GNU Linux-libre 6.1.86-gnu
[releases.git] / fs / pipe.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
29
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
32
33 #include "internal.h"
34
35 /*
36  * New pipe buffers will be restricted to this size while the user is exceeding
37  * their pipe buffer quota. The general pipe use case needs at least two
38  * buffers: one for data yet to be read, and one for new data. If this is less
39  * than two, then a write to a non-empty pipe may block even if the pipe is not
40  * full. This can occur with GNU make jobserver or similar uses of pipes as
41  * semaphores: multiple processes may be waiting to write tokens back to the
42  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43  *
44  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46  * emptied.
47  */
48 #define PIPE_MIN_DEF_BUFFERS 2
49
50 /*
51  * The max size that a non-root user is allowed to grow the pipe. Can
52  * be set by root in /proc/sys/fs/pipe-max-size
53  */
54 static unsigned int pipe_max_size = 1048576;
55
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57  * matches default values.
58  */
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61
62 /*
63  * We use head and tail indices that aren't masked off, except at the point of
64  * dereference, but rather they're allowed to wrap naturally.  This means there
65  * isn't a dead spot in the buffer, but the ring has to be a power of two and
66  * <= 2^31.
67  * -- David Howells 2019-09-23.
68  *
69  * Reads with count = 0 should always return 0.
70  * -- Julian Bradfield 1999-06-07.
71  *
72  * FIFOs and Pipes now generate SIGIO for both readers and writers.
73  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74  *
75  * pipe_read & write cleanup
76  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77  */
78
79 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
80 {
81         if (pipe->files)
82                 mutex_lock_nested(&pipe->mutex, subclass);
83 }
84
85 void pipe_lock(struct pipe_inode_info *pipe)
86 {
87         /*
88          * pipe_lock() nests non-pipe inode locks (for writing to a file)
89          */
90         pipe_lock_nested(pipe, I_MUTEX_PARENT);
91 }
92 EXPORT_SYMBOL(pipe_lock);
93
94 void pipe_unlock(struct pipe_inode_info *pipe)
95 {
96         if (pipe->files)
97                 mutex_unlock(&pipe->mutex);
98 }
99 EXPORT_SYMBOL(pipe_unlock);
100
101 static inline void __pipe_lock(struct pipe_inode_info *pipe)
102 {
103         mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
104 }
105
106 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
107 {
108         mutex_unlock(&pipe->mutex);
109 }
110
111 void pipe_double_lock(struct pipe_inode_info *pipe1,
112                       struct pipe_inode_info *pipe2)
113 {
114         BUG_ON(pipe1 == pipe2);
115
116         if (pipe1 < pipe2) {
117                 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118                 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
119         } else {
120                 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121                 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
122         }
123 }
124
125 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126                                   struct pipe_buffer *buf)
127 {
128         struct page *page = buf->page;
129
130         /*
131          * If nobody else uses this page, and we don't already have a
132          * temporary page, let's keep track of it as a one-deep
133          * allocation cache. (Otherwise just release our reference to it)
134          */
135         if (page_count(page) == 1 && !pipe->tmp_page)
136                 pipe->tmp_page = page;
137         else
138                 put_page(page);
139 }
140
141 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142                 struct pipe_buffer *buf)
143 {
144         struct page *page = buf->page;
145
146         if (page_count(page) != 1)
147                 return false;
148         memcg_kmem_uncharge_page(page, 0);
149         __SetPageLocked(page);
150         return true;
151 }
152
153 /**
154  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155  * @pipe:       the pipe that the buffer belongs to
156  * @buf:        the buffer to attempt to steal
157  *
158  * Description:
159  *      This function attempts to steal the &struct page attached to
160  *      @buf. If successful, this function returns 0 and returns with
161  *      the page locked. The caller may then reuse the page for whatever
162  *      he wishes; the typical use is insertion into a different file
163  *      page cache.
164  */
165 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166                 struct pipe_buffer *buf)
167 {
168         struct page *page = buf->page;
169
170         /*
171          * A reference of one is golden, that means that the owner of this
172          * page is the only one holding a reference to it. lock the page
173          * and return OK.
