GNU Linux-libre 5.4.257-gnu1
[releases.git] / fs / reiserfs / stree.c
1 /*
2  *  Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4
5 /*
6  *  Written by Anatoly P. Pinchuk pap@namesys.botik.ru
7  *  Programm System Institute
8  *  Pereslavl-Zalessky Russia
9  */
10
11 #include <linux/time.h>
12 #include <linux/string.h>
13 #include <linux/pagemap.h>
14 #include <linux/bio.h>
15 #include "reiserfs.h"
16 #include <linux/buffer_head.h>
17 #include <linux/quotaops.h>
18
19 /* Does the buffer contain a disk block which is in the tree. */
20 inline int B_IS_IN_TREE(const struct buffer_head *bh)
21 {
22
23         RFALSE(B_LEVEL(bh) > MAX_HEIGHT,
24                "PAP-1010: block (%b) has too big level (%z)", bh, bh);
25
26         return (B_LEVEL(bh) != FREE_LEVEL);
27 }
28
29 /* to get item head in le form */
30 inline void copy_item_head(struct item_head *to,
31                            const struct item_head *from)
32 {
33         memcpy(to, from, IH_SIZE);
34 }
35
36 /*
37  * k1 is pointer to on-disk structure which is stored in little-endian
38  * form. k2 is pointer to cpu variable. For key of items of the same
39  * object this returns 0.
40  * Returns: -1 if key1 < key2
41  * 0 if key1 == key2
42  * 1 if key1 > key2
43  */
44 inline int comp_short_keys(const struct reiserfs_key *le_key,
45                            const struct cpu_key *cpu_key)
46 {
47         __u32 n;
48         n = le32_to_cpu(le_key->k_dir_id);
49         if (n < cpu_key->on_disk_key.k_dir_id)
50                 return -1;
51         if (n > cpu_key->on_disk_key.k_dir_id)
52                 return 1;
53         n = le32_to_cpu(le_key->k_objectid);
54         if (n < cpu_key->on_disk_key.k_objectid)
55                 return -1;
56         if (n > cpu_key->on_disk_key.k_objectid)
57                 return 1;
58         return 0;
59 }
60
61 /*
62  * k1 is pointer to on-disk structure which is stored in little-endian
63  * form. k2 is pointer to cpu variable.
64  * Compare keys using all 4 key fields.
65  * Returns: -1 if key1 < key2 0
66  * if key1 = key2 1 if key1 > key2
67  */
68 static inline int comp_keys(const struct reiserfs_key *le_key,
69                             const struct cpu_key *cpu_key)
70 {
71         int retval;
72
73         retval = comp_short_keys(le_key, cpu_key);
74         if (retval)
75                 return retval;
76         if (le_key_k_offset(le_key_version(le_key), le_key) <
77             cpu_key_k_offset(cpu_key))
78                 return -1;
79         if (le_key_k_offset(le_key_version(le_key), le_key) >
80             cpu_key_k_offset(cpu_key))
81                 return 1;
82
83         if (cpu_key->key_length == 3)
84                 return 0;
85
86         /* this part is needed only when tail conversion is in progress */
87         if (le_key_k_type(le_key_version(le_key), le_key) <
88             cpu_key_k_type(cpu_key))
89                 return -1;
90
91         if (le_key_k_type(le_key_version(le_key), le_key) >
92             cpu_key_k_type(cpu_key))
93                 return 1;
94
95         return 0;
96 }
97
98 inline int comp_short_le_keys(const struct reiserfs_key *key1,
99                               const struct reiserfs_key *key2)
100 {
101         __u32 *k1_u32, *k2_u32;
102         int key_length = REISERFS_SHORT_KEY_LEN;
103
104         k1_u32 = (__u32 *) key1;
105         k2_u32 = (__u32 *) key2;
106         for (; key_length--; ++k1_u32, ++k2_u32) {
107                 if (le32_to_cpu(*k1_u32) < le32_to_cpu(*k2_u32))
108                         return -1;
109                 if (le32_to_cpu(*k1_u32) > le32_to_cpu(*k2_u32))
110                         return 1;
111         }
112         return 0;
113 }
114
115 inline void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from)
116 {
117         int version;
118         to->on_disk_key.k_dir_id = le32_to_cpu(from->k_dir_id);
119         to->on_disk_key.k_objectid = le32_to_cpu(from->k_objectid);
120
121         /* find out version of the key */
122         version = le_key_version(from);
123         to->version = version;
124         to->on_disk_key.k_offset = le_key_k_offset(version, from);
125         to->on_disk_key.k_type = le_key_k_type(version, from);
126 }
127
128 /*
129  * this does not say which one is bigger, it only returns 1 if keys
130  * are not equal, 0 otherwise
131  */
132 inline int comp_le_keys(const struct reiserfs_key *k1,
133                         const struct reiserfs_key *k2)
134 {
135         return memcmp(k1, k2, sizeof(struct reiserfs_key));
136 }
137
138 /**************************************************************************
139  *  Binary search toolkit function                                        *
140  *  Search for an item in the array by the item key                       *
141  *  Returns:    1 if found,  0 if not found;                              *
142  *        *pos = number of the searched element if found, else the        *
143  *        number of the first element that is larger than key.            *
144  **************************************************************************/
145 /*
146  * For those not familiar with binary search: lbound is the leftmost item
147  * that it could be, rbound the rightmost item that it could be.  We examine
148  * the item halfway between lbound and rbound, and that tells us either
149  * that we can increase lbound, or decrease rbound, or that we have found it,
150  * or if lbound <= rbound that there are no possible items, and we have not
151  * found it. With each examination we cut the number of possible items it
152  * could be by one more than half rounded down, or we find it.
153  */
154 static inline int bin_search(const void *key,   /* Key to search for. */
155                              const void *base,  /* First item in the array. */
156                              int num,   /* Number of items in the array. */
157                              /*
158                               * Item size in the array.  searched. Lest the
159                               * reader be confused, note that this is crafted
160                               * as a general function, and when it is applied
161                               * specifically to the array of item headers in a
162                               * node, width is actually the item header size
163                               * not the item size.
164                               */
165                              int width,
166                              int *pos /* Number of the searched for element. */
167     )
168 {
169         int rbound, lbound, j;
170
171         for (j = ((rbound = num - 1) + (lbound = 0)) / 2;
172              lbound <= rbound; j = (rbound + lbound) / 2)
173                 switch (comp_keys
174                         ((struct reiserfs_key *)((char *)base + j * width),
175                          (struct cpu_key *)key)) {
176                 case -1:
177                         lbound = j + 1;
178                         continue;
179                 case 1:
180                         rbound = j - 1;
181                         continue;
182                 case 0:
183                         *pos = j;
184                         return ITEM_FOUND;      /* Key found in the array.  */
185                 }
186
187         /*
188          * bin_search did not find given key, it returns position of key,
189          * that is minimal and greater than the given one.
190          */
191         *pos = lbound;
192         return ITEM_NOT_FOUND;
193 }
194
195
196 /* Minimal possible key. It is never in the tree. */
197 const struct reiserfs_key MIN_KEY = { 0, 0, {{0, 0},} };
198
199 /* Maximal possible key. It is never in the tree. */
200 static const struct reiserfs_key MAX_KEY = {
201         cpu_to_le32(0xffffffff),
202         cpu_to_le32(0xffffffff),
203         {{cpu_to_le32(0xffffffff),
204           cpu_to_le32(0xffffffff)},}
205 };
206
207 /*
208  * Get delimiting key of the buffer by looking for it in the buffers in the
209  * path, starting from the bottom of the path, and going upwards.  We must
210  * check the path's validity at each step.  If the key is not in the path,
211  * there is no delimiting key in the tree (buffer is first or last buffer
212  * in tree), and in this case we return a special key, either MIN_KEY or
213  * MAX_KEY.
214  */
215 static inline const struct reiserfs_key *get_lkey(const struct treepath *chk_path,
216                                                   const struct super_block *sb)
217 {
218         int position, path_offset = chk_path->path_length;
219         struct buffer_head *parent;
220
221         RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
222                "PAP-5010: invalid offset in the path");
223
224         /* While not higher in path than first element. */
225         while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
226
227                 RFALSE(!buffer_uptodate
228                        (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
229                        "PAP-5020: parent is not uptodate");
230
231                 /* Parent at the path is not in the tree now. */
232                 if (!B_IS_IN_TREE
233                     (parent =
234                      PATH_OFFSET_PBUFFER(chk_path, path_offset)))
235                         return &MAX_KEY;
236                 /* Check whether position in the parent is correct. */
237                 if ((position =
238                      PATH_OFFSET_POSITION(chk_path,
239                                           path_offset)) >
240                     B_NR_ITEMS(parent))
241                         return &MAX_KEY;
242                 /* Check whether parent at the path really points to the child. */
243                 if (B_N_CHILD_NUM(parent, position) !=
244                     PATH_OFFSET_PBUFFER(chk_path,
245                                         path_offset + 1)->b_blocknr)
246                         return &MAX_KEY;
247                 /*
248                  * Return delimiting key if position in the parent
249                  * is not equal to zero.
250                  */
251                 if (position)
252                         return internal_key(parent, position - 1);
253         }
254         /* Return MIN_KEY if we are in the root of the buffer tree. */
255         if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
256             b_blocknr == SB_ROOT_BLOCK(sb))
257                 return &MIN_KEY;
258         return &MAX_KEY;
259 }
260
261 /* Get delimiting key of the buffer at the path and its right neighbor. */
262 inline const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
263                                            const struct super_block *sb)
264 {
265         int position, path_offset = chk_path->path_length;
266         struct buffer_head *parent;
267
268         RFALSE(path_offset < FIRST_PATH_ELEMENT_OFFSET,
269                "PAP-5030: invalid offset in the path");
270
271         while (path_offset-- > FIRST_PATH_ELEMENT_OFFSET) {
272
273                 RFALSE(!buffer_uptodate
274                        (PATH_OFFSET_PBUFFER(chk_path, path_offset)),
275                        "PAP-5040: parent is not uptodate");
276
277                 /* Parent at the path is not in the tree now. */
278                 if (!B_IS_IN_TREE
279                     (parent =
280                      PATH_OFFSET_PBUFFER(chk_path, path_offset)))
281                         return &MIN_KEY;
282                 /* Check whether position in the parent is correct. */
283                 if ((position =
284                      PATH_OFFSET_POSITION(chk_path,
285                                           path_offset)) >
286                     B_NR_ITEMS(parent))
287                         return &MIN_KEY;
288                 /*
289                  * Check whether parent at the path really points
290                  * to the child.
