1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
25 #include <asm/tlbflush.h>
28 #define SEQ_PUT_DEC(str, val) \
29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
32 unsigned long text, lib, swap, anon, file, shmem;
33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
35 anon = get_mm_counter(mm, MM_ANONPAGES);
36 file = get_mm_counter(mm, MM_FILEPAGES);
37 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
40 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 * hiwater_rss only when about to *lower* total_vm or rss. Any
42 * collector of these hiwater stats must therefore get total_vm
43 * and rss too, which will usually be the higher. Barriers? not
44 * worth the effort, such snapshots can always be inconsistent.
46 hiwater_vm = total_vm = mm->total_vm;
47 if (hiwater_vm < mm->hiwater_vm)
48 hiwater_vm = mm->hiwater_vm;
49 hiwater_rss = total_rss = anon + file + shmem;
50 if (hiwater_rss < mm->hiwater_rss)
51 hiwater_rss = mm->hiwater_rss;
53 /* split executable areas between text and lib */
54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 text = min(text, mm->exec_vm << PAGE_SHIFT);
56 lib = (mm->exec_vm << PAGE_SHIFT) - text;
58 swap = get_mm_counter(mm, MM_SWAPENTS);
59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 SEQ_PUT_DEC(" kB\nVmPin:\t", mm->pinned_vm);
63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 seq_put_decimal_ull_width(m,
71 " kB\nVmExe:\t", text >> 10, 8);
72 seq_put_decimal_ull_width(m,
73 " kB\nVmLib:\t", lib >> 10, 8);
74 seq_put_decimal_ull_width(m,
75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
78 hugetlb_report_usage(m, mm);
82 unsigned long task_vsize(struct mm_struct *mm)
84 return PAGE_SIZE * mm->total_vm;
87 unsigned long task_statm(struct mm_struct *mm,
88 unsigned long *shared, unsigned long *text,
89 unsigned long *data, unsigned long *resident)
91 *shared = get_mm_counter(mm, MM_FILEPAGES) +
92 get_mm_counter(mm, MM_SHMEMPAGES);
93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
95 *data = mm->data_vm + mm->stack_vm;
96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
102 * Save get_task_policy() for show_numa_map().
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
106 struct task_struct *task = priv->task;
109 priv->task_mempolicy = get_task_policy(task);
110 mpol_get(priv->task_mempolicy);
113 static void release_task_mempolicy(struct proc_maps_private *priv)
115 mpol_put(priv->task_mempolicy);
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
121 static void release_task_mempolicy(struct proc_maps_private *priv)
126 static void vma_stop(struct proc_maps_private *priv)
128 struct mm_struct *mm = priv->mm;
130 release_task_mempolicy(priv);
131 up_read(&mm->mmap_sem);
135 static struct vm_area_struct *
136 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
138 if (vma == priv->tail_vma)
140 return vma->vm_next ?: priv->tail_vma;
143 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
145 if (m->count < m->size) /* vma is copied successfully */
146 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
149 static void *m_start(struct seq_file *m, loff_t *ppos)
151 struct proc_maps_private *priv = m->private;
152 unsigned long last_addr = m->version;
153 struct mm_struct *mm;
154 struct vm_area_struct *vma;
155 unsigned int pos = *ppos;
157 /* See m_cache_vma(). Zero at the start or after lseek. */
158 if (last_addr == -1UL)
161 priv->task = get_proc_task(priv->inode);
163 return ERR_PTR(-ESRCH);
166 if (!mm || !mmget_not_zero(mm))
169 if (down_read_killable(&mm->mmap_sem)) {
171 return ERR_PTR(-EINTR);
174 hold_task_mempolicy(priv);
175 priv->tail_vma = get_gate_vma(mm);
178 vma = find_vma(mm, last_addr - 1);
179 if (vma && vma->vm_start <= last_addr)
180 vma = m_next_vma(priv, vma);
186 if (pos < mm->map_count) {
187 for (vma = mm->mmap; pos; pos--) {
188 m->version = vma->vm_start;
194 /* we do not bother to update m->version in this case */
195 if (pos == mm->map_count && priv->tail_vma)
196 return priv->tail_vma;
202 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
204 struct proc_maps_private *priv = m->private;
205 struct vm_area_struct *next;
208 next = m_next_vma(priv, v);
214 static void m_stop(struct seq_file *m, void *v)
216 struct proc_maps_private *priv = m->private;
218 if (!IS_ERR_OR_NULL(v))
221 put_task_struct(priv->task);
226 static int proc_maps_open(struct inode *inode, struct file *file,
227 const struct seq_operations *ops, int psize)
229 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
235 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
236 if (IS_ERR(priv->mm)) {
237 int err = PTR_ERR(priv->mm);
239 seq_release_private(inode, file);
246 static int proc_map_release(struct inode *inode, struct file *file)
248 struct seq_file *seq = file->private_data;
249 struct proc_maps_private *priv = seq->private;
254 return seq_release_private(inode, file);
257 static int do_maps_open(struct inode *inode, struct file *file,
258 const struct seq_operations *ops)
260 return proc_maps_open(inode, file, ops,
261 sizeof(struct proc_maps_private));
265 * Indicate if the VMA is a stack for the given task; for
266 * /proc/PID/maps that is the stack of the main task.