174          */
175         if (page_count(page) == 1) {
176                 lock_page(page);
177                 return true;
178         }
179         return false;
180 }
181 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
182
183 /**
184  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185  * @pipe:       the pipe that the buffer belongs to
186  * @buf:        the buffer to get a reference to
187  *
188  * Description:
189  *      This function grabs an extra reference to @buf. It's used in
190  *      the tee() system call, when we duplicate the buffers in one
191  *      pipe into another.
192  */
193 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
194 {
195         return try_get_page(buf->page);
196 }
197 EXPORT_SYMBOL(generic_pipe_buf_get);
198
199 /**
200  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201  * @pipe:       the pipe that the buffer belongs to
202  * @buf:        the buffer to put a reference to
203  *
204  * Description:
205  *      This function releases a reference to @buf.
206  */
207 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208                               struct pipe_buffer *buf)
209 {
210         put_page(buf->page);
211 }
212 EXPORT_SYMBOL(generic_pipe_buf_release);
213
214 static const struct pipe_buf_operations anon_pipe_buf_ops = {
215         .release        = anon_pipe_buf_release,
216         .try_steal      = anon_pipe_buf_try_steal,
217         .get            = generic_pipe_buf_get,
218 };
219
220 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
221 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
222 {
223         unsigned int head = READ_ONCE(pipe->head);
224         unsigned int tail = READ_ONCE(pipe->tail);
225         unsigned int writers = READ_ONCE(pipe->writers);
226
227         return !pipe_empty(head, tail) || !writers;
228 }
229
230 static ssize_t
231 pipe_read(struct kiocb *iocb, struct iov_iter *to)
232 {
233         size_t total_len = iov_iter_count(to);
234         struct file *filp = iocb->ki_filp;
235         struct pipe_inode_info *pipe = filp->private_data;
236         bool was_full, wake_next_reader = false;
237         ssize_t ret;
238
239         /* Null read succeeds. */
240         if (unlikely(total_len == 0))
241                 return 0;
242
243         ret = 0;
244         __pipe_lock(pipe);
245
246         /*
247          * We only wake up writers if the pipe was full when we started
248          * reading in order to avoid unnecessary wakeups.
249          *
250          * But when we do wake up writers, we do so using a sync wakeup
251          * (WF_SYNC), because we want them to get going and generate more
252          * data for us.
253          */
254         was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
255         for (;;) {
256                 /* Read ->head with a barrier vs post_one_notification() */
257                 unsigned int head = smp_load_acquire(&pipe->head);
258                 unsigned int tail = pipe->tail;
259                 unsigned int mask = pipe->ring_size - 1;
260
261 #ifdef CONFIG_WATCH_QUEUE
262                 if (pipe->note_loss) {
263                         struct watch_notification n;
264
265                         if (total_len < 8) {
266                                 if (ret == 0)
267                                         ret = -ENOBUFS;
268                                 break;
269                         }
270
271                         n.type = WATCH_TYPE_META;
272                         n.subtype = WATCH_META_LOSS_NOTIFICATION;
273                         n.info = watch_sizeof(n);
274                         if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
275                                 if (ret == 0)
276                                         ret = -EFAULT;
277                                 break;
278                         }
279                         ret += sizeof(n);
280                         total_len -= sizeof(n);
281                         pipe->note_loss = false;
282                 }
283 #endif
284
285                 if (!pipe_empty(head, tail)) {
286                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
287                         size_t chars = buf->len;
288                         size_t written;
289                         int error;
290
291                         if (chars > total_len) {
292                                 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
293                                         if (ret == 0)
294                                                 ret = -ENOBUFS;
295                                         break;
296                                 }
297                                 chars = total_len;
298                         }
299
300                         error = pipe_buf_confirm(pipe, buf);
301                         if (error) {
302                                 if (!ret)
303                                         ret = error;
304                                 break;
305                         }
306
307                         written = copy_page_to_iter(buf->page, buf->offset, chars, to);
308                         if (unlikely(written < chars)) {
309                                 if (!ret)
310                                         ret = -EFAULT;
311                                 break;
312                         }
313                         ret += chars;
314                         buf->offset += chars;
315                         buf->len -= chars;
316
317                         /* Was it a packet buffer? Clean up and exit */
318                         if (buf->flags & PIPE_BUF_FLAG_PACKET) {
319                                 total_len = chars;
320                                 buf->len = 0;
321                         }
322
323                         if (!buf->len) {
324                                 pipe_buf_release(pipe, buf);
325                                 spin_lock_irq(&pipe->rd_wait.lock);
326 #ifdef CONFIG_WATCH_QUEUE
327                                 if (buf->flags & PIPE_BUF_FLAG_LOSS)
328                                         pipe->note_loss = true;
329 #endif
330                                 tail++;
331                                 pipe->tail = tail;
332                                 spin_unlock_irq(&pipe->rd_wait.lock);
333                         }
334                         total_len -= chars;
335                         if (!total_len)
336                                 break;  /* common path: read succeeded */
337                         if (!pipe_empty(head, tail))    /* More to do? */
338                                 continue;
339                 }
340
341                 if (!pipe->writers)
342                         break;
343                 if (ret)
344                         break;
345                 if (filp->f_flags & O_NONBLOCK) {
346                         ret = -EAGAIN;
347                         break;
348                 }
349                 __pipe_unlock(pipe);
350
351                 /*
352                  * We only get here if we didn't actually read anything.