291                  */
292                 if (B_N_CHILD_NUM(parent, position) !=
293                     PATH_OFFSET_PBUFFER(chk_path,
294                                         path_offset + 1)->b_blocknr)
295                         return &MIN_KEY;
296
297                 /*
298                  * Return delimiting key if position in the parent
299                  * is not the last one.
300                  */
301                 if (position != B_NR_ITEMS(parent))
302                         return internal_key(parent, position);
303         }
304
305         /* Return MAX_KEY if we are in the root of the buffer tree. */
306         if (PATH_OFFSET_PBUFFER(chk_path, FIRST_PATH_ELEMENT_OFFSET)->
307             b_blocknr == SB_ROOT_BLOCK(sb))
308                 return &MAX_KEY;
309         return &MIN_KEY;
310 }
311
312 /*
313  * Check whether a key is contained in the tree rooted from a buffer at a path.
314  * This works by looking at the left and right delimiting keys for the buffer
315  * in the last path_element in the path.  These delimiting keys are stored
316  * at least one level above that buffer in the tree. If the buffer is the
317  * first or last node in the tree order then one of the delimiting keys may
318  * be absent, and in this case get_lkey and get_rkey return a special key
319  * which is MIN_KEY or MAX_KEY.
320  */
321 static inline int key_in_buffer(
322                                 /* Path which should be checked. */
323                                 struct treepath *chk_path,
324                                 /* Key which should be checked. */
325                                 const struct cpu_key *key,
326                                 struct super_block *sb
327     )
328 {
329
330         RFALSE(!key || chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET
331                || chk_path->path_length > MAX_HEIGHT,
332                "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)",
333                key, chk_path->path_length);
334         RFALSE(!PATH_PLAST_BUFFER(chk_path)->b_bdev,
335                "PAP-5060: device must not be NODEV");
336
337         if (comp_keys(get_lkey(chk_path, sb), key) == 1)
338                 /* left delimiting key is bigger, that the key we look for */
339                 return 0;
340         /*  if ( comp_keys(key, get_rkey(chk_path, sb)) != -1 ) */
341         if (comp_keys(get_rkey(chk_path, sb), key) != 1)
342                 /* key must be less than right delimitiing key */
343                 return 0;
344         return 1;
345 }
346
347 int reiserfs_check_path(struct treepath *p)
348 {
349         RFALSE(p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET,
350                "path not properly relsed");
351         return 0;
352 }
353
354 /*
355  * Drop the reference to each buffer in a path and restore
356  * dirty bits clean when preparing the buffer for the log.
357  * This version should only be called from fix_nodes()
358  */
359 void pathrelse_and_restore(struct super_block *sb,
360                            struct treepath *search_path)
361 {
362         int path_offset = search_path->path_length;
363
364         RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
365                "clm-4000: invalid path offset");
366
367         while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET) {
368                 struct buffer_head *bh;
369                 bh = PATH_OFFSET_PBUFFER(search_path, path_offset--);
370                 reiserfs_restore_prepared_buffer(sb, bh);
371                 brelse(bh);
372         }
373         search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
374 }
375
376 /* Drop the reference to each buffer in a path */
377 void pathrelse(struct treepath *search_path)
378 {
379         int path_offset = search_path->path_length;
380
381         RFALSE(path_offset < ILLEGAL_PATH_ELEMENT_OFFSET,
382                "PAP-5090: invalid path offset");
383
384         while (path_offset > ILLEGAL_PATH_ELEMENT_OFFSET)
385                 brelse(PATH_OFFSET_PBUFFER(search_path, path_offset--));
386
387         search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET;
388 }
389
390 static int has_valid_deh_location(struct buffer_head *bh, struct item_head *ih)
391 {
392         struct reiserfs_de_head *deh;
393         int i;
394
395         deh = B_I_DEH(bh, ih);
396         for (i = 0; i < ih_entry_count(ih); i++) {
397                 if (deh_location(&deh[i]) > ih_item_len(ih)) {
398                         reiserfs_warning(NULL, "reiserfs-5094",
399                                          "directory entry location seems wrong %h",
400                                          &deh[i]);
401                         return 0;
402                 }
403         }
404
405         return 1;
406 }
407
408 static int is_leaf(char *buf, int blocksize, struct buffer_head *bh)
409 {
410         struct block_head *blkh;
411         struct item_head *ih;
412         int used_space;
413         int prev_location;
414         int i;
415         int nr;
416
417         blkh = (struct block_head *)buf;
418         if (blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) {
419                 reiserfs_warning(NULL, "reiserfs-5080",
420                                  "this should be caught earlier");
421                 return 0;
422         }
423
424         nr = blkh_nr_item(blkh);
425         if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) {
426                 /* item number is too big or too small */
427                 reiserfs_warning(NULL, "reiserfs-5081",
428                                  "nr_item seems wrong: %z", bh);
429                 return 0;
430         }
431         ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1;
432         used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location(ih));
433
434         /* free space does not match to calculated amount of use space */
435         if (used_space != blocksize - blkh_free_space(blkh)) {
436                 reiserfs_warning(NULL, "reiserfs-5082",
437                                  "free space seems wrong: %z", bh);
438                 return 0;
439         }
440         /*
441          * FIXME: it is_leaf will hit performance too much - we may have
442          * return 1 here
443          */
444
445         /* check tables of item heads */
446         ih = (struct item_head *)(buf + BLKH_SIZE);
447         prev_location = blocksize;
448         for (i = 0; i < nr; i++, ih++) {
449                 if (le_ih_k_type(ih) == TYPE_ANY) {
450                         reiserfs_warning(NULL, "reiserfs-5083",
451                                          "wrong item type for item %h",
452                                          ih);
453                         return 0;
454                 }
455                 if (ih_location(ih) >= blocksize
456                     || ih_location(ih) < IH_SIZE * nr) {
457                         reiserfs_warning(NULL, "reiserfs-5084",
458                                          "item location seems wrong: %h",
459                                          ih);
460                         return 0;
461                 }
462                 if (ih_item_len(ih) < 1
463                     || ih_item_len(ih) > MAX_ITEM_LEN(blocksize)) {
464                         reiserfs_warning(NULL, "reiserfs-5085",
465                                          "item length seems wrong: %h",
466                                          ih);
467                         return 0;
468                 }
469                 if (prev_location - ih_location(ih) != ih_item_len(ih)) {
470                         reiserfs_warning(NULL, "reiserfs-5086",
471                                          "item location seems wrong "
472                                          "(second one): %h", ih);
473                         return 0;
474                 }
475                 if (is_direntry_le_ih(ih)) {
476                         if (ih_item_len(ih) < (ih_entry_count(ih) * IH_SIZE)) {
477                                 reiserfs_warning(NULL, "reiserfs-5093",
478                                                  "item entry count seems wrong %h",
479                                                  ih);
480                                 return 0;
481                         }
482                         return has_valid_deh_location(bh, ih);
483                 }
484                 prev_location = ih_location(ih);
485         }
486
487         /* one may imagine many more checks */
488         return 1;
489 }
490
491 /* returns 1 if buf looks like an internal node, 0 otherwise */
492 static int is_internal(char *buf, int blocksize, struct buffer_head *bh)
493 {
494         struct block_head *blkh;
495         int nr;
496         int used_space;
497
498         blkh = (struct block_head *)buf;
499         nr = blkh_level(blkh);
500         if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) {
501                 /* this level is not possible for internal nodes */
502                 reiserfs_warning(NULL, "reiserfs-5087",
503                                  "this should be caught earlier");
504                 return 0;
505         }
506
507         nr = blkh_nr_item(blkh);
508         /* for internal which is not root we might check min number of keys */
509         if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) {
510                 reiserfs_warning(NULL, "reiserfs-5088",
511                                  "number of key seems wrong: %z", bh);
512                 return 0;
513         }
514
515         used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1);
516         if (used_space != blocksize - blkh_free_space(blkh)) {
517                 reiserfs_warning(NULL, "reiserfs-5089",
518                                  "free space seems wrong: %z", bh);
519                 return 0;
520         }
521
522         /* one may imagine many more checks */
523         return 1;
524 }
525
526 /*
527  * make sure that bh contains formatted node of reiserfs tree of
528  * 'level'-th level
529  */
530 static int is_tree_node(struct buffer_head *bh, int level)
531 {
532         if (B_LEVEL(bh) != level) {
533                 reiserfs_warning(NULL, "reiserfs-5090", "node level %d does "
534                                  "not match to the expected one %d",
535                                  B_LEVEL(bh), level);
536                 return 0;
537         }
538         if (level == DISK_LEAF_NODE_LEVEL)
539                 return is_leaf(bh->b_data, bh->b_size, bh);
540
541         return is_internal(bh->b_data, bh->b_size, bh);
542 }
543
544 #define SEARCH_BY_KEY_READA 16
545
546 /*
547  * The function is NOT SCHEDULE-SAFE!
548  * It might unlock the write lock if we needed to wait for a block
549  * to be read. Note that in this case it won't recover the lock to avoid
550  * high contention resulting from too much lock requests, especially
551  * the caller (search_by_key) will perform other schedule-unsafe
552  * operations just after calling this function.
553  *
554  * @return depth of lock to be restored after read completes
555  */
556 static int search_by_key_reada(struct super_block *s,
557                                 struct buffer_head **bh,
558                                 b_blocknr_t *b, int num)
559 {
560         int i, j;
561         int depth = -1;
562
563         for (i = 0; i < num; i++) {
564                 bh[i] = sb_getblk(s, b[i]);
565         }
566         /*
567          * We are going to read some blocks on which we
568          * have a reference. It's safe, though we might be
569          * reading blocks concurrently changed if we release
570          * the lock. But it's still fine because we check later
571          * if the tree changed
572          */
573         for (j = 0; j < i; j++) {
574                 /*
575                  * note, this needs attention if we are getting rid of the BKL
576                  * you have to make sure the prepared bit isn't set on this
577                  * buffer
578                  */
579                 if (!buffer_uptodate(bh[j])) {
580                         if (depth == -1)
581                                 depth = reiserfs_write_unlock_nested(s);
582                         ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, bh + j);
583                 }
584                 brelse(bh[j]);
585         }
586         return depth;
587 }
588
589 /*
590  * This function fills up the path from the root to the leaf as it
591  * descends the tree looking for the key.  It uses reiserfs_bread to
592  * try to find buffers in the cache given their block number.  If it
593  * does not find them in the cache it reads them from disk.  For each
594  * node search_by_key finds using reiserfs_bread it then uses
595  * bin_search to look through that node.  bin_search will find the
596  * position of the block_number of the next node if it is looking
597  * through an internal node.  If it is looking through a leaf node
598  * bin_search will find the position of the item which has key either
599  * equal to given key, or which is the maximal key less than the given
600  * key.  search_by_key returns a path that must be checked for the
601  * correctness of the top of the path but need not be checked for the
602  * correctness of the bottom of the path
603  */
604 /*
605  * search_by_key - search for key (and item) in stree
606  * @sb: superblock
607  * @key: pointer to key to search for
608  * @search_path: Allocated and initialized struct treepath; Returned filled
609  *               on success.