268 static int is_stack(struct vm_area_struct *vma)
271 * We make no effort to guess what a given thread considers to be
272 * its "stack". It's not even well-defined for programs written
275 return vma->vm_start <= vma->vm_mm->start_stack &&
276 vma->vm_end >= vma->vm_mm->start_stack;
279 static void show_vma_header_prefix(struct seq_file *m,
280 unsigned long start, unsigned long end,
281 vm_flags_t flags, unsigned long long pgoff,
282 dev_t dev, unsigned long ino)
284 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
285 seq_put_hex_ll(m, NULL, start, 8);
286 seq_put_hex_ll(m, "-", end, 8);
288 seq_putc(m, flags & VM_READ ? 'r' : '-');
289 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
290 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
291 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
292 seq_put_hex_ll(m, " ", pgoff, 8);
293 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
294 seq_put_hex_ll(m, ":", MINOR(dev), 2);
295 seq_put_decimal_ull(m, " ", ino);
300 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
302 struct mm_struct *mm = vma->vm_mm;
303 struct file *file = vma->vm_file;
304 vm_flags_t flags = vma->vm_flags;
305 unsigned long ino = 0;
306 unsigned long long pgoff = 0;
307 unsigned long start, end;
309 const char *name = NULL;
312 struct inode *inode = file_inode(vma->vm_file);
313 dev = inode->i_sb->s_dev;
315 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
318 start = vma->vm_start;
320 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
323 * Print the dentry name for named mappings, and a
324 * special [heap] marker for the heap:
328 seq_file_path(m, file, "\n");
332 if (vma->vm_ops && vma->vm_ops->name) {
333 name = vma->vm_ops->name(vma);
338 name = arch_vma_name(vma);
345 if (vma->vm_start <= mm->brk &&
346 vma->vm_end >= mm->start_brk) {
363 static int show_map(struct seq_file *m, void *v)
370 static const struct seq_operations proc_pid_maps_op = {
377 static int pid_maps_open(struct inode *inode, struct file *file)
379 return do_maps_open(inode, file, &proc_pid_maps_op);
382 const struct file_operations proc_pid_maps_operations = {
383 .open = pid_maps_open,
386 .release = proc_map_release,
390 * Proportional Set Size(PSS): my share of RSS.
392 * PSS of a process is the count of pages it has in memory, where each
393 * page is divided by the number of processes sharing it. So if a
394 * process has 1000 pages all to itself, and 1000 shared with one other
395 * process, its PSS will be 1500.
397 * To keep (accumulated) division errors low, we adopt a 64bit
398 * fixed-point pss counter to minimize division errors. So (pss >>
399 * PSS_SHIFT) would be the real byte count.
401 * A shift of 12 before division means (assuming 4K page size):
402 * - 1M 3-user-pages add up to 8KB errors;
403 * - supports mapcount up to 2^24, or 16M;
404 * - supports PSS up to 2^52 bytes, or 4PB.
408 #ifdef CONFIG_PROC_PAGE_MONITOR
409 struct mem_size_stats {
410 unsigned long resident;
411 unsigned long shared_clean;
412 unsigned long shared_dirty;
413 unsigned long private_clean;
414 unsigned long private_dirty;
415 unsigned long referenced;
416 unsigned long anonymous;
417 unsigned long lazyfree;
418 unsigned long anonymous_thp;
419 unsigned long shmem_thp;
421 unsigned long shared_hugetlb;
422 unsigned long private_hugetlb;
426 bool check_shmem_swap;
429 static void smaps_account(struct mem_size_stats *mss, struct page *page,
430 bool compound, bool young, bool dirty, bool locked)
432 int i, nr = compound ? 1 << compound_order(page) : 1;
433 unsigned long size = nr * PAGE_SIZE;
435 if (PageAnon(page)) {
436 mss->anonymous += size;
437 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
438 mss->lazyfree += size;
441 mss->resident += size;
442 /* Accumulate the size in pages that have been accessed. */
443 if (young || page_is_young(page) || PageReferenced(page))
444 mss->referenced += size;
447 * page_count(page) == 1 guarantees the page is mapped exactly once.