353                  *
354                  * However, we could have seen (and removed) a zero-sized
355                  * pipe buffer, and might have made space in the buffers
356                  * that way.
357                  *
358                  * You can't make zero-sized pipe buffers by doing an empty
359                  * write (not even in packet mode), but they can happen if
360                  * the writer gets an EFAULT when trying to fill a buffer
361                  * that already got allocated and inserted in the buffer
362                  * array.
363                  *
364                  * So we still need to wake up any pending writers in the
365                  * _very_ unlikely case that the pipe was full, but we got
366                  * no data.
367                  */
368                 if (unlikely(was_full))
369                         wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
370                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
371
372                 /*
373                  * But because we didn't read anything, at this point we can
374                  * just return directly with -ERESTARTSYS if we're interrupted,
375                  * since we've done any required wakeups and there's no need
376                  * to mark anything accessed. And we've dropped the lock.
377                  */
378                 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
379                         return -ERESTARTSYS;
380
381                 __pipe_lock(pipe);
382                 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
383                 wake_next_reader = true;
384         }
385         if (pipe_empty(pipe->head, pipe->tail))
386                 wake_next_reader = false;
387         __pipe_unlock(pipe);
388
389         if (was_full)
390                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
391         if (wake_next_reader)
392                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
393         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
394         if (ret > 0)
395                 file_accessed(filp);
396         return ret;
397 }
398
399 static inline int is_packetized(struct file *file)
400 {
401         return (file->f_flags & O_DIRECT) != 0;
402 }
403
404 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
405 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
406 {
407         unsigned int head = READ_ONCE(pipe->head);
408         unsigned int tail = READ_ONCE(pipe->tail);
409         unsigned int max_usage = READ_ONCE(pipe->max_usage);
410
411         return !pipe_full(head, tail, max_usage) ||
412                 !READ_ONCE(pipe->readers);
413 }
414
415 static ssize_t
416 pipe_write(struct kiocb *iocb, struct iov_iter *from)
417 {
418         struct file *filp = iocb->ki_filp;
419         struct pipe_inode_info *pipe = filp->private_data;
420         unsigned int head;
421         ssize_t ret = 0;
422         size_t total_len = iov_iter_count(from);
423         ssize_t chars;
424         bool was_empty = false;
425         bool wake_next_writer = false;
426
427         /*
428          * Reject writing to watch queue pipes before the point where we lock
429          * the pipe.
430          * Otherwise, lockdep would be unhappy if the caller already has another
431          * pipe locked.
432          * If we had to support locking a normal pipe and a notification pipe at
433          * the same time, we could set up lockdep annotations for that, but
434          * since we don't actually need that, it's simpler to just bail here.
435          */
436         if (pipe_has_watch_queue(pipe))
437                 return -EXDEV;
438
439         /* Null write succeeds. */
440         if (unlikely(total_len == 0))
441                 return 0;
442
443         __pipe_lock(pipe);
444
445         if (!pipe->readers) {
446                 send_sig(SIGPIPE, current, 0);
447                 ret = -EPIPE;
448                 goto out;
449         }
450
451         /*
452          * If it wasn't empty we try to merge new data into
453          * the last buffer.