610  * @stop_level: How far down the tree to search, Use DISK_LEAF_NODE_LEVEL to
611  *              stop at leaf level.
612  *
613  * The function is NOT SCHEDULE-SAFE!
614  */
615 int search_by_key(struct super_block *sb, const struct cpu_key *key,
616                   struct treepath *search_path, int stop_level)
617 {
618         b_blocknr_t block_number;
619         int expected_level;
620         struct buffer_head *bh;
621         struct path_element *last_element;
622         int node_level, retval;
623         int fs_gen;
624         struct buffer_head *reada_bh[SEARCH_BY_KEY_READA];
625         b_blocknr_t reada_blocks[SEARCH_BY_KEY_READA];
626         int reada_count = 0;
627
628 #ifdef CONFIG_REISERFS_CHECK
629         int repeat_counter = 0;
630 #endif
631
632         PROC_INFO_INC(sb, search_by_key);
633
634         /*
635          * As we add each node to a path we increase its count.  This means
636          * that we must be careful to release all nodes in a path before we
637          * either discard the path struct or re-use the path struct, as we
638          * do here.
639          */
640
641         pathrelse(search_path);
642
643         /*
644          * With each iteration of this loop we search through the items in the
645          * current node, and calculate the next current node(next path element)
646          * for the next iteration of this loop..
647          */
648         block_number = SB_ROOT_BLOCK(sb);
649         expected_level = -1;
650         while (1) {
651
652 #ifdef CONFIG_REISERFS_CHECK
653                 if (!(++repeat_counter % 50000))
654                         reiserfs_warning(sb, "PAP-5100",
655                                          "%s: there were %d iterations of "
656                                          "while loop looking for key %K",
657                                          current->comm, repeat_counter,
658                                          key);
659 #endif
660
661                 /* prep path to have another element added to it. */
662                 last_element =
663                     PATH_OFFSET_PELEMENT(search_path,
664                                          ++search_path->path_length);
665                 fs_gen = get_generation(sb);
666
667                 /*
668                  * Read the next tree node, and set the last element
669                  * in the path to have a pointer to it.
670                  */
671                 if ((bh = last_element->pe_buffer =
672                      sb_getblk(sb, block_number))) {
673
674                         /*
675                          * We'll need to drop the lock if we encounter any
676                          * buffers that need to be read. If all of them are
677                          * already up to date, we don't need to drop the lock.
678                          */
679                         int depth = -1;
680
681                         if (!buffer_uptodate(bh) && reada_count > 1)
682                                 depth = search_by_key_reada(sb, reada_bh,
683                                                     reada_blocks, reada_count);
684
685                         if (!buffer_uptodate(bh) && depth == -1)
686                                 depth = reiserfs_write_unlock_nested(sb);
687
688                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
689                         wait_on_buffer(bh);
690
691                         if (depth != -1)
692                                 reiserfs_write_lock_nested(sb, depth);
693                         if (!buffer_uptodate(bh))
694                                 goto io_error;
695                 } else {
696 io_error:
697                         search_path->path_length--;
698                         pathrelse(search_path);
699                         return IO_ERROR;
700                 }
701                 reada_count = 0;
702                 if (expected_level == -1)
703                         expected_level = SB_TREE_HEIGHT(sb);
704                 expected_level--;
705
706                 /*
707                  * It is possible that schedule occurred. We must check
708                  * whether the key to search is still in the tree rooted
709                  * from the current buffer. If not then repeat search
710                  * from the root.
711                  */
712                 if (fs_changed(fs_gen, sb) &&
713                     (!B_IS_IN_TREE(bh) ||
714                      B_LEVEL(bh) != expected_level ||
715                      !key_in_buffer(search_path, key, sb))) {
716                         PROC_INFO_INC(sb, search_by_key_fs_changed);
717                         PROC_INFO_INC(sb, search_by_key_restarted);
718                         PROC_INFO_INC(sb,
719                                       sbk_restarted[expected_level - 1]);
720                         pathrelse(search_path);
721
722                         /*
723                          * Get the root block number so that we can
724                          * repeat the search starting from the root.
725                          */
726                         block_number = SB_ROOT_BLOCK(sb);
727                         expected_level = -1;
728
729                         /* repeat search from the root */
730                         continue;
731                 }
732
733                 /*
734                  * only check that the key is in the buffer if key is not
735                  * equal to the MAX_KEY. Latter case is only possible in
736                  * "finish_unfinished()" processing during mount.
737                  */
738                 RFALSE(comp_keys(&MAX_KEY, key) &&
739                        !key_in_buffer(search_path, key, sb),
740                        "PAP-5130: key is not in the buffer");
741 #ifdef CONFIG_REISERFS_CHECK
742                 if (REISERFS_SB(sb)->cur_tb) {
743                         print_cur_tb("5140");
744                         reiserfs_panic(sb, "PAP-5140",
745                                        "schedule occurred in do_balance!");
746                 }
747 #endif
748
749                 /*
750                  * make sure, that the node contents look like a node of
751                  * certain level
752                  */
753                 if (!is_tree_node(bh, expected_level)) {
754                         reiserfs_error(sb, "vs-5150",
755                                        "invalid format found in block %ld. "
756                                        "Fsck?", bh->b_blocknr);
757                         pathrelse(search_path);
758                         return IO_ERROR;
759                 }
760
761                 /* ok, we have acquired next formatted node in the tree */
762                 node_level = B_LEVEL(bh);
763
764                 PROC_INFO_BH_STAT(sb, bh, node_level - 1);
765
766                 RFALSE(node_level < stop_level,
767                        "vs-5152: tree level (%d) is less than stop level (%d)",
768                        node_level, stop_level);
769
770                 retval = bin_search(key, item_head(bh, 0),
771                                       B_NR_ITEMS(bh),
772                                       (node_level ==
773                                        DISK_LEAF_NODE_LEVEL) ? IH_SIZE :
774                                       KEY_SIZE,
775                                       &last_element->pe_position);
776                 if (node_level == stop_level) {
777                         return retval;
778                 }
779
780                 /* we are not in the stop level */
781                 /*
782                  * item has been found, so we choose the pointer which
783                  * is to the right of the found one
784                  */
785                 if (retval == ITEM_FOUND)
786                         last_element->pe_position++;
787
788                 /*
789                  * if item was not found we choose the position which is to
790                  * the left of the found item. This requires no code,
791                  * bin_search did it already.
792                  */
793
794                 /*
795                  * So we have chosen a position in the current node which is
796                  * an internal node.  Now we calculate child block number by
797                  * position in the node.
798                  */
799                 block_number =
800                     B_N_CHILD_NUM(bh, last_element->pe_position);
801
802                 /*
803                  * if we are going to read leaf nodes, try for read
804                  * ahead as well
805                  */
806                 if ((search_path->reada & PATH_READA) &&
807                     node_level == DISK_LEAF_NODE_LEVEL + 1) {
808                         int pos = last_element->pe_position;
809                         int limit = B_NR_ITEMS(bh);
810                         struct reiserfs_key *le_key;
811
812                         if (search_path->reada & PATH_READA_BACK)
813                                 limit = 0;
814                         while (reada_count < SEARCH_BY_KEY_READA) {
815                                 if (pos == limit)
816                                         break;
817                                 reada_blocks[reada_count++] =
818                                     B_N_CHILD_NUM(bh, pos);
819                                 if (search_path->reada & PATH_READA_BACK)
820                                         pos--;
821                                 else
822                                         pos++;
823
824                                 /*
825                                  * check to make sure we're in the same object
826                                  */
827                                 le_key = internal_key(bh, pos);
828                                 if (le32_to_cpu(le_key->k_objectid) !=
829                                     key->on_disk_key.k_objectid) {
830                                         break;
831                                 }
832                         }
833                 }
834         }
835 }
836
837 /*
838  * Form the path to an item and position in this item which contains
839  * file byte defined by key. If there is no such item
840  * corresponding to the key, we point the path to the item with
841  * maximal key less than key, and *pos_in_item is set to one
842  * past the last entry/byte in the item.  If searching for entry in a
843  * directory item, and it is not found, *pos_in_item is set to one
844  * entry more than the entry with maximal key which is less than the
845  * sought key.
846  *
847  * Note that if there is no entry in this same node which is one more,
848  * then we point to an imaginary entry.  for direct items, the
849  * position is in units of bytes, for indirect items the position is
850  * in units of blocknr entries, for directory items the position is in
851  * units of directory entries.
852  */
853 /* The function is NOT SCHEDULE-SAFE! */
854 int search_for_position_by_key(struct super_block *sb,
855                                /* Key to search (cpu variable) */
856                                const struct cpu_key *p_cpu_key,
857                                /* Filled up by this function. */
858                                struct treepath *search_path)
859 {
860         struct item_head *p_le_ih;      /* pointer to on-disk structure */
861         int blk_size;
862         loff_t item_offset, offset;
863         struct reiserfs_dir_entry de;
864         int retval;
865
866         /* If searching for directory entry. */
867         if (is_direntry_cpu_key(p_cpu_key))
868                 return search_by_entry_key(sb, p_cpu_key, search_path,
869                                            &de);
870
871         /* If not searching for directory entry. */
872
873         /* If item is found. */
874         retval = search_item(sb, p_cpu_key, search_path);
875         if (retval == IO_ERROR)
876                 return retval;
877         if (retval == ITEM_FOUND) {
878
879                 RFALSE(!ih_item_len
880                        (item_head
881                         (PATH_PLAST_BUFFER(search_path),
882                          PATH_LAST_POSITION(search_path))),
883                        "PAP-5165: item length equals zero");
884
885                 pos_in_item(search_path) = 0;
886                 return POSITION_FOUND;
887         }
888
889         RFALSE(!PATH_LAST_POSITION(search_path),
890                "PAP-5170: position equals zero");
891
892         /* Item is not found. Set path to the previous item. */
893         p_le_ih =
894             item_head(PATH_PLAST_BUFFER(search_path),
895                            --PATH_LAST_POSITION(search_path));
896         blk_size = sb->s_blocksize;
897
898         if (comp_short_keys(&p_le_ih->ih_key, p_cpu_key))
899                 return FILE_NOT_FOUND;
900
901         /* FIXME: quite ugly this far */
902
903         item_offset = le_ih_k_offset(p_le_ih);
904         offset = cpu_key_k_offset(p_cpu_key);
905
906         /* Needed byte is contained in the item pointed to by the path. */
907         if (item_offset <= offset &&
908             item_offset + op_bytes_number(p_le_ih, blk_size) > offset) {
909                 pos_in_item(search_path) = offset - item_offset;
910                 if (is_indirect_le_ih(p_le_ih)) {
911                         pos_in_item(search_path) /= blk_size;
912                 }
913                 return POSITION_FOUND;
914         }
915
916         /*
917          * Needed byte is not contained in the item pointed to by the
918          * path. Set pos_in_item out of the item.