448 * If any subpage of the compound page mapped with PTE it would elevate
451 if (page_count(page) == 1) {
452 if (dirty || PageDirty(page))
453 mss->private_dirty += size;
455 mss->private_clean += size;
456 mss->pss += (u64)size << PSS_SHIFT;
458 mss->pss_locked += (u64)size << PSS_SHIFT;
462 for (i = 0; i < nr; i++, page++) {
463 int mapcount = page_mapcount(page);
464 unsigned long pss = (PAGE_SIZE << PSS_SHIFT);
467 if (dirty || PageDirty(page))
468 mss->shared_dirty += PAGE_SIZE;
470 mss->shared_clean += PAGE_SIZE;
471 mss->pss += pss / mapcount;
473 mss->pss_locked += pss / mapcount;
475 if (dirty || PageDirty(page))
476 mss->private_dirty += PAGE_SIZE;
478 mss->private_clean += PAGE_SIZE;
481 mss->pss_locked += pss;
487 static int smaps_pte_hole(unsigned long addr, unsigned long end,
488 struct mm_walk *walk)
490 struct mem_size_stats *mss = walk->private;
492 mss->swap += shmem_partial_swap_usage(
493 walk->vma->vm_file->f_mapping, addr, end);
499 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
500 struct mm_walk *walk)
502 struct mem_size_stats *mss = walk->private;
503 struct vm_area_struct *vma = walk->vma;
504 bool locked = !!(vma->vm_flags & VM_LOCKED);
505 struct page *page = NULL;
507 if (pte_present(*pte)) {
508 page = vm_normal_page(vma, addr, *pte);
509 } else if (is_swap_pte(*pte)) {
510 swp_entry_t swpent = pte_to_swp_entry(*pte);
512 if (!non_swap_entry(swpent)) {
515 mss->swap += PAGE_SIZE;
516 mapcount = swp_swapcount(swpent);
518 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
520 do_div(pss_delta, mapcount);
521 mss->swap_pss += pss_delta;
523 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
525 } else if (is_migration_entry(swpent))
526 page = migration_entry_to_page(swpent);
527 else if (is_device_private_entry(swpent))
528 page = device_private_entry_to_page(swpent);
529 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
530 && pte_none(*pte))) {
531 page = find_get_entry(vma->vm_file->f_mapping,
532 linear_page_index(vma, addr));
536 if (radix_tree_exceptional_entry(page))
537 mss->swap += PAGE_SIZE;
547 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
551 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
552 struct mm_walk *walk)
554 struct mem_size_stats *mss = walk->private;
555 struct vm_area_struct *vma = walk->vma;
556 bool locked = !!(vma->vm_flags & VM_LOCKED);
559 /* FOLL_DUMP will return -EFAULT on huge zero page */
560 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
561 if (IS_ERR_OR_NULL(page))
564 mss->anonymous_thp += HPAGE_PMD_SIZE;
565 else if (PageSwapBacked(page))
566 mss->shmem_thp += HPAGE_PMD_SIZE;
567 else if (is_zone_device_page(page))
570 VM_BUG_ON_PAGE(1, page);
571 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
574 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
575 struct mm_walk *walk)
580 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
581 struct mm_walk *walk)
583 struct vm_area_struct *vma = walk->vma;
587 ptl = pmd_trans_huge_lock(pmd, vma);
589 if (pmd_present(*pmd))
590 smaps_pmd_entry(pmd, addr, walk);
595 if (pmd_trans_unstable(pmd))
598 * The mmap_sem held all the way back in m_start() is what
599 * keeps khugepaged out of here and from collapsing things
602 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
603 for (; addr != end; pte++, addr += PAGE_SIZE)
604 smaps_pte_entry(pte, addr, walk);
605 pte_unmap_unlock(pte - 1, ptl);
611 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
614 * Don't forget to update Documentation/ on changes.
616 static const char mnemonics[BITS_PER_LONG][2] = {
618 * In case if we meet a flag we don't know about.
620 [0 ... (BITS_PER_LONG-1)] = "??",
622 [ilog2(VM_READ)] = "rd",
623 [ilog2(VM_WRITE)] = "wr",
624 [ilog2(VM_EXEC)] = "ex",
625 [ilog2(VM_SHARED)] = "sh",
626 [ilog2(VM_MAYREAD)] = "mr",
627 [ilog2(VM_MAYWRITE)] = "mw",
628 [ilog2(VM_MAYEXEC)] = "me",
629 [ilog2(VM_MAYSHARE)] = "ms",
630 [ilog2(VM_GROWSDOWN)] = "gd",
631 [ilog2(VM_PFNMAP)] = "pf",
632 [ilog2(VM_DENYWRITE)] = "dw",
633 #ifdef CONFIG_X86_INTEL_MPX
634 [ilog2(VM_MPX)] = "mp",
636 [ilog2(VM_LOCKED)] = "lo",
637 [ilog2(VM_IO)] = "io",
638 [ilog2(VM_SEQ_READ)] = "sr",
639 [ilog2(VM_RAND_READ)] = "rr",
640 [ilog2(VM_DONTCOPY)] = "dc",
641 [ilog2(VM_DONTEXPAND)] = "de",
642 [ilog2(VM_ACCOUNT)] = "ac",
643 [ilog2(VM_NORESERVE)] = "nr",
644 [ilog2(VM_HUGETLB)] = "ht",
645 [ilog2(VM_SYNC)] = "sf",
646 [ilog2(VM_ARCH_1)] = "ar",
647 [ilog2(VM_WIPEONFORK)] = "wf",
648 [ilog2(VM_DONTDUMP)] = "dd",
649 #ifdef CONFIG_MEM_SOFT_DIRTY
650 [ilog2(VM_SOFTDIRTY)] = "sd",
652 [ilog2(VM_MIXEDMAP)] = "mm",
653 [ilog2(VM_HUGEPAGE)] = "hg",
654 [ilog2(VM_NOHUGEPAGE)] = "nh",
655 [ilog2(VM_MERGEABLE)] = "mg",
656 [ilog2(VM_UFFD_MISSING)]= "um",
657 [ilog2(VM_UFFD_WP)] = "uw",
658 #ifdef CONFIG_ARCH_HAS_PKEYS
659 /* These come out via ProtectionKey: */
660 [ilog2(VM_PKEY_BIT0)] = "",
661 [ilog2(VM_PKEY_BIT1)] = "",
662 [ilog2(VM_PKEY_BIT2)] = "",
663 [ilog2(VM_PKEY_BIT3)] = "",
665 [ilog2(VM_PKEY_BIT4)] = "",
667 #endif /* CONFIG_ARCH_HAS_PKEYS */
671 seq_puts(m, "VmFlags: ");
672 for (i = 0; i < BITS_PER_LONG; i++) {
673 if (!mnemonics[i][0])
675 if (vma->vm_flags & (1UL << i)) {
676 seq_putc(m, mnemonics[i][0]);
677 seq_putc(m, mnemonics[i][1]);
684 #ifdef CONFIG_HUGETLB_PAGE
685 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
686 unsigned long addr, unsigned long end,
687 struct mm_walk *walk)
689 struct mem_size_stats *mss = walk->private;
690 struct vm_area_struct *vma = walk->vma;
691 struct page *page = NULL;
693 if (pte_present(*pte)) {
694 page = vm_normal_page(vma, addr, *pte);
695 } else if (is_swap_pte(*pte)) {
696 swp_entry_t swpent = pte_to_swp_entry(*pte);
698 if (is_migration_entry(swpent))
