbud LEB %d\n", bud->lnum);
629         }
630         list_for_each_entry(bud, &c->old_buds, list)
631                 pr_err("\told bud LEB %d\n", bud->lnum);
632         list_for_each_entry(idx_gc, &c->idx_gc, list)
633                 pr_err("\tGC'ed idx LEB %d unmap %d\n",
634                        idx_gc->lnum, idx_gc->unmap);
635         pr_err("\tcommit state %d\n", c->cmt_state);
636
637         /* Print budgeting predictions */
638         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
639         outstanding = c->bi.data_growth + c->bi.dd_growth;
640         free = ubifs_get_free_space_nolock(c);
641         pr_err("Budgeting predictions:\n");
642         pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
643                available, outstanding, free);
644 out_unlock:
645         spin_unlock(&dbg_lock);
646         spin_unlock(&c->space_lock);
647 }
648
649 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
650 {
651         int i, spc, dark = 0, dead = 0;
652         struct rb_node *rb;
653         struct ubifs_bud *bud;
654
655         spc = lp->free + lp->dirty;
656         if (spc < c->dead_wm)
657                 dead = spc;
658         else
659                 dark = ubifs_calc_dark(c, spc);
660
661         if (lp->flags & LPROPS_INDEX)
662                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
663                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
664                        lp->flags);
665         else
666                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
667                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
668                        dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
669
670         if (lp->flags & LPROPS_TAKEN) {
671                 if (lp->flags & LPROPS_INDEX)
672                         pr_cont("index, taken");
673                 else
674                         pr_cont("taken");
675         } else {
676                 const char *s;
677
678                 if (lp->flags & LPROPS_INDEX) {
679                         switch (lp->flags & LPROPS_CAT_MASK) {
680                         case LPROPS_DIRTY_IDX:
681                                 s = "dirty index";
682                                 break;
683                         case LPROPS_FRDI_IDX:
684                                 s = "freeable index";
685                                 break;
686                         default:
687                                 s = "index";
688                         }
689                 } else {
690                         switch (lp->flags & LPROPS_CAT_MASK) {
691                         case LPROPS_UNCAT:
692                                 s = "not categorized";
693                                 break;
694                         case LPROPS_DIRTY:
695                                 s = "dirty";
696                                 break;
697                         case LPROPS_FREE:
698                                 s = "free";
699                                 break;
700                         case LPROPS_EMPTY:
701                                 s = "empty";
702                                 break;
703                         case LPROPS_FREEABLE:
704                                 s = "freeable";
705                                 break;
706                         default:
707                                 s = NULL;
708                                 break;
709                         }
710                 }
711                 pr_cont("%s", s);
712         }
713
714         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
715                 bud = rb_entry(rb, struct ubifs_bud, rb);
716                 if (bud->lnum == lp->lnum) {
717                         int head = 0;
718                         for (i = 0; i < c->jhead_cnt; i++) {
719                                 /*
720                                  * Note, if we are in R/O mode or in the middle
721                                  * of mounting/re-mounting, the write-buffers do
722                                  * not exist.
723                                  */
724                                 if (c->jheads &&
725                                     lp->lnum == c->jheads[i].wbuf.lnum) {
726                                         pr_cont(", jhead %s", dbg_jhead(i));
727                                         head = 1;
728                                 }
729                         }
730                         if (!head)
731                                 pr_cont(", bud of jhead %s",
732                                        dbg_jhead(bud->jhead));
733                 }
734         }
735         if (lp->lnum == c->gc_lnum)
736                 pr_cont(", GC LEB");
737         pr_cont(")\n");
738 }
739
740 void ubifs_dump_lprops(struct ubifs_info *c)
741 {
742         int lnum, err;
743         struct ubifs_lprops lp;
744         struct ubifs_lp_stats lst;
745
746         pr_err("(pid %d) start dumping LEB properties\n", current->pid);
747         ubifs_get_lp_stats(c, &lst);
748         ubifs_dump_lstats(&lst);
749
750         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
751                 err = ubifs_read_one_lp(c, lnum, &lp);
752                 if (err) {
753                         ubifs_err(c, "cannot read lprops for LEB %d", lnum);
754                         continue;
755                 }
756
757                 ubifs_dump_lprop(c, &lp);
758         }
759         pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
760 }
761
762 void ubifs_dump_lpt_info(struct ubifs_info *c)
763 {
764         int i;
765
766         spin_lock(&dbg_lock);
767         pr_err("(pid %d) dumping LPT information\n", current->pid);
768         pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
769         pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
770         pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
771         pr_err("\tltab_sz:       %d\n", c->ltab_sz);
772         pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
773         pr_err("\tbig_lpt:       %d\n", c->big_lpt);
774         pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
775         pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
776         pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
777         pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
778         pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
779         pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
780         pr_err("\tspace_bits:    %d\n", c->space_bits);
781         pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
782         pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
783         pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
784         pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
785         pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
786         pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
787         pr_err("\tLPT head is at %d:%d\n",
788                c->nhead_lnum, c->nhead_offs);
789         pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
790         if (c->big_lpt)
791                 pr_err("\tLPT lsave is at %d:%d\n",
792                        c->lsave_lnum, c->lsave_offs);
793         for (i = 0; i < c->lpt_lebs; i++)
794                 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
795                        i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
796                        c->ltab[i].tgc, c->ltab[i].cmt);
797         spin_unlock(&dbg_lock);
798 }
799
800 void ubifs_dump_sleb(const struct ubifs_info *c,
801                      const struct ubifs_scan_leb *sleb, int offs)
802 {
803         struct ubifs_scan_node *snod;
804
805         pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
806                current->pid, sleb->lnum, offs);
807
808         list_for_each_entry(snod, &sleb->nodes, list) {
809                 cond_resched();
810                 pr_err("Dumping node at LEB %d:%d len %d\n",
811                        sleb->lnum, snod->offs, snod->len);
812                 ubifs_dump_node(c, snod->node);
813         }
814 }
815
816 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
817 {
818         struct ubifs_scan_leb *sleb;
819         struct ubifs_scan_node *snod;
820         void *buf;
821
822         pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
823
824         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
825         if (!buf) {
826                 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
827                 return;
828         }
829
830         sleb = ubifs_scan(c, lnum, 0, buf, 0);
831         if (IS_ERR(sleb)) {
832                 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
833                 goto out;
834         }
835
836         pr_err("LEB %d has %d nodes ending at %d\n", lnum,
837                sleb->nodes_cnt, sleb->endpt);
838
839         list_for_each_entry(snod, &sleb->nodes, list) {
840                 cond_resched();
841                 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
842                        snod->offs, snod->len);
843                 ubifs_dump_node(c, snod->node);
844         }
845
846         pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
847         ubifs_scan_destroy(sleb);
848
849 out:
850         vfree(buf);
851         return;
852 }
853
854 void ubifs_dump_znode(const struct ubifs_info *c,
855                       const struct ubifs_znode *znode)
856 {
857         int n;
858         const struct ubifs_zbranch *zbr;
859         char key_buf[DBG_KEY_BUF_LEN];
860
861         spin_lock(&dbg_lock);
862         if (znode->parent)
863                 zbr = &znode->parent->zbranch[znode->iip];
864         else
865                 zbr = &c->zroot;
866
867         pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
868                znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
869                znode->level, znode->child_cnt, znode->flags);
870
871         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
872                 spin_unlock(&dbg_lock);
873                 return;
874         }
875
876         pr_err("zbranches:\n");
877         for (n = 0; n < znode->child_cnt; n++) {
878                 zbr = &znode->zbranch[n];
879                 if (znode->level > 0)
880                         pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
881                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
882                                dbg_snprintf_key(c, &zbr->key, key_buf,
883                                                 DBG_KEY_BUF_LEN));
884                 else
885                         pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
886                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
887                                dbg_snprintf_key(c, &zbr->key, key_buf,
888                                                 DBG_KEY_BUF_LEN));
889         }
890         spin_unlock(&dbg_lock);
891 }
892
893 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
894 {
895         int i;
896
897         pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
898                current->pid, cat, heap->cnt);
899         for (i = 0; i < heap->cnt; i++) {
900                 struct ubifs_lprops *lprops = heap->arr[i];
901
902                 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
903                        i, lprops->lnum, lprops->hpos, lprops->free,
904                        lprops->dirty, lprops->flags);
905         }
906         pr_err("(pid %d) finish dumping heap\n", current->pid);
907 }
908
909 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
910                       struct ubifs_nnode *parent, int iip)
911 {
912         int i;
913
914         pr_err("(pid %d) dumping pnode:\n", current->pid);
915         pr_err("\taddress %zx parent %zx cnext %zx\n",
916                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
917         pr_err("\tflags %lu iip %d level %d num %d\n",
918                pnode->flags, iip, pnode->level, pnode->num);
919         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
920                 struct ubifs_lprops *lp = &pnode->lprops[i];
921
922                 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
923                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
924         }
925 }
926
927 void ubifs_dump_tnc(struct ubifs_info *c)
928 {
929         struct ubifs_znode *znode;
930         int level;
931
932         pr_err("\n");
933         pr_err("(pid %d) start dumping TNC tree\n", current->pid);
934         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
935         level = znode->level;
936         pr_err("== Level %d ==\n", level);
937         while (znode) {
938                 if (level != znode->level) {
939                         level = znode->level;
940                         pr_err("== Level %d ==\n", level);
941                 }
942                 ubifs_dump_znode(c, znode);
943                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
944         }
945         pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
946 }
947
948 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
949                       void *priv)
950 {
951         ubifs_dump_znode(c, znode);
952         return 0;
953 }
954
955 /**
956  * ubifs_dump_index - dump the on-flash index.
957  * @c: UBIFS file-system description object
958  *
959  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
960  * which dumps only in-memory znodes and does not read znodes which from flash.