919          */
920         if (is_indirect_le_ih(p_le_ih))
921                 pos_in_item(search_path) =
922                     ih_item_len(p_le_ih) / UNFM_P_SIZE;
923         else
924                 pos_in_item(search_path) = ih_item_len(p_le_ih);
925
926         return POSITION_NOT_FOUND;
927 }
928
929 /* Compare given item and item pointed to by the path. */
930 int comp_items(const struct item_head *stored_ih, const struct treepath *path)
931 {
932         struct buffer_head *bh = PATH_PLAST_BUFFER(path);
933         struct item_head *ih;
934
935         /* Last buffer at the path is not in the tree. */
936         if (!B_IS_IN_TREE(bh))
937                 return 1;
938
939         /* Last path position is invalid. */
940         if (PATH_LAST_POSITION(path) >= B_NR_ITEMS(bh))
941                 return 1;
942
943         /* we need only to know, whether it is the same item */
944         ih = tp_item_head(path);
945         return memcmp(stored_ih, ih, IH_SIZE);
946 }
947
948 /* unformatted nodes are not logged anymore, ever.  This is safe now */
949 #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1)
950
951 /* block can not be forgotten as it is in I/O or held by someone */
952 #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh)))
953
954 /* prepare for delete or cut of direct item */
955 static inline int prepare_for_direct_item(struct treepath *path,
956                                           struct item_head *le_ih,
957                                           struct inode *inode,
958                                           loff_t new_file_length, int *cut_size)
959 {
960         loff_t round_len;
961
962         if (new_file_length == max_reiserfs_offset(inode)) {
963                 /* item has to be deleted */
964                 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
965                 return M_DELETE;
966         }
967         /* new file gets truncated */
968         if (get_inode_item_key_version(inode) == KEY_FORMAT_3_6) {
969                 round_len = ROUND_UP(new_file_length);
970                 /* this was new_file_length < le_ih ... */
971                 if (round_len < le_ih_k_offset(le_ih)) {
972                         *cut_size = -(IH_SIZE + ih_item_len(le_ih));
973                         return M_DELETE;        /* Delete this item. */
974                 }
975                 /* Calculate first position and size for cutting from item. */
976                 pos_in_item(path) = round_len - (le_ih_k_offset(le_ih) - 1);
977                 *cut_size = -(ih_item_len(le_ih) - pos_in_item(path));
978
979                 return M_CUT;   /* Cut from this item. */
980         }
981
982         /* old file: items may have any length */
983
984         if (new_file_length < le_ih_k_offset(le_ih)) {
985                 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
986                 return M_DELETE;        /* Delete this item. */
987         }
988
989         /* Calculate first position and size for cutting from item. */
990         *cut_size = -(ih_item_len(le_ih) -
991                       (pos_in_item(path) =
992                        new_file_length + 1 - le_ih_k_offset(le_ih)));
993         return M_CUT;           /* Cut from this item. */
994 }
995
996 static inline int prepare_for_direntry_item(struct treepath *path,
997                                             struct item_head *le_ih,
998                                             struct inode *inode,
999                                             loff_t new_file_length,
1000                                             int *cut_size)
1001 {
1002         if (le_ih_k_offset(le_ih) == DOT_OFFSET &&
1003             new_file_length == max_reiserfs_offset(inode)) {
1004                 RFALSE(ih_entry_count(le_ih) != 2,
1005                        "PAP-5220: incorrect empty directory item (%h)", le_ih);
1006                 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
1007                 /* Delete the directory item containing "." and ".." entry. */
1008                 return M_DELETE;
1009         }
1010
1011         if (ih_entry_count(le_ih) == 1) {
1012                 /*
1013                  * Delete the directory item such as there is one record only
1014                  * in this item
1015                  */
1016                 *cut_size = -(IH_SIZE + ih_item_len(le_ih));
1017                 return M_DELETE;
1018         }
1019
1020         /* Cut one record from the directory item. */
1021         *cut_size =
1022             -(DEH_SIZE +
1023               entry_length(get_last_bh(path), le_ih, pos_in_item(path)));
1024         return M_CUT;
1025 }
1026
1027 #define JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD (2 * JOURNAL_PER_BALANCE_CNT + 1)
1028
1029 /*
1030  * If the path points to a directory or direct item, calculate mode
1031  * and the size cut, for balance.
1032  * If the path points to an indirect item, remove some number of its
1033  * unformatted nodes.
1034  * In case of file truncate calculate whether this item must be
1035  * deleted/truncated or last unformatted node of this item will be
1036  * converted to a direct item.
1037  * This function returns a determination of what balance mode the
1038  * calling function should employ.
1039  */
1040 static char prepare_for_delete_or_cut(struct reiserfs_transaction_handle *th,
1041                                       struct inode *inode,
1042                                       struct treepath *path,
1043                                       const struct cpu_key *item_key,
1044                                       /*
1045                                        * Number of unformatted nodes
1046                                        * which were removed from end
1047                                        * of the file.
1048                                        */
1049                                       int *removed,
1050                                       int *cut_size,
1051                                       /* MAX_KEY_OFFSET in case of delete. */
1052                                       unsigned long long new_file_length
1053     )
1054 {
1055         struct super_block *sb = inode->i_sb;
1056         struct item_head *p_le_ih = tp_item_head(path);
1057         struct buffer_head *bh = PATH_PLAST_BUFFER(path);
1058
1059         BUG_ON(!th->t_trans_id);
1060
1061         /* Stat_data item. */
1062         if (is_statdata_le_ih(p_le_ih)) {
1063
1064                 RFALSE(new_file_length != max_reiserfs_offset(inode),
1065                        "PAP-5210: mode must be M_DELETE");
1066
1067                 *cut_size = -(IH_SIZE + ih_item_len(p_le_ih));
1068                 return M_DELETE;
1069         }
1070
1071         /* Directory item. */
1072         if (is_direntry_le_ih(p_le_ih))
1073                 return prepare_for_direntry_item(path, p_le_ih, inode,
1074                                                  new_file_length,
1075                                                  cut_size);
1076
1077         /* Direct item. */
1078         if (is_direct_le_ih(p_le_ih))
1079                 return prepare_for_direct_item(path, p_le_ih, inode,
1080                                                new_file_length, cut_size);
1081
1082         /* Case of an indirect item. */
1083         {
1084             int blk_size = sb->s_blocksize;
1085             struct item_head s_ih;
1086             int need_re_search;
1087             int delete = 0;
1088             int result = M_CUT;
1089             int pos = 0;
1090
1091             if ( new_file_length == max_reiserfs_offset (inode) ) {
1092                 /*
1093                  * prepare_for_delete_or_cut() is called by
1094                  * reiserfs_delete_item()
1095                  */
1096                 new_file_length = 0;
1097                 delete = 1;
1098             }
1099
1100             do {
1101                 need_re_search = 0;
1102                 *cut_size = 0;
1103                 bh = PATH_PLAST_BUFFER(path);
1104                 copy_item_head(&s_ih, tp_item_head(path));
1105                 pos = I_UNFM_NUM(&s_ih);
1106
1107                 while (le_ih_k_offset (&s_ih) + (pos - 1) * blk_size > new_file_length) {
1108                     __le32 *unfm;
1109                     __u32 block;
1110
1111                     /*
1112                      * Each unformatted block deletion may involve
1113                      * one additional bitmap block into the transaction,
1114                      * thereby the initial journal space reservation
1115                      * might not be enough.
1116                      */
1117                     if (!delete && (*cut_size) != 0 &&
1118                         reiserfs_transaction_free_space(th) < JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD)
1119                         break;
1120
1121                     unfm = (__le32 *)ih_item_body(bh, &s_ih) + pos - 1;
1122                     block = get_block_num(unfm, 0);
1123
1124                     if (block != 0) {
1125                         reiserfs_prepare_for_journal(sb, bh, 1);
1126                         put_block_num(unfm, 0, 0);
1127                         journal_mark_dirty(th, bh);
1128                         reiserfs_free_block(th, inode, block, 1);
1129                     }
1130
1131                     reiserfs_cond_resched(sb);
1132
1133                     if (item_moved (&s_ih, path))  {
1134                         need_re_search = 1;
1135                         break;
1136                     }
1137
1138                     pos --;
1139                     (*removed)++;
1140                     (*cut_size) -= UNFM_P_SIZE;
1141
1142                     if (pos == 0) {
1143                         (*cut_size) -= IH_SIZE;
1144                         result = M_DELETE;
1145                         break;
1146                     }
1147                 }
1148                 /*
1149                  * a trick.  If the buffer has been logged, this will
1150                  * do nothing.  If we've broken the loop without logging
1151                  * it, it will restore the buffer
1152                  */
1153                 reiserfs_restore_prepared_buffer(sb, bh);
1154             } while (need_re_search &&
1155                      search_for_position_by_key(sb, item_key, path) == POSITION_FOUND);
1156             pos_in_item(path) = pos * UNFM_P_SIZE;
1157
1158             if (*cut_size == 0) {
1159                 /*
1160                  * Nothing was cut. maybe convert last unformatted node to the
1161                  * direct item?
1162                  */
1163                 result = M_CONVERT;
1164             }
1165             return result;
1166         }
1167 }
1168
1169 /* Calculate number of bytes which will be deleted or cut during balance */
1170 static int calc_deleted_bytes_number(struct tree_balance *tb, char mode)
1171 {
1172         int del_size;
1173         struct item_head *p_le_ih = tp_item_head(tb->tb_path);
1174
1175         if (is_statdata_le_ih(p_le_ih))
1176                 return 0;
1177
1178         del_size =
1179             (mode ==
1180              M_DELETE) ? ih_item_len(p_le_ih) : -tb->insert_size[0];
1181         if (is_direntry_le_ih(p_le_ih)) {
1182                 /*
1183                  * return EMPTY_DIR_SIZE; We delete emty directories only.