454          *
455          * That naturally merges small writes, but it also
456          * page-aligns the rest of the writes for large writes
457          * spanning multiple pages.
458          */
459         head = pipe->head;
460         was_empty = pipe_empty(head, pipe->tail);
461         chars = total_len & (PAGE_SIZE-1);
462         if (chars && !was_empty) {
463                 unsigned int mask = pipe->ring_size - 1;
464                 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
465                 int offset = buf->offset + buf->len;
466
467                 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
468                     offset + chars <= PAGE_SIZE) {
469                         ret = pipe_buf_confirm(pipe, buf);
470                         if (ret)
471                                 goto out;
472
473                         ret = copy_page_from_iter(buf->page, offset, chars, from);
474                         if (unlikely(ret < chars)) {
475                                 ret = -EFAULT;
476                                 goto out;
477                         }
478
479                         buf->len += ret;
480                         if (!iov_iter_count(from))
481                                 goto out;
482                 }
483         }
484
485         for (;;) {
486                 if (!pipe->readers) {
487                         send_sig(SIGPIPE, current, 0);
488                         if (!ret)
489                                 ret = -EPIPE;
490                         break;
491                 }
492
493                 head = pipe->head;
494                 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
495                         unsigned int mask = pipe->ring_size - 1;
496                         struct pipe_buffer *buf = &pipe->bufs[head & mask];
497                         struct page *page = pipe->tmp_page;
498                         int copied;
499
500                         if (!page) {
501                                 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
502                                 if (unlikely(!page)) {
503                                         ret = ret ? : -ENOMEM;
504                                         break;
505                                 }
506                                 pipe->tmp_page = page;
507                         }
508
509                         /* Allocate a slot in the ring in advance and attach an
510                          * empty buffer.  If we fault or otherwise fail to use
511                          * it, either the reader will consume it or it'll still
512                          * be there for the next write.
513                          */
514                         spin_lock_irq(&pipe->rd_wait.lock);
515
516                         head = pipe->head;
517                         if (pipe_full(head, pipe->tail, pipe->max_usage)) {
518                                 spin_unlock_irq(&pipe->rd_wait.lock);
519                                 continue;
520                         }
521
522                         pipe->head = head + 1;
523                         spin_unlock_irq(&pipe->rd_wait.lock);
524
525                         /* Insert it into the buffer array */
526                         buf = &pipe->bufs[head & mask];
527                         buf->page = page;
528                         buf->ops = &anon_pipe_buf_ops;
529                         buf->offset = 0;
530                         buf->len = 0;
531                         if (is_packetized(filp))
532                                 buf->flags = PIPE_BUF_FLAG_PACKET;
533                         else
534                                 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
535                         pipe->tmp_page = NULL;
536
537                         copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
538                         if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
539                                 if (!ret)
540                                         ret = -EFAULT;
541                                 break;
542                         }
543                         ret += copied;
544                         buf->offset = 0;
545                         buf->len = copied;
546
547                         if (!iov_iter_count(from))
548                                 break;
549                 }
550
551                 if (!pipe_full(head, pipe->tail, pipe->max_usage))
552                         continue;
553
554                 /* Wait for buffer space to become available. */
555                 if (filp->f_flags & O_NONBLOCK) {
556                         if (!ret)
557                                 ret = -EAGAIN;
558                         break;
559                 }
560                 if (signal_pending(current)) {
561                         if (!ret)
562                                 ret = -ERESTARTSYS;
563                         break;
564                 }
565
566                 /*
567                  * We're going to release the pipe lock and wait for more
568                  * space. We wake up any readers if necessary, and then
569                  * after waiting we need to re-check whether the pipe
570                  * become empty while we dropped the lock.
571                  */
572                 __pipe_unlock(pipe);
573                 if (was_empty)
574                         wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
575                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
576                 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
577                 __pipe_lock(pipe);
578                 was_empty = pipe_empty(pipe->head, pipe->tail);
579                 wake_next_writer = true;
580         }
581 out:
582         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
583                 wake_next_writer = false;
584         __pipe_unlock(pipe);
585
586         /*
587          * If we do do a wakeup event, we do a 'sync' wakeup, because we
588          * want the reader to start processing things asap, rather than
589          * leave the data pending.