961  */
962 void ubifs_dump_index(struct ubifs_info *c)
963 {
964         dbg_walk_index(c, NULL, dump_znode, NULL);
965 }
966
967 /**
968  * dbg_save_space_info - save information about flash space.
969  * @c: UBIFS file-system description object
970  *
971  * This function saves information about UBIFS free space, dirty space, etc, in
972  * order to check it later.
973  */
974 void dbg_save_space_info(struct ubifs_info *c)
975 {
976         struct ubifs_debug_info *d = c->dbg;
977         int freeable_cnt;
978
979         spin_lock(&c->space_lock);
980         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
981         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
982         d->saved_idx_gc_cnt = c->idx_gc_cnt;
983
984         /*
985          * We use a dirty hack here and zero out @c->freeable_cnt, because it
986          * affects the free space calculations, and UBIFS might not know about
987          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
988          * only when we read their lprops, and we do this only lazily, upon the
989          * need. So at any given point of time @c->freeable_cnt might be not
990          * exactly accurate.
991          *
992          * Just one example about the issue we hit when we did not zero
993          * @c->freeable_cnt.
994          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
995          *    amount of free space in @d->saved_free
996          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
997          *    information from flash, where we cache LEBs from various
998          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
999          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1000          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1001          *    -> 'ubifs_add_to_cat()').
1002          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1003          *    becomes %1.
1004          * 4. We calculate the amount of free space when the re-mount is
1005          *    finished in 'dbg_check_space_info()' and it does not match
1006          *    @d->saved_free.
1007          */
1008         freeable_cnt = c->freeable_cnt;
1009         c->freeable_cnt = 0;
1010         d->saved_free = ubifs_get_free_space_nolock(c);
1011         c->freeable_cnt = freeable_cnt;
1012         spin_unlock(&c->space_lock);
1013 }
1014
1015 /**
1016  * dbg_check_space_info - check flash space information.
1017  * @c: UBIFS file-system description object
1018  *
1019  * This function compares current flash space information with the information
1020  * which was saved when the 'dbg_save_space_info()' function was called.
1021  * Returns zero if the information has not changed, and %-EINVAL it it has
1022  * changed.
1023  */
1024 int dbg_check_space_info(struct ubifs_info *c)
1025 {
1026         struct ubifs_debug_info *d = c->dbg;
1027         struct ubifs_lp_stats lst;
1028         long long free;
1029         int freeable_cnt;
1030
1031         spin_lock(&c->space_lock);
1032         freeable_cnt = c->freeable_cnt;
1033         c->freeable_cnt = 0;
1034         free = ubifs_get_free_space_nolock(c);
1035         c->freeable_cnt = freeable_cnt;
1036         spin_unlock(&c->space_lock);
1037
1038         if (free != d->saved_free) {
1039                 ubifs_err(c, "free space changed from %lld to %lld",
1040                           d->saved_free, free);
1041                 goto out;
1042         }
1043
1044         return 0;
1045
1046 out:
1047         ubifs_msg(c, "saved lprops statistics dump");
1048         ubifs_dump_lstats(&d->saved_lst);
1049         ubifs_msg(c, "saved budgeting info dump");
1050         ubifs_dump_budg(c, &d->saved_bi);
1051         ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1052         ubifs_msg(c, "current lprops statistics dump");
1053         ubifs_get_lp_stats(c, &lst);
1054         ubifs_dump_lstats(&lst);
1055         ubifs_msg(c, "current budgeting info dump");
1056         ubifs_dump_budg(c, &c->bi);
1057         dump_stack();
1058         return -EINVAL;
1059 }
1060
1061 /**
1062  * dbg_check_synced_i_size - check synchronized inode size.
1063  * @c: UBIFS file-system description object
1064  * @inode: inode to check
1065  *
1066  * If inode is clean, synchronized inode size has to be equivalent to current
1067  * inode size. This function has to be called only for locked inodes (@i_mutex
1068  * has to be locked). Returns %0 if synchronized inode size if correct, and
1069  * %-EINVAL if not.
1070  */
1071 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1072 {
1073         int err = 0;
1074         struct ubifs_inode *ui = ubifs_inode(inode);
1075
1076         if (!dbg_is_chk_gen(c))
1077                 return 0;
1078         if (!S_ISREG(inode->i_mode))
1079                 return 0;
1080
1081         mutex_lock(&ui->ui_mutex);
1082         spin_lock(&ui->ui_lock);
1083         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1084                 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1085                           ui->ui_size, ui->synced_i_size);
1086                 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1087                           inode->i_mode, i_size_read(inode));
1088                 dump_stack();
1089                 err = -EINVAL;
1090         }
1091         spin_unlock(&ui->ui_lock);
1092         mutex_unlock(&ui->ui_mutex);
1093         return err;
1094 }
1095
1096 /*
1097  * dbg_check_dir - check directory inode size and link count.
1098  * @c: UBIFS file-system description object
1099  * @dir: the directory to calculate size for
1100  * @size: the result is returned here
1101  *
1102  * This function makes sure that directory size and link count are correct.
1103  * Returns zero in case of success and a negative error code in case of
1104  * failure.
1105  *
1106  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1107  * calling this function.
1108  */
1109 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1110 {
1111         unsigned int nlink = 2;
1112         union ubifs_key key;
1113         struct ubifs_dent_node *dent, *pdent = NULL;
1114         struct fscrypt_name nm = {0};
1115         loff_t size = UBIFS_INO_NODE_SZ;
1116
1117         if (!dbg_is_chk_gen(c))
1118                 return 0;
1119
1120         if (!S_ISDIR(dir->i_mode))
1121                 return 0;
1122
1123         lowest_dent_key(c, &key, dir->i_ino);
1124         while (1) {
1125                 int err;
1126
1127                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1128                 if (IS_ERR(dent)) {
1129                         err = PTR_ERR(dent);
1130                         if (err == -ENOENT)
1131                                 break;
1132                         kfree(pdent);
1133                         return err;
1134                 }
1135
1136                 fname_name(&nm) = dent->name;
1137                 fname_len(&nm) = le16_to_cpu(dent->nlen);
1138                 size += CALC_DENT_SIZE(fname_len(&nm));
1139                 if (dent->type == UBIFS_ITYPE_DIR)
1140                         nlink += 1;
1141                 kfree(pdent);
1142                 pdent = dent;
1143                 key_read(c, &dent->key, &key);
1144         }
1145         kfree(pdent);
1146
1147         if (i_size_read(dir) != size) {
1148                 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1149                           dir->i_ino, (unsigned long long)i_size_read(dir),
1150                           (unsigned long long)size);
1151                 ubifs_dump_inode(c, dir);
1152                 dump_stack();
1153                 return -EINVAL;
1154         }
1155         if (dir->i_nlink != nlink) {
1156                 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1157                           dir->i_ino, dir->i_nlink, nlink);
1158                 ubifs_dump_inode(c, dir);
1159                 dump_stack();
1160                 return -EINVAL;
1161         }
1162
1163         return 0;
1164 }
1165
1166 /**
1167  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1168  * @c: UBIFS file-system description object
1169  * @zbr1: first zbranch
1170  * @zbr2: following zbranch
1171  *
1172  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1173  * names of the direntries/xentries which are referred by the keys. This
1174  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1175  * sure the name of direntry/xentry referred by @zbr1 is less than
1176  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1177  * and a negative error code in case of failure.
1178  */
1179 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1180                                struct ubifs_zbranch *zbr2)
1181 {
1182         int err, nlen1, nlen2, cmp;
1183         struct ubifs_dent_node *dent1, *dent2;
1184         union ubifs_key key;
1185         char key_buf[DBG_KEY_BUF_LEN];
1186
1187         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1188         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1189         if (!dent1)
1190                 return -ENOMEM;
1191         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1192         if (!dent2) {
1193                 err = -ENOMEM;
1194                 goto out_free;
1195         }
1196
1197         err = ubifs_tnc_read_node(c, zbr1, dent1);
1198         if (err)
1199                 goto out_free;
1200         err = ubifs_validate_entry(c, dent1);
1201         if (err)
1202                 goto out_free;
1203
1204         err = ubifs_tnc_read_node(c, zbr2, dent2);
1205         if (err)
1206                 goto out_free;
1207         err = ubifs_validate_entry(c, dent2);
1208         if (err)
1209                 goto out_free;
1210
1211         /* Make sure node keys are the same as in zbranch */
1212         err = 1;
1213         key_read(c, &dent1->key, &key);
1214         if (keys_cmp(c, &zbr1->key, &key)) {
1215                 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1216                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1217                                                        DBG_KEY_BUF_LEN));
1218                 ubifs_err(c, "but it should have key %s according to tnc",
1219                           dbg_snprintf_key(c, &zbr1->key, key_buf,
1220                                            DBG_KEY_BUF_LEN));
1221                 ubifs_dump_node(c, dent1);
1222                 goto out_free;
1223         }
1224
1225         key_read(c, &dent2->key, &key);
1226         if (keys_cmp(c, &zbr2->key, &key)) {
1227                 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1228                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1229                                                        DBG_KEY_BUF_LEN));
1230                 ubifs_err(c, "but it should have key %s according to tnc",
1231                           dbg_snprintf_key(c, &zbr2->key, key_buf,
1232                                            DBG_KEY_BUF_LEN));
1233                 ubifs_dump_node(c, dent2);
1234                 goto out_free;
1235         }
1236
1237         nlen1 = le16_to_cpu(dent1->nlen);
1238         nlen2 = le16_to_cpu(dent2->nlen);
1239
1240         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1241         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1242                 err = 0;
1243                 goto out_free;
1244         }
1245         if (cmp == 0 && nlen1 == nlen2)
1246                 ubifs_err(c, "2 xent/dent nodes with the same name");
1247         else
1248                 ubifs_err(c, "bad order of colliding key %s",
1249                           dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1250
1251         ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1252         ubifs_dump_node(c, dent1);
1253         ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1254         ubifs_dump_node(c, dent2);
1255
1256 out_free:
1257         kfree(dent2);
1258         kfree(dent1);
1259         return err;
1260 }
1261
1262 /**
1263  * dbg_check_znode - check if znode is all right.