1184                  * we can't use EMPTY_DIR_SIZE, as old format dirs have a
1185                  * different empty size.  ick. FIXME, is this right?
1186                  */
1187                 return del_size;
1188         }
1189
1190         if (is_indirect_le_ih(p_le_ih))
1191                 del_size = (del_size / UNFM_P_SIZE) *
1192                                 (PATH_PLAST_BUFFER(tb->tb_path)->b_size);
1193         return del_size;
1194 }
1195
1196 static void init_tb_struct(struct reiserfs_transaction_handle *th,
1197                            struct tree_balance *tb,
1198                            struct super_block *sb,
1199                            struct treepath *path, int size)
1200 {
1201
1202         BUG_ON(!th->t_trans_id);
1203
1204         memset(tb, '\0', sizeof(struct tree_balance));
1205         tb->transaction_handle = th;
1206         tb->tb_sb = sb;
1207         tb->tb_path = path;
1208         PATH_OFFSET_PBUFFER(path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL;
1209         PATH_OFFSET_POSITION(path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0;
1210         tb->insert_size[0] = size;
1211 }
1212
1213 void padd_item(char *item, int total_length, int length)
1214 {
1215         int i;
1216
1217         for (i = total_length; i > length;)
1218                 item[--i] = 0;
1219 }
1220
1221 #ifdef REISERQUOTA_DEBUG
1222 char key2type(struct reiserfs_key *ih)
1223 {
1224         if (is_direntry_le_key(2, ih))
1225                 return 'd';
1226         if (is_direct_le_key(2, ih))
1227                 return 'D';
1228         if (is_indirect_le_key(2, ih))
1229                 return 'i';
1230         if (is_statdata_le_key(2, ih))
1231                 return 's';
1232         return 'u';
1233 }
1234
1235 char head2type(struct item_head *ih)
1236 {
1237         if (is_direntry_le_ih(ih))
1238                 return 'd';
1239         if (is_direct_le_ih(ih))
1240                 return 'D';
1241         if (is_indirect_le_ih(ih))
1242                 return 'i';
1243         if (is_statdata_le_ih(ih))
1244                 return 's';
1245         return 'u';
1246 }
1247 #endif
1248
1249 /*
1250  * Delete object item.
1251  * th       - active transaction handle
1252  * path     - path to the deleted item
1253  * item_key - key to search for the deleted item
1254  * indode   - used for updating i_blocks and quotas
1255  * un_bh    - NULL or unformatted node pointer
1256  */
1257 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1258                          struct treepath *path, const struct cpu_key *item_key,
1259                          struct inode *inode, struct buffer_head *un_bh)
1260 {
1261         struct super_block *sb = inode->i_sb;
1262         struct tree_balance s_del_balance;
1263         struct item_head s_ih;
1264         struct item_head *q_ih;
1265         int quota_cut_bytes;
1266         int ret_value, del_size, removed;
1267         int depth;
1268
1269 #ifdef CONFIG_REISERFS_CHECK
1270         char mode;
1271         int iter = 0;
1272 #endif
1273
1274         BUG_ON(!th->t_trans_id);
1275
1276         init_tb_struct(th, &s_del_balance, sb, path,
1277                        0 /*size is unknown */ );
1278
1279         while (1) {
1280                 removed = 0;
1281
1282 #ifdef CONFIG_REISERFS_CHECK
1283                 iter++;
1284                 mode =
1285 #endif
1286                     prepare_for_delete_or_cut(th, inode, path,
1287                                               item_key, &removed,
1288                                               &del_size,
1289                                               max_reiserfs_offset(inode));
1290
1291                 RFALSE(mode != M_DELETE, "PAP-5320: mode must be M_DELETE");
1292
1293                 copy_item_head(&s_ih, tp_item_head(path));
1294                 s_del_balance.insert_size[0] = del_size;
1295
1296                 ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL);
1297                 if (ret_value != REPEAT_SEARCH)
1298                         break;
1299
1300                 PROC_INFO_INC(sb, delete_item_restarted);
1301
1302                 /* file system changed, repeat search */
1303                 ret_value =
1304                     search_for_position_by_key(sb, item_key, path);
1305                 if (ret_value == IO_ERROR)
1306                         break;
1307                 if (ret_value == FILE_NOT_FOUND) {
1308                         reiserfs_warning(sb, "vs-5340",
1309                                          "no items of the file %K found",
1310                                          item_key);
1311                         break;
1312                 }
1313         }                       /* while (1) */
1314
1315         if (ret_value != CARRY_ON) {
1316                 unfix_nodes(&s_del_balance);
1317                 return 0;
1318         }
1319
1320         /* reiserfs_delete_item returns item length when success */
1321         ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE);
1322         q_ih = tp_item_head(path);
1323         quota_cut_bytes = ih_item_len(q_ih);
1324
1325         /*
1326          * hack so the quota code doesn't have to guess if the file has a
1327          * tail.  On tail insert, we allocate quota for 1 unformatted node.
1328          * We test the offset because the tail might have been
1329          * split into multiple items, and we only want to decrement for
1330          * the unfm node once
1331          */
1332         if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(q_ih)) {
1333                 if ((le_ih_k_offset(q_ih) & (sb->s_blocksize - 1)) == 1) {
1334                         quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1335                 } else {
1336                         quota_cut_bytes = 0;
1337                 }
1338         }
1339
1340         if (un_bh) {
1341                 int off;
1342                 char *data;
1343
1344                 /*
1345                  * We are in direct2indirect conversion, so move tail contents
1346                  * to the unformatted node
1347                  */
1348                 /*
1349                  * note, we do the copy before preparing the buffer because we
1350                  * don't care about the contents of the unformatted node yet.
1351                  * the only thing we really care about is the direct item's
1352                  * data is in the unformatted node.
1353                  *
1354                  * Otherwise, we would have to call
1355                  * reiserfs_prepare_for_journal on the unformatted node,
1356                  * which might schedule, meaning we'd have to loop all the
1357                  * way back up to the start of the while loop.
1358                  *
1359                  * The unformatted node must be dirtied later on.  We can't be
1360                  * sure here if the entire tail has been deleted yet.
1361                  *
1362                  * un_bh is from the page cache (all unformatted nodes are
1363                  * from the page cache) and might be a highmem page.  So, we
1364                  * can't use un_bh->b_data.
1365                  * -clm
1366                  */
1367
1368                 data = kmap_atomic(un_bh->b_page);
1369                 off = ((le_ih_k_offset(&s_ih) - 1) & (PAGE_SIZE - 1));
1370                 memcpy(data + off,
1371                        ih_item_body(PATH_PLAST_BUFFER(path), &s_ih),
1372                        ret_value);
1373                 kunmap_atomic(data);
1374         }
1375
1376         /* Perform balancing after all resources have been collected at once. */
1377         do_balance(&s_del_balance, NULL, NULL, M_DELETE);
1378
1379 #ifdef REISERQUOTA_DEBUG
1380         reiserfs_debug(sb, REISERFS_DEBUG_CODE,
1381                        "reiserquota delete_item(): freeing %u, id=%u type=%c",
1382                        quota_cut_bytes, inode->i_uid, head2type(&s_ih));
1383 #endif
1384         depth = reiserfs_write_unlock_nested(inode->i_sb);
1385         dquot_free_space_nodirty(inode, quota_cut_bytes);
1386         reiserfs_write_lock_nested(inode->i_sb, depth);
1387
1388         /* Return deleted body length */
1389         return ret_value;
1390 }
1391
1392 /*
1393  * Summary Of Mechanisms For Handling Collisions Between Processes:
1394  *
1395  *  deletion of the body of the object is performed by iput(), with the
1396  *  result that if multiple processes are operating on a file, the
1397  *  deletion of the body of the file is deferred until the last process
1398  *  that has an open inode performs its iput().
1399  *
1400  *  writes and truncates are protected from collisions by use of
1401  *  semaphores.
1402  *
1403  *  creates, linking, and mknod are protected from collisions with other
1404  *  processes by making the reiserfs_add_entry() the last step in the
1405  *  creation, and then rolling back all changes if there was a collision.
1406  *  - Hans
1407 */
1408
1409 /* this deletes item which never gets split */
1410 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1411                                 struct inode *inode, struct reiserfs_key *key)
1412 {
1413         struct super_block *sb = th->t_super;
1414         struct tree_balance tb;
1415         INITIALIZE_PATH(path);
1416         int item_len = 0;
1417         int tb_init = 0;
1418         struct cpu_key cpu_key;
1419         int retval;
1420         int quota_cut_bytes = 0;
1421
1422         BUG_ON(!th->t_trans_id);
1423
1424         le_key2cpu_key(&cpu_key, key);
1425
1426         while (1) {
1427                 retval = search_item(th->t_super, &cpu_key, &path);
1428                 if (retval == IO_ERROR) {
1429                         reiserfs_error(th->t_super, "vs-5350",
1430                                        "i/o failure occurred trying "
1431                                        "to delete %K", &cpu_key);
1432                         break;
1433                 }
1434                 if (retval != ITEM_FOUND) {
1435                         pathrelse(&path);
1436                         /*
1437                          * No need for a warning, if there is just no free
1438                          * space to insert '..' item into the
1439                          * newly-created subdir
1440                          */
1441                         if (!
