GNU Linux-libre 6.9-gnu
[releases.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/ksm.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #include <linux/minmax.h>
24 #include <linux/overflow.h>
25
26 #include <asm/elf.h>
27 #include <asm/tlb.h>
28 #include <asm/tlbflush.h>
29 #include "internal.h"
30
31 #define SEQ_PUT_DEC(str, val) \
32                 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
33 void task_mem(struct seq_file *m, struct mm_struct *mm)
34 {
35         unsigned long text, lib, swap, anon, file, shmem;
36         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
37
38         anon = get_mm_counter(mm, MM_ANONPAGES);
39         file = get_mm_counter(mm, MM_FILEPAGES);
40         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
41
42         /*
43          * Note: to minimize their overhead, mm maintains hiwater_vm and
44          * hiwater_rss only when about to *lower* total_vm or rss.  Any
45          * collector of these hiwater stats must therefore get total_vm
46          * and rss too, which will usually be the higher.  Barriers? not
47          * worth the effort, such snapshots can always be inconsistent.
48          */
49         hiwater_vm = total_vm = mm->total_vm;
50         if (hiwater_vm < mm->hiwater_vm)
51                 hiwater_vm = mm->hiwater_vm;
52         hiwater_rss = total_rss = anon + file + shmem;
53         if (hiwater_rss < mm->hiwater_rss)
54                 hiwater_rss = mm->hiwater_rss;
55
56         /* split executable areas between text and lib */
57         text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
58         text = min(text, mm->exec_vm << PAGE_SHIFT);
59         lib = (mm->exec_vm << PAGE_SHIFT) - text;
60
61         swap = get_mm_counter(mm, MM_SWAPENTS);
62         SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
63         SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
64         SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
65         SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
66         SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
67         SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
68         SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
69         SEQ_PUT_DEC(" kB\nRssFile:\t", file);
70         SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
71         SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
72         SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
73         seq_put_decimal_ull_width(m,
74                     " kB\nVmExe:\t", text >> 10, 8);
75         seq_put_decimal_ull_width(m,
76                     " kB\nVmLib:\t", lib >> 10, 8);
77         seq_put_decimal_ull_width(m,
78                     " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
79         SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
80         seq_puts(m, " kB\n");
81         hugetlb_report_usage(m, mm);
82 }
83 #undef SEQ_PUT_DEC
84
85 unsigned long task_vsize(struct mm_struct *mm)
86 {
87         return PAGE_SIZE * mm->total_vm;
88 }
89
90 unsigned long task_statm(struct mm_struct *mm,
91                          unsigned long *shared, unsigned long *text,
92                          unsigned long *data, unsigned long *resident)
93 {
94         *shared = get_mm_counter(mm, MM_FILEPAGES) +
95                         get_mm_counter(mm, MM_SHMEMPAGES);
96         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
97                                                                 >> PAGE_SHIFT;
98         *data = mm->data_vm + mm->stack_vm;
99         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
100         return mm->total_vm;
101 }
102
103 #ifdef CONFIG_NUMA
104 /*
105  * Save get_task_policy() for show_numa_map().
106  */
107 static void hold_task_mempolicy(struct proc_maps_private *priv)
108 {
109         struct task_struct *task = priv->task;
110
111         task_lock(task);
112         priv->task_mempolicy = get_task_policy(task);
113         mpol_get(priv->task_mempolicy);
114         task_unlock(task);
115 }
116 static void release_task_mempolicy(struct proc_maps_private *priv)
117 {
118         mpol_put(priv->task_mempolicy);
119 }
120 #else
121 static void hold_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 static void release_task_mempolicy(struct proc_maps_private *priv)
125 {
126 }
127 #endif
128
129 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
130                                                 loff_t *ppos)
131 {
132         struct vm_area_struct *vma = vma_next(&priv->iter);
133
134         if (vma) {
135                 *ppos = vma->vm_start;
136         } else {
137                 *ppos = -2UL;
138                 vma = get_gate_vma(priv->mm);
139         }
140
141         return vma;
142 }
143
144 static void *m_start(struct seq_file *m, loff_t *ppos)
145 {
146         struct proc_maps_private *priv = m->private;
147         unsigned long last_addr = *ppos;
148         struct mm_struct *mm;
149
150         /* See m_next(). Zero at the start or after lseek. */
151         if (last_addr == -1UL)
152                 return NULL;
153
154         priv->task = get_proc_task(priv->inode);
155         if (!priv->task)
156                 return ERR_PTR(-ESRCH);
157
158         mm = priv->mm;
159         if (!mm || !mmget_not_zero(mm)) {
160                 put_task_struct(priv->task);
161                 priv->task = NULL;
162                 return NULL;
163         }
164
165         if (mmap_read_lock_killable(mm)) {
166                 mmput(mm);
167                 put_task_struct(priv->task);
168                 priv->task = NULL;
169                 return ERR_PTR(-EINTR);
170         }
171
172         vma_iter_init(&priv->iter, mm, last_addr);
173         hold_task_mempolicy(priv);
174         if (last_addr == -2UL)
175                 return get_gate_vma(mm);
176
177         return proc_get_vma(priv, ppos);
178 }
179
180 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
181 {
182         if (*ppos == -2UL) {
183                 *ppos = -1UL;
184                 return NULL;
185         }
186         return proc_get_vma(m->private, ppos);
187 }
188
189 static void m_stop(struct seq_file *m, void *v)
190 {
191         struct proc_maps_private *priv = m->private;
192         struct mm_struct *mm = priv->mm;
193
194         if (!priv->task)
195                 return;
196
197         release_task_mempolicy(priv);
198         mmap_read_unlock(mm);
199         mmput(mm);
200         put_task_struct(priv->task);
201         priv->task = NULL;
202 }
203
204 static int proc_maps_open(struct inode *inode, struct file *file,
205                         const struct seq_operations *ops, int psize)
206 {
207         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
208
209         if (!priv)
210                 return -ENOMEM;
211
212         priv->inode = inode;
213         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
214         if (IS_ERR(priv->mm)) {
215                 int err = PTR_ERR(priv->mm);
216
217                 seq_release_private(inode, file);
218                 return err;
219         }
220
221         return 0;
222 }
223
224 static int proc_map_release(struct inode *inode, struct file *file)
225 {
226         struct seq_file *seq = file->private_data;
227         struct proc_maps_private *priv = seq->private;
228
229         if (priv->mm)
230                 mmdrop(priv->mm);
231
232         return seq_release_private(inode, file);
233 }
234
235 static int do_maps_open(struct inode *inode, struct file *file,
236                         const struct seq_operations *ops)
237 {
238         return proc_maps_open(inode, file, ops,
239                                 sizeof(struct proc_maps_private));
240 }
241
242 static void show_vma_header_prefix(struct seq_file *m,
243                                    unsigned long start, unsigned long end,
244                                    vm_flags_t flags, unsigned long long pgoff,
245                                    dev_t dev, unsigned long ino)
246 {
247         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
248         seq_put_hex_ll(m, NULL, start, 8);
249         seq_put_hex_ll(m, "-", end, 8);
250         seq_putc(m, ' ');
251         seq_putc(m, flags & VM_READ ? 'r' : '-');
252         seq_putc(m, flags & VM_WRITE ? 'w' : '-');
253         seq_putc(m, flags & VM_EXEC ? 'x' : '-');
254         seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
255         seq_put_hex_ll(m, " ", pgoff, 8);
256         seq_put_hex_ll(m, " ", MAJOR(dev), 2);
257         seq_put_hex_ll(m, ":", MINOR(dev), 2);
258         seq_put_decimal_ull(m, " ", ino);
259         seq_putc(m, ' ');
260 }
261
262 static void
263 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
264 {
265         struct anon_vma_name *anon_name = NULL;
266         struct mm_struct *mm = vma->vm_mm;
267         struct file *file = vma->vm_file;
268         vm_flags_t flags = vma->vm_flags;
269         unsigned long ino = 0;
270         unsigned long long pgoff = 0;
271         unsigned long start, end;
272         dev_t dev = 0;
273         const char *name = NULL;
274
275         if (file) {
276                 const struct inode *inode = file_user_inode(vma->vm_file);
277
278                 dev = inode->i_sb->s_dev;
279                 ino = inode->i_ino;
280                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
281         }
282
283         start = vma->vm_start;
284         end = vma->vm_end;
285         show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
286         if (mm)
287                 anon_name = anon_vma_name(vma);
288
289         /*
290          * Print the dentry name for named mappings, and a
291          * special [heap] marker for the heap:
292          */
293         if (file) {
294                 seq_pad(m, ' ');
295                 /*
296                  * If user named this anon shared memory via
297                  * prctl(PR_SET_VMA ..., use the provided name.
298                  */
299                 if (anon_name)
300                         seq_printf(m, "[anon_shmem:%s]", anon_name->name);
301                 else
302                         seq_path(m, file_user_path(file), "\n");
303                 goto done;
304         }
305
306         if (vma->vm_ops && vma->vm_ops->name) {
307                 name = vma->vm_ops->name(vma);
308                 if (name)
309                         goto done;
310         }
311
312         name = arch_vma_name(vma);
313         if (!name) {
314                 if (!mm) {
315                         name = "[vdso]";
316                         goto done;
317                 }
318
319                 if (vma_is_initial_heap(vma)) {
320                         name = "[heap]";
321                         goto done;
322                 }
323
324                 if (vma_is_initial_stack(vma)) {
325                         name = "[stack]";
326                         goto done;
327                 }
328
329                 if (anon_name) {
330                         seq_pad(m, ' ');
331                         seq_printf(m, "[anon:%s]", anon_name->name);
332                 }
333         }
334
335 done:
336         if (name) {
337                 seq_pad(m, ' ');
338                 seq_puts(m, name);
339         }
340         seq_putc(m, '\n');
341 }
342
343 static int show_map(struct seq_file *m, void *v)
344 {
345         show_map_vma(m, v);
346         return 0;
347 }
348
349 static const struct seq_operations proc_pid_maps_op = {
350         .start  = m_start,
351         .next   = m_next,
352         .stop   = m_stop,
353         .show   = show_map
354 };
355
356 static int pid_maps_open(struct inode *inode, struct file *file)
357 {
358         return do_maps_open(inode, file, &proc_pid_maps_op);
359 }
360
361 const struct file_operations proc_pid_maps_operations = {
362         .open           = pid_maps_open,
363         .read           = seq_read,
364         .llseek         = seq_lseek,
365         .release        = proc_map_release,
366 };
367
368 /*
369  * Proportional Set Size(PSS): my share of RSS.
370  *
371  * PSS of a process is the count of pages it has in memory, where each
372  * page is divided by the number of processes sharing it.  So if a
373  * process has 1000 pages all to itself, and 1000 shared with one other
374  * process, its PSS will be 1500.
375  *
376  * To keep (accumulated) division errors low, we adopt a 64bit
377  * fixed-point pss counter to minimize division errors. So (pss >>
378  * PSS_SHIFT) would be the real byte count.
379  *
380  * A shift of 12 before division means (assuming 4K page size):
381  *      - 1M 3-user-pages add up to 8KB errors;
382  *      - supports mapcount up to 2^24, or 16M;
383  *      - supports PSS up to 2^52 bytes, or 4PB.