1264  * @c: UBIFS file-system description object
1265  * @zbr: zbranch which points to this znode
1266  *
1267  * This function makes sure that znode referred to by @zbr is all right.
1268  * Returns zero if it is, and %-EINVAL if it is not.
1269  */
1270 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1271 {
1272         struct ubifs_znode *znode = zbr->znode;
1273         struct ubifs_znode *zp = znode->parent;
1274         int n, err, cmp;
1275
1276         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1277                 err = 1;
1278                 goto out;
1279         }
1280         if (znode->level < 0) {
1281                 err = 2;
1282                 goto out;
1283         }
1284         if (znode->iip < 0 || znode->iip >= c->fanout) {
1285                 err = 3;
1286                 goto out;
1287         }
1288
1289         if (zbr->len == 0)
1290                 /* Only dirty zbranch may have no on-flash nodes */
1291                 if (!ubifs_zn_dirty(znode)) {
1292                         err = 4;
1293                         goto out;
1294                 }
1295
1296         if (ubifs_zn_dirty(znode)) {
1297                 /*
1298                  * If znode is dirty, its parent has to be dirty as well. The
1299                  * order of the operation is important, so we have to have
1300                  * memory barriers.
1301                  */
1302                 smp_mb();
1303                 if (zp && !ubifs_zn_dirty(zp)) {
1304                         /*
1305                          * The dirty flag is atomic and is cleared outside the
1306                          * TNC mutex, so znode's dirty flag may now have
1307                          * been cleared. The child is always cleared before the
1308                          * parent, so we just need to check again.
1309                          */
1310                         smp_mb();
1311                         if (ubifs_zn_dirty(znode)) {
1312                                 err = 5;
1313                                 goto out;
1314                         }
1315                 }
1316         }
1317
1318         if (zp) {
1319                 const union ubifs_key *min, *max;
1320
1321                 if (znode->level != zp->level - 1) {
1322                         err = 6;
1323                         goto out;
1324                 }
1325
1326                 /* Make sure the 'parent' pointer in our znode is correct */
1327                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1328                 if (!err) {
1329                         /* This zbranch does not exist in the parent */
1330                         err = 7;
1331                         goto out;
1332                 }
1333
1334                 if (znode->iip >= zp->child_cnt) {
1335                         err = 8;
1336                         goto out;
1337                 }
1338
1339                 if (znode->iip != n) {
1340                         /* This may happen only in case of collisions */
1341                         if (keys_cmp(c, &zp->zbranch[n].key,
1342                                      &zp->zbranch[znode->iip].key)) {
1343                                 err = 9;
1344                                 goto out;
1345                         }
1346                         n = znode->iip;
1347                 }
1348
1349                 /*
1350                  * Make sure that the first key in our znode is greater than or
1351                  * equal to the key in the pointing zbranch.
1352                  */
1353                 min = &zbr->key;
1354                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1355                 if (cmp == 1) {
1356                         err = 10;
1357                         goto out;
1358                 }
1359
1360                 if (n + 1 < zp->child_cnt) {
1361                         max = &zp->zbranch[n + 1].key;
1362
1363                         /*
1364                          * Make sure the last key in our znode is less or
1365                          * equivalent than the key in the zbranch which goes
1366                          * after our pointing zbranch.
1367                          */
1368                         cmp = keys_cmp(c, max,
1369                                 &znode->zbranch[znode->child_cnt - 1].key);
1370                         if (cmp == -1) {
1371                                 err = 11;
1372                                 goto out;
1373                         }
1374                 }
1375         } else {
1376                 /* This may only be root znode */
1377                 if (zbr != &c->zroot) {
1378                         err = 12;
1379                         goto out;
1380                 }
1381         }
1382
1383         /*
1384          * Make sure that next key is greater or equivalent then the previous
1385          * one.
1386          */
1387         for (n = 1; n < znode->child_cnt; n++) {
1388                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1389                                &znode->zbranch[n].key);
1390                 if (cmp > 0) {
1391                         err = 13;
1392                         goto out;
1393                 }
1394                 if (cmp == 0) {
1395                         /* This can only be keys with colliding hash */
1396                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1397                                 err = 14;
1398                                 goto out;
1399                         }
1400
1401                         if (znode->level != 0 || c->replaying)
1402                                 continue;
1403
1404                         /*
1405                          * Colliding keys should follow binary order of
1406                          * corresponding xentry/dentry names.
1407                          */
1408                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1409                                                   &znode->zbranch[n]);
1410                         if (err < 0)
1411                                 return err;
1412                         if (err) {
1413                                 err = 15;
1414                                 goto out;
1415                         }
1416                 }
1417         }
1418
1419         for (n = 0; n < znode->child_cnt; n++) {
1420                 if (!znode->zbranch[n].znode &&
1421                     (znode->zbranch[n].lnum == 0 ||
1422                      znode->zbranch[n].len == 0)) {
1423                         err = 16;
1424                         goto out;
1425                 }
1426
1427                 if (znode->zbranch[n].lnum != 0 &&
1428                     znode->zbranch[n].len == 0) {
1429                         err = 17;
1430                         goto out;
1431                 }
1432
1433                 if (znode->zbranch[n].lnum == 0 &&
1434                     znode->zbranch[n].len != 0) {
1435                         err = 18;
1436                         goto out;
1437                 }
1438
1439                 if (znode->zbranch[n].lnum == 0 &&
1440                     znode->zbranch[n].offs != 0) {
1441                         err = 19;
1442                         goto out;
1443                 }
1444
1445                 if (znode->level != 0 && znode->zbranch[n].znode)
1446                         if (znode->zbranch[n].znode->parent != znode) {
1447                                 err = 20;
1448                                 goto out;
1449                         }
1450         }
1451
1452         return 0;
1453
1454 out:
1455         ubifs_err(c, "failed, error %d", err);
1456         ubifs_msg(c, "dump of the znode");
1457         ubifs_dump_znode(c, znode);
1458         if (zp) {
1459                 ubifs_msg(c, "dump of the parent znode");
1460                 ubifs_dump_znode(c, zp);
1461         }
1462         dump_stack();
1463         return -EINVAL;
1464 }
1465
1466 /**
1467  * dbg_check_tnc - check TNC tree.
1468  * @c: UBIFS file-system description object
1469  * @extra: do extra checks that are possible at start commit
1470  *
1471  * This function traverses whole TNC tree and checks every znode. Returns zero
1472  * if everything is all right and %-EINVAL if something is wrong with TNC.
1473  */
1474 int dbg_check_tnc(struct ubifs_info *c, int extra)
1475 {
1476         struct ubifs_znode *znode;
1477         long clean_cnt = 0, dirty_cnt = 0;
1478         int err, last;
1479
1480         if (!dbg_is_chk_index(c))
1481                 return 0;
1482
1483         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1484         if (!c->zroot.znode)
1485                 return 0;
1486
1487         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1488         while (1) {
1489                 struct ubifs_znode *prev;
1490                 struct ubifs_zbranch *zbr;
1491
1492                 if (!znode->parent)
1493                         zbr = &c->zroot;
1494                 else
1495                         zbr = &znode->parent->zbranch[znode->iip];
1496
1497                 err = dbg_check_znode(c, zbr);
1498                 if (err)
1499                         return err;
1500
1501                 if (extra) {
1502                         if (ubifs_zn_dirty(znode))
1503                                 dirty_cnt += 1;
1504                         else
1505                                 clean_cnt += 1;
1506                 }
1507
1508                 prev = znode;
1509                 znode = ubifs_tnc_postorder_next(znode);
1510                 if (!znode)
1511                         break;
1512
1513                 /*
1514                  * If the last key of this znode is equivalent to the first key
1515                  * of the next znode (collision), then check order of the keys.
1516                  */
1517                 last = prev->child_cnt - 1;
1518                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1519                     !keys_cmp(c, &prev->zbranch[last].key,
1520                               &znode->zbranch[0].key)) {
1521                         err = dbg_check_key_order(c, &prev->zbranch[last],
1522                                                   &znode->zbranch[0]);
1523                         if (err < 0)
1524                                 return err;
1525                         if (err) {
1526                                 ubifs_msg(c, "first znode");
1527                                 ubifs_dump_znode(c, prev);
1528                                 ubifs_msg(c, "second znode");
1529                                 ubifs_dump_znode(c, znode);
1530                                 return -EINVAL;
1531                         }
1532                 }
1533         }
1534
1535         if (extra) {
1536                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1537                         ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1538                                   atomic_long_read(&c->clean_zn_cnt),
1539                                   clean_cnt);
1540                         return -EINVAL;
1541                 }
1542                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1543                         ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1544                                   atomic_long_read(&c->dirty_zn_cnt),
1545                                   dirty_cnt);
1546                         return -EINVAL;
1547                 }
1548         }
1549
1550         return 0;
1551 }
1552
1553 /**
1554  * dbg_walk_index - walk the on-flash index.
1555  * @c: UBIFS file-system description object
1556  * @leaf_cb: called for each leaf node
1557  * @znode_cb: called for each indexing node
1558  * @priv: private data which is passed to callbacks
1559  *
1560  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1561  * node and @znode_cb for each indexing node. Returns zero in case of success
1562  * and a negative error code in case of failure.
1563  *
1564  * It would be better if this function removed every znode it pulled to into
1565  * the TNC, so that the behavior more closely matched the non-debugging
1566  * behavior.