1442                             ((unsigned long long)
1443                              GET_HASH_VALUE(le_key_k_offset
1444                                             (le_key_version(key), key)) == 0
1445                              && (unsigned long long)
1446                              GET_GENERATION_NUMBER(le_key_k_offset
1447                                                    (le_key_version(key),
1448                                                     key)) == 1))
1449                                 reiserfs_warning(th->t_super, "vs-5355",
1450                                                  "%k not found", key);
1451                         break;
1452                 }
1453                 if (!tb_init) {
1454                         tb_init = 1;
1455                         item_len = ih_item_len(tp_item_head(&path));
1456                         init_tb_struct(th, &tb, th->t_super, &path,
1457                                        -(IH_SIZE + item_len));
1458                 }
1459                 quota_cut_bytes = ih_item_len(tp_item_head(&path));
1460
1461                 retval = fix_nodes(M_DELETE, &tb, NULL, NULL);
1462                 if (retval == REPEAT_SEARCH) {
1463                         PROC_INFO_INC(th->t_super, delete_solid_item_restarted);
1464                         continue;
1465                 }
1466
1467                 if (retval == CARRY_ON) {
1468                         do_balance(&tb, NULL, NULL, M_DELETE);
1469                         /*
1470                          * Should we count quota for item? (we don't
1471                          * count quotas for save-links)
1472                          */
1473                         if (inode) {
1474                                 int depth;
1475 #ifdef REISERQUOTA_DEBUG
1476                                 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
1477                                                "reiserquota delete_solid_item(): freeing %u id=%u type=%c",
1478                                                quota_cut_bytes, inode->i_uid,
1479                                                key2type(key));
1480 #endif
1481                                 depth = reiserfs_write_unlock_nested(sb);
1482                                 dquot_free_space_nodirty(inode,
1483                                                          quota_cut_bytes);
1484                                 reiserfs_write_lock_nested(sb, depth);
1485                         }
1486                         break;
1487                 }
1488
1489                 /* IO_ERROR, NO_DISK_SPACE, etc */
1490                 reiserfs_warning(th->t_super, "vs-5360",
1491                                  "could not delete %K due to fix_nodes failure",
1492                                  &cpu_key);
1493                 unfix_nodes(&tb);
1494                 break;
1495         }
1496
1497         reiserfs_check_path(&path);
1498 }
1499
1500 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1501                            struct inode *inode)
1502 {
1503         int err;
1504         inode->i_size = 0;
1505         BUG_ON(!th->t_trans_id);
1506
1507         /* for directory this deletes item containing "." and ".." */
1508         err =
1509             reiserfs_do_truncate(th, inode, NULL, 0 /*no timestamp updates */ );
1510         if (err)
1511                 return err;
1512
1513 #if defined( USE_INODE_GENERATION_COUNTER )
1514         if (!old_format_only(th->t_super)) {
1515                 __le32 *inode_generation;
1516
1517                 inode_generation =
1518                     &REISERFS_SB(th->t_super)->s_rs->s_inode_generation;
1519                 le32_add_cpu(inode_generation, 1);
1520         }
1521 /* USE_INODE_GENERATION_COUNTER */
1522 #endif
1523         reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1524
1525         return err;
1526 }
1527
1528 static void unmap_buffers(struct page *page, loff_t pos)
1529 {
1530         struct buffer_head *bh;
1531         struct buffer_head *head;
1532         struct buffer_head *next;
1533         unsigned long tail_index;
1534         unsigned long cur_index;
1535
1536         if (page) {
1537                 if (page_has_buffers(page)) {
1538                         tail_index = pos & (PAGE_SIZE - 1);
1539                         cur_index = 0;
1540                         head = page_buffers(page);
1541                         bh = head;
1542                         do {
1543                                 next = bh->b_this_page;
1544
1545                                 /*
1546                                  * we want to unmap the buffers that contain
1547                                  * the tail, and all the buffers after it
1548                                  * (since the tail must be at the end of the
1549                                  * file).  We don't want to unmap file data
1550                                  * before the tail, since it might be dirty
1551                                  * and waiting to reach disk
1552                                  */
1553                                 cur_index += bh->b_size;
1554                                 if (cur_index > tail_index) {
1555                                         reiserfs_unmap_buffer(bh);
1556                                 }
1557                                 bh = next;
1558                         } while (bh != head);
1559                 }
1560         }
1561 }
1562
1563 static int maybe_indirect_to_direct(struct reiserfs_transaction_handle *th,
1564                                     struct inode *inode,
1565                                     struct page *page,
1566                                     struct treepath *path,
1567                                     const struct cpu_key *item_key,
1568                                     loff_t new_file_size, char *mode)
1569 {
1570         struct super_block *sb = inode->i_sb;
1571         int block_size = sb->s_blocksize;
1572         int cut_bytes;
1573         BUG_ON(!th->t_trans_id);
1574         BUG_ON(new_file_size != inode->i_size);
1575
1576         /*
1577          * the page being sent in could be NULL if there was an i/o error
1578          * reading in the last block.  The user will hit problems trying to
1579          * read the file, but for now we just skip the indirect2direct
1580          */
1581         if (atomic_read(&inode->i_count) > 1 ||
1582             !tail_has_to_be_packed(inode) ||
1583             !page || (REISERFS_I(inode)->i_flags & i_nopack_mask)) {
1584                 /* leave tail in an unformatted node */
1585                 *mode = M_SKIP_BALANCING;
1586                 cut_bytes =
1587                     block_size - (new_file_size & (block_size - 1));
1588                 pathrelse(path);
1589                 return cut_bytes;
1590         }
1591
1592         /* Perform the conversion to a direct_item. */
1593         return indirect2direct(th, inode, page, path, item_key,
1594                                new_file_size, mode);
1595 }
1596
1597 /*
1598  * we did indirect_to_direct conversion. And we have inserted direct
1599  * item successesfully, but there were no disk space to cut unfm
1600  * pointer being converted. Therefore we have to delete inserted
1601  * direct item(s)
1602  */
1603 static void indirect_to_direct_roll_back(struct reiserfs_transaction_handle *th,
1604                                          struct inode *inode, struct treepath *path)
1605 {
1606         struct cpu_key tail_key;
1607         int tail_len;
1608         int removed;
1609         BUG_ON(!th->t_trans_id);
1610
1611         make_cpu_key(&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);
1612         tail_key.key_length = 4;
1613
1614         tail_len =
1615             (cpu_key_k_offset(&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1;
1616         while (tail_len) {
1617                 /* look for the last byte of the tail */
1618                 if (search_for_position_by_key(inode->i_sb, &tail_key, path) ==
1619                     POSITION_NOT_FOUND)
1620                         reiserfs_panic(inode->i_sb, "vs-5615",
1621                                        "found invalid item");
1622                 RFALSE(path->pos_in_item !=
1623                        ih_item_len(tp_item_head(path)) - 1,
1624                        "vs-5616: appended bytes found");
1625                 PATH_LAST_POSITION(path)--;
1626
1627                 removed =
1628                     reiserfs_delete_item(th, path, &tail_key, inode,
1629                                          NULL /*unbh not needed */ );
1630                 RFALSE(removed <= 0
1631                        || removed > tail_len,
1632                        "vs-5617: there was tail %d bytes, removed item length %d bytes",
1633                        tail_len, removed);
1634                 tail_len -= removed;
1635                 set_cpu_key_k_offset(&tail_key,
1636                                      cpu_key_k_offset(&tail_key) - removed);
1637         }
1638         reiserfs_warning(inode->i_sb, "reiserfs-5091", "indirect_to_direct "
1639                          "conversion has been rolled back due to "
1640                          "lack of disk space");
1641         mark_inode_dirty(inode);
1642 }
1643
1644 /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */
1645 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1646                            struct treepath *path,
1647                            struct cpu_key *item_key,
1648                            struct inode *inode,
1649                            struct page *page, loff_t new_file_size)
1650 {
1651         struct super_block *sb = inode->i_sb;
1652         /*
1653          * Every function which is going to call do_balance must first
1654          * create a tree_balance structure.  Then it must fill up this
1655          * structure by using the init_tb_struct and fix_nodes functions.
1656          * After that we can make tree balancing.
1657          */
1658         struct tree_balance s_cut_balance;
1659         struct item_head *p_le_ih;
1660         int cut_size = 0;       /* Amount to be cut. */
1661         int ret_value = CARRY_ON;
1662         int removed = 0;        /* Number of the removed unformatted nodes. */
1663         int is_inode_locked = 0;
1664         char mode;              /* Mode of the balance. */
1665         int retval2 = -1;
1666         int quota_cut_bytes;
1667         loff_t tail_pos = 0;
1668         int depth;
1669
1670         BUG_ON(!th->t_trans_id);
1671
1672         init_tb_struct(th, &s_cut_balance, inode->i_sb, path,
1673                        cut_size);
1674
1675         /*
1676          * Repeat this loop until we either cut the item without needing
1677          * to balance, or we fix_nodes without schedule occurring
1678          */
1679         while (1) {
1680                 /*
1681                  * Determine the balance mode, position of the first byte to
1682                  * be cut, and size to be cut.  In case of the indirect item
1683                  * free unformatted nodes which are pointed to by the cut
1684                  * pointers.
1685                  */
1686
1687                 mode =
1688                     prepare_for_delete_or_cut(th, inode, path,
1689                                               item_key, &removed,
1690                                               &cut_size, new_file_size);
1691                 if (mode == M_CONVERT) {
1692                         /*
1693                          * convert last unformatted node to direct item or
1694                          * leave tail in the unformatted node
1695                          */
1696                         RFALSE(ret_value != CARRY_ON,
1697                                "PAP-5570: can not convert twice");
1698
1699                         ret_value =
1700                             maybe_indirect_to_direct(th, inode, page,
1701                                                      path, item_key,
1702                                                      new_file_size, &mode);
1703                         if (mode == M_SKIP_BALANCING)
1704                                 /* tail has been left in the unformatted node */
1705                                 return ret_value;
1706
1707                         is_inode_locked = 1;
1708
1709                         /*
1710                          * removing of last unformatted node will
1711                          * change value we have to return to truncate.
1712                          * Save it
1713                          */
1714                         retval2 = ret_value;
1715
1716                         /*
1717                          * So, we have performed the first part of the
1718                          * conversion:
1719                          * inserting the new direct item.  Now we are
1720                          * removing the last unformatted node pointer.
1721                          * Set key to search for it.