699 page = migration_entry_to_page(swpent);
700 else if (is_device_private_entry(swpent))
701 page = device_private_entry_to_page(swpent);
704 int mapcount = page_mapcount(page);
707 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
709 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
713 #endif /* HUGETLB_PAGE */
715 static void smap_gather_stats(struct vm_area_struct *vma,
716 struct mem_size_stats *mss)
718 struct mm_walk smaps_walk = {
719 .pmd_entry = smaps_pte_range,
720 #ifdef CONFIG_HUGETLB_PAGE
721 .hugetlb_entry = smaps_hugetlb_range,
726 smaps_walk.private = mss;
729 /* In case of smaps_rollup, reset the value from previous vma */
730 mss->check_shmem_swap = false;
731 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
733 * For shared or readonly shmem mappings we know that all
734 * swapped out pages belong to the shmem object, and we can
735 * obtain the swap value much more efficiently. For private
736 * writable mappings, we might have COW pages that are
737 * not affected by the parent swapped out pages of the shmem
738 * object, so we have to distinguish them during the page walk.
739 * Unless we know that the shmem object (or the part mapped by
740 * our VMA) has no swapped out pages at all.
742 unsigned long shmem_swapped = shmem_swap_usage(vma);
744 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
745 !(vma->vm_flags & VM_WRITE)) {
746 mss->swap += shmem_swapped;
748 mss->check_shmem_swap = true;
749 smaps_walk.pte_hole = smaps_pte_hole;
753 /* mmap_sem is held in m_start */
754 walk_page_vma(vma, &smaps_walk);
757 #define SEQ_PUT_DEC(str, val) \
758 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
760 /* Show the contents common for smaps and smaps_rollup */
761 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss)
763 SEQ_PUT_DEC("Rss: ", mss->resident);
764 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
765 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
766 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
767 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
768 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
769 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
770 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
771 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
772 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
773 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
774 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
775 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
776 mss->private_hugetlb >> 10, 7);
777 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
778 SEQ_PUT_DEC(" kB\nSwapPss: ",
779 mss->swap_pss >> PSS_SHIFT);
780 SEQ_PUT_DEC(" kB\nLocked: ",
781 mss->pss_locked >> PSS_SHIFT);
782 seq_puts(m, " kB\n");
785 static int show_smap(struct seq_file *m, void *v)
787 struct vm_area_struct *vma = v;
788 struct mem_size_stats mss;
790 memset(&mss, 0, sizeof(mss));
792 smap_gather_stats(vma, &mss);
794 show_map_vma(m, vma);
796 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
797 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
798 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
799 seq_puts(m, " kB\n");
801 __show_smap(m, &mss);
803 seq_printf(m, "THPeligible: %d\n", transparent_hugepage_enabled(vma));
805 if (arch_pkeys_enabled())
806 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
807 show_smap_vma_flags(m, vma);
814 static int show_smaps_rollup(struct seq_file *m, void *v)
816 struct proc_maps_private *priv = m->private;
817 struct mem_size_stats mss;
818 struct mm_struct *mm;
819 struct vm_area_struct *vma;
820 unsigned long last_vma_end = 0;
823 priv->task = get_proc_task(priv->inode);
828 if (!mm || !mmget_not_zero(mm)) {
833 memset(&mss, 0, sizeof(mss));
835 ret = down_read_killable(&mm->mmap_sem);
839 hold_task_mempolicy(priv);
841 for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
842 smap_gather_stats(vma, &mss);
843 last_vma_end = vma->vm_end;
846 show_vma_header_prefix(m, priv->mm->mmap->vm_start,
847 last_vma_end, 0, 0, 0, 0);
849 seq_puts(m, "[rollup]\n");
851 __show_smap(m, &mss);
853 release_task_mempolicy(priv);
854 up_read(&mm->mmap_sem);
859 put_task_struct(priv->task);
866 static const struct seq_operations proc_pid_smaps_op = {
873 static int pid_smaps_open(struct inode *inode, struct file *file)
875 return do_maps_open(inode, file, &proc_pid_smaps_op);
878 static int smaps_rollup_open(struct inode *inode, struct file *file)
881 struct proc_maps_private *priv;
883 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
887 ret = single_open(file, show_smaps_rollup, priv);
892 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
893 if (IS_ERR(priv->mm)) {
894 ret = PTR_ERR(priv->mm);
896 single_release(inode, file);
907 static int smaps_rollup_release(struct inode *inode, struct file *file)
909 struct seq_file *seq = file->private_data;
910 struct proc_maps_private *priv = seq->private;
916 return single_release(inode, file);
919 const struct file_operations proc_pid_smaps_operations = {
920 .open = pid_smaps_open,
923 .release = proc_map_release,
926 const struct file_operations proc_pid_smaps_rollup_operations = {
927 .open = smaps_rollup_open,
930 .release = smaps_rollup_release,
933 enum clear_refs_types {
937 CLEAR_REFS_SOFT_DIRTY,
938 CLEAR_REFS_MM_HIWATER_RSS,
942 struct clear_refs_private {
943 enum clear_refs_types type;
946 #ifdef CONFIG_MEM_SOFT_DIRTY
947 static inline void clear_soft_dirty(struct vm_area_struct *vma,
948 unsigned long addr, pte_t *pte)
951 * The soft-dirty tracker uses #PF-s to catch writes
952 * to pages, so write-protect the pte as well. See the
953 * Documentation/admin-guide/mm/soft-dirty.rst for full description
954 * of how soft-dirty works.