1567  */
1568 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1569                    dbg_znode_callback znode_cb, void *priv)
1570 {
1571         int err;
1572         struct ubifs_zbranch *zbr;
1573         struct ubifs_znode *znode, *child;
1574
1575         mutex_lock(&c->tnc_mutex);
1576         /* If the root indexing node is not in TNC - pull it */
1577         if (!c->zroot.znode) {
1578                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1579                 if (IS_ERR(c->zroot.znode)) {
1580                         err = PTR_ERR(c->zroot.znode);
1581                         c->zroot.znode = NULL;
1582                         goto out_unlock;
1583                 }
1584         }
1585
1586         /*
1587          * We are going to traverse the indexing tree in the postorder manner.
1588          * Go down and find the leftmost indexing node where we are going to
1589          * start from.
1590          */
1591         znode = c->zroot.znode;
1592         while (znode->level > 0) {
1593                 zbr = &znode->zbranch[0];
1594                 child = zbr->znode;
1595                 if (!child) {
1596                         child = ubifs_load_znode(c, zbr, znode, 0);
1597                         if (IS_ERR(child)) {
1598                                 err = PTR_ERR(child);
1599                                 goto out_unlock;
1600                         }
1601                         zbr->znode = child;
1602                 }
1603
1604                 znode = child;
1605         }
1606
1607         /* Iterate over all indexing nodes */
1608         while (1) {
1609                 int idx;
1610
1611                 cond_resched();
1612
1613                 if (znode_cb) {
1614                         err = znode_cb(c, znode, priv);
1615                         if (err) {
1616                                 ubifs_err(c, "znode checking function returned error %d",
1617                                           err);
1618                                 ubifs_dump_znode(c, znode);
1619                                 goto out_dump;
1620                         }
1621                 }
1622                 if (leaf_cb && znode->level == 0) {
1623                         for (idx = 0; idx < znode->child_cnt; idx++) {
1624                                 zbr = &znode->zbranch[idx];
1625                                 err = leaf_cb(c, zbr, priv);
1626                                 if (err) {
1627                                         ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1628                                                   err, zbr->lnum, zbr->offs);
1629                                         goto out_dump;
1630                                 }
1631                         }
1632                 }
1633
1634                 if (!znode->parent)
1635                         break;
1636
1637                 idx = znode->iip + 1;
1638                 znode = znode->parent;
1639                 if (idx < znode->child_cnt) {
1640                         /* Switch to the next index in the parent */
1641                         zbr = &znode->zbranch[idx];
1642                         child = zbr->znode;
1643                         if (!child) {
1644                                 child = ubifs_load_znode(c, zbr, znode, idx);
1645                                 if (IS_ERR(child)) {
1646                                         err = PTR_ERR(child);
1647                                         goto out_unlock;
1648                                 }
1649                                 zbr->znode = child;
1650                         }
1651                         znode = child;
1652                 } else
1653                         /*
1654                          * This is the last child, switch to the parent and
1655                          * continue.
1656                          */
1657                         continue;
1658
1659                 /* Go to the lowest leftmost znode in the new sub-tree */
1660                 while (znode->level > 0) {
1661                         zbr = &znode->zbranch[0];
1662                         child = zbr->znode;
1663                         if (!child) {
1664                                 child = ubifs_load_znode(c, zbr, znode, 0);
1665                                 if (IS_ERR(child)) {
1666                                         err = PTR_ERR(child);
1667                                         goto out_unlock;
1668                                 }
1669                                 zbr->znode = child;
1670                         }
1671                         znode = child;
1672                 }
1673         }
1674
1675         mutex_unlock(&c->tnc_mutex);
1676         return 0;
1677
1678 out_dump:
1679         if (znode->parent)
1680                 zbr = &znode->parent->zbranch[znode->iip];
1681         else
1682                 zbr = &c->zroot;
1683         ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1684         ubifs_dump_znode(c, znode);
1685 out_unlock:
1686         mutex_unlock(&c->tnc_mutex);
1687         return err;
1688 }
1689
1690 /**
1691  * add_size - add znode size to partially calculated index size.
1692  * @c: UBIFS file-system description object
1693  * @znode: znode to add size for
1694  * @priv: partially calculated index size
1695  *
1696  * This is a helper function for 'dbg_check_idx_size()' which is called for
1697  * every indexing node and adds its size to the 'long long' variable pointed to
1698  * by @priv.
1699  */
1700 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1701 {
1702         long long *idx_size = priv;
1703         int add;
1704
1705         add = ubifs_idx_node_sz(c, znode->child_cnt);
1706         add = ALIGN(add, 8);
1707         *idx_size += add;
1708         return 0;
1709 }
1710
1711 /**
1712  * dbg_check_idx_size - check index size.
1713  * @c: UBIFS file-system description object
1714  * @idx_size: size to check
1715  *
1716  * This function walks the UBIFS index, calculates its size and checks that the
1717  * size is equivalent to @idx_size. Returns zero in case of success and a
1718  * negative error code in case of failure.
1719  */
1720 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1721 {
1722         int err;
1723         long long calc = 0;
1724
1725         if (!dbg_is_chk_index(c))
1726                 return 0;
1727
1728         err = dbg_walk_index(c, NULL, add_size, &calc);
1729         if (err) {
1730                 ubifs_err(c, "error %d while walking the index", err);
1731                 return err;
1732         }
1733
1734         if (calc != idx_size) {
1735                 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1736                           calc, idx_size);
1737                 dump_stack();
1738                 return -EINVAL;
1739         }
1740
1741         return 0;
1742 }
1743
1744 /**
1745  * struct fsck_inode - information about an inode used when checking the file-system.
1746  * @rb: link in the RB-tree of inodes
1747  * @inum: inode number
1748  * @mode: inode type, permissions, etc
1749  * @nlink: inode link count
1750  * @xattr_cnt: count of extended attributes
1751  * @references: how many directory/xattr entries refer this inode (calculated
1752  *              while walking the index)
1753  * @calc_cnt: for directory inode count of child directories
1754  * @size: inode size (read from on-flash inode)
1755  * @xattr_sz: summary size of all extended attributes (read from on-flash
1756  *            inode)
1757  * @calc_sz: for directories calculated directory size
1758  * @calc_xcnt: count of extended attributes
1759  * @calc_xsz: calculated summary size of all extended attributes
1760  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1761  *             inode (read from on-flash inode)
1762  * @calc_xnms: calculated sum of lengths of all extended attribute names
1763  */
1764 struct fsck_inode {
1765         struct rb_node rb;
1766         ino_t inum;
1767         umode_t mode;
1768         unsigned int nlink;
1769         unsigned int xattr_cnt;
1770         int references;
1771         int calc_cnt;
1772         long long size;
1773         unsigned int xattr_sz;
1774         long long calc_sz;
1775         long long calc_xcnt;
1776         long long calc_xsz;
1777         unsigned int xattr_nms;
1778         long long calc_xnms;
1779 };
1780
1781 /**
1782  * struct fsck_data - private FS checking information.
1783  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1784  */
1785 struct fsck_data {
1786         struct rb_root inodes;
1787 };
1788
1789 /**
1790  * add_inode - add inode information to RB-tree of inodes.
1791  * @c: UBIFS file-system description object
1792  * @fsckd: FS checking information
1793  * @ino: raw UBIFS inode to add
1794  *
1795  * This is a helper function for 'check_leaf()' which adds information about
1796  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1797  * case of success and a negative error code in case of failure.
1798  */
1799 static struct fsck_inode *add_inode(struct ubifs_info *c,
1800                                     struct fsck_data *fsckd,
1801                                     struct ubifs_ino_node *ino)
1802 {
1803         struct rb_node **p, *parent = NULL;
1804         struct fsck_inode *fscki;
1805         ino_t inum = key_inum_flash(c, &ino->key);
1806         struct inode *inode;
1807         struct ubifs_inode *ui;
1808
1809         p = &fsckd->inodes.rb_node;
1810         while (*p) {
1811                 parent = *p;
1812                 fscki = rb_entry(parent, struct fsck_inode, rb);
1813                 if (inum < fscki->inum)
1814                         p = &(*p)->rb_left;
1815                 else if (inum > fscki->inum)
1816                         p = &(*p)->rb_right;
1817                 else
1818                         return fscki;
1819         }
1820
1821         if (inum > c->highest_inum) {
1822                 ubifs_err(c, "too high inode number, max. is %lu",
1823                           (unsigned long)c->highest_inum);
1824                 return ERR_PTR(-EINVAL);
1825         }
1826
1827         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1828         if (!fscki)
1829                 return ERR_PTR(-ENOMEM);
1830
1831         inode = ilookup(c->vfs_sb, inum);
1832
1833         fscki->inum = inum;
1834         /*
1835          * If the inode is present in the VFS inode cache, use it instead of
1836          * the on-flash inode which might be out-of-date. E.g., the size might
1837          * be out-of-date. If we do not do this, the following may happen, for
1838          * example:
1839          *   1. A power cut happens
1840          *   2. We mount the file-system R/O, the replay process fixes up the
1841          *      inode size in the VFS cache, but on on-flash.
1842          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1843          *      size.
1844          */
1845         if (!inode) {
1846                 fscki->nlink = le32_to_cpu(ino->nlink);
1847                 fscki->size = le64_to_cpu(ino->size);
1848                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1849                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1850                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1851                 fscki->mode = le32_to_cpu(ino->mode);
1852         } else {
1853                 ui = ubifs_inode(inode);
1854                 fscki->nlink = inode->i_nlink;
1855                 fscki->size = inode->i_size;
1856                 fscki->xattr_cnt = ui->xattr_cnt;
1857                 fscki->xattr_sz = ui->xattr_size;
1858                 fscki->xattr_nms = ui->xattr_names;
1859                 fscki->mode = inode->i_mode;
1860                 iput(inode);
1861         }
1862
1863         if (S_ISDIR(fscki->mode)) {
1864                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1865                 fscki->calc_cnt = 2;
1866         }
1867
1868         rb_link_node(&fscki->rb, parent, p);
1869         rb_insert_color(&fscki->rb, &fsckd->inodes);
1870
1871         return fscki;
1872 }
1873
1874 /**
1875  * search_inode - search inode in the RB-tree of inodes.