1722                          */
1723                         set_cpu_key_k_type(item_key, TYPE_INDIRECT);
1724                         item_key->key_length = 4;
1725                         new_file_size -=
1726                             (new_file_size & (sb->s_blocksize - 1));
1727                         tail_pos = new_file_size;
1728                         set_cpu_key_k_offset(item_key, new_file_size + 1);
1729                         if (search_for_position_by_key
1730                             (sb, item_key,
1731                              path) == POSITION_NOT_FOUND) {
1732                                 print_block(PATH_PLAST_BUFFER(path), 3,
1733                                             PATH_LAST_POSITION(path) - 1,
1734                                             PATH_LAST_POSITION(path) + 1);
1735                                 reiserfs_panic(sb, "PAP-5580", "item to "
1736                                                "convert does not exist (%K)",
1737                                                item_key);
1738                         }
1739                         continue;
1740                 }
1741                 if (cut_size == 0) {
1742                         pathrelse(path);
1743                         return 0;
1744                 }
1745
1746                 s_cut_balance.insert_size[0] = cut_size;
1747
1748                 ret_value = fix_nodes(mode, &s_cut_balance, NULL, NULL);
1749                 if (ret_value != REPEAT_SEARCH)
1750                         break;
1751
1752                 PROC_INFO_INC(sb, cut_from_item_restarted);
1753
1754                 ret_value =
1755                     search_for_position_by_key(sb, item_key, path);
1756                 if (ret_value == POSITION_FOUND)
1757                         continue;
1758
1759                 reiserfs_warning(sb, "PAP-5610", "item %K not found",
1760                                  item_key);
1761                 unfix_nodes(&s_cut_balance);
1762                 return (ret_value == IO_ERROR) ? -EIO : -ENOENT;
1763         }                       /* while */
1764
1765         /* check fix_nodes results (IO_ERROR or NO_DISK_SPACE) */
1766         if (ret_value != CARRY_ON) {
1767                 if (is_inode_locked) {
1768                         /*
1769                          * FIXME: this seems to be not needed: we are always
1770                          * able to cut item
1771                          */
1772                         indirect_to_direct_roll_back(th, inode, path);
1773                 }
1774                 if (ret_value == NO_DISK_SPACE)
1775                         reiserfs_warning(sb, "reiserfs-5092",
1776                                          "NO_DISK_SPACE");
1777                 unfix_nodes(&s_cut_balance);
1778                 return -EIO;
1779         }
1780
1781         /* go ahead and perform balancing */
1782
1783         RFALSE(mode == M_PASTE || mode == M_INSERT, "invalid mode");
1784
1785         /* Calculate number of bytes that need to be cut from the item. */
1786         quota_cut_bytes =
1787             (mode ==
1788              M_DELETE) ? ih_item_len(tp_item_head(path)) : -s_cut_balance.
1789             insert_size[0];
1790         if (retval2 == -1)
1791                 ret_value = calc_deleted_bytes_number(&s_cut_balance, mode);
1792         else
1793                 ret_value = retval2;
1794
1795         /*
1796          * For direct items, we only change the quota when deleting the last
1797          * item.
1798          */
1799         p_le_ih = tp_item_head(s_cut_balance.tb_path);
1800         if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(p_le_ih)) {
1801                 if (mode == M_DELETE &&
1802                     (le_ih_k_offset(p_le_ih) & (sb->s_blocksize - 1)) ==
1803                     1) {
1804                         /* FIXME: this is to keep 3.5 happy */
1805                         REISERFS_I(inode)->i_first_direct_byte = U32_MAX;
1806                         quota_cut_bytes = sb->s_blocksize + UNFM_P_SIZE;
1807                 } else {
1808                         quota_cut_bytes = 0;
1809                 }
1810         }
1811 #ifdef CONFIG_REISERFS_CHECK
1812         if (is_inode_locked) {
1813                 struct item_head *le_ih =
1814                     tp_item_head(s_cut_balance.tb_path);
1815                 /*
1816                  * we are going to complete indirect2direct conversion. Make
1817                  * sure, that we exactly remove last unformatted node pointer
1818                  * of the item
1819                  */
1820                 if (!is_indirect_le_ih(le_ih))
1821                         reiserfs_panic(sb, "vs-5652",
1822                                        "item must be indirect %h", le_ih);
1823
1824                 if (mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE)
1825                         reiserfs_panic(sb, "vs-5653", "completing "
1826                                        "indirect2direct conversion indirect "
1827                                        "item %h being deleted must be of "
1828                                        "4 byte long", le_ih);
1829
1830                 if (mode == M_CUT
1831                     && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) {
1832                         reiserfs_panic(sb, "vs-5654", "can not complete "
1833                                        "indirect2direct conversion of %h "
1834                                        "(CUT, insert_size==%d)",
1835                                        le_ih, s_cut_balance.insert_size[0]);
1836                 }
1837                 /*
1838                  * it would be useful to make sure, that right neighboring
1839                  * item is direct item of this file
1840                  */
1841         }
1842 #endif
1843
1844         do_balance(&s_cut_balance, NULL, NULL, mode);
1845         if (is_inode_locked) {
1846                 /*
1847                  * we've done an indirect->direct conversion.  when the
1848                  * data block was freed, it was removed from the list of
1849                  * blocks that must be flushed before the transaction
1850                  * commits, make sure to unmap and invalidate it
1851                  */
1852                 unmap_buffers(page, tail_pos);
1853                 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
1854         }
1855 #ifdef REISERQUOTA_DEBUG
1856         reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
1857                        "reiserquota cut_from_item(): freeing %u id=%u type=%c",
1858                        quota_cut_bytes, inode->i_uid, '?');
1859 #endif
1860         depth = reiserfs_write_unlock_nested(sb);
1861         dquot_free_space_nodirty(inode, quota_cut_bytes);
1862         reiserfs_write_lock_nested(sb, depth);
1863         return ret_value;
1864 }
1865
1866 static void truncate_directory(struct reiserfs_transaction_handle *th,
1867                                struct inode *inode)
1868 {
1869         BUG_ON(!th->t_trans_id);
1870         if (inode->i_nlink)
1871                 reiserfs_error(inode->i_sb, "vs-5655", "link count != 0");
1872
1873         set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), DOT_OFFSET);
1874         set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_DIRENTRY);
1875         reiserfs_delete_solid_item(th, inode, INODE_PKEY(inode));
1876         reiserfs_update_sd(th, inode);
1877         set_le_key_k_offset(KEY_FORMAT_3_5, INODE_PKEY(inode), SD_OFFSET);
1878         set_le_key_k_type(KEY_FORMAT_3_5, INODE_PKEY(inode), TYPE_STAT_DATA);
1879 }
1880
1881 /*
1882  * Truncate file to the new size. Note, this must be called with a
1883  * transaction already started
1884  */
1885 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1886                          struct inode *inode,   /* ->i_size contains new size */
1887                          struct page *page,     /* up to date for last block */
1888                          /*
1889                           * when it is called by file_release to convert
1890                           * the tail - no timestamps should be updated
1891                           */
1892                          int update_timestamps
1893     )
1894 {
1895         INITIALIZE_PATH(s_search_path); /* Path to the current object item. */
1896         struct item_head *p_le_ih;      /* Pointer to an item header. */
1897
1898         /* Key to search for a previous file item. */
1899         struct cpu_key s_item_key;
1900         loff_t file_size,       /* Old file size. */
1901          new_file_size; /* New file size. */
1902         int deleted;            /* Number of deleted or truncated bytes. */
1903         int retval;
1904         int err = 0;
1905
1906         BUG_ON(!th->t_trans_id);
1907         if (!
1908             (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)
1909              || S_ISLNK(inode->i_mode)))
1910                 return 0;
1911
1912         /* deletion of directory - no need to update timestamps */
1913         if (S_ISDIR(inode->i_mode)) {
1914                 truncate_directory(th, inode);
1915                 return 0;
1916         }
1917
1918         /* Get new file size. */
1919         new_file_size = inode->i_size;
1920
1921         /* FIXME: note, that key type is unimportant here */
1922         make_cpu_key(&s_item_key, inode, max_reiserfs_offset(inode),
1923                      TYPE_DIRECT, 3);
1924
1925         retval =
1926             search_for_position_by_key(inode->i_sb, &s_item_key,
1927                                        &s_search_path);
1928         if (retval == IO_ERROR) {
1929                 reiserfs_error(inode->i_sb, "vs-5657",
1930                                "i/o failure occurred trying to truncate %K",
1931                                &s_item_key);
1932                 err = -EIO;
1933                 goto out;
1934         }
1935         if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) {
1936                 reiserfs_error(inode->i_sb, "PAP-5660",
1937                                "wrong result %d of search for %K", retval,
1938                                &s_item_key);
1939
1940                 err = -EIO;
1941                 goto out;
1942         }
1943
1944         s_search_path.pos_in_item--;
1945
1946         /* Get real file size (total length of all file items) */
1947         p_le_ih = tp_item_head(&s_search_path);
1948         if (is_statdata_le_ih(p_le_ih))
1949                 file_size = 0;
1950         else {
1951                 loff_t offset = le_ih_k_offset(p_le_ih);
1952                 int bytes =
1953                     op_bytes_number(p_le_ih, inode->i_sb->s_blocksize);
1954
1955                 /*
1956                  * this may mismatch with real file size: if last direct item
1957                  * had no padding zeros and last unformatted node had no free
1958                  * space, this file would have this file size
1959                  */
1960                 file_size = offset + bytes - 1;
1961         }
1962         /*
1963          * are we doing a full truncate or delete, if so
1964          * kick in the reada code
1965          */
1966         if (new_file_size == 0)
1967                 s_search_path.reada = PATH_READA | PATH_READA_BACK;
1968
1969         if (file_size == 0 || file_size < new_file_size) {
1970                 goto update_and_out;
1971         }
1972
1973         /* Update key to search for the last file item. */
1974         set_cpu_key_k_offset(&s_item_key, file_size);
1975
1976         do {
1977                 /* Cut or delete file item. */
1978                 deleted =
1979                     reiserfs_cut_from_item(th, &s_search_path, &s_item_key,
1980                                            inode, page, new_file_size);
1981                 if (deleted < 0) {
1982                         reiserfs_warning(inode->i_sb, "vs-5665",
1983                                          "reiserfs_cut_from_item failed");
1984                         reiserfs_check_path(&s_search_path);
1985                         return 0;
1986                 }
1987
1988                 RFALSE(deleted > file_size,
1989                        "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K",
1990                        deleted, file_size, &s_item_key);
1991
1992                 /* Change key to search the last file item. */
1993                 file_size -= deleted;
1994
1995                 set_cpu_key_k_offset(&s_item_key, file_size);
1996
1997                 /*
1998                  * While there are bytes to truncate and previous
1999                  * file item is presented in the tree.