590          *
591          * This is particularly important for small writes, because of
592          * how (for example) the GNU make jobserver uses small writes to
593          * wake up pending jobs
594          *
595          * Epoll nonsensically wants a wakeup whether the pipe
596          * was already empty or not.
597          */
598         if (was_empty || pipe->poll_usage)
599                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
600         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
601         if (wake_next_writer)
602                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
603         if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
604                 int err = file_update_time(filp);
605                 if (err)
606                         ret = err;
607                 sb_end_write(file_inode(filp)->i_sb);
608         }
609         return ret;
610 }
611
612 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
613 {
614         struct pipe_inode_info *pipe = filp->private_data;
615         unsigned int count, head, tail, mask;
616
617         switch (cmd) {
618         case FIONREAD:
619                 __pipe_lock(pipe);
620                 count = 0;
621                 head = pipe->head;
622                 tail = pipe->tail;
623                 mask = pipe->ring_size - 1;
624
625                 while (tail != head) {
626                         count += pipe->bufs[tail & mask].len;
627                         tail++;
628                 }
629                 __pipe_unlock(pipe);
630
631                 return put_user(count, (int __user *)arg);
632
633 #ifdef CONFIG_WATCH_QUEUE
634         case IOC_WATCH_QUEUE_SET_SIZE: {
635                 int ret;
636                 __pipe_lock(pipe);
637                 ret = watch_queue_set_size(pipe, arg);
638                 __pipe_unlock(pipe);
639                 return ret;
640         }
641
642         case IOC_WATCH_QUEUE_SET_FILTER:
643                 return watch_queue_set_filter(
644                         pipe, (struct watch_notification_filter __user *)arg);
645 #endif
646
647         default:
648                 return -ENOIOCTLCMD;
649         }
650 }
651
652 /* No kernel lock held - fine */
653 static __poll_t
654 pipe_poll(struct file *filp, poll_table *wait)
655 {
656         __poll_t mask;
657         struct pipe_inode_info *pipe = filp->private_data;
658         unsigned int head, tail;
659
660         /* Epoll has some historical nasty semantics, this enables them */
661         WRITE_ONCE(pipe->poll_usage, true);
662
663         /*
664          * Reading pipe state only -- no need for acquiring the semaphore.
665          *
666          * But because this is racy, the code has to add the
667          * entry to the poll table _first_ ..
668          */
669         if (filp->f_mode & FMODE_READ)
670                 poll_wait(filp, &pipe->rd_wait, wait);
671         if (filp->f_mode & FMODE_WRITE)
672                 poll_wait(filp, &pipe->wr_wait, wait);
673
674         /*
675          * .. and only then can you do the racy tests. That way,
676          * if something changes and you got it wrong, the poll
677          * table entry will wake you up and fix it.
678          */
679         head = READ_ONCE(pipe->head);
680         tail = READ_ONCE(pipe->tail);
681
682         mask = 0;
683         if (filp->f_mode & FMODE_READ) {
684                 if (!pipe_empty(head, tail))
685                         mask |= EPOLLIN | EPOLLRDNORM;
686                 if (!pipe->writers && filp->f_version != pipe->w_counter)
687                         mask |= EPOLLHUP;
688         }
689
690         if (filp->f_mode & FMODE_WRITE) {
691                 if (!pipe_full(head, tail, pipe->max_usage))
692                         mask |= EPOLLOUT | EPOLLWRNORM;
693                 /*
694                  * Most Unices do not set EPOLLERR for FIFOs but on Linux they
695                  * behave exactly like pipes for poll().