384  */
385 #define PSS_SHIFT 12
386
387 #ifdef CONFIG_PROC_PAGE_MONITOR
388 struct mem_size_stats {
389         unsigned long resident;
390         unsigned long shared_clean;
391         unsigned long shared_dirty;
392         unsigned long private_clean;
393         unsigned long private_dirty;
394         unsigned long referenced;
395         unsigned long anonymous;
396         unsigned long lazyfree;
397         unsigned long anonymous_thp;
398         unsigned long shmem_thp;
399         unsigned long file_thp;
400         unsigned long swap;
401         unsigned long shared_hugetlb;
402         unsigned long private_hugetlb;
403         unsigned long ksm;
404         u64 pss;
405         u64 pss_anon;
406         u64 pss_file;
407         u64 pss_shmem;
408         u64 pss_dirty;
409         u64 pss_locked;
410         u64 swap_pss;
411 };
412
413 static void smaps_page_accumulate(struct mem_size_stats *mss,
414                 struct page *page, unsigned long size, unsigned long pss,
415                 bool dirty, bool locked, bool private)
416 {
417         mss->pss += pss;
418
419         if (PageAnon(page))
420                 mss->pss_anon += pss;
421         else if (PageSwapBacked(page))
422                 mss->pss_shmem += pss;
423         else
424                 mss->pss_file += pss;
425
426         if (locked)
427                 mss->pss_locked += pss;
428
429         if (dirty || PageDirty(page)) {
430                 mss->pss_dirty += pss;
431                 if (private)
432                         mss->private_dirty += size;
433                 else
434                         mss->shared_dirty += size;
435         } else {
436                 if (private)
437                         mss->private_clean += size;
438                 else
439                         mss->shared_clean += size;
440         }
441 }
442
443 static void smaps_account(struct mem_size_stats *mss, struct page *page,
444                 bool compound, bool young, bool dirty, bool locked,
445                 bool migration)
446 {
447         int i, nr = compound ? compound_nr(page) : 1;
448         unsigned long size = nr * PAGE_SIZE;
449
450         /*
451          * First accumulate quantities that depend only on |size| and the type
452          * of the compound page.
453          */
454         if (PageAnon(page)) {
455                 mss->anonymous += size;
456                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
457                         mss->lazyfree += size;
458         }
459
460         if (PageKsm(page))
461                 mss->ksm += size;
462
463         mss->resident += size;
464         /* Accumulate the size in pages that have been accessed. */
465         if (young || page_is_young(page) || PageReferenced(page))
466                 mss->referenced += size;
467
468         /*
469          * Then accumulate quantities that may depend on sharing, or that may
470          * differ page-by-page.
471          *
472          * page_count(page) == 1 guarantees the page is mapped exactly once.
473          * If any subpage of the compound page mapped with PTE it would elevate
474          * page_count().
475          *
476          * The page_mapcount() is called to get a snapshot of the mapcount.
477          * Without holding the page lock this snapshot can be slightly wrong as
478          * we cannot always read the mapcount atomically.  It is not safe to
479          * call page_mapcount() even with PTL held if the page is not mapped,
480          * especially for migration entries.  Treat regular migration entries
481          * as mapcount == 1.
482          */
483         if ((page_count(page) == 1) || migration) {
484                 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
485                         locked, true);
486                 return;
487         }
488         for (i = 0; i < nr; i++, page++) {
489                 int mapcount = page_mapcount(page);
490                 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
491                 if (mapcount >= 2)
492                         pss /= mapcount;
493                 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
494                                       mapcount < 2);
495         }
496 }
497
498 #ifdef CONFIG_SHMEM
499 static int smaps_pte_hole(unsigned long addr, unsigned long end,
500                           __always_unused int depth, struct mm_walk *walk)
501 {
502         struct mem_size_stats *mss = walk->private;
503         struct vm_area_struct *vma = walk->vma;
504
505         mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
506                                               linear_page_index(vma, addr),
507                                               linear_page_index(vma, end));
508
509         return 0;
510 }
511 #else
512 #define smaps_pte_hole          NULL
513 #endif /* CONFIG_SHMEM */
514
515 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
516 {
517 #ifdef CONFIG_SHMEM
518         if (walk->ops->pte_hole) {
519                 /* depth is not used */
520                 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
521         }
522 #endif
523 }
524
525 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
526                 struct mm_walk *walk)
527 {
528         struct mem_size_stats *mss = walk->private;
529         struct vm_area_struct *vma = walk->vma;
530         bool locked = !!(vma->vm_flags & VM_LOCKED);
531         struct page *page = NULL;
532         bool migration = false, young = false, dirty = false;
533         pte_t ptent = ptep_get(pte);
534
535         if (pte_present(ptent)) {
536                 page = vm_normal_page(vma, addr, ptent);
537                 young = pte_young(ptent);
538                 dirty = pte_dirty(ptent);
539         } else if (is_swap_pte(ptent)) {
540                 swp_entry_t swpent = pte_to_swp_entry(ptent);
541
542                 if (!non_swap_entry(swpent)) {
543                         int mapcount;
544
545                         mss->swap += PAGE_SIZE;
546                         mapcount = swp_swapcount(swpent);
547                         if (mapcount >= 2) {
548                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
549
550                                 do_div(pss_delta, mapcount);
551                                 mss->swap_pss += pss_delta;
552                         } else {
553                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
554                         }
555                 } else if (is_pfn_swap_entry(swpent)) {
556                         if (is_migration_entry(swpent))
557                                 migration = true;
558                         page = pfn_swap_entry_to_page(swpent);
559                 }
560         } else {
561                 smaps_pte_hole_lookup(addr, walk);
562                 return;
563         }
564
565         if (!page)
566                 return;
567
568         smaps_account(mss, page, false, young, dirty, locked, migration);
569 }
570
571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
572 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
573                 struct mm_walk *walk)
574 {
575         struct mem_size_stats *mss = walk->private;
576         struct vm_area_struct *vma = walk->vma;
577         bool locked = !!(vma->vm_flags & VM_LOCKED);
578         struct page *page = NULL;
579         bool migration = false;
580
581         if (pmd_present(*pmd)) {
582                 page = vm_normal_page_pmd(vma, addr, *pmd);
583         } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
584                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
585
586                 if (is_migration_entry(entry)) {
587                         migration = true;
588                         page = pfn_swap_entry_to_page(entry);
589                 }
590         }
591         if (IS_ERR_OR_NULL(page))
592                 return;
593         if (PageAnon(page))
594                 mss->anonymous_thp += HPAGE_PMD_SIZE;
595         else if (PageSwapBacked(page))
596                 mss->shmem_thp += HPAGE_PMD_SIZE;
597         else if (is_zone_device_page(page))
598                 /* pass */;
599         else
600                 mss->file_thp += HPAGE_PMD_SIZE;
601
602         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
603                       locked, migration);
604 }
605 #else
606 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
607                 struct mm_walk *walk)
608 {
609 }
610 #endif
611
612 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
613                            struct mm_walk *walk)
614 {
615         struct vm_area_struct *vma = walk->vma;
616         pte_t *pte;
617         spinlock_t *ptl;
618
619         ptl = pmd_trans_huge_lock(pmd, vma);
620         if (ptl) {
621                 smaps_pmd_entry(pmd, addr, walk);
622                 spin_unlock(ptl);
623                 goto out;
624         }
625
626         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
627         if (!pte) {
628                 walk->action = ACTION_AGAIN;
629                 return 0;
630         }
631         for (; addr != end; pte++, addr += PAGE_SIZE)
632                 smaps_pte_entry(pte, addr, walk);
633         pte_unmap_unlock(pte - 1, ptl);
634 out:
635         cond_resched();
636         return 0;
637 }
638
639 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
640 {
641         /*
642          * Don't forget to update Documentation/ on changes.
643          */
644         static const char mnemonics[BITS_PER_LONG][2] = {
645                 /*
646                  * In case if we meet a flag we don't know about.
647                  */
648                 [0 ... (BITS_PER_LONG-1)] = "??",
649
650                 [ilog2(VM_READ)]        = "rd",
651                 [ilog2(VM_WRITE)]       = "wr",
652                 [ilog2(VM_EXEC)]        = "ex",
653                 [ilog2(VM_SHARED)]      = "sh",
654                 [ilog2(VM_MAYREAD)]     = "mr",
655                 [ilog2(VM_MAYWRITE)]    = "mw",
656                 [ilog2(VM_MAYEXEC)]     = "me",
657                 [ilog2(VM_MAYSHARE)]    = "ms",
658                 [ilog2(VM_GROWSDOWN)]   = "gd",
659                 [ilog2(VM_PFNMAP)]      = "pf",
660                 [ilog2(VM_LOCKED)]      = "lo",
661                 [ilog2(VM_IO)]          = "io",
662                 [ilog2(VM_SEQ_READ)]    = "sr",
663                 [ilog2(VM_RAND_READ)]   = "rr",
664                 [ilog2(VM_DONTCOPY)]    = "dc",
665                 [ilog2(VM_DONTEXPAND)]  = "de",
666                 [ilog2(VM_LOCKONFAULT)] = "lf",
667                 [ilog2(VM_ACCOUNT)]     = "ac",
668                 [ilog2(VM_NORESERVE)]   = "nr",
669                 [ilog2(VM_HUGETLB)]     = "ht",
670                 [ilog2(VM_SYNC)]        = "sf",
671                 [ilog2(VM_ARCH_1)]      = "ar",
672                 [ilog2(VM_WIPEONFORK)]  = "wf",
673                 [ilog2(VM_DONTDUMP)]    = "dd",
674 #ifdef CONFIG_ARM64_BTI
675                 [ilog2(VM_ARM64_BTI)]   = "bt",
676 #endif
677 #ifdef CONFIG_MEM_SOFT_DIRTY
678                 [ilog2(VM_SOFTDIRTY)]   = "sd",
679 #endif
680                 [ilog2(VM_MIXEDMAP)]    = "mm",
681                 [ilog2(VM_HUGEPAGE)]    = "hg",
682                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
683                 [ilog2(VM_MERGEABLE)]   = "mg",
684                 [ilog2(VM_UFFD_MISSING)]= "um",
685                 [ilog2(VM_UFFD_WP)]     = "uw",
686 #ifdef CONFIG_ARM64_MTE
687                 [ilog2(VM_MTE)]         = "mt",
688                 [ilog2(VM_MTE_ALLOWED)] = "",
689 #endif
690 #ifdef CONFIG_ARCH_HAS_PKEYS
691                 /* These come out via ProtectionKey: */
692                 [ilog2(VM_PKEY_BIT0)]   = "",
693                 [ilog2(VM_PKEY_BIT1)]   = "",
694                 [ilog2(VM_PKEY_BIT2)]   = "",
695                 [ilog2(VM_PKEY_BIT3)]   = "",
696 #if VM_PKEY_BIT4
697                 [ilog2(VM_PKEY_BIT4)]   = "",
698 #endif
699 #endif /* CONFIG_ARCH_HAS_PKEYS */
700 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
701                 [ilog2(VM_UFFD_MINOR)]  = "ui",
702 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
703 #ifdef CONFIG_X86_USER_SHADOW_STACK
704                 [ilog2(VM_SHADOW_STACK)] = "ss",
705 #endif
706         };
707         size_t i;
708
709         seq_puts(m, "VmFlags: ");
710         for (i = 0; i < BITS_PER_LONG; i++) {
711                 if (!mnemonics[i][0])
712                         continue;
713                 if (vma->vm_flags & (1UL << i)) {
714                         seq_putc(m, mnemonics[i][0]);
715                         seq_putc(m, mnemonics[i][1]);
716                         seq_putc(m, ' ');
717                 }
718         }
719         seq_putc(m, '\n');
720 }
721
722 #ifdef CONFIG_HUGETLB_PAGE
723 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
724                                  unsigned long addr, unsigned long end,
725                                  struct mm_walk *walk)
726 {
727         struct mem_size_stats *mss = walk->private;
728         struct vm_area_struct *vma = walk->vma;
729         struct page *page = NULL;
730         pte_t ptent = ptep_get(pte);
731
732         if (pte_present(ptent)) {
733                 page = vm_normal_page(vma, addr, ptent);
734         } else if (is_swap_pte(ptent)) {
735                 swp_entry_t swpent = pte_to_swp_entry(ptent);
736
737                 if (is_pfn_swap_entry(swpent))
738                         page = pfn_swap_entry_to_page(swpent);
739         }
740         if (page) {
741                 if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
742                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
743                 else
744                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
745         }
746         return 0;
747 }
748 #else
749 #define smaps_hugetlb_range     NULL
750 #endif /* HUGETLB_PAGE */
751
752 static const struct mm_walk_ops smaps_walk_ops = {
753         .pmd_entry              = smaps_pte_range,
754         .hugetlb_entry          = smaps_hugetlb_range,
755         .walk_lock              = PGWALK_RDLOCK,
756 };
757
758 static const struct mm_walk_ops smaps_shmem_walk_ops = {
759         .pmd_entry              = smaps_pte_range,
760         .hugetlb_entry          = smaps_hugetlb_range,
761         .pte_hole               = smaps_pte_hole,
762         .walk_lock              = PGWALK_RDLOCK,
763 };
764
765 /*
766  * Gather mem stats from @vma with the indicated beginning
767  * address @start, and keep them in @mss.