958 if (pte_present(ptent)) {
959 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
960 ptent = pte_wrprotect(ptent);
961 ptent = pte_clear_soft_dirty(ptent);
962 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
963 } else if (is_swap_pte(ptent)) {
964 ptent = pte_swp_clear_soft_dirty(ptent);
965 set_pte_at(vma->vm_mm, addr, pte, ptent);
969 static inline void clear_soft_dirty(struct vm_area_struct *vma,
970 unsigned long addr, pte_t *pte)
975 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
976 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
977 unsigned long addr, pmd_t *pmdp)
979 pmd_t old, pmd = *pmdp;
981 if (pmd_present(pmd)) {
982 /* See comment in change_huge_pmd() */
983 old = pmdp_invalidate(vma, addr, pmdp);
985 pmd = pmd_mkdirty(pmd);
987 pmd = pmd_mkyoung(pmd);
989 pmd = pmd_wrprotect(pmd);
990 pmd = pmd_clear_soft_dirty(pmd);
992 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
993 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
994 pmd = pmd_swp_clear_soft_dirty(pmd);
995 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
999 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1000 unsigned long addr, pmd_t *pmdp)
1005 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1006 unsigned long end, struct mm_walk *walk)
1008 struct clear_refs_private *cp = walk->private;
1009 struct vm_area_struct *vma = walk->vma;
1014 ptl = pmd_trans_huge_lock(pmd, vma);
1016 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1017 clear_soft_dirty_pmd(vma, addr, pmd);
1021 if (!pmd_present(*pmd))
1024 page = pmd_page(*pmd);
1026 /* Clear accessed and referenced bits. */
1027 pmdp_test_and_clear_young(vma, addr, pmd);
1028 test_and_clear_page_young(page);
1029 ClearPageReferenced(page);
1035 if (pmd_trans_unstable(pmd))
1038 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1039 for (; addr != end; pte++, addr += PAGE_SIZE) {
1042 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1043 clear_soft_dirty(vma, addr, pte);
1047 if (!pte_present(ptent))
1050 page = vm_normal_page(vma, addr, ptent);
1054 /* Clear accessed and referenced bits. */
1055 ptep_test_and_clear_young(vma, addr, pte);
1056 test_and_clear_page_young(page);
1057 ClearPageReferenced(page);
1059 pte_unmap_unlock(pte - 1, ptl);
1064 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1065 struct mm_walk *walk)
1067 struct clear_refs_private *cp = walk->private;
1068 struct vm_area_struct *vma = walk->vma;
1070 if (vma->vm_flags & VM_PFNMAP)
1074 * Writing 1 to /proc/pid/clear_refs affects all pages.
1075 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1076 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1077 * Writing 4 to /proc/pid/clear_refs affects all pages.
1079 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1081 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1086 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1087 size_t count, loff_t *ppos)
1089 struct task_struct *task;
1090 char buffer[PROC_NUMBUF];
1091 struct mm_struct *mm;
1092 struct vm_area_struct *vma;
1093 enum clear_refs_types type;
1094 struct mmu_gather tlb;
1098 memset(buffer, 0, sizeof(buffer));
1099 if (count > sizeof(buffer) - 1)
1100 count = sizeof(buffer) - 1;
1101 if (copy_from_user(buffer, buf, count))
1103 rv = kstrtoint(strstrip(buffer), 10, &itype);
1106 type = (enum clear_refs_types)itype;
1107 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1110 task = get_proc_task(file_inode(file));
1113 mm = get_task_mm(task);
1115 struct clear_refs_private cp = {
1118 struct mm_walk clear_refs_walk = {
1119 .pmd_entry = clear_refs_pte_range,
1120 .test_walk = clear_refs_test_walk,
1125 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1126 if (down_write_killable(&mm->mmap_sem)) {
1132 * Writing 5 to /proc/pid/clear_refs resets the peak
1133 * resident set size to this mm's current rss value.
1135 reset_mm_hiwater_rss(mm);
1136 up_write(&mm->mmap_sem);
1140 if (down_read_killable(&mm->mmap_sem)) {
1144 tlb_gather_mmu(&tlb, mm, 0, -1);
1145 if (type == CLEAR_REFS_SOFT_DIRTY) {
1146 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1147 if (!(vma->vm_flags & VM_SOFTDIRTY))
1149 up_read(&mm->mmap_sem);
1150 if (down_write_killable(&mm->mmap_sem)) {
1155 * Avoid to modify vma->vm_flags
1156 * without locked ops while the
1157 * coredump reads the vm_flags.