696                  */
697                 if (!pipe->readers)
698                         mask |= EPOLLERR;
699         }
700
701         return mask;
702 }
703
704 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
705 {
706         int kill = 0;
707
708         spin_lock(&inode->i_lock);
709         if (!--pipe->files) {
710                 inode->i_pipe = NULL;
711                 kill = 1;
712         }
713         spin_unlock(&inode->i_lock);
714
715         if (kill)
716                 free_pipe_info(pipe);
717 }
718
719 static int
720 pipe_release(struct inode *inode, struct file *file)
721 {
722         struct pipe_inode_info *pipe = file->private_data;
723
724         __pipe_lock(pipe);
725         if (file->f_mode & FMODE_READ)
726                 pipe->readers--;
727         if (file->f_mode & FMODE_WRITE)
728                 pipe->writers--;
729
730         /* Was that the last reader or writer, but not the other side? */
731         if (!pipe->readers != !pipe->writers) {
732                 wake_up_interruptible_all(&pipe->rd_wait);
733                 wake_up_interruptible_all(&pipe->wr_wait);
734                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
735                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
736         }
737         __pipe_unlock(pipe);
738
739         put_pipe_info(inode, pipe);
740         return 0;
741 }
742
743 static int
744 pipe_fasync(int fd, struct file *filp, int on)
745 {
746         struct pipe_inode_info *pipe = filp->private_data;
747         int retval = 0;
748
749         __pipe_lock(pipe);
750         if (filp->f_mode & FMODE_READ)
751                 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
752         if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
753                 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
754                 if (retval < 0 && (filp->f_mode & FMODE_READ))
755                         /* this can happen only if on == T */
756                         fasync_helper(-1, filp, 0, &pipe->fasync_readers);
757         }
758         __pipe_unlock(pipe);
759         return retval;
760 }
761
762 unsigned long account_pipe_buffers(struct user_struct *user,
763                                    unsigned long old, unsigned long new)
764 {
765         return atomic_long_add_return(new - old, &user->pipe_bufs);
766 }
767
768 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
769 {
770         unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
771
772         return soft_limit && user_bufs > soft_limit;
773 }
774
775 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
776 {
777         unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
778
779         return hard_limit && user_bufs > hard_limit;
780 }
781
782 bool pipe_is_unprivileged_user(void)
783 {
784         return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
785 }
786
787 struct pipe_inode_info *alloc_pipe_info(void)
788 {
789         struct pipe_inode_info *pipe;
790         unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
791         struct user_struct *user = get_current_user();
792         unsigned long user_bufs;
793         unsigned int max_size = READ_ONCE(pipe_max_size);
794
795         pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
796         if (pipe == NULL)
797                 goto out_free_uid;
798
799         if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
800                 pipe_bufs = max_size >> PAGE_SHIFT;
801
802         user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
803
804         if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
805                 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
806                 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
807         }
808
809         if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
810                 goto out_revert_acct;
811
812         pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
813                              GFP_KERNEL_ACCOUNT);
814
815         if (pipe->bufs) {
816                 init_waitqueue_head(&pipe->rd_wait);
817                 init_waitqueue_head(&pipe->wr_wait);
818                 pipe->r_counter = pipe->w_counter = 1;
819                 pipe->max_usage = pipe_bufs;
820                 pipe->ring_size = pipe_bufs;
821                 pipe->nr_accounted = pipe_bufs;
822                 pipe->user = user;
823                 mutex_init(&pipe->mutex);
824                 return pipe;
825         }
826
827 out_revert_acct:
828         (void) account_pipe_buffers(user, pipe_bufs, 0);
829         kfree(pipe);
830 out_free_uid:
831         free_uid(user);
832         return NULL;
833 }
834
835 void free_pipe_info(struct pipe_inode_info *pipe)
836 {
837         unsigned int i;
838
839 #ifdef CONFIG_WATCH_QUEUE
840         if (pipe->watch_queue)
841                 watch_queue_clear(pipe->watch_queue);
842 #endif
843
844         (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
845         free_uid(pipe->user);
846         for (i = 0; i < pipe->ring_size; i++) {
847                 struct pipe_buffer *buf = pipe->bufs + i;
848                 if (buf->ops)
849                         pipe_buf_release(pipe, buf);
850         }
851 #ifdef CONFIG_WATCH_QUEUE
852         if (pipe->watch_queue)
853                 put_watch_queue(pipe->watch_queue);
854 #endif
855         if (pipe->tmp_page)
856                 __free_page(pipe->tmp_page);
857         kfree(pipe->bufs);
858         kfree(pipe);
859 }
860
861 static struct vfsmount *pipe_mnt __read_mostly;
862
863 /*
864  * pipefs_dname() is called from d_path().