768  *
769  * Use vm_start of @vma as the beginning address if @start is 0.
770  */
771 static void smap_gather_stats(struct vm_area_struct *vma,
772                 struct mem_size_stats *mss, unsigned long start)
773 {
774         const struct mm_walk_ops *ops = &smaps_walk_ops;
775
776         /* Invalid start */
777         if (start >= vma->vm_end)
778                 return;
779
780         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
781                 /*
782                  * For shared or readonly shmem mappings we know that all
783                  * swapped out pages belong to the shmem object, and we can
784                  * obtain the swap value much more efficiently. For private
785                  * writable mappings, we might have COW pages that are
786                  * not affected by the parent swapped out pages of the shmem
787                  * object, so we have to distinguish them during the page walk.
788                  * Unless we know that the shmem object (or the part mapped by
789                  * our VMA) has no swapped out pages at all.
790                  */
791                 unsigned long shmem_swapped = shmem_swap_usage(vma);
792
793                 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
794                                         !(vma->vm_flags & VM_WRITE))) {
795                         mss->swap += shmem_swapped;
796                 } else {
797                         ops = &smaps_shmem_walk_ops;
798                 }
799         }
800
801         /* mmap_lock is held in m_start */
802         if (!start)
803                 walk_page_vma(vma, ops, mss);
804         else
805                 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
806 }
807
808 #define SEQ_PUT_DEC(str, val) \
809                 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
810
811 /* Show the contents common for smaps and smaps_rollup */
812 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
813         bool rollup_mode)
814 {
815         SEQ_PUT_DEC("Rss:            ", mss->resident);
816         SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
817         SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
818         if (rollup_mode) {
819                 /*
820                  * These are meaningful only for smaps_rollup, otherwise two of
821                  * them are zero, and the other one is the same as Pss.
822                  */
823                 SEQ_PUT_DEC(" kB\nPss_Anon:       ",
824                         mss->pss_anon >> PSS_SHIFT);
825                 SEQ_PUT_DEC(" kB\nPss_File:       ",
826                         mss->pss_file >> PSS_SHIFT);
827                 SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
828                         mss->pss_shmem >> PSS_SHIFT);
829         }
830         SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
831         SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
832         SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
833         SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
834         SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
835         SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
836         SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
837         SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
838         SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
839         SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
840         SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
841         SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
842         seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
843                                   mss->private_hugetlb >> 10, 7);
844         SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
845         SEQ_PUT_DEC(" kB\nSwapPss:        ",
846                                         mss->swap_pss >> PSS_SHIFT);
847         SEQ_PUT_DEC(" kB\nLocked:         ",
848                                         mss->pss_locked >> PSS_SHIFT);
849         seq_puts(m, " kB\n");
850 }
851
852 static int show_smap(struct seq_file *m, void *v)
853 {
854         struct vm_area_struct *vma = v;
855         struct mem_size_stats mss = {};
856
857         smap_gather_stats(vma, &mss, 0);
858
859         show_map_vma(m, vma);
860
861         SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
862         SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
863         SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
864         seq_puts(m, " kB\n");
865
866         __show_smap(m, &mss, false);
867
868         seq_printf(m, "THPeligible:    %8u\n",
869                    !!thp_vma_allowable_orders(vma, vma->vm_flags, true, false,
870                                               true, THP_ORDERS_ALL));
871
872         if (arch_pkeys_enabled())
873                 seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
874         show_smap_vma_flags(m, vma);
875
876         return 0;
877 }
878
879 static int show_smaps_rollup(struct seq_file *m, void *v)
880 {
881         struct proc_maps_private *priv = m->private;
882         struct mem_size_stats mss = {};
883         struct mm_struct *mm = priv->mm;
884         struct vm_area_struct *vma;
885         unsigned long vma_start = 0, last_vma_end = 0;
886         int ret = 0;
887         VMA_ITERATOR(vmi, mm, 0);
888
889         priv->task = get_proc_task(priv->inode);
890         if (!priv->task)
891                 return -ESRCH;
892
893         if (!mm || !mmget_not_zero(mm)) {
894                 ret = -ESRCH;
895                 goto out_put_task;
896         }
897
898         ret = mmap_read_lock_killable(mm);
899         if (ret)
900                 goto out_put_mm;
901
902         hold_task_mempolicy(priv);
903         vma = vma_next(&vmi);
904
905         if (unlikely(!vma))
906                 goto empty_set;
907
908         vma_start = vma->vm_start;
909         do {
910                 smap_gather_stats(vma, &mss, 0);
911                 last_vma_end = vma->vm_end;
912
913                 /*
914                  * Release mmap_lock temporarily if someone wants to
915                  * access it for write request.
916                  */
917                 if (mmap_lock_is_contended(mm)) {
918                         vma_iter_invalidate(&vmi);
919                         mmap_read_unlock(mm);
920                         ret = mmap_read_lock_killable(mm);
921                         if (ret) {
922                                 release_task_mempolicy(priv);
923                                 goto out_put_mm;
924                         }
925
926                         /*
927                          * After dropping the lock, there are four cases to
928                          * consider. See the following example for explanation.
929                          *
930                          *   +------+------+-----------+
931                          *   | VMA1 | VMA2 | VMA3      |
932                          *   +------+------+-----------+
933                          *   |      |      |           |
934                          *  4k     8k     16k         400k
935                          *
936                          * Suppose we drop the lock after reading VMA2 due to
937                          * contention, then we get:
938                          *
939                          *      last_vma_end = 16k
940                          *
941                          * 1) VMA2 is freed, but VMA3 exists:
942                          *
943                          *    vma_next(vmi) will return VMA3.
944                          *    In this case, just continue from VMA3.
945                          *
946                          * 2) VMA2 still exists:
947                          *
948                          *    vma_next(vmi) will return VMA3.
949                          *    In this case, just continue from VMA3.
950                          *
951                          * 3) No more VMAs can be found:
952                          *
953                          *    vma_next(vmi) will return NULL.
954                          *    No more things to do, just break.
955                          *
956                          * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
957                          *
958                          *    vma_next(vmi) will return VMA' whose range
959                          *    contains last_vma_end.
960                          *    Iterate VMA' from last_vma_end.
961                          */
962                         vma = vma_next(&vmi);
963                         /* Case 3 above */
964                         if (!vma)
965                                 break;
966
967                         /* Case 1 and 2 above */
968                         if (vma->vm_start >= last_vma_end)
969                                 continue;
970
971                         /* Case 4 above */
972                         if (vma->vm_end > last_vma_end)
973                                 smap_gather_stats(vma, &mss, last_vma_end);
974                 }
975         } for_each_vma(vmi, vma);
976
977 empty_set:
978         show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
979         seq_pad(m, ' ');
980         seq_puts(m, "[rollup]\n");
981
982         __show_smap(m, &mss, true);
983
984         release_task_mempolicy(priv);
985         mmap_read_unlock(mm);
986
987 out_put_mm:
988         mmput(mm);
989 out_put_task:
990         put_task_struct(priv->task);
991         priv->task = NULL;
992
993         return ret;
994 }
995 #undef SEQ_PUT_DEC
996
997 static const struct seq_operations proc_pid_smaps_op = {
998         .start  = m_start,
999         .next   = m_next,
1000         .stop   = m_stop,
1001         .show   = show_smap
1002 };
1003
1004 static int pid_smaps_open(struct inode *inode, struct file *file)
1005 {
1006         return do_maps_open(inode, file, &proc_pid_smaps_op);
1007 }
1008
1009 static int smaps_rollup_open(struct inode *inode, struct file *file)
1010 {
1011         int ret;
1012         struct proc_maps_private *priv;
1013
1014         priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1015         if (!priv)
1016                 return -ENOMEM;
1017
1018         ret = single_open(file, show_smaps_rollup, priv);
1019         if (ret)
1020                 goto out_free;
1021
1022         priv->inode = inode;
1023         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1024         if (IS_ERR(priv->mm)) {
1025                 ret = PTR_ERR(priv->mm);
1026
1027                 single_release(inode, file);
1028                 goto out_free;
1029         }
1030
1031         return 0;
1032
1033 out_free:
1034         kfree(priv);
1035         return ret;
1036 }
1037
1038 static int smaps_rollup_release(struct inode *inode, struct file *file)
1039 {
1040         struct seq_file *seq = file->private_data;
1041         struct proc_maps_private *priv = seq->private;
1042
1043         if (priv->mm)
1044                 mmdrop(priv->mm);
1045
1046         kfree(priv);
1047         return single_release(inode, file);
1048 }
1049
1050 const struct file_operations proc_pid_smaps_operations = {
1051         .open           = pid_smaps_open,
1052         .read           = seq_read,
1053         .llseek         = seq_lseek,
1054         .release        = proc_map_release,
1055 };
1056
1057 const struct file_operations proc_pid_smaps_rollup_operations = {
1058         .open           = smaps_rollup_open,
1059         .read           = seq_read,
1060         .llseek         = seq_lseek,
1061         .release        = smaps_rollup_release,
1062 };
1063
1064 enum clear_refs_types {
1065         CLEAR_REFS_ALL = 1,
1066         CLEAR_REFS_ANON,
1067         CLEAR_REFS_MAPPED,
1068         CLEAR_REFS_SOFT_DIRTY,
1069         CLEAR_REFS_MM_HIWATER_RSS,
1070         CLEAR_REFS_LAST,
1071 };
1072
1073 struct clear_refs_private {
1074         enum clear_refs_types type;
1075 };
1076
1077 #ifdef CONFIG_MEM_SOFT_DIRTY
1078
1079 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1080 {
1081         struct page *page;
1082
1083         if (!pte_write(pte))
1084                 return false;
1085         if (!is_cow_mapping(vma->vm_flags))
1086                 return false;
1087         if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1088                 return false;
1089         page = vm_normal_page(vma, addr, pte);
1090         if (!page)
1091                 return false;
1092         return page_maybe_dma_pinned(page);
1093 }
1094
1095 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1096                 unsigned long addr, pte_t *pte)
1097 {
1098         /*
1099          * The soft-dirty tracker uses #PF-s to catch writes
1100          * to pages, so write-protect the pte as well. See the
1101          * Documentation/admin-guide/mm/soft-dirty.rst for full description
1102          * of how soft-dirty works.