1159 if (!mmget_still_valid(mm)) {
1161 * Silently return "count"
1162 * like if get_task_mm()
1163 * failed. FIXME: should this
1164 * function have returned
1165 * -ESRCH if get_task_mm()
1167 * get_proc_task() fails?
1169 up_write(&mm->mmap_sem);
1172 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1173 vma->vm_flags &= ~VM_SOFTDIRTY;
1174 vma_set_page_prot(vma);
1176 downgrade_write(&mm->mmap_sem);
1179 mmu_notifier_invalidate_range_start(mm, 0, -1);
1181 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1182 if (type == CLEAR_REFS_SOFT_DIRTY)
1183 mmu_notifier_invalidate_range_end(mm, 0, -1);
1184 tlb_finish_mmu(&tlb, 0, -1);
1185 up_read(&mm->mmap_sem);
1189 put_task_struct(task);
1194 const struct file_operations proc_clear_refs_operations = {
1195 .write = clear_refs_write,
1196 .llseek = noop_llseek,
1203 struct pagemapread {
1204 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1205 pagemap_entry_t *buffer;
1209 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1210 #define PAGEMAP_WALK_MASK (PMD_MASK)
1212 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1213 #define PM_PFRAME_BITS 55
1214 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1215 #define PM_SOFT_DIRTY BIT_ULL(55)
1216 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1217 #define PM_FILE BIT_ULL(61)
1218 #define PM_SWAP BIT_ULL(62)
1219 #define PM_PRESENT BIT_ULL(63)
1221 #define PM_END_OF_BUFFER 1
1223 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1225 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1228 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1229 struct pagemapread *pm)
1231 pm->buffer[pm->pos++] = *pme;
1232 if (pm->pos >= pm->len)
1233 return PM_END_OF_BUFFER;
1237 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1238 struct mm_walk *walk)
1240 struct pagemapread *pm = walk->private;
1241 unsigned long addr = start;
1244 while (addr < end) {
1245 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1246 pagemap_entry_t pme = make_pme(0, 0);
1247 /* End of address space hole, which we mark as non-present. */
1248 unsigned long hole_end;
1251 hole_end = min(end, vma->vm_start);
1255 for (; addr < hole_end; addr += PAGE_SIZE) {
1256 err = add_to_pagemap(addr, &pme, pm);
1264 /* Addresses in the VMA. */
1265 if (vma->vm_flags & VM_SOFTDIRTY)
1266 pme = make_pme(0, PM_SOFT_DIRTY);
1267 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1268 err = add_to_pagemap(addr, &pme, pm);
1277 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1278 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1280 u64 frame = 0, flags = 0;
1281 struct page *page = NULL;
1283 if (pte_present(pte)) {
1285 frame = pte_pfn(pte);
1286 flags |= PM_PRESENT;
1287 page = _vm_normal_page(vma, addr, pte, true);
1288 if (pte_soft_dirty(pte))
1289 flags |= PM_SOFT_DIRTY;
1290 } else if (is_swap_pte(pte)) {
1292 if (pte_swp_soft_dirty(pte))
1293 flags |= PM_SOFT_DIRTY;
1294 entry = pte_to_swp_entry(pte);
1296 frame = swp_type(entry) |
1297 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1299 if (is_migration_entry(entry))
1300 page = migration_entry_to_page(entry);
1302 if (is_device_private_entry(entry))
1303 page = device_private_entry_to_page(entry);
1306 if (page && !PageAnon(page))
1308 if (page && page_mapcount(page) == 1)
1309 flags |= PM_MMAP_EXCLUSIVE;
1310 if (vma->vm_flags & VM_SOFTDIRTY)
1311 flags |= PM_SOFT_DIRTY;
1313 return make_pme(frame, flags);
1316 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1317 struct mm_walk *walk)
1319 struct vm_area_struct *vma = walk->vma;
1320 struct pagemapread *pm = walk->private;
1322 pte_t *pte, *orig_pte;
1325 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1326 ptl = pmd_trans_huge_lock(pmdp, vma);
1328 u64 flags = 0, frame = 0;
1330 struct page *page = NULL;
1332 if (vma->vm_flags & VM_SOFTDIRTY)
1333 flags |= PM_SOFT_DIRTY;
1335 if (pmd_present(pmd)) {
1336 page = pmd_page(pmd);
1338 flags |= PM_PRESENT;
1339 if (pmd_soft_dirty(pmd))
1340 flags |= PM_SOFT_DIRTY;
1342 frame = pmd_pfn(pmd) +
1343 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1345 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1346 else if (is_swap_pmd(pmd)) {
1347 swp_entry_t entry = pmd_to_swp_entry(pmd);
1348 unsigned long offset;
1351 offset = swp_offset(entry) +
1352 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1353 frame = swp_type(entry) |
1354 (offset << MAX_SWAPFILES_SHIFT);
1357 if (pmd_swp_soft_dirty(pmd))
1358 flags |= PM_SOFT_DIRTY;
1359 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1360 page = migration_entry_to_page(entry);
1364 if (page && page_mapcount(page) == 1)
1365 flags |= PM_MMAP_EXCLUSIVE;
1367 for (; addr != end; addr += PAGE_SIZE) {
1368 pagemap_entry_t pme = make_pme(frame, flags);
1370 err = add_to_pagemap(addr, &pme, pm);
1374 if (flags & PM_PRESENT)
1376 else if (flags & PM_SWAP)
1377 frame += (1 << MAX_SWAPFILES_SHIFT);
1384 if (pmd_trans_unstable(pmdp))
1386 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1389 * We can assume that @vma always points to a valid one and @end never
1390 * goes beyond vma->vm_end.