1876  * @fsckd: FS checking information
1877  * @inum: inode number to search
1878  *
1879  * This is a helper function for 'check_leaf()' which searches inode @inum in
1880  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1881  * the inode was not found.
1882  */
1883 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1884 {
1885         struct rb_node *p;
1886         struct fsck_inode *fscki;
1887
1888         p = fsckd->inodes.rb_node;
1889         while (p) {
1890                 fscki = rb_entry(p, struct fsck_inode, rb);
1891                 if (inum < fscki->inum)
1892                         p = p->rb_left;
1893                 else if (inum > fscki->inum)
1894                         p = p->rb_right;
1895                 else
1896                         return fscki;
1897         }
1898         return NULL;
1899 }
1900
1901 /**
1902  * read_add_inode - read inode node and add it to RB-tree of inodes.
1903  * @c: UBIFS file-system description object
1904  * @fsckd: FS checking information
1905  * @inum: inode number to read
1906  *
1907  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1908  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1909  * information pointer in case of success and a negative error code in case of
1910  * failure.
1911  */
1912 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1913                                          struct fsck_data *fsckd, ino_t inum)
1914 {
1915         int n, err;
1916         union ubifs_key key;
1917         struct ubifs_znode *znode;
1918         struct ubifs_zbranch *zbr;
1919         struct ubifs_ino_node *ino;
1920         struct fsck_inode *fscki;
1921
1922         fscki = search_inode(fsckd, inum);
1923         if (fscki)
1924                 return fscki;
1925
1926         ino_key_init(c, &key, inum);
1927         err = ubifs_lookup_level0(c, &key, &znode, &n);
1928         if (!err) {
1929                 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1930                 return ERR_PTR(-ENOENT);
1931         } else if (err < 0) {
1932                 ubifs_err(c, "error %d while looking up inode %lu",
1933                           err, (unsigned long)inum);
1934                 return ERR_PTR(err);
1935         }
1936
1937         zbr = &znode->zbranch[n];
1938         if (zbr->len < UBIFS_INO_NODE_SZ) {
1939                 ubifs_err(c, "bad node %lu node length %d",
1940                           (unsigned long)inum, zbr->len);
1941                 return ERR_PTR(-EINVAL);
1942         }
1943
1944         ino = kmalloc(zbr->len, GFP_NOFS);
1945         if (!ino)
1946                 return ERR_PTR(-ENOMEM);
1947
1948         err = ubifs_tnc_read_node(c, zbr, ino);
1949         if (err) {
1950                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1951                           zbr->lnum, zbr->offs, err);
1952                 kfree(ino);
1953                 return ERR_PTR(err);
1954         }
1955
1956         fscki = add_inode(c, fsckd, ino);
1957         kfree(ino);
1958         if (IS_ERR(fscki)) {
1959                 ubifs_err(c, "error %ld while adding inode %lu node",
1960                           PTR_ERR(fscki), (unsigned long)inum);
1961                 return fscki;
1962         }
1963
1964         return fscki;
1965 }
1966
1967 /**
1968  * check_leaf - check leaf node.
1969  * @c: UBIFS file-system description object
1970  * @zbr: zbranch of the leaf node to check
1971  * @priv: FS checking information
1972  *
1973  * This is a helper function for 'dbg_check_filesystem()' which is called for
1974  * every single leaf node while walking the indexing tree. It checks that the
1975  * leaf node referred from the indexing tree exists, has correct CRC, and does
1976  * some other basic validation. This function is also responsible for building
1977  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1978  * calculates reference count, size, etc for each inode in order to later
1979  * compare them to the information stored inside the inodes and detect possible
1980  * inconsistencies. Returns zero in case of success and a negative error code
1981  * in case of failure.
1982  */
1983 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1984                       void *priv)
1985 {
1986         ino_t inum;
1987         void *node;
1988         struct ubifs_ch *ch;
1989         int err, type = key_type(c, &zbr->key);
1990         struct fsck_inode *fscki;
1991
1992         if (zbr->len < UBIFS_CH_SZ) {
1993                 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1994                           zbr->len, zbr->lnum, zbr->offs);
1995                 return -EINVAL;
1996         }
1997
1998         node = kmalloc(zbr->len, GFP_NOFS);
1999         if (!node)
2000                 return -ENOMEM;
2001
2002         err = ubifs_tnc_read_node(c, zbr, node);
2003         if (err) {
2004                 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2005                           zbr->lnum, zbr->offs, err);
2006                 goto out_free;
2007         }
2008
2009         /* If this is an inode node, add it to RB-tree of inodes */
2010         if (type == UBIFS_INO_KEY) {
2011                 fscki = add_inode(c, priv, node);
2012                 if (IS_ERR(fscki)) {
2013                         err = PTR_ERR(fscki);
2014                         ubifs_err(c, "error %d while adding inode node", err);
2015                         goto out_dump;
2016                 }
2017                 goto out;
2018         }
2019
2020         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2021             type != UBIFS_DATA_KEY) {
2022                 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2023                           type, zbr->lnum, zbr->offs);
2024                 err = -EINVAL;
2025                 goto out_free;
2026         }
2027
2028         ch = node;
2029         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2030                 ubifs_err(c, "too high sequence number, max. is %llu",
2031                           c->max_sqnum);
2032                 err = -EINVAL;
2033                 goto out_dump;
2034         }
2035
2036         if (type == UBIFS_DATA_KEY) {
2037                 long long blk_offs;
2038                 struct ubifs_data_node *dn = node;
2039
2040                 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2041
2042                 /*
2043                  * Search the inode node this data node belongs to and insert
2044                  * it to the RB-tree of inodes.
2045                  */
2046                 inum = key_inum_flash(c, &dn->key);
2047                 fscki = read_add_inode(c, priv, inum);
2048                 if (IS_ERR(fscki)) {
2049                         err = PTR_ERR(fscki);
2050                         ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2051                                   err, (unsigned long)inum);
2052                         goto out_dump;
2053                 }
2054
2055                 /* Make sure the data node is within inode size */
2056                 blk_offs = key_block_flash(c, &dn->key);
2057                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2058                 blk_offs += le32_to_cpu(dn->size);
2059                 if (blk_offs > fscki->size) {
2060                         ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2061                                   zbr->lnum, zbr->offs, fscki->size);
2062                         err = -EINVAL;
2063                         goto out_dump;
2064                 }
2065         } else {
2066                 int nlen;
2067                 struct ubifs_dent_node *dent = node;
2068                 struct fsck_inode *fscki1;
2069
2070                 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2071
2072                 err = ubifs_validate_entry(c, dent);
2073                 if (err)
2074                         goto out_dump;
2075
2076                 /*
2077                  * Search the inode node this entry refers to and the parent
2078                  * inode node and insert them to the RB-tree of inodes.
2079                  */
2080                 inum = le64_to_cpu(dent->inum);
2081                 fscki = read_add_inode(c, priv, inum);
2082                 if (IS_ERR(fscki)) {
2083                         err = PTR_ERR(fscki);
2084                         ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2085                                   err, (unsigned long)inum);
2086                         goto out_dump;
2087                 }
2088
2089                 /* Count how many direntries or xentries refers this inode */
2090                 fscki->references += 1;
2091
2092                 inum = key_inum_flash(c, &dent->key);
2093                 fscki1 = read_add_inode(c, priv, inum);
2094                 if (IS_ERR(fscki1)) {
2095                         err = PTR_ERR(fscki1);
2096                         ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2097                                   err, (unsigned long)inum);
2098                         goto out_dump;
2099                 }
2100
2101                 nlen = le16_to_cpu(dent->nlen);
2102                 if (type == UBIFS_XENT_KEY) {
2103                         fscki1->calc_xcnt += 1;
2104                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2105                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2106                         fscki1->calc_xnms += nlen;
2107                 } else {
2108                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2109                         if (dent->type == UBIFS_ITYPE_DIR)
2110                                 fscki1->calc_cnt += 1;
2111                 }
2112         }
2113
2114 out:
2115         kfree(node);
2116         return 0;
2117
2118 out_dump:
2119         ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2120         ubifs_dump_node(c, node);
2121 out_free:
2122         kfree(node);
2123         return err;
2124 }
2125
2126 /**
2127  * free_inodes - free RB-tree of inodes.
2128  * @fsckd: FS checking information
2129  */
2130 static void free_inodes(struct fsck_data *fsckd)
2131 {
2132         struct fsck_inode *fscki, *n;
2133
2134         rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2135                 kfree(fscki);
2136 }
2137
2138 /**
2139  * check_inodes - checks all inodes.
2140  * @c: UBIFS file-system description object
2141  * @fsckd: FS checking information
2142  *
2143  * This is a helper function for 'dbg_check_filesystem()' which walks the
2144  * RB-tree of inodes after the index scan has been finished, and checks that
2145  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2146  * %-EINVAL if not, and a negative error code in case of failure.
2147  */
2148 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2149 {
2150         int n, err;
2151         union ubifs_key key;
2152         struct ubifs_znode *znode;
2153         struct ubifs_zbranch *zbr;
2154         struct ubifs_ino_node *ino;
2155         struct fsck_inode *fscki;
2156         struct rb_node *this = rb_first(&fsckd->inodes);
2157
2158         while (this) {
2159                 fscki = rb_entry(this, struct fsck_inode, rb);
2160                 this = rb_next(this);
2161
2162                 if (S_ISDIR(fscki->mode)) {
2163                         /*
2164                          * Directories have to have exactly one reference (they
2165                          * cannot have hardlinks), although root inode is an
2166                          * exception.