1103          */
1104         pte_t ptent = ptep_get(pte);
1105
1106         if (pte_present(ptent)) {
1107                 pte_t old_pte;
1108
1109                 if (pte_is_pinned(vma, addr, ptent))
1110                         return;
1111                 old_pte = ptep_modify_prot_start(vma, addr, pte);
1112                 ptent = pte_wrprotect(old_pte);
1113                 ptent = pte_clear_soft_dirty(ptent);
1114                 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1115         } else if (is_swap_pte(ptent)) {
1116                 ptent = pte_swp_clear_soft_dirty(ptent);
1117                 set_pte_at(vma->vm_mm, addr, pte, ptent);
1118         }
1119 }
1120 #else
1121 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1122                 unsigned long addr, pte_t *pte)
1123 {
1124 }
1125 #endif
1126
1127 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1128 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1129                 unsigned long addr, pmd_t *pmdp)
1130 {
1131         pmd_t old, pmd = *pmdp;
1132
1133         if (pmd_present(pmd)) {
1134                 /* See comment in change_huge_pmd() */
1135                 old = pmdp_invalidate(vma, addr, pmdp);
1136                 if (pmd_dirty(old))
1137                         pmd = pmd_mkdirty(pmd);
1138                 if (pmd_young(old))
1139                         pmd = pmd_mkyoung(pmd);
1140
1141                 pmd = pmd_wrprotect(pmd);
1142                 pmd = pmd_clear_soft_dirty(pmd);
1143
1144                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1145         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1146                 pmd = pmd_swp_clear_soft_dirty(pmd);
1147                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1148         }
1149 }
1150 #else
1151 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1152                 unsigned long addr, pmd_t *pmdp)
1153 {
1154 }
1155 #endif
1156
1157 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1158                                 unsigned long end, struct mm_walk *walk)
1159 {
1160         struct clear_refs_private *cp = walk->private;
1161         struct vm_area_struct *vma = walk->vma;
1162         pte_t *pte, ptent;
1163         spinlock_t *ptl;
1164         struct page *page;
1165
1166         ptl = pmd_trans_huge_lock(pmd, vma);
1167         if (ptl) {
1168                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1169                         clear_soft_dirty_pmd(vma, addr, pmd);
1170                         goto out;
1171                 }
1172
1173                 if (!pmd_present(*pmd))
1174                         goto out;
1175
1176                 page = pmd_page(*pmd);
1177
1178                 /* Clear accessed and referenced bits. */
1179                 pmdp_test_and_clear_young(vma, addr, pmd);
1180                 test_and_clear_page_young(page);
1181                 ClearPageReferenced(page);
1182 out:
1183                 spin_unlock(ptl);
1184                 return 0;
1185         }
1186
1187         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1188         if (!pte) {
1189                 walk->action = ACTION_AGAIN;
1190                 return 0;
1191         }
1192         for (; addr != end; pte++, addr += PAGE_SIZE) {
1193                 ptent = ptep_get(pte);
1194
1195                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1196                         clear_soft_dirty(vma, addr, pte);
1197                         continue;
1198                 }
1199
1200                 if (!pte_present(ptent))
1201                         continue;
1202
1203                 page = vm_normal_page(vma, addr, ptent);
1204                 if (!page)
1205                         continue;
1206
1207                 /* Clear accessed and referenced bits. */
1208                 ptep_test_and_clear_young(vma, addr, pte);
1209                 test_and_clear_page_young(page);
1210                 ClearPageReferenced(page);
1211         }
1212         pte_unmap_unlock(pte - 1, ptl);
1213         cond_resched();
1214         return 0;
1215 }
1216
1217 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1218                                 struct mm_walk *walk)
1219 {
1220         struct clear_refs_private *cp = walk->private;
1221         struct vm_area_struct *vma = walk->vma;
1222
1223         if (vma->vm_flags & VM_PFNMAP)
1224                 return 1;
1225
1226         /*
1227          * Writing 1 to /proc/pid/clear_refs affects all pages.
1228          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1229          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1230          * Writing 4 to /proc/pid/clear_refs affects all pages.
1231          */
1232         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1233                 return 1;
1234         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1235                 return 1;
1236         return 0;
1237 }
1238
1239 static const struct mm_walk_ops clear_refs_walk_ops = {
1240         .pmd_entry              = clear_refs_pte_range,
1241         .test_walk              = clear_refs_test_walk,
1242         .walk_lock              = PGWALK_WRLOCK,
1243 };
1244
1245 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1246                                 size_t count, loff_t *ppos)
1247 {
1248         struct task_struct *task;
1249         char buffer[PROC_NUMBUF] = {};
1250         struct mm_struct *mm;
1251         struct vm_area_struct *vma;
1252         enum clear_refs_types type;
1253         int itype;
1254         int rv;
1255
1256         if (count > sizeof(buffer) - 1)
1257                 count = sizeof(buffer) - 1;
1258         if (copy_from_user(buffer, buf, count))
1259                 return -EFAULT;
1260         rv = kstrtoint(strstrip(buffer), 10, &itype);
1261         if (rv < 0)
1262                 return rv;
1263         type = (enum clear_refs_types)itype;
1264         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1265                 return -EINVAL;
1266
1267         task = get_proc_task(file_inode(file));
1268         if (!task)
1269                 return -ESRCH;
1270         mm = get_task_mm(task);
1271         if (mm) {
1272                 VMA_ITERATOR(vmi, mm, 0);
1273                 struct mmu_notifier_range range;
1274                 struct clear_refs_private cp = {
1275                         .type = type,
1276                 };
1277
1278                 if (mmap_write_lock_killable(mm)) {
1279                         count = -EINTR;
1280                         goto out_mm;
1281                 }
1282                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1283                         /*
1284                          * Writing 5 to /proc/pid/clear_refs resets the peak
1285                          * resident set size to this mm's current rss value.
1286                          */
1287                         reset_mm_hiwater_rss(mm);
1288                         goto out_unlock;
1289                 }
1290
1291                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1292                         for_each_vma(vmi, vma) {
1293                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1294                                         continue;
1295                                 vm_flags_clear(vma, VM_SOFTDIRTY);
1296                                 vma_set_page_prot(vma);
1297                         }
1298
1299                         inc_tlb_flush_pending(mm);
1300                         mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1301                                                 0, mm, 0, -1UL);
1302                         mmu_notifier_invalidate_range_start(&range);
1303                 }
1304                 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1305                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1306                         mmu_notifier_invalidate_range_end(&range);
1307                         flush_tlb_mm(mm);
1308                         dec_tlb_flush_pending(mm);
1309                 }
1310 out_unlock:
1311                 mmap_write_unlock(mm);
1312 out_mm:
1313                 mmput(mm);
1314         }
1315         put_task_struct(task);
1316
1317         return count;
1318 }
1319
1320 const struct file_operations proc_clear_refs_operations = {
1321         .write          = clear_refs_write,
1322         .llseek         = noop_llseek,
1323 };
1324
1325 typedef struct {
1326         u64 pme;
1327 } pagemap_entry_t;
1328
1329 struct pagemapread {
1330         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1331         pagemap_entry_t *buffer;
1332         bool show_pfn;
1333 };
1334
1335 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1336 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1337
1338 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1339 #define PM_PFRAME_BITS          55
1340 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1341 #define PM_SOFT_DIRTY           BIT_ULL(55)
1342 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1343 #define PM_UFFD_WP              BIT_ULL(57)
1344 #define PM_FILE                 BIT_ULL(61)
1345 #define PM_SWAP                 BIT_ULL(62)
1346 #define PM_PRESENT              BIT_ULL(63)
1347
1348 #define PM_END_OF_BUFFER    1
1349
1350 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1351 {
1352         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1353 }
1354
1355 static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
1356 {
1357         pm->buffer[pm->pos++] = *pme;
1358         if (pm->pos >= pm->len)
1359                 return PM_END_OF_BUFFER;
1360         return 0;
1361 }
1362
1363 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1364                             __always_unused int depth, struct mm_walk *walk)
1365 {
1366         struct pagemapread *pm = walk->private;
1367         unsigned long addr = start;
1368         int err = 0;
1369
1370         while (addr < end) {
1371                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1372                 pagemap_entry_t pme = make_pme(0, 0);
1373                 /* End of address space hole, which we mark as non-present. */
1374                 unsigned long hole_end;
1375
1376                 if (vma)
1377                         hole_end = min(end, vma->vm_start);
1378                 else
1379                         hole_end = end;
1380
1381                 for (; addr < hole_end; addr += PAGE_SIZE) {
1382                         err = add_to_pagemap(&pme, pm);
1383                         if (err)
1384                                 goto out;
1385                 }
1386
1387                 if (!vma)
1388                         break;
1389
1390                 /* Addresses in the VMA. */
1391                 if (vma->vm_flags & VM_SOFTDIRTY)
1392                         pme = make_pme(0, PM_SOFT_DIRTY);
1393                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1394                         err = add_to_pagemap(&pme, pm);
1395                         if (err)
1396                                 goto out;
1397                 }
1398         }
1399 out:
1400         return err;
1401 }
1402
1403 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1404                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1405 {
1406         u64 frame = 0, flags = 0;
1407         struct page *page = NULL;
1408         bool migration = false;
1409
1410         if (pte_present(pte)) {
1411                 if (pm->show_pfn)
1412                         frame = pte_pfn(pte);
1413                 flags |= PM_PRESENT;
1414                 page = vm_normal_page(vma, addr, pte);
1415                 if (pte_soft_dirty(pte))
1416                         flags |= PM_SOFT_DIRTY;
1417                 if (pte_uffd_wp(pte))
1418                         flags |= PM_UFFD_WP;
1419         } else if (is_swap_pte(pte)) {
1420                 swp_entry_t entry;
1421                 if (pte_swp_soft_dirty(pte))
1422                         flags |= PM_SOFT_DIRTY;
1423                 if (pte_swp_uffd_wp(pte))
1424                         flags |= PM_UFFD_WP;
1425                 entry = pte_to_swp_entry(pte);
1426                 if (pm->show_pfn) {
1427                         pgoff_t offset;
1428                         /*
1429                          * For PFN swap offsets, keeping the offset field
1430                          * to be PFN only to be compatible with old smaps.