1392 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1393 for (; addr < end; pte++, addr += PAGE_SIZE) {
1394 pagemap_entry_t pme;
1396 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1397 err = add_to_pagemap(addr, &pme, pm);
1401 pte_unmap_unlock(orig_pte, ptl);
1408 #ifdef CONFIG_HUGETLB_PAGE
1409 /* This function walks within one hugetlb entry in the single call */
1410 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1411 unsigned long addr, unsigned long end,
1412 struct mm_walk *walk)
1414 struct pagemapread *pm = walk->private;
1415 struct vm_area_struct *vma = walk->vma;
1416 u64 flags = 0, frame = 0;
1420 if (vma->vm_flags & VM_SOFTDIRTY)
1421 flags |= PM_SOFT_DIRTY;
1423 pte = huge_ptep_get(ptep);
1424 if (pte_present(pte)) {
1425 struct page *page = pte_page(pte);
1427 if (!PageAnon(page))
1430 if (page_mapcount(page) == 1)
1431 flags |= PM_MMAP_EXCLUSIVE;
1433 flags |= PM_PRESENT;
1435 frame = pte_pfn(pte) +
1436 ((addr & ~hmask) >> PAGE_SHIFT);
1439 for (; addr != end; addr += PAGE_SIZE) {
1440 pagemap_entry_t pme = make_pme(frame, flags);
1442 err = add_to_pagemap(addr, &pme, pm);
1445 if (pm->show_pfn && (flags & PM_PRESENT))
1453 #endif /* HUGETLB_PAGE */
1456 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1458 * For each page in the address space, this file contains one 64-bit entry
1459 * consisting of the following:
1461 * Bits 0-54 page frame number (PFN) if present
1462 * Bits 0-4 swap type if swapped
1463 * Bits 5-54 swap offset if swapped
1464 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1465 * Bit 56 page exclusively mapped
1467 * Bit 61 page is file-page or shared-anon
1468 * Bit 62 page swapped
1469 * Bit 63 page present
1471 * If the page is not present but in swap, then the PFN contains an
1472 * encoding of the swap file number and the page's offset into the
1473 * swap. Unmapped pages return a null PFN. This allows determining
1474 * precisely which pages are mapped (or in swap) and comparing mapped
1475 * pages between processes.
1477 * Efficient users of this interface will use /proc/pid/maps to
1478 * determine which areas of memory are actually mapped and llseek to
1479 * skip over unmapped regions.
1481 static ssize_t pagemap_read(struct file *file, char __user *buf,
1482 size_t count, loff_t *ppos)
1484 struct mm_struct *mm = file->private_data;
1485 struct pagemapread pm;
1486 struct mm_walk pagemap_walk = {};
1488 unsigned long svpfn;
1489 unsigned long start_vaddr;
1490 unsigned long end_vaddr;
1491 int ret = 0, copied = 0;
1493 if (!mm || !mmget_not_zero(mm))
1497 /* file position must be aligned */
1498 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1505 /* do not disclose physical addresses: attack vector */
1506 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1508 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1509 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1514 pagemap_walk.pmd_entry = pagemap_pmd_range;
1515 pagemap_walk.pte_hole = pagemap_pte_hole;
1516 #ifdef CONFIG_HUGETLB_PAGE
1517 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1519 pagemap_walk.mm = mm;
1520 pagemap_walk.private = ±
1523 svpfn = src / PM_ENTRY_BYTES;
1524 start_vaddr = svpfn << PAGE_SHIFT;
1525 end_vaddr = mm->task_size;
1527 /* watch out for wraparound */
1528 if (svpfn > mm->task_size >> PAGE_SHIFT)
1529 start_vaddr = end_vaddr;
1532 * The odds are that this will stop walking way
1533 * before end_vaddr, because the length of the
1534 * user buffer is tracked in "pm", and the walk
1535 * will stop when we hit the end of the buffer.