2167                          */
2168                         if (fscki->inum != UBIFS_ROOT_INO &&
2169                             fscki->references != 1) {
2170                                 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2171                                           (unsigned long)fscki->inum,
2172                                           fscki->references);
2173                                 goto out_dump;
2174                         }
2175                         if (fscki->inum == UBIFS_ROOT_INO &&
2176                             fscki->references != 0) {
2177                                 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2178                                           (unsigned long)fscki->inum,
2179                                           fscki->references);
2180                                 goto out_dump;
2181                         }
2182                         if (fscki->calc_sz != fscki->size) {
2183                                 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2184                                           (unsigned long)fscki->inum,
2185                                           fscki->size, fscki->calc_sz);
2186                                 goto out_dump;
2187                         }
2188                         if (fscki->calc_cnt != fscki->nlink) {
2189                                 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2190                                           (unsigned long)fscki->inum,
2191                                           fscki->nlink, fscki->calc_cnt);
2192                                 goto out_dump;
2193                         }
2194                 } else {
2195                         if (fscki->references != fscki->nlink) {
2196                                 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2197                                           (unsigned long)fscki->inum,
2198                                           fscki->nlink, fscki->references);
2199                                 goto out_dump;
2200                         }
2201                 }
2202                 if (fscki->xattr_sz != fscki->calc_xsz) {
2203                         ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2204                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2205                                   fscki->calc_xsz);
2206                         goto out_dump;
2207                 }
2208                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2209                         ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2210                                   (unsigned long)fscki->inum,
2211                                   fscki->xattr_cnt, fscki->calc_xcnt);
2212                         goto out_dump;
2213                 }
2214                 if (fscki->xattr_nms != fscki->calc_xnms) {
2215                         ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2216                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2217                                   fscki->calc_xnms);
2218                         goto out_dump;
2219                 }
2220         }
2221
2222         return 0;
2223
2224 out_dump:
2225         /* Read the bad inode and dump it */
2226         ino_key_init(c, &key, fscki->inum);
2227         err = ubifs_lookup_level0(c, &key, &znode, &n);
2228         if (!err) {
2229                 ubifs_err(c, "inode %lu not found in index",
2230                           (unsigned long)fscki->inum);
2231                 return -ENOENT;
2232         } else if (err < 0) {
2233                 ubifs_err(c, "error %d while looking up inode %lu",
2234                           err, (unsigned long)fscki->inum);
2235                 return err;
2236         }
2237
2238         zbr = &znode->zbranch[n];
2239         ino = kmalloc(zbr->len, GFP_NOFS);
2240         if (!ino)
2241                 return -ENOMEM;
2242
2243         err = ubifs_tnc_read_node(c, zbr, ino);
2244         if (err) {
2245                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2246                           zbr->lnum, zbr->offs, err);
2247                 kfree(ino);
2248                 return err;
2249         }
2250
2251         ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2252                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2253         ubifs_dump_node(c, ino);
2254         kfree(ino);
2255         return -EINVAL;
2256 }
2257
2258 /**
2259  * dbg_check_filesystem - check the file-system.
2260  * @c: UBIFS file-system description object
2261  *
2262  * This function checks the file system, namely:
2263  * o makes sure that all leaf nodes exist and their CRCs are correct;
2264  * o makes sure inode nlink, size, xattr size/count are correct (for all
2265  *   inodes).
2266  *
2267  * The function reads whole indexing tree and all nodes, so it is pretty
2268  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2269  * not, and a negative error code in case of failure.
2270  */
2271 int dbg_check_filesystem(struct ubifs_info *c)
2272 {
2273         int err;
2274         struct fsck_data fsckd;
2275
2276         if (!dbg_is_chk_fs(c))
2277                 return 0;
2278
2279         fsckd.inodes = RB_ROOT;
2280         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2281         if (err)
2282                 goto out_free;
2283
2284         err = check_inodes(c, &fsckd);
2285         if (err)
2286                 goto out_free;
2287
2288         free_inodes(&fsckd);
2289         return 0;
2290
2291 out_free:
2292         ubifs_err(c, "file-system check failed with error %d", err);
2293         dump_stack();
2294         free_inodes(&fsckd);
2295         return err;
2296 }
2297
2298 /**
2299  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2300  * @c: UBIFS file-system description object
2301  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2302  *
2303  * This function returns zero if the list of data nodes is sorted correctly,
2304  * and %-EINVAL if not.
2305  */
2306 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2307 {
2308         struct list_head *cur;
2309         struct ubifs_scan_node *sa, *sb;
2310
2311         if (!dbg_is_chk_gen(c))
2312                 return 0;
2313
2314         for (cur = head->next; cur->next != head; cur = cur->next) {
2315                 ino_t inuma, inumb;
2316                 uint32_t blka, blkb;
2317
2318                 cond_resched();
2319                 sa = container_of(cur, struct ubifs_scan_node, list);
2320                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2321
2322                 if (sa->type != UBIFS_DATA_NODE) {
2323                         ubifs_err(c, "bad node type %d", sa->type);
2324                         ubifs_dump_node(c, sa->node);
2325                         return -EINVAL;
2326                 }
2327                 if (sb->type != UBIFS_DATA_NODE) {
2328                         ubifs_err(c, "bad node type %d", sb->type);
2329                         ubifs_dump_node(c, sb->node);
2330                         return -EINVAL;
2331                 }
2332
2333                 inuma = key_inum(c, &sa->key);
2334                 inumb = key_inum(c, &sb->key);
2335
2336                 if (inuma < inumb)
2337                         continue;
2338                 if (inuma > inumb) {
2339                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2340                                   (unsigned long)inuma, (unsigned long)inumb);
2341                         goto error_dump;
2342                 }
2343
2344                 blka = key_block(c, &sa->key);
2345                 blkb = key_block(c, &sb->key);
2346
2347                 if (blka > blkb) {
2348                         ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2349                         goto error_dump;
2350                 }
2351                 if (blka == blkb) {
2352                         ubifs_err(c, "two data nodes for the same block");
2353                         goto error_dump;
2354                 }
2355         }
2356
2357         return 0;
2358
2359 error_dump:
2360         ubifs_dump_node(c, sa->node);
2361         ubifs_dump_node(c, sb->node);
2362         return -EINVAL;
2363 }
2364
2365 /**
2366  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2367  * @c: UBIFS file-system description object
2368  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2369  *
2370  * This function returns zero if the list of non-data nodes is sorted correctly,
2371  * and %-EINVAL if not.
2372  */
2373 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2374 {
2375         struct list_head *cur;
2376         struct ubifs_scan_node *sa, *sb;
2377
2378         if (!dbg_is_chk_gen(c))
2379                 return 0;
2380
2381         for (cur = head->next; cur->next != head; cur = cur->next) {
2382                 ino_t inuma, inumb;
2383                 uint32_t hasha, hashb;
2384
2385                 cond_resched();
2386                 sa = container_of(cur, struct ubifs_scan_node, list);
2387                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2388
2389                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2390                     sa->type != UBIFS_XENT_NODE) {
2391                         ubifs_err(c, "bad node type %d", sa->type);
2392                         ubifs_dump_node(c, sa->node);
2393                         return -EINVAL;
2394                 }
2395                 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2396                     sb->type != UBIFS_XENT_NODE) {
2397                         ubifs_err(c, "bad node type %d", sb->type);
2398                         ubifs_dump_node(c, sb->node);
2399                         return -EINVAL;
2400                 }
2401
2402                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2403                         ubifs_err(c, "non-inode node goes before inode node");
2404                         goto error_dump;
2405                 }
2406
2407                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2408                         continue;
2409
2410                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2411                         /* Inode nodes are sorted in descending size order */
2412                         if (sa->len < sb->len) {
2413                                 ubifs_err(c, "smaller inode node goes first");
2414                                 goto error_dump;
2415                         }
2416                         continue;
2417                 }
2418
2419                 /*
2420                  * This is either a dentry or xentry, which should be sorted in
2421                  * ascending (parent ino, hash) order.