1431                          */
1432                         if (is_pfn_swap_entry(entry))
1433                                 offset = swp_offset_pfn(entry);
1434                         else
1435                                 offset = swp_offset(entry);
1436                         frame = swp_type(entry) |
1437                             (offset << MAX_SWAPFILES_SHIFT);
1438                 }
1439                 flags |= PM_SWAP;
1440                 migration = is_migration_entry(entry);
1441                 if (is_pfn_swap_entry(entry))
1442                         page = pfn_swap_entry_to_page(entry);
1443                 if (pte_marker_entry_uffd_wp(entry))
1444                         flags |= PM_UFFD_WP;
1445         }
1446
1447         if (page && !PageAnon(page))
1448                 flags |= PM_FILE;
1449         if (page && !migration && page_mapcount(page) == 1)
1450                 flags |= PM_MMAP_EXCLUSIVE;
1451         if (vma->vm_flags & VM_SOFTDIRTY)
1452                 flags |= PM_SOFT_DIRTY;
1453
1454         return make_pme(frame, flags);
1455 }
1456
1457 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1458                              struct mm_walk *walk)
1459 {
1460         struct vm_area_struct *vma = walk->vma;
1461         struct pagemapread *pm = walk->private;
1462         spinlock_t *ptl;
1463         pte_t *pte, *orig_pte;
1464         int err = 0;
1465 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1466         bool migration = false;
1467
1468         ptl = pmd_trans_huge_lock(pmdp, vma);
1469         if (ptl) {
1470                 u64 flags = 0, frame = 0;
1471                 pmd_t pmd = *pmdp;
1472                 struct page *page = NULL;
1473
1474                 if (vma->vm_flags & VM_SOFTDIRTY)
1475                         flags |= PM_SOFT_DIRTY;
1476
1477                 if (pmd_present(pmd)) {
1478                         page = pmd_page(pmd);
1479
1480                         flags |= PM_PRESENT;
1481                         if (pmd_soft_dirty(pmd))
1482                                 flags |= PM_SOFT_DIRTY;
1483                         if (pmd_uffd_wp(pmd))
1484                                 flags |= PM_UFFD_WP;
1485                         if (pm->show_pfn)
1486                                 frame = pmd_pfn(pmd) +
1487                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1488                 }
1489 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1490                 else if (is_swap_pmd(pmd)) {
1491                         swp_entry_t entry = pmd_to_swp_entry(pmd);
1492                         unsigned long offset;
1493
1494                         if (pm->show_pfn) {
1495                                 if (is_pfn_swap_entry(entry))
1496                                         offset = swp_offset_pfn(entry);
1497                                 else
1498                                         offset = swp_offset(entry);
1499                                 offset = offset +
1500                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1501                                 frame = swp_type(entry) |
1502                                         (offset << MAX_SWAPFILES_SHIFT);
1503                         }
1504                         flags |= PM_SWAP;
1505                         if (pmd_swp_soft_dirty(pmd))
1506                                 flags |= PM_SOFT_DIRTY;
1507                         if (pmd_swp_uffd_wp(pmd))
1508                                 flags |= PM_UFFD_WP;
1509                         VM_BUG_ON(!is_pmd_migration_entry(pmd));
1510                         migration = is_migration_entry(entry);
1511                         page = pfn_swap_entry_to_page(entry);
1512                 }
1513 #endif
1514
1515                 if (page && !migration && page_mapcount(page) == 1)
1516                         flags |= PM_MMAP_EXCLUSIVE;
1517
1518                 for (; addr != end; addr += PAGE_SIZE) {
1519                         pagemap_entry_t pme = make_pme(frame, flags);
1520
1521                         err = add_to_pagemap(&pme, pm);
1522                         if (err)
1523                                 break;
1524                         if (pm->show_pfn) {
1525                                 if (flags & PM_PRESENT)
1526                                         frame++;
1527                                 else if (flags & PM_SWAP)
1528                                         frame += (1 << MAX_SWAPFILES_SHIFT);
1529                         }
1530                 }
1531                 spin_unlock(ptl);
1532                 return err;
1533         }
1534 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1535
1536         /*
1537          * We can assume that @vma always points to a valid one and @end never
1538          * goes beyond vma->vm_end.
1539          */
1540         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1541         if (!pte) {
1542                 walk->action = ACTION_AGAIN;
1543                 return err;
1544         }
1545         for (; addr < end; pte++, addr += PAGE_SIZE) {
1546                 pagemap_entry_t pme;
1547
1548                 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1549                 err = add_to_pagemap(&pme, pm);
1550                 if (err)
1551                         break;
1552         }
1553         pte_unmap_unlock(orig_pte, ptl);
1554
1555         cond_resched();
1556
1557         return err;
1558 }
1559
1560 #ifdef CONFIG_HUGETLB_PAGE
1561 /* This function walks within one hugetlb entry in the single call */
1562 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1563                                  unsigned long addr, unsigned long end,
1564                                  struct mm_walk *walk)
1565 {
1566         struct pagemapread *pm = walk->private;
1567         struct vm_area_struct *vma = walk->vma;
1568         u64 flags = 0, frame = 0;
1569         int err = 0;
1570         pte_t pte;
1571
1572         if (vma->vm_flags & VM_SOFTDIRTY)
1573                 flags |= PM_SOFT_DIRTY;
1574
1575         pte = huge_ptep_get(ptep);
1576         if (pte_present(pte)) {
1577                 struct page *page = pte_page(pte);
1578
1579                 if (!PageAnon(page))
1580                         flags |= PM_FILE;
1581
1582                 if (page_mapcount(page) == 1)
1583                         flags |= PM_MMAP_EXCLUSIVE;
1584
1585                 if (huge_pte_uffd_wp(pte))
1586                         flags |= PM_UFFD_WP;
1587
1588                 flags |= PM_PRESENT;
1589                 if (pm->show_pfn)
1590                         frame = pte_pfn(pte) +
1591                                 ((addr & ~hmask) >> PAGE_SHIFT);
1592         } else if (pte_swp_uffd_wp_any(pte)) {
1593                 flags |= PM_UFFD_WP;
1594         }
1595
1596         for (; addr != end; addr += PAGE_SIZE) {
1597                 pagemap_entry_t pme = make_pme(frame, flags);
1598
1599                 err = add_to_pagemap(&pme, pm);
1600                 if (err)
1601                         return err;
1602                 if (pm->show_pfn && (flags & PM_PRESENT))
1603                         frame++;
1604         }
1605
1606         cond_resched();
1607
1608         return err;
1609 }
1610 #else
1611 #define pagemap_hugetlb_range   NULL
1612 #endif /* HUGETLB_PAGE */
1613
1614 static const struct mm_walk_ops pagemap_ops = {
1615         .pmd_entry      = pagemap_pmd_range,
1616         .pte_hole       = pagemap_pte_hole,
1617         .hugetlb_entry  = pagemap_hugetlb_range,
1618         .walk_lock      = PGWALK_RDLOCK,
1619 };
1620
1621 /*
1622  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1623  *
1624  * For each page in the address space, this file contains one 64-bit entry
1625  * consisting of the following:
1626  *
1627  * Bits 0-54  page frame number (PFN) if present
1628  * Bits 0-4   swap type if swapped
1629  * Bits 5-54  swap offset if swapped
1630  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1631  * Bit  56    page exclusively mapped
1632  * Bit  57    pte is uffd-wp write-protected
1633  * Bits 58-60 zero
1634  * Bit  61    page is file-page or shared-anon
1635  * Bit  62    page swapped
1636  * Bit  63    page present
1637  *
1638  * If the page is not present but in swap, then the PFN contains an
1639  * encoding of the swap file number and the page's offset into the
1640  * swap. Unmapped pages return a null PFN. This allows determining
1641  * precisely which pages are mapped (or in swap) and comparing mapped
1642  * pages between processes.
1643  *
1644  * Efficient users of this interface will use /proc/pid/maps to
1645  * determine which areas of memory are actually mapped and llseek to
1646  * skip over unmapped regions.