1538 while (count && (start_vaddr < end_vaddr)) {
1543 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1545 if (end < start_vaddr || end > end_vaddr)
1547 ret = down_read_killable(&mm->mmap_sem);
1550 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1551 up_read(&mm->mmap_sem);
1554 len = min(count, PM_ENTRY_BYTES * pm.pos);
1555 if (copy_to_user(buf, pm.buffer, len)) {
1564 if (!ret || ret == PM_END_OF_BUFFER)
1575 static int pagemap_open(struct inode *inode, struct file *file)
1577 struct mm_struct *mm;
1579 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1582 file->private_data = mm;
1586 static int pagemap_release(struct inode *inode, struct file *file)
1588 struct mm_struct *mm = file->private_data;
1595 const struct file_operations proc_pagemap_operations = {
1596 .llseek = mem_lseek, /* borrow this */
1597 .read = pagemap_read,
1598 .open = pagemap_open,
1599 .release = pagemap_release,
1601 #endif /* CONFIG_PROC_PAGE_MONITOR */
1606 unsigned long pages;
1608 unsigned long active;
1609 unsigned long writeback;
1610 unsigned long mapcount_max;
1611 unsigned long dirty;
1612 unsigned long swapcache;
1613 unsigned long node[MAX_NUMNODES];
1616 struct numa_maps_private {
1617 struct proc_maps_private proc_maps;
1618 struct numa_maps md;
1621 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1622 unsigned long nr_pages)
1624 int count = page_mapcount(page);
1626 md->pages += nr_pages;
1627 if (pte_dirty || PageDirty(page))
1628 md->dirty += nr_pages;
1630 if (PageSwapCache(page))
1631 md->swapcache += nr_pages;
1633 if (PageActive(page) || PageUnevictable(page))
1634 md->active += nr_pages;
1636 if (PageWriteback(page))
1637 md->writeback += nr_pages;
1640 md->anon += nr_pages;
1642 if (count > md->mapcount_max)
1643 md->mapcount_max = count;
1645 md->node[page_to_nid(page)] += nr_pages;
1648 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1654 if (!pte_present(pte))
1657 page = vm_normal_page(vma, addr, pte);
1661 if (PageReserved(page))
1664 nid = page_to_nid(page);
1665 if (!node_isset(nid, node_states[N_MEMORY]))
1671 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1672 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1673 struct vm_area_struct *vma,
1679 if (!pmd_present(pmd))
1682 page = vm_normal_page_pmd(vma, addr, pmd);
1686 if (PageReserved(page))
1689 nid = page_to_nid(page);
1690 if (!node_isset(nid, node_states[N_MEMORY]))
1697 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1698 unsigned long end, struct mm_walk *walk)
1700 struct numa_maps *md = walk->private;
1701 struct vm_area_struct *vma = walk->vma;
1706 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1707 ptl = pmd_trans_huge_lock(pmd, vma);
1711 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1713 gather_stats(page, md, pmd_dirty(*pmd),
1714 HPAGE_PMD_SIZE/PAGE_SIZE);
1719 if (pmd_trans_unstable(pmd))
1722 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1724 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1727 gather_stats(page, md, pte_dirty(*pte), 1);
1729 } while (pte++, addr += PAGE_SIZE, addr != end);
1730 pte_unmap_unlock(orig_pte, ptl);
1734 #ifdef CONFIG_HUGETLB_PAGE
1735 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1736 unsigned long addr, unsigned long end, struct mm_walk *walk)
1738 pte_t huge_pte = huge_ptep_get(pte);
1739 struct numa_maps *md;
1742 if (!pte_present(huge_pte))
1745 page = pte_page(huge_pte);
1750 gather_stats(page, md, pte_dirty(huge_pte), 1);
1755 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1756 unsigned long addr, unsigned long end, struct mm_walk *walk)
1763 * Display pages allocated per node and memory policy via /proc.
1765 static int show_numa_map(struct seq_file *m, void *v)
1767 struct numa_maps_private *numa_priv = m->private;
1768 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1769 struct vm_area_struct *vma = v;
1770 struct numa_maps *md = &numa_priv->md;
1771 struct file *file = vma->vm_file;
1772 struct mm_struct *mm = vma->vm_mm;
1773 struct mm_walk walk = {
1774 .hugetlb_entry = gather_hugetlb_stats,
1775 .pmd_entry = gather_pte_stats,
1779 struct mempolicy *pol;
1786 /* Ensure we start with an empty set of numa_maps statistics. */
1787 memset(md, 0, sizeof(*md));
1789 pol = __get_vma_policy(vma, vma->vm_start);
1791 mpol_to_str(buffer, sizeof(buffer), pol);
1794 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1797 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1800 seq_puts(m, " file=");
1801 seq_file_path(m, file, "\n\t= ");
1802 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1803 seq_puts(m, " heap");
1804 } else if (is_stack(vma)) {
1805 seq_puts(m, " stack");
1808 if (is_vm_hugetlb_page(vma))
1809 seq_puts(m, " huge");
1811 /* mmap_sem is held by m_start */
1812 walk_page_vma(vma, &walk);
1818 seq_printf(m, " anon=%lu", md->anon);
1821 seq_printf(m, " dirty=%lu", md->dirty);
1823 if (md->pages != md->anon && md->pages != md->dirty)
1824 seq_printf(m, " mapped=%lu", md->pages);
1826 if (md->mapcount_max > 1)
1827 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1830 seq_printf(m, " swapcache=%lu", md->swapcache);
1832 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1833 seq_printf(m, " active=%lu", md->active);
1836 seq_printf(m, " writeback=%lu", md->writeback);
1838 for_each_node_state(nid, N_MEMORY)
1840 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1842 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1845 m_cache_vma(m, vma);
1849 static const struct seq_operations proc_pid_numa_maps_op = {
1853 .show = show_numa_map,
1856 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1858 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1859 sizeof(struct numa_maps_private));
1862 const struct file_operations proc_pid_numa_maps_operations = {
1863 .open = pid_numa_maps_open,
1865 .llseek = seq_lseek,
1866 .release = proc_map_release,
1869 #endif /* CONFIG_NUMA */