2422                  */
2423                 inuma = key_inum(c, &sa->key);
2424                 inumb = key_inum(c, &sb->key);
2425
2426                 if (inuma < inumb)
2427                         continue;
2428                 if (inuma > inumb) {
2429                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2430                                   (unsigned long)inuma, (unsigned long)inumb);
2431                         goto error_dump;
2432                 }
2433
2434                 hasha = key_block(c, &sa->key);
2435                 hashb = key_block(c, &sb->key);
2436
2437                 if (hasha > hashb) {
2438                         ubifs_err(c, "larger hash %u goes before %u",
2439                                   hasha, hashb);
2440                         goto error_dump;
2441                 }
2442         }
2443
2444         return 0;
2445
2446 error_dump:
2447         ubifs_msg(c, "dumping first node");
2448         ubifs_dump_node(c, sa->node);
2449         ubifs_msg(c, "dumping second node");
2450         ubifs_dump_node(c, sb->node);
2451         return -EINVAL;
2452         return 0;
2453 }
2454
2455 static inline int chance(unsigned int n, unsigned int out_of)
2456 {
2457         return !!((prandom_u32() % out_of) + 1 <= n);
2458
2459 }
2460
2461 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2462 {
2463         struct ubifs_debug_info *d = c->dbg;
2464
2465         ubifs_assert(dbg_is_tst_rcvry(c));
2466
2467         if (!d->pc_cnt) {
2468                 /* First call - decide delay to the power cut */
2469                 if (chance(1, 2)) {
2470                         unsigned long delay;
2471
2472                         if (chance(1, 2)) {
2473                                 d->pc_delay = 1;
2474                                 /* Fail within 1 minute */
2475                                 delay = prandom_u32() % 60000;
2476                                 d->pc_timeout = jiffies;
2477                                 d->pc_timeout += msecs_to_jiffies(delay);
2478                                 ubifs_warn(c, "failing after %lums", delay);
2479                         } else {
2480                                 d->pc_delay = 2;
2481                                 delay = prandom_u32() % 10000;
2482                                 /* Fail within 10000 operations */
2483                                 d->pc_cnt_max = delay;
2484                                 ubifs_warn(c, "failing after %lu calls", delay);
2485                         }
2486                 }
2487
2488                 d->pc_cnt += 1;
2489         }
2490
2491         /* Determine if failure delay has expired */
2492         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2493                         return 0;
2494         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2495                         return 0;
2496
2497         if (lnum == UBIFS_SB_LNUM) {
2498                 if (write && chance(1, 2))
2499                         return 0;
2500                 if (chance(19, 20))
2501                         return 0;
2502                 ubifs_warn(c, "failing in super block LEB %d", lnum);
2503         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2504                 if (chance(19, 20))
2505                         return 0;
2506                 ubifs_warn(c, "failing in master LEB %d", lnum);
2507         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2508                 if (write && chance(99, 100))
2509                         return 0;
2510                 if (chance(399, 400))
2511                         return 0;
2512                 ubifs_warn(c, "failing in log LEB %d", lnum);
2513         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2514                 if (write && chance(7, 8))
2515                         return 0;
2516                 if (chance(19, 20))
2517                         return 0;
2518                 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2519         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2520                 if (write && chance(1, 2))
2521                         return 0;
2522                 if (chance(9, 10))
2523                         return 0;
2524                 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2525         } else if (lnum == c->ihead_lnum) {
2526                 if (chance(99, 100))
2527                         return 0;
2528                 ubifs_warn(c, "failing in index head LEB %d", lnum);
2529         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2530                 if (chance(9, 10))
2531                         return 0;
2532                 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2533         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2534                    !ubifs_search_bud(c, lnum)) {
2535                 if (chance(19, 20))
2536                         return 0;
2537                 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2538         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2539                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2540                 if (chance(999, 1000))
2541                         return 0;
2542                 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2543         } else {
2544                 if (chance(9999, 10000))
2545                         return 0;
2546                 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2547         }
2548
2549         d->pc_happened = 1;
2550         ubifs_warn(c, "========== Power cut emulated ==========");
2551         dump_stack();
2552         return 1;
2553 }
2554
2555 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2556                         unsigned int len)
2557 {
2558         unsigned int from, to, ffs = chance(1, 2);
2559         unsigned char *p = (void *)buf;
2560
2561         from = prandom_u32() % len;
2562         /* Corruption span max to end of write unit */
2563         to = min(len, ALIGN(from + 1, c->max_write_size));
2564
2565         ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2566                    ffs ? "0xFFs" : "random data");
2567
2568         if (ffs)
2569                 memset(p + from, 0xFF, to - from);
2570         else
2571                 prandom_bytes(p + from, to - from);
2572
2573         return to;
2574 }
2575
2576 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2577                   int offs, int len)
2578 {
2579         int err, failing;
2580
2581         if (dbg_is_power_cut(c))
2582                 return -EROFS;
2583
2584         failing = power_cut_emulated(c, lnum, 1);
2585         if (failing) {
2586                 len = corrupt_data(c, buf, len);
2587                 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2588                            len, lnum, offs);
2589         }
2590         err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2591         if (err)
2592                 return err;
2593         if (failing)
2594                 return -EROFS;
2595         return 0;
2596 }
2597
2598 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2599                    int len)
2600 {
2601         int err;
2602
2603         if (dbg_is_power_cut(c))
2604                 return -EROFS;
2605         if (power_cut_emulated(c, lnum, 1))
2606                 return -EROFS;
2607         err = ubi_leb_change(c->ubi, lnum, buf, len);
2608         if (err)
2609                 return err;
2610         if (power_cut_emulated(c, lnum, 1))
2611                 return -EROFS;
2612         return 0;
2613 }
2614
2615 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2616 {
2617         int err;
2618
2619         if (dbg_is_power_cut(c))
2620                 return -EROFS;
2621         if (power_cut_emulated(c, lnum, 0))
2622                 return -EROFS;
2623         err = ubi_leb_unmap(c->ubi, lnum);
2624         if (err)
2625                 return err;
2626         if (power_cut_emulated(c, lnum, 0))
2627                 return -EROFS;
2628         return 0;
2629 }
2630
2631 int dbg_leb_map(struct ubifs_info *c, int lnum)
2632 {
2633         int err;
2634
2635         if (dbg_is_power_cut(c))
2636                 return -EROFS;
2637         if (power_cut_emulated(c, lnum, 0))
2638                 return -EROFS;
2639         err = ubi_leb_map(c->ubi, lnum);
2640         if (err)
2641                 return err;
2642         if (power_cut_emulated(c, lnum, 0))
2643                 return -EROFS;
2644         return 0;
2645 }
2646
2647 /*
2648  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2649  * contain the stuff specific to particular file-system mounts.
2650  */
2651 static struct dentry *dfs_rootdir;
2652
2653 static int dfs_file_open(struct inode *inode, struct file *file)
2654 {
2655         file->private_data = inode->i_private;
2656         return nonseekable_open(inode, file);
2657 }
2658
2659 /**
2660  * provide_user_output - provide output to the user reading a debugfs file.
2661  * @val: boolean value for the answer
2662  * @u: the buffer to store the answer at
2663  * @count: size of the buffer
2664  * @ppos: position in the @u output buffer
2665  *
2666  * This is a simple helper function which stores @val boolean value in the user
2667  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2668  * bytes written to @u in case of success and a negative error code in case of
2669  * failure.
2670  */
2671 static int provide_user_output(int val, char __user *u, size_t count,
2672                                loff_t *ppos)
2673 {
2674         char buf[3];
2675
2676         if (val)
2677                 buf[0] = '1';
2678         else
2679                 buf[0] = '0';
2680         buf[1] = '\n';
2681         buf[2] = 0x00;
2682
2683         return simple_read_from_buffer(u, count, ppos, buf, 2);
2684 }
2685
2686 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2687                              loff_t *ppos)
2688 {
2689         struct dentry *dent = file->f_path.dentry;
2690         struct ubifs_info *c = file->private_data;
2691         struct ubifs_debug_info *d = c->dbg;
2692         int val;
2693
2694         if (dent == d->dfs_chk_gen)
2695                 val = d->chk_gen;
2696         else if (dent == d->dfs_chk_index)
2697                 val = d->chk_index;
2698         else if (dent == d->dfs_chk_orph)
2699                 val = d->chk_orph;
2700         else if (dent == d->dfs_chk_lprops)
2701                 val = d->chk_lprops;
2702         else if (dent == d->dfs_chk_fs)
2703                 val = d->chk_fs;
2704         else if (dent == d->dfs_tst_rcvry)
2705                 val = d->tst_rcvry;
2706         else if (dent == d->dfs_ro_error)
2707                 val = c->ro_error;
2708         else
2709                 return -EINVAL;
2710
2711         return provide_user_output(val, u, count, ppos);
2712 }
2713
2714 /**
2715  * interpret_user_input - interpret user debugfs file input.
2716  * @u: user-provided buffer with the input
2717  * @count: buffer size
2718  *
2719  * This is a helper function which interpret user input to a boolean UBIFS
2720  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2721  * in case of failure.
2722  */
2723 static int interpret_user_input(const char __user *u, size_t count)
2724 {
2725         size_t buf_size;
2726         char buf[8];
2727
2728         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2729         if (copy_from_user(buf, u, buf_size))
2730                 return -EFAULT;
2731
2732         if (buf[0] == '1')
2733                 return 1;
2734         else if (buf[0] == '0')
2735                 return 0;
2736
2737         return -EINVAL;
2738 }
2739
2740 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2741                               size_t count, loff_t *ppos)
2742 {
2743         struct ubifs_info *c = file->private_data;
2744         struct ubifs_debug_info *d = c->dbg;
2745         struct dentry *dent = file->f_path.dentry;
2746         int val;
2747
2748         /*
2749          * TODO: this is racy - the file-system might have already been
2750          * unmounted and we'd oops in this case. The plan is to fix it with
2751          * help of 'iterate_supers_type()' which we should have in v3.0: when
2752          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2753          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2754          * superblocks and fine the one with the same UUID, and take the
2755          * locking right.
2756          *
2757          * The other way to go suggested by Al Viro is to create a separate
2758          * 'ubifs-debug' file-system instead.
2759          */
2760         if (file->f_path.dentry == d->dfs_dump_lprops) {
2761                 ubifs_dump_lprops(c);
2762                 return count;
2763         }
2764         if (file->f_path.dentry == d->dfs_dump_budg) {
2765                 ubifs_dump_budg(c, &c->bi);
2766                 return count;
2767         }
2768         if (file->f_path.dentry == d->dfs_dump_tnc) {
2769                 mutex_lock(&c->tnc_mutex);
2770                 ubifs_dump_tnc(c);
2771                 mutex_unlock(&c->tnc_mutex);
2772                 return count;
2773         }
2774
2775         val = interpret_user_input(u, count);
2776         if (val < 0)
2777                 return val;
2778
2779         if (dent == d->dfs_chk_gen)
2780                 d->chk_gen = val;
2781         else if (dent == d->dfs_chk_index)
2782                 d->chk_index = val;
2783         else if (dent == d->dfs_chk_orph)
2784                 d->chk_orph = val;
2785         else if (dent == d->dfs_chk_lprops)
2786                 d->chk_lprops = val;
2787         else if (dent == d->dfs_chk_fs)
2788                 d->chk_fs = val;
2789         else if (dent == d->dfs_tst_rcvry)
2790                 d->tst_rcvry = val;
2791         else if (dent == d->dfs_ro_error)
2792                 c->ro_error = !!val;
2793         else
2794                 return -EINVAL;
2795
2796         return count;
2797 }
2798
2799 static const struct file_operations dfs_fops = {
2800         .open = dfs_file_open,
2801         .read = dfs_file_read,
2802         .write = dfs_file_write,
2803         .owner = THIS_MODULE,
2804         .llseek = no_llseek,
2805 };
2806
2807 /**
2808  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2809  * @c: UBIFS file-system description object
2810  *
2811  * This function creates all debugfs files for this instance of UBIFS. Returns
2812  * zero in case of success and a negative error code in case of failure.