1647  */
1648 static ssize_t pagemap_read(struct file *file, char __user *buf,
1649                             size_t count, loff_t *ppos)
1650 {
1651         struct mm_struct *mm = file->private_data;
1652         struct pagemapread pm;
1653         unsigned long src;
1654         unsigned long svpfn;
1655         unsigned long start_vaddr;
1656         unsigned long end_vaddr;
1657         int ret = 0, copied = 0;
1658
1659         if (!mm || !mmget_not_zero(mm))
1660                 goto out;
1661
1662         ret = -EINVAL;
1663         /* file position must be aligned */
1664         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1665                 goto out_mm;
1666
1667         ret = 0;
1668         if (!count)
1669                 goto out_mm;
1670
1671         /* do not disclose physical addresses: attack vector */
1672         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1673
1674         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1675         pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1676         ret = -ENOMEM;
1677         if (!pm.buffer)
1678                 goto out_mm;
1679
1680         src = *ppos;
1681         svpfn = src / PM_ENTRY_BYTES;
1682         end_vaddr = mm->task_size;
1683
1684         /* watch out for wraparound */
1685         start_vaddr = end_vaddr;
1686         if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1687                 unsigned long end;
1688
1689                 ret = mmap_read_lock_killable(mm);
1690                 if (ret)
1691                         goto out_free;
1692                 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
1693                 mmap_read_unlock(mm);
1694
1695                 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
1696                 if (end >= start_vaddr && end < mm->task_size)
1697                         end_vaddr = end;
1698         }
1699
1700         /* Ensure the address is inside the task */
1701         if (start_vaddr > mm->task_size)
1702                 start_vaddr = end_vaddr;
1703
1704         ret = 0;
1705         while (count && (start_vaddr < end_vaddr)) {
1706                 int len;
1707                 unsigned long end;
1708
1709                 pm.pos = 0;
1710                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1711                 /* overflow ? */
1712                 if (end < start_vaddr || end > end_vaddr)
1713                         end = end_vaddr;
1714                 ret = mmap_read_lock_killable(mm);
1715                 if (ret)
1716                         goto out_free;
1717                 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1718                 mmap_read_unlock(mm);
1719                 start_vaddr = end;
1720
1721                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1722                 if (copy_to_user(buf, pm.buffer, len)) {
1723                         ret = -EFAULT;
1724                         goto out_free;
1725                 }
1726                 copied += len;
1727                 buf += len;
1728                 count -= len;
1729         }
1730         *ppos += copied;
1731         if (!ret || ret == PM_END_OF_BUFFER)
1732                 ret = copied;
1733
1734 out_free:
1735         kfree(pm.buffer);
1736 out_mm:
1737         mmput(mm);
1738 out:
1739         return ret;
1740 }
1741
1742 static int pagemap_open(struct inode *inode, struct file *file)
1743 {
1744         struct mm_struct *mm;
1745
1746         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1747         if (IS_ERR(mm))
1748                 return PTR_ERR(mm);
1749         file->private_data = mm;
1750         return 0;
1751 }
1752
1753 static int pagemap_release(struct inode *inode, struct file *file)
1754 {
1755         struct mm_struct *mm = file->private_data;
1756
1757         if (mm)
1758                 mmdrop(mm);
1759         return 0;
1760 }
1761
1762 #define PM_SCAN_CATEGORIES      (PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN |  \
1763                                  PAGE_IS_FILE | PAGE_IS_PRESENT |       \
1764                                  PAGE_IS_SWAPPED | PAGE_IS_PFNZERO |    \
1765                                  PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY)
1766 #define PM_SCAN_FLAGS           (PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
1767
1768 struct pagemap_scan_private {
1769         struct pm_scan_arg arg;
1770         unsigned long masks_of_interest, cur_vma_category;
1771         struct page_region *vec_buf;
1772         unsigned long vec_buf_len, vec_buf_index, found_pages;
1773         struct page_region __user *vec_out;
1774 };
1775
1776 static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
1777                                            struct vm_area_struct *vma,
1778                                            unsigned long addr, pte_t pte)
1779 {
1780         unsigned long categories = 0;
1781
1782         if (pte_present(pte)) {
1783                 struct page *page;
1784
1785                 categories |= PAGE_IS_PRESENT;
1786                 if (!pte_uffd_wp(pte))
1787                         categories |= PAGE_IS_WRITTEN;
1788
1789                 if (p->masks_of_interest & PAGE_IS_FILE) {
1790                         page = vm_normal_page(vma, addr, pte);
1791                         if (page && !PageAnon(page))
1792                                 categories |= PAGE_IS_FILE;
1793                 }
1794
1795                 if (is_zero_pfn(pte_pfn(pte)))
1796                         categories |= PAGE_IS_PFNZERO;
1797                 if (pte_soft_dirty(pte))
1798                         categories |= PAGE_IS_SOFT_DIRTY;
1799         } else if (is_swap_pte(pte)) {
1800                 swp_entry_t swp;
1801
1802                 categories |= PAGE_IS_SWAPPED;
1803                 if (!pte_swp_uffd_wp_any(pte))
1804                         categories |= PAGE_IS_WRITTEN;
1805
1806                 if (p->masks_of_interest & PAGE_IS_FILE) {
1807                         swp = pte_to_swp_entry(pte);
1808                         if (is_pfn_swap_entry(swp) &&
1809                             !folio_test_anon(pfn_swap_entry_folio(swp)))
1810                                 categories |= PAGE_IS_FILE;
1811                 }
1812                 if (pte_swp_soft_dirty(pte))
1813                         categories |= PAGE_IS_SOFT_DIRTY;
1814         }
1815
1816         return categories;
1817 }
1818
1819 static void make_uffd_wp_pte(struct vm_area_struct *vma,
1820                              unsigned long addr, pte_t *pte, pte_t ptent)
1821 {
1822         if (pte_present(ptent)) {
1823                 pte_t old_pte;
1824
1825                 old_pte = ptep_modify_prot_start(vma, addr, pte);
1826                 ptent = pte_mkuffd_wp(old_pte);
1827                 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1828         } else if (is_swap_pte(ptent)) {
1829                 ptent = pte_swp_mkuffd_wp(ptent);
1830                 set_pte_at(vma->vm_mm, addr, pte, ptent);
1831         } else {
1832                 set_pte_at(vma->vm_mm, addr, pte,
1833                            make_pte_marker(PTE_MARKER_UFFD_WP));
1834         }
1835 }
1836
1837 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1838 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
1839                                           struct vm_area_struct *vma,
1840                                           unsigned long addr, pmd_t pmd)
1841 {
1842         unsigned long categories = PAGE_IS_HUGE;
1843
1844         if (pmd_present(pmd)) {
1845                 struct page *page;
1846
1847                 categories |= PAGE_IS_PRESENT;
1848                 if (!pmd_uffd_wp(pmd))
1849                         categories |= PAGE_IS_WRITTEN;
1850
1851                 if (p->masks_of_interest & PAGE_IS_FILE) {
1852                         page = vm_normal_page_pmd(vma, addr, pmd);
1853                         if (page && !PageAnon(page))
1854                                 categories |= PAGE_IS_FILE;
1855                 }
1856
1857                 if (is_zero_pfn(pmd_pfn(pmd)))
1858                         categories |= PAGE_IS_PFNZERO;
1859                 if (pmd_soft_dirty(pmd))
1860                         categories |= PAGE_IS_SOFT_DIRTY;
1861         } else if (is_swap_pmd(pmd)) {
1862                 swp_entry_t swp;
1863
1864                 categories |= PAGE_IS_SWAPPED;
1865                 if (!pmd_swp_uffd_wp(pmd))
1866                         categories |= PAGE_IS_WRITTEN;
1867                 if (pmd_swp_soft_dirty(pmd))
1868                         categories |= PAGE_IS_SOFT_DIRTY;
1869
1870                 if (p->masks_of_interest & PAGE_IS_FILE) {
1871                         swp = pmd_to_swp_entry(pmd);
1872                         if (is_pfn_swap_entry(swp) &&
1873                             !folio_test_anon(pfn_swap_entry_folio(swp)))
1874                                 categories |= PAGE_IS_FILE;
1875                 }
1876         }
1877
1878         return categories;
1879 }
1880
1881 static void make_uffd_wp_pmd(struct vm_area_struct *vma,
1882                              unsigned long addr, pmd_t *pmdp)
1883 {
1884         pmd_t old, pmd = *pmdp;
1885
1886         if (pmd_present(pmd)) {
1887                 old = pmdp_invalidate_ad(vma, addr, pmdp);
1888                 pmd = pmd_mkuffd_wp(old);
1889                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1890         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1891                 pmd = pmd_swp_mkuffd_wp(pmd);
1892                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1893         }
1894 }
1895 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1896
1897 #ifdef CONFIG_HUGETLB_PAGE
1898 static unsigned long pagemap_hugetlb_category(pte_t pte)
1899 {
1900         unsigned long categories = PAGE_IS_HUGE;
1901
1902         /*
1903          * According to pagemap_hugetlb_range(), file-backed HugeTLB
1904          * page cannot be swapped. So PAGE_IS_FILE is not checked for
1905          * swapped pages.
1906          */
1907         if (pte_present(pte)) {
1908                 categories |= PAGE_IS_PRESENT;
1909                 if (!huge_pte_uffd_wp(pte))
1910                         categories |= PAGE_IS_WRITTEN;
1911                 if (!PageAnon(pte_page(pte)))
1912                         categories |= PAGE_IS_FILE;
1913                 if (is_zero_pfn(pte_pfn(pte)))
1914                         categories |= PAGE_IS_PFNZERO;
1915                 if (pte_soft_dirty(pte))
1916                         categories |= PAGE_IS_SOFT_DIRTY;
1917         } else if (is_swap_pte(pte)) {
1918                 categories |= PAGE_IS_SWAPPED;
1919                 if (!pte_swp_uffd_wp_any(pte))
1920                         categories |= PAGE_IS_WRITTEN;
1921                 if (pte_swp_soft_dirty(pte))
1922                         categories |= PAGE_IS_SOFT_DIRTY;
1923         }
1924
1925         return categories;
1926 }
1927
1928 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
1929                                   unsigned long addr, pte_t *ptep,
1930                                   pte_t ptent)
1931 {
1932         unsigned long psize;
1933
1934         if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
1935                 return;
1936
1937         psize = huge_page_size(hstate_vma(vma));
1938
1939         if (is_hugetlb_entry_migration(ptent))
1940                 set_huge_pte_at(vma->vm_mm, addr, ptep,
1941                                 pte_swp_mkuffd_wp(ptent), psize);
1942         else if (!huge_pte_none(ptent))
1943                 huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
1944                                              huge_pte_mkuffd_wp(ptent));
1945         else
1946                 set_huge_pte_at(vma->vm_mm, addr, ptep,
1947                                 make_pte_marker(PTE_MARKER_UFFD_WP), psize);
1948 }
1949 #endif /* CONFIG_HUGETLB_PAGE */
1950
1951 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1952 static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
1953                                        unsigned long addr, unsigned long end)
1954 {
1955         struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
1956
1957         if (cur_buf->start != addr)
1958                 cur_buf->end = addr;
1959         else
1960                 cur_buf->start = cur_buf->end = 0;
1961
1962         p->found_pages -= (end - addr) / PAGE_SIZE;
1963 }
1964 #endif
1965
1966 static bool pagemap_scan_is_interesting_page(unsigned long categories,
1967                                              const struct pagemap_scan_private *p)
1968 {
1969         categories ^= p->arg.category_inverted;
1970         if ((categories & p->arg.category_mask) != p->arg.category_mask)
1971                 return false;
1972         if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
1973                 return false;
1974
1975         return true;
1976 }
1977
1978 static bool pagemap_scan_is_interesting_vma(unsigned long categories,
1979                                             const struct pagemap_scan_private *p)
1980 {
1981         unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
1982
1983         categories ^= p->arg.category_inverted;
1984         if ((categories & required) != required)
1985                 return false;
1986
1987         return true;
1988 }
1989
1990 static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
1991                                   struct mm_walk *walk)
1992 {
1993         struct pagemap_scan_private *p = walk->private;
1994         struct vm_area_struct *vma = walk->vma;
1995         unsigned long vma_category = 0;
1996         bool wp_allowed = userfaultfd_wp_async(vma) &&
1997             userfaultfd_wp_use_markers(vma);
1998
1999         if (!wp_allowed) {
2000                 /* User requested explicit failure over wp-async capability */
2001                 if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2002                         return -EPERM;
2003                 /*
2004                  * User requires wr-protect, and allows silently skipping
2005                  * unsupported vmas.
2006                  */
2007                 if (p->arg.flags & PM_SCAN_WP_MATCHING)
2008                         return 1;
2009                 /*
2010                  * Then the request doesn't involve wr-protects at all,
2011                  * fall through to the rest checks, and allow vma walk.
2012                  */
2013         }
2014
2015         if (vma->vm_flags & VM_PFNMAP)
2016                 return 1;
2017
2018         if (wp_allowed)
2019                 vma_category |= PAGE_IS_WPALLOWED;
2020
2021         if (vma->vm_flags & VM_SOFTDIRTY)
2022                 vma_category |= PAGE_IS_SOFT_DIRTY;
2023
2024         if (!pagemap_scan_is_interesting_vma(vma_category, p))
2025                 return 1;
2026
2027         p->cur_vma_category = vma_category;
2028
2029         return 0;
2030 }
2031
2032 static bool pagemap_scan_push_range(unsigned long categories,
2033                                     struct pagemap_scan_private *p,
2034                                     unsigned long addr, unsigned long end)
2035 {
2036         struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2037
2038         /*
2039          * When there is no output buffer provided at all, the sentinel values
2040          * won't match here. There is no other way for `cur_buf->end` to be
2041          * non-zero other than it being non-empty.