2000                  */
2001
2002                 /*
2003                  * This loop could take a really long time, and could log
2004                  * many more blocks than a transaction can hold.  So, we do
2005                  * a polite journal end here, and if the transaction needs
2006                  * ending, we make sure the file is consistent before ending
2007                  * the current trans and starting a new one
2008                  */
2009                 if (journal_transaction_should_end(th, 0) ||
2010                     reiserfs_transaction_free_space(th) <= JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD) {
2011                         pathrelse(&s_search_path);
2012
2013                         if (update_timestamps) {
2014                                 inode->i_mtime = current_time(inode);
2015                                 inode->i_ctime = current_time(inode);
2016                         }
2017                         reiserfs_update_sd(th, inode);
2018
2019                         err = journal_end(th);
2020                         if (err)
2021                                 goto out;
2022                         err = journal_begin(th, inode->i_sb,
2023                                             JOURNAL_FOR_FREE_BLOCK_AND_UPDATE_SD + JOURNAL_PER_BALANCE_CNT * 4) ;
2024                         if (err)
2025                                 goto out;
2026                         reiserfs_update_inode_transaction(inode);
2027                 }
2028         } while (file_size > ROUND_UP(new_file_size) &&
2029                  search_for_position_by_key(inode->i_sb, &s_item_key,
2030                                             &s_search_path) == POSITION_FOUND);
2031
2032         RFALSE(file_size > ROUND_UP(new_file_size),
2033                "PAP-5680: truncate did not finish: new_file_size %lld, current %lld, oid %d",
2034                new_file_size, file_size, s_item_key.on_disk_key.k_objectid);
2035
2036 update_and_out:
2037         if (update_timestamps) {
2038                 /* this is truncate, not file closing */
2039                 inode->i_mtime = current_time(inode);
2040                 inode->i_ctime = current_time(inode);
2041         }
2042         reiserfs_update_sd(th, inode);
2043
2044 out:
2045         pathrelse(&s_search_path);
2046         return err;
2047 }
2048
2049 #ifdef CONFIG_REISERFS_CHECK
2050 /* this makes sure, that we __append__, not overwrite or add holes */
2051 static void check_research_for_paste(struct treepath *path,
2052                                      const struct cpu_key *key)
2053 {
2054         struct item_head *found_ih = tp_item_head(path);
2055
2056         if (is_direct_le_ih(found_ih)) {
2057                 if (le_ih_k_offset(found_ih) +
2058                     op_bytes_number(found_ih,
2059                                     get_last_bh(path)->b_size) !=
2060                     cpu_key_k_offset(key)
2061                     || op_bytes_number(found_ih,
2062                                        get_last_bh(path)->b_size) !=
2063                     pos_in_item(path))
2064                         reiserfs_panic(NULL, "PAP-5720", "found direct item "
2065                                        "%h or position (%d) does not match "
2066                                        "to key %K", found_ih,
2067                                        pos_in_item(path), key);
2068         }
2069         if (is_indirect_le_ih(found_ih)) {
2070                 if (le_ih_k_offset(found_ih) +
2071                     op_bytes_number(found_ih,
2072                                     get_last_bh(path)->b_size) !=
2073                     cpu_key_k_offset(key)
2074                     || I_UNFM_NUM(found_ih) != pos_in_item(path)
2075                     || get_ih_free_space(found_ih) != 0)
2076                         reiserfs_panic(NULL, "PAP-5730", "found indirect "
2077                                        "item (%h) or position (%d) does not "
2078                                        "match to key (%K)",
2079                                        found_ih, pos_in_item(path), key);
2080         }
2081 }
2082 #endif                          /* config reiserfs check */
2083
2084 /*
2085  * Paste bytes to the existing item.
2086  * Returns bytes number pasted into the item.
2087  */
2088 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
2089                              /* Path to the pasted item. */
2090                              struct treepath *search_path,
2091                              /* Key to search for the needed item. */
2092                              const struct cpu_key *key,
2093                              /* Inode item belongs to */
2094                              struct inode *inode,
2095                              /* Pointer to the bytes to paste. */
2096                              const char *body,
2097                              /* Size of pasted bytes. */
2098                              int pasted_size)
2099 {
2100         struct super_block *sb = inode->i_sb;
2101         struct tree_balance s_paste_balance;
2102         int retval;
2103         int fs_gen;
2104         int depth;
2105
2106         BUG_ON(!th->t_trans_id);
2107
2108         fs_gen = get_generation(inode->i_sb);
2109
2110 #ifdef REISERQUOTA_DEBUG
2111         reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2112                        "reiserquota paste_into_item(): allocating %u id=%u type=%c",
2113                        pasted_size, inode->i_uid,
2114                        key2type(&key->on_disk_key));
2115 #endif
2116
2117         depth = reiserfs_write_unlock_nested(sb);
2118         retval = dquot_alloc_space_nodirty(inode, pasted_size);
2119         reiserfs_write_lock_nested(sb, depth);
2120         if (retval) {
2121                 pathrelse(search_path);
2122                 return retval;
2123         }
2124         init_tb_struct(th, &s_paste_balance, th->t_super, search_path,
2125                        pasted_size);
2126 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2127         s_paste_balance.key = key->on_disk_key;
2128 #endif
2129
2130         /* DQUOT_* can schedule, must check before the fix_nodes */
2131         if (fs_changed(fs_gen, inode->i_sb)) {
2132                 goto search_again;
2133         }
2134
2135         while ((retval =
2136                 fix_nodes(M_PASTE, &s_paste_balance, NULL,
2137                           body)) == REPEAT_SEARCH) {
2138 search_again:
2139                 /* file system changed while we were in the fix_nodes */
2140                 PROC_INFO_INC(th->t_super, paste_into_item_restarted);
2141                 retval =
2142                     search_for_position_by_key(th->t_super, key,
2143                                                search_path);
2144                 if (retval == IO_ERROR) {
2145                         retval = -EIO;
2146                         goto error_out;
2147                 }
2148                 if (retval == POSITION_FOUND) {
2149                         reiserfs_warning(inode->i_sb, "PAP-5710",
2150                                          "entry or pasted byte (%K) exists",
2151                                          key);
2152                         retval = -EEXIST;
2153                         goto error_out;
2154                 }
2155 #ifdef CONFIG_REISERFS_CHECK
2156                 check_research_for_paste(search_path, key);
2157 #endif
2158         }
2159
2160         /*
2161          * Perform balancing after all resources are collected by fix_nodes,
2162          * and accessing them will not risk triggering schedule.
2163          */
2164         if (retval == CARRY_ON) {
2165                 do_balance(&s_paste_balance, NULL /*ih */ , body, M_PASTE);
2166                 return 0;
2167         }
2168         retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2169 error_out:
2170         /* this also releases the path */
2171         unfix_nodes(&s_paste_balance);
2172 #ifdef REISERQUOTA_DEBUG
2173         reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2174                        "reiserquota paste_into_item(): freeing %u id=%u type=%c",
2175                        pasted_size, inode->i_uid,
2176                        key2type(&key->on_disk_key));
2177 #endif
2178         depth = reiserfs_write_unlock_nested(sb);
2179         dquot_free_space_nodirty(inode, pasted_size);
2180         reiserfs_write_lock_nested(sb, depth);
2181         return retval;
2182 }
2183
2184 /*
2185  * Insert new item into the buffer at the path.
2186  * th   - active transaction handle
2187  * path - path to the inserted item
2188  * ih   - pointer to the item header to insert
2189  * body - pointer to the bytes to insert
2190  */
2191 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
2192                          struct treepath *path, const struct cpu_key *key,
2193                          struct item_head *ih, struct inode *inode,
2194                          const char *body)
2195 {
2196         struct tree_balance s_ins_balance;
2197         int retval;
2198         int fs_gen = 0;
2199         int quota_bytes = 0;
2200
2201         BUG_ON(!th->t_trans_id);
2202
2203         if (inode) {            /* Do we count quotas for item? */
2204                 int depth;
2205                 fs_gen = get_generation(inode->i_sb);
2206                 quota_bytes = ih_item_len(ih);
2207
2208                 /*
2209                  * hack so the quota code doesn't have to guess
2210                  * if the file has a tail, links are always tails,
2211                  * so there's no guessing needed
2212                  */
2213                 if (!S_ISLNK(inode->i_mode) && is_direct_le_ih(ih))
2214                         quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE;
2215 #ifdef REISERQUOTA_DEBUG
2216                 reiserfs_debug(inode->i_sb, REISERFS_DEBUG_CODE,
2217                                "reiserquota insert_item(): allocating %u id=%u type=%c",
2218                                quota_bytes, inode->i_uid, head2type(ih));
2219 #endif
2220                 /*
2221                  * We can't dirty inode here. It would be immediately
2222                  * written but appropriate stat item isn't inserted yet...
2223                  */
2224                 depth = reiserfs_write_unlock_nested(inode->i_sb);
2225                 retval = dquot_alloc_space_nodirty(inode, quota_bytes);
2226                 reiserfs_write_lock_nested(inode->i_sb, depth);
2227                 if (retval) {
2228                         pathrelse(path);
2229                         return retval;
2230                 }
2231         }
2232         init_tb_struct(th, &s_ins_balance, th->t_super, path,
2233                        IH_SIZE + ih_item_len(ih));
2234 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2235         s_ins_balance.key = key->on_disk_key;
2236 #endif
2237         /*
2238          * DQUOT_* can schedule, must check to be sure calling
2239          * fix_nodes is safe
2240          */
2241         if (inode && fs_changed(fs_gen, inode->i_sb)) {
2242                 goto search_again;
2243         }
2244
2245         while ((retval =
2246                 fix_nodes(M_INSERT, &s_ins_balance, ih,
2247                           body)) == REPEAT_SEARCH) {
2248 search_again:
2249                 /* file system changed while we were in the fix_nodes */
2250                 PROC_INFO_INC(th->t_super, insert_item_restarted);
2251                 retval = search_item(th->t_super, key, path);
2252                 if (retval == IO_ERROR) {
2253                         retval = -EIO;
2254                         goto error_out;
2255                 }
2256                 if (retval == ITEM_FOUND) {
2257                         reiserfs_warning(th->t_super, "PAP-5760",
2258                                          "key %K already exists in the tree",
2259                                          key);
2260                         retval = -EEXIST;
2261                         goto error_out;
2262                 }
2263         }
2264
2265         /* make balancing after all resources will be collected at a time */
2266         if (retval == CARRY_ON) {
2267                 do_balance(&s_ins_balance, ih, body, M_INSERT);
2268                 return 0;
2269         }
2270
2271         retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO;
2272 error_out:
2273         /* also releases the path */
2274         unfix_nodes(&s_ins_balance);
2275 #ifdef REISERQUOTA_DEBUG
2276         if (inode)
2277                 reiserfs_debug(th->t_super, REISERFS_DEBUG_CODE,
2278                        "reiserquota insert_item(): freeing %u id=%u type=%c",
2279                        quota_bytes, inode->i_uid, head2type(ih));
2280 #endif
2281         if (inode) {
2282                 int depth = reiserfs_write_unlock_nested(inode->i_sb);
2283                 dquot_free_space_nodirty(inode, quota_bytes);
2284                 reiserfs_write_lock_nested(inode->i_sb, depth);
2285         }
2286         return retval;
2287 }