2813  *
2814  * Note, the only reason we have not merged this function with the
2815  * 'ubifs_debugging_init()' function is because it is better to initialize
2816  * debugfs interfaces at the very end of the mount process, and remove them at
2817  * the very beginning of the mount process.
2818  */
2819 int dbg_debugfs_init_fs(struct ubifs_info *c)
2820 {
2821         int err, n;
2822         const char *fname;
2823         struct dentry *dent;
2824         struct ubifs_debug_info *d = c->dbg;
2825
2826         if (!IS_ENABLED(CONFIG_DEBUG_FS))
2827                 return 0;
2828
2829         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2830                      c->vi.ubi_num, c->vi.vol_id);
2831         if (n == UBIFS_DFS_DIR_LEN) {
2832                 /* The array size is too small */
2833                 fname = UBIFS_DFS_DIR_NAME;
2834                 dent = ERR_PTR(-EINVAL);
2835                 goto out;
2836         }
2837
2838         fname = d->dfs_dir_name;
2839         dent = debugfs_create_dir(fname, dfs_rootdir);
2840         if (IS_ERR_OR_NULL(dent))
2841                 goto out;
2842         d->dfs_dir = dent;
2843
2844         fname = "dump_lprops";
2845         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2846         if (IS_ERR_OR_NULL(dent))
2847                 goto out_remove;
2848         d->dfs_dump_lprops = dent;
2849
2850         fname = "dump_budg";
2851         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2852         if (IS_ERR_OR_NULL(dent))
2853                 goto out_remove;
2854         d->dfs_dump_budg = dent;
2855
2856         fname = "dump_tnc";
2857         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2858         if (IS_ERR_OR_NULL(dent))
2859                 goto out_remove;
2860         d->dfs_dump_tnc = dent;
2861
2862         fname = "chk_general";
2863         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2864                                    &dfs_fops);
2865         if (IS_ERR_OR_NULL(dent))
2866                 goto out_remove;
2867         d->dfs_chk_gen = dent;
2868
2869         fname = "chk_index";
2870         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2871                                    &dfs_fops);
2872         if (IS_ERR_OR_NULL(dent))
2873                 goto out_remove;
2874         d->dfs_chk_index = dent;
2875
2876         fname = "chk_orphans";
2877         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2878                                    &dfs_fops);
2879         if (IS_ERR_OR_NULL(dent))
2880                 goto out_remove;
2881         d->dfs_chk_orph = dent;
2882
2883         fname = "chk_lprops";
2884         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2885                                    &dfs_fops);
2886         if (IS_ERR_OR_NULL(dent))
2887                 goto out_remove;
2888         d->dfs_chk_lprops = dent;
2889
2890         fname = "chk_fs";
2891         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2892                                    &dfs_fops);
2893         if (IS_ERR_OR_NULL(dent))
2894                 goto out_remove;
2895         d->dfs_chk_fs = dent;
2896
2897         fname = "tst_recovery";
2898         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2899                                    &dfs_fops);
2900         if (IS_ERR_OR_NULL(dent))
2901                 goto out_remove;
2902         d->dfs_tst_rcvry = dent;
2903
2904         fname = "ro_error";
2905         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2906                                    &dfs_fops);
2907         if (IS_ERR_OR_NULL(dent))
2908                 goto out_remove;
2909         d->dfs_ro_error = dent;
2910
2911         return 0;
2912
2913 out_remove:
2914         debugfs_remove_recursive(d->dfs_dir);
2915 out:
2916         err = dent ? PTR_ERR(dent) : -ENODEV;
2917         ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2918                   fname, err);
2919         return err;
2920 }
2921
2922 /**
2923  * dbg_debugfs_exit_fs - remove all debugfs files.
2924  * @c: UBIFS file-system description object
2925  */
2926 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2927 {
2928         if (IS_ENABLED(CONFIG_DEBUG_FS))
2929                 debugfs_remove_recursive(c->dbg->dfs_dir);
2930 }
2931
2932 struct ubifs_global_debug_info ubifs_dbg;
2933
2934 static struct dentry *dfs_chk_gen;
2935 static struct dentry *dfs_chk_index;
2936 static struct dentry *dfs_chk_orph;
2937 static struct dentry *dfs_chk_lprops;
2938 static struct dentry *dfs_chk_fs;
2939 static struct dentry *dfs_tst_rcvry;
2940
2941 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2942                                     size_t count, loff_t *ppos)
2943 {
2944         struct dentry *dent = file->f_path.dentry;
2945         int val;
2946
2947         if (dent == dfs_chk_gen)
2948                 val = ubifs_dbg.chk_gen;
2949         else if (dent == dfs_chk_index)
2950                 val = ubifs_dbg.chk_index;
2951         else if (dent == dfs_chk_orph)
2952                 val = ubifs_dbg.chk_orph;
2953         else if (dent == dfs_chk_lprops)
2954                 val = ubifs_dbg.chk_lprops;
2955         else if (dent == dfs_chk_fs)
2956                 val = ubifs_dbg.chk_fs;
2957         else if (dent == dfs_tst_rcvry)
2958                 val = ubifs_dbg.tst_rcvry;
2959         else
2960                 return -EINVAL;
2961
2962         return provide_user_output(val, u, count, ppos);
2963 }
2964
2965 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2966                                      size_t count, loff_t *ppos)
2967 {
2968         struct dentry *dent = file->f_path.dentry;
2969         int val;
2970
2971         val = interpret_user_input(u, count);
2972         if (val < 0)
2973                 return val;
2974
2975         if (dent == dfs_chk_gen)
2976                 ubifs_dbg.chk_gen = val;
2977         else if (dent == dfs_chk_index)
2978                 ubifs_dbg.chk_index = val;
2979         else if (dent == dfs_chk_orph)
2980                 ubifs_dbg.chk_orph = val;
2981         else if (dent == dfs_chk_lprops)
2982                 ubifs_dbg.chk_lprops = val;
2983         else if (dent == dfs_chk_fs)
2984                 ubifs_dbg.chk_fs = val;
2985         else if (dent == dfs_tst_rcvry)
2986                 ubifs_dbg.tst_rcvry = val;
2987         else
2988                 return -EINVAL;
2989
2990         return count;
2991 }
2992
2993 static const struct file_operations dfs_global_fops = {
2994         .read = dfs_global_file_read,
2995         .write = dfs_global_file_write,
2996         .owner = THIS_MODULE,
2997         .llseek = no_llseek,
2998 };
2999
3000 /**
3001  * dbg_debugfs_init - initialize debugfs file-system.
3002  *
3003  * UBIFS uses debugfs file-system to expose various debugging knobs to
3004  * user-space. This function creates "ubifs" directory in the debugfs
3005  * file-system. Returns zero in case of success and a negative error code in
3006  * case of failure.
3007  */
3008 int dbg_debugfs_init(void)
3009 {
3010         int err;
3011         const char *fname;
3012         struct dentry *dent;
3013
3014         if (!IS_ENABLED(CONFIG_DEBUG_FS))
3015                 return 0;
3016
3017         fname = "ubifs";
3018         dent = debugfs_create_dir(fname, NULL);
3019         if (IS_ERR_OR_NULL(dent))
3020                 goto out;
3021         dfs_rootdir = dent;
3022
3023         fname = "chk_general";
3024         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3025                                    &dfs_global_fops);
3026         if (IS_ERR_OR_NULL(dent))
3027                 goto out_remove;
3028         dfs_chk_gen = dent;
3029
3030         fname = "chk_index";
3031         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3032                                    &dfs_global_fops);
3033         if (IS_ERR_OR_NULL(dent))
3034                 goto out_remove;
3035         dfs_chk_index = dent;
3036
3037         fname = "chk_orphans";
3038         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3039                                    &dfs_global_fops);
3040         if (IS_ERR_OR_NULL(dent))
3041                 goto out_remove;
3042         dfs_chk_orph = dent;
3043
3044         fname = "chk_lprops";
3045         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3046                                    &dfs_global_fops);
3047         if (IS_ERR_OR_NULL(dent))
3048                 goto out_remove;
3049         dfs_chk_lprops = dent;
3050
3051         fname = "chk_fs";
3052         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3053                                    &dfs_global_fops);
3054         if (IS_ERR_OR_NULL(dent))
3055                 goto out_remove;
3056         dfs_chk_fs = dent;
3057
3058         fname = "tst_recovery";
3059         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3060                                    &dfs_global_fops);
3061         if (IS_ERR_OR_NULL(dent))
3062                 goto out_remove;
3063         dfs_tst_rcvry = dent;
3064
3065         return 0;
3066
3067 out_remove:
3068         debugfs_remove_recursive(dfs_rootdir);
3069 out:
3070         err = dent ? PTR_ERR(dent) : -ENODEV;
3071         pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3072                current->pid, fname, err);
3073         return err;
3074 }
3075
3076 /**
3077  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3078  */
3079 void dbg_debugfs_exit(void)
3080 {
3081         if (IS_ENABLED(CONFIG_DEBUG_FS))
3082                 debugfs_remove_recursive(dfs_rootdir);
3083 }
3084
3085 /**
3086  * ubifs_debugging_init - initialize UBIFS debugging.
3087  * @c: UBIFS file-system description object
3088  *
3089  * This function initializes debugging-related data for the file system.
3090  * Returns zero in case of success and a negative error code in case of
3091  * failure.
3092  */
3093 int ubifs_debugging_init(struct ubifs_info *c)
3094 {
3095         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3096         if (!c->dbg)
3097                 return -ENOMEM;
3098
3099         return 0;
3100 }
3101
3102 /**
3103  * ubifs_debugging_exit - free debugging data.
3104  * @c: UBIFS file-system description object
3105  */
3106 void ubifs_debugging_exit(struct ubifs_info *c)
3107 {
3108         kfree(c->dbg);
3109 }