2042          */
2043         if (addr == cur_buf->end && categories == cur_buf->categories) {
2044                 cur_buf->end = end;
2045                 return true;
2046         }
2047
2048         if (cur_buf->end) {
2049                 if (p->vec_buf_index >= p->vec_buf_len - 1)
2050                         return false;
2051
2052                 cur_buf = &p->vec_buf[++p->vec_buf_index];
2053         }
2054
2055         cur_buf->start = addr;
2056         cur_buf->end = end;
2057         cur_buf->categories = categories;
2058
2059         return true;
2060 }
2061
2062 static int pagemap_scan_output(unsigned long categories,
2063                                struct pagemap_scan_private *p,
2064                                unsigned long addr, unsigned long *end)
2065 {
2066         unsigned long n_pages, total_pages;
2067         int ret = 0;
2068
2069         if (!p->vec_buf)
2070                 return 0;
2071
2072         categories &= p->arg.return_mask;
2073
2074         n_pages = (*end - addr) / PAGE_SIZE;
2075         if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2076             total_pages > p->arg.max_pages) {
2077                 size_t n_too_much = total_pages - p->arg.max_pages;
2078                 *end -= n_too_much * PAGE_SIZE;
2079                 n_pages -= n_too_much;
2080                 ret = -ENOSPC;
2081         }
2082
2083         if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2084                 *end = addr;
2085                 n_pages = 0;
2086                 ret = -ENOSPC;
2087         }
2088
2089         p->found_pages += n_pages;
2090         if (ret)
2091                 p->arg.walk_end = *end;
2092
2093         return ret;
2094 }
2095
2096 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2097                                   unsigned long end, struct mm_walk *walk)
2098 {
2099 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2100         struct pagemap_scan_private *p = walk->private;
2101         struct vm_area_struct *vma = walk->vma;
2102         unsigned long categories;
2103         spinlock_t *ptl;
2104         int ret = 0;
2105
2106         ptl = pmd_trans_huge_lock(pmd, vma);
2107         if (!ptl)
2108                 return -ENOENT;
2109
2110         categories = p->cur_vma_category |
2111                      pagemap_thp_category(p, vma, start, *pmd);
2112
2113         if (!pagemap_scan_is_interesting_page(categories, p))
2114                 goto out_unlock;
2115
2116         ret = pagemap_scan_output(categories, p, start, &end);
2117         if (start == end)
2118                 goto out_unlock;
2119
2120         if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2121                 goto out_unlock;
2122         if (~categories & PAGE_IS_WRITTEN)
2123                 goto out_unlock;
2124
2125         /*
2126          * Break huge page into small pages if the WP operation
2127          * needs to be performed on a portion of the huge page.
2128          */
2129         if (end != start + HPAGE_SIZE) {
2130                 spin_unlock(ptl);
2131                 split_huge_pmd(vma, pmd, start);
2132                 pagemap_scan_backout_range(p, start, end);
2133                 /* Report as if there was no THP */
2134                 return -ENOENT;
2135         }
2136
2137         make_uffd_wp_pmd(vma, start, pmd);
2138         flush_tlb_range(vma, start, end);
2139 out_unlock:
2140         spin_unlock(ptl);
2141         return ret;
2142 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2143         return -ENOENT;
2144 #endif
2145 }
2146
2147 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2148                                   unsigned long end, struct mm_walk *walk)
2149 {
2150         struct pagemap_scan_private *p = walk->private;
2151         struct vm_area_struct *vma = walk->vma;
2152         unsigned long addr, flush_end = 0;
2153         pte_t *pte, *start_pte;
2154         spinlock_t *ptl;
2155         int ret;
2156
2157         arch_enter_lazy_mmu_mode();
2158
2159         ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2160         if (ret != -ENOENT) {
2161                 arch_leave_lazy_mmu_mode();
2162                 return ret;
2163         }
2164
2165         ret = 0;
2166         start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2167         if (!pte) {
2168                 arch_leave_lazy_mmu_mode();
2169                 walk->action = ACTION_AGAIN;
2170                 return 0;
2171         }
2172
2173         if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2174                 /* Fast path for performing exclusive WP */
2175                 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2176                         pte_t ptent = ptep_get(pte);
2177
2178                         if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2179                             pte_swp_uffd_wp_any(ptent))
2180                                 continue;
2181                         make_uffd_wp_pte(vma, addr, pte, ptent);
2182                         if (!flush_end)
2183                                 start = addr;
2184                         flush_end = addr + PAGE_SIZE;
2185                 }
2186                 goto flush_and_return;
2187         }
2188
2189         if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2190             p->arg.category_mask == PAGE_IS_WRITTEN &&
2191             p->arg.return_mask == PAGE_IS_WRITTEN) {
2192                 for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2193                         unsigned long next = addr + PAGE_SIZE;
2194                         pte_t ptent = ptep_get(pte);
2195
2196                         if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2197                             pte_swp_uffd_wp_any(ptent))
2198                                 continue;
2199                         ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2200                                                   p, addr, &next);
2201                         if (next == addr)
2202                                 break;
2203                         if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2204                                 continue;
2205                         make_uffd_wp_pte(vma, addr, pte, ptent);
2206                         if (!flush_end)
2207                                 start = addr;
2208                         flush_end = next;
2209                 }
2210                 goto flush_and_return;
2211         }
2212
2213         for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2214                 pte_t ptent = ptep_get(pte);
2215                 unsigned long categories = p->cur_vma_category |
2216                                            pagemap_page_category(p, vma, addr, ptent);
2217                 unsigned long next = addr + PAGE_SIZE;
2218
2219                 if (!pagemap_scan_is_interesting_page(categories, p))
2220                         continue;
2221
2222                 ret = pagemap_scan_output(categories, p, addr, &next);
2223                 if (next == addr)
2224                         break;
2225
2226                 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2227                         continue;
2228                 if (~categories & PAGE_IS_WRITTEN)
2229                         continue;
2230
2231                 make_uffd_wp_pte(vma, addr, pte, ptent);
2232                 if (!flush_end)
2233                         start = addr;
2234                 flush_end = next;
2235         }
2236
2237 flush_and_return:
2238         if (flush_end)
2239                 flush_tlb_range(vma, start, addr);
2240
2241         pte_unmap_unlock(start_pte, ptl);
2242         arch_leave_lazy_mmu_mode();
2243
2244         cond_resched();
2245         return ret;
2246 }
2247
2248 #ifdef CONFIG_HUGETLB_PAGE
2249 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2250                                       unsigned long start, unsigned long end,
2251                                       struct mm_walk *walk)
2252 {
2253         struct pagemap_scan_private *p = walk->private;
2254         struct vm_area_struct *vma = walk->vma;
2255         unsigned long categories;
2256         spinlock_t *ptl;
2257         int ret = 0;
2258         pte_t pte;
2259
2260         if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2261                 /* Go the short route when not write-protecting pages. */
2262
2263                 pte = huge_ptep_get(ptep);
2264                 categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2265
2266                 if (!pagemap_scan_is_interesting_page(categories, p))
2267                         return 0;
2268
2269                 return pagemap_scan_output(categories, p, start, &end);
2270         }
2271
2272         i_mmap_lock_write(vma->vm_file->f_mapping);
2273         ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2274
2275         pte = huge_ptep_get(ptep);
2276         categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2277
2278         if (!pagemap_scan_is_interesting_page(categories, p))
2279                 goto out_unlock;
2280
2281         ret = pagemap_scan_output(categories, p, start, &end);
2282         if (start == end)
2283                 goto out_unlock;
2284
2285         if (~categories & PAGE_IS_WRITTEN)
2286                 goto out_unlock;
2287
2288         if (end != start + HPAGE_SIZE) {
2289                 /* Partial HugeTLB page WP isn't possible. */
2290                 pagemap_scan_backout_range(p, start, end);
2291                 p->arg.walk_end = start;
2292                 ret = 0;
2293                 goto out_unlock;
2294         }
2295
2296         make_uffd_wp_huge_pte(vma, start, ptep, pte);
2297         flush_hugetlb_tlb_range(vma, start, end);
2298
2299 out_unlock:
2300         spin_unlock(ptl);
2301         i_mmap_unlock_write(vma->vm_file->f_mapping);
2302
2303         return ret;
2304 }
2305 #else
2306 #define pagemap_scan_hugetlb_entry NULL
2307 #endif
2308
2309 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2310                                  int depth, struct mm_walk *walk)
2311 {
2312         struct pagemap_scan_private *p = walk->private;
2313         struct vm_area_struct *vma = walk->vma;
2314         int ret, err;
2315
2316         if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2317                 return 0;
2318
2319         ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2320         if (addr == end)
2321                 return ret;
2322
2323         if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2324                 return ret;
2325
2326         err = uffd_wp_range(vma, addr, end - addr, true);
2327         if (err < 0)
2328                 ret = err;
2329
2330         return ret;
2331 }
2332
2333 static const struct mm_walk_ops pagemap_scan_ops = {
2334         .test_walk = pagemap_scan_test_walk,
2335         .pmd_entry = pagemap_scan_pmd_entry,
2336         .pte_hole = pagemap_scan_pte_hole,
2337         .hugetlb_entry = pagemap_scan_hugetlb_entry,
2338 };
2339
2340 static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2341                                  unsigned long uarg)
2342 {
2343         if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2344                 return -EFAULT;
2345
2346         if (arg->size != sizeof(struct pm_scan_arg))
2347                 return -EINVAL;
2348
2349         /* Validate requested features */
2350         if (arg->flags & ~PM_SCAN_FLAGS)
2351                 return -EINVAL;
2352         if ((arg->category_inverted | arg->category_mask |
2353              arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2354                 return -EINVAL;
2355
2356         arg->start = untagged_addr((unsigned long)arg->start);
2357         arg->end = untagged_addr((unsigned long)arg->end);
2358         arg->vec = untagged_addr((unsigned long)arg->vec);
2359
2360         /* Validate memory pointers */
2361         if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2362                 return -EINVAL;
2363         if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2364                 return -EFAULT;
2365         if (!arg->vec && arg->vec_len)
2366                 return -EINVAL;
2367         if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2368                               arg->vec_len * sizeof(struct page_region)))
2369                 return -EFAULT;
2370
2371         /* Fixup default values */
2372         arg->end = ALIGN(arg->end, PAGE_SIZE);
2373         arg->walk_end = 0;
2374         if (!arg->max_pages)
2375                 arg->max_pages = ULONG_MAX;
2376
2377         return 0;
2378 }
2379
2380 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2381                                        unsigned long uargl)
2382 {
2383         struct pm_scan_arg __user *uarg = (void __user *)uargl;
2384
2385         if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2386                 return -EFAULT;
2387
2388         return 0;
2389 }
2390
2391 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2392 {
2393         if (!p->arg.vec_len)
2394                 return 0;
2395
2396         p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2397                                p->arg.vec_len);
2398         p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2399                                    GFP_KERNEL);
2400         if (!p->vec_buf)
2401                 return -ENOMEM;
2402
2403         p->vec_buf->start = p->vec_buf->end = 0;
2404         p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2405
2406         return 0;
2407 }
2408
2409 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2410 {
2411         const struct page_region *buf = p->vec_buf;
2412         long n = p->vec_buf_index;
2413
2414         if (!p->vec_buf)
2415                 return 0;
2416
2417         if (buf[n].end != buf[n].start)
2418                 n++;
2419
2420         if (!n)
2421                 return 0;
2422
2423         if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2424                 return -EFAULT;
2425
2426         p->arg.vec_len -= n;
2427         p->vec_out += n;
2428
2429         p->vec_buf_index = 0;
2430         p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2431         p->vec_buf->start = p->vec_buf->end = 0;
2432
2433         return n;
2434 }
2435
2436 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2437 {
2438         struct pagemap_scan_private p = {0};
2439         unsigned long walk_start;
2440         size_t n_ranges_out = 0;
2441         int ret;
2442
2443         ret = pagemap_scan_get_args(&p.arg, uarg);
2444         if (ret)
2445                 return ret;
2446
2447         p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2448                               p.arg.return_mask;
2449         ret = pagemap_scan_init_bounce_buffer(&p);
2450         if (ret)
2451                 return ret;
2452
2453         for (walk_start = p.arg.start; walk_start < p.arg.end;
2454                         walk_start = p.arg.walk_end) {
2455                 struct mmu_notifier_range range;
2456                 long n_out;
2457
2458                 if (fatal_signal_pending(current)) {
2459                         ret = -EINTR;
2460                         break;
2461                 }
2462
2463                 ret = mmap_read_lock_killable(mm);
2464                 if (ret)
2465                         break;
2466
2467                 /* Protection change for the range is going to happen. */
2468                 if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2469                         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2470                                                 mm, walk_start, p.arg.end);
2471                         mmu_notifier_invalidate_range_start(&range);
2472                 }
2473
2474                 ret = walk_page_range(mm, walk_start, p.arg.end,
2475                                       &pagemap_scan_ops, &p);
2476
2477                 if (p.arg.flags & PM_SCAN_WP_MATCHING)
2478                         mmu_notifier_invalidate_range_end(&range);
2479
2480                 mmap_read_unlock(mm);
2481
2482                 n_out = pagemap_scan_flush_buffer(&p);
2483                 if (n_out < 0)
2484                         ret = n_out;
2485                 else
2486                         n_ranges_out += n_out;
2487
2488                 if (ret != -ENOSPC)
2489                         break;
2490
2491                 if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2492                         break;
2493         }
2494
2495         /* ENOSPC signifies early stop (buffer full) from the walk. */
2496         if (!ret || ret == -ENOSPC)
2497                 ret = n_ranges_out;
2498
2499         /* The walk_end isn't set when ret is zero */
2500         if (!p.arg.walk_end)
2501                 p.arg.walk_end = p.arg.end;
2502         if (pagemap_scan_writeback_args(&p.arg, uarg))
2503                 ret = -EFAULT;
2504
2505         kfree(p.vec_buf);
2506         return ret;
2507 }
2508
2509 static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2510                            unsigned long arg)
2511 {
2512         struct mm_struct *mm = file->private_data;
2513
2514         switch (cmd) {
2515         case PAGEMAP_SCAN:
2516                 return do_pagemap_scan(mm, arg);
2517
2518         default:
2519                 return -EINVAL;
2520         }
2521 }
2522
2523 const struct file_operations proc_pagemap_operations = {
2524         .llseek         = mem_lseek, /* borrow this */
2525         .read           = pagemap_read,
2526         .open           = pagemap_open,
2527         .release        = pagemap_release,
2528         .unlocked_ioctl = do_pagemap_cmd,
2529         .compat_ioctl   = do_pagemap_cmd,
2530 };
2531 #endif /* CONFIG_PROC_PAGE_MONITOR */
2532
2533 #ifdef CONFIG_NUMA
2534
2535 struct numa_maps {
2536         unsigned long pages;
2537         unsigned long anon;
2538         unsigned long active;
2539         unsigned long writeback;
2540         unsigned long mapcount_max;
2541         unsigned long dirty;
2542         unsigned long swapcache;
2543         unsigned long node[MAX_NUMNODES];
2544 };
2545
2546 struct numa_maps_private {
2547         struct proc_maps_private proc_maps;
2548         struct numa_maps md;
2549 };
2550
2551 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
2552                         unsigned long nr_pages)
2553 {
2554         int count = page_mapcount(page);
2555
2556         md->pages += nr_pages;
2557         if (pte_dirty || PageDirty(page))
2558                 md->dirty += nr_pages;
2559
2560         if (PageSwapCache(page))
2561                 md->swapcache += nr_pages;
2562
2563         if (PageActive(page) || PageUnevictable(page))
2564                 md->active += nr_pages;
2565
2566         if (PageWriteback(page))
2567                 md->writeback += nr_pages;
2568
2569         if (PageAnon(page))
2570                 md->anon += nr_pages;
2571
2572         if (count > md->mapcount_max)
2573                 md->mapcount_max = count;
2574
2575         md->node[page_to_nid(page)] += nr_pages;
2576 }
2577
2578 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
2579                 unsigned long addr)
2580 {
2581         struct page *page;
2582         int nid;
2583
2584         if (!pte_present(pte))
2585                 return NULL;
2586
2587         page = vm_normal_page(vma, addr, pte);
2588         if (!page || is_zone_device_page(page))
2589                 return NULL;
2590
2591         if (PageReserved(page))
2592                 return NULL;
2593
2594         nid = page_to_nid(page);
2595         if (!node_isset(nid, node_states[N_MEMORY]))
2596                 return NULL;
2597
2598         return page;
2599 }
2600
2601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2602 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
2603                                               struct vm_area_struct *vma,
2604                                               unsigned long addr)
2605 {
2606         struct page *page;
2607         int nid;
2608
2609         if (!pmd_present(pmd))
2610                 return NULL;
2611
2612         page = vm_normal_page_pmd(vma, addr, pmd);
2613         if (!page)
2614                 return NULL;
2615
2616         if (PageReserved(page))
2617                 return NULL;
2618
2619         nid = page_to_nid(page);
2620         if (!node_isset(nid, node_states[N_MEMORY]))
2621                 return NULL;
2622
2623         return page;
2624 }
2625 #endif
2626
2627 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2628                 unsigned long end, struct mm_walk *walk)
2629 {
2630         struct numa_maps *md = walk->private;
2631         struct vm_area_struct *vma = walk->vma;
2632         spinlock_t *ptl;
2633         pte_t *orig_pte;
2634         pte_t *pte;
2635
2636 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2637         ptl = pmd_trans_huge_lock(pmd, vma);
2638         if (ptl) {
2639                 struct page *page;
2640
2641                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
2642                 if (page)
2643                         gather_stats(page, md, pmd_dirty(*pmd),
2644                                      HPAGE_PMD_SIZE/PAGE_SIZE);
2645                 spin_unlock(ptl);
2646                 return 0;
2647         }
2648 #endif
2649         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2650         if (!pte) {
2651                 walk->action = ACTION_AGAIN;
2652                 return 0;
2653         }
2654         do {
2655                 pte_t ptent = ptep_get(pte);
2656                 struct page *page = can_gather_numa_stats(ptent, vma, addr);
2657                 if (!page)
2658                         continue;
2659                 gather_stats(page, md, pte_dirty(ptent), 1);
2660
2661         } while (pte++, addr += PAGE_SIZE, addr != end);
2662         pte_unmap_unlock(orig_pte, ptl);
2663         cond_resched();
2664         return 0;
2665 }
2666 #ifdef CONFIG_HUGETLB_PAGE
2667 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2668                 unsigned long addr, unsigned long end, struct mm_walk *walk)
2669 {
2670         pte_t huge_pte = huge_ptep_get(pte);
2671         struct numa_maps *md;
2672         struct page *page;
2673
2674         if (!pte_present(huge_pte))
2675                 return 0;
2676
2677         page = pte_page(huge_pte);
2678
2679         md = walk->private;
2680         gather_stats(page, md, pte_dirty(huge_pte), 1);
2681         return 0;
2682 }
2683
2684 #else
2685 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2686                 unsigned long addr, unsigned long end, struct mm_walk *walk)
2687 {
2688         return 0;
2689 }
2690 #endif
2691
2692 static const struct mm_walk_ops show_numa_ops = {
2693         .hugetlb_entry = gather_hugetlb_stats,
2694         .pmd_entry = gather_pte_stats,
2695         .walk_lock = PGWALK_RDLOCK,
2696 };
2697
2698 /*
2699  * Display pages allocated per node and memory policy via /proc.
2700  */
2701 static int show_numa_map(struct seq_file *m, void *v)
2702 {
2703         struct numa_maps_private *numa_priv = m->private;
2704         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
2705         struct vm_area_struct *vma = v;
2706         struct numa_maps *md = &numa_priv->md;
2707         struct file *file = vma->vm_file;
2708         struct mm_struct *mm = vma->vm_mm;
2709         char buffer[64];
2710         struct mempolicy *pol;
2711         pgoff_t ilx;
2712         int nid;
2713
2714         if (!mm)
2715                 return 0;
2716
2717         /* Ensure we start with an empty set of numa_maps statistics. */
2718         memset(md, 0, sizeof(*md));
2719
2720         pol = __get_vma_policy(vma, vma->vm_start, &ilx);
2721         if (pol) {
2722                 mpol_to_str(buffer, sizeof(buffer), pol);
2723                 mpol_cond_put(pol);
2724         } else {
2725                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
2726         }
2727
2728         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2729
2730         if (file) {
2731                 seq_puts(m, " file=");
2732                 seq_path(m, file_user_path(file), "\n\t= ");
2733         } else if (vma_is_initial_heap(vma)) {
2734                 seq_puts(m, " heap");
2735         } else if (vma_is_initial_stack(vma)) {
2736                 seq_puts(m, " stack");
2737         }
2738
2739         if (is_vm_hugetlb_page(vma))
2740                 seq_puts(m, " huge");
2741
2742         /* mmap_lock is held by m_start */
2743         walk_page_vma(vma, &show_numa_ops, md);
2744
2745         if (!md->pages)
2746                 goto out;
2747
2748         if (md->anon)
2749                 seq_printf(m, " anon=%lu", md->anon);
2750
2751         if (md->dirty)
2752                 seq_printf(m, " dirty=%lu", md->dirty);
2753
2754         if (md->pages != md->anon && md->pages != md->dirty)
2755                 seq_printf(m, " mapped=%lu", md->pages);
2756
2757         if (md->mapcount_max > 1)
2758                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2759
2760         if (md->swapcache)
2761                 seq_printf(m, " swapcache=%lu", md->swapcache);
2762
2763         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2764                 seq_printf(m, " active=%lu", md->active);
2765
2766         if (md->writeback)
2767                 seq_printf(m, " writeback=%lu", md->writeback);
2768
2769         for_each_node_state(nid, N_MEMORY)
2770                 if (md->node[nid])
2771                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
2772
2773         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
2774 out:
2775         seq_putc(m, '\n');
2776         return 0;
2777 }
2778
2779 static const struct seq_operations proc_pid_numa_maps_op = {
2780         .start  = m_start,
2781         .next   = m_next,
2782         .stop   = m_stop,
2783         .show   = show_numa_map,
2784 };
2785
2786 static int pid_numa_maps_open(struct inode *inode, struct file *file)
2787 {
2788         return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
2789                                 sizeof(struct numa_maps_private));
2790 }
2791
2792 const struct file_operations proc_pid_numa_maps_operations = {
2793         .open           = pid_numa_maps_open,
2794         .read           = seq_read,
2795         .llseek         = seq_lseek,
2796         .release        = proc_map_release,
2797 };
2798
2799 #endif /* CONFIG_NUMA */