865  */
866 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
867 {
868         return dynamic_dname(buffer, buflen, "pipe:[%lu]",
869                                 d_inode(dentry)->i_ino);
870 }
871
872 static const struct dentry_operations pipefs_dentry_operations = {
873         .d_dname        = pipefs_dname,
874 };
875
876 static struct inode * get_pipe_inode(void)
877 {
878         struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
879         struct pipe_inode_info *pipe;
880
881         if (!inode)
882                 goto fail_inode;
883
884         inode->i_ino = get_next_ino();
885
886         pipe = alloc_pipe_info();
887         if (!pipe)
888                 goto fail_iput;
889
890         inode->i_pipe = pipe;
891         pipe->files = 2;
892         pipe->readers = pipe->writers = 1;
893         inode->i_fop = &pipefifo_fops;
894
895         /*
896          * Mark the inode dirty from the very beginning,
897          * that way it will never be moved to the dirty
898          * list because "mark_inode_dirty()" will think
899          * that it already _is_ on the dirty list.
900          */
901         inode->i_state = I_DIRTY;
902         inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
903         inode->i_uid = current_fsuid();
904         inode->i_gid = current_fsgid();
905         inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
906
907         return inode;
908
909 fail_iput:
910         iput(inode);
911
912 fail_inode:
913         return NULL;
914 }
915
916 int create_pipe_files(struct file **res, int flags)
917 {
918         struct inode *inode = get_pipe_inode();
919         struct file *f;
920         int error;
921
922         if (!inode)
923                 return -ENFILE;
924
925         if (flags & O_NOTIFICATION_PIPE) {
926                 error = watch_queue_init(inode->i_pipe);
927                 if (error) {
928                         free_pipe_info(inode->i_pipe);
929                         iput(inode);
930                         return error;
931                 }
932         }
933
934         f = alloc_file_pseudo(inode, pipe_mnt, "",
935                                 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
936                                 &pipefifo_fops);
937         if (IS_ERR(f)) {
938                 free_pipe_info(inode->i_pipe);
939                 iput(inode);
940                 return PTR_ERR(f);
941         }
942
943         f->private_data = inode->i_pipe;
944
945         res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
946                                   &pipefifo_fops);
947         if (IS_ERR(res[0])) {
948                 put_pipe_info(inode, inode->i_pipe);
949                 fput(f);
950                 return PTR_ERR(res[0]);
951         }
952         res[0]->private_data = inode->i_pipe;
953         res[1] = f;
954         stream_open(inode, res[0]);
955         stream_open(inode, res[1]);
956         return 0;
957 }
958
959 static int __do_pipe_flags(int *fd, struct file **files, int flags)
960 {
961         int error;
962         int fdw, fdr;
963
964         if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
965                 return -EINVAL;
966
967         error = create_pipe_files(files, flags);
968         if (error)
969                 return error;
970
971         error = get_unused_fd_flags(flags);
972         if (error < 0)
973                 goto err_read_pipe;
974         fdr = error;
975
976         error = get_unused_fd_flags(flags);
977         if (error < 0)
978                 goto err_fdr;
979         fdw = error;
980
981         audit_fd_pair(fdr, fdw);
982         fd[0] = fdr;
983         fd[1] = fdw;
984         return 0;
985
986  err_fdr:
987         put_unused_fd(fdr);
988  err_read_pipe:
989         fput(files[0]);
990         fput(files[1]);
991         return error;
992 }
993
994 int do_pipe_flags(int *fd, int flags)
995 {
996         struct file *files[2];
997         int error = __do_pipe_flags(fd, files, flags);
998         if (!error) {
999                 fd_install(fd[0], files[0]);
1000                 fd_install(fd[1], files[1]);
1001         }
1002         return error;
1003 }
1004
1005 /*
1006  * sys_pipe() is the normal C calling standard for creating
1007  * a pipe. It's not the way Unix traditionally does this, though.
1008  */
1009 static int do_pipe2(int __user *fildes, int flags)
1010 {
1011         struct file *files[2];
1012         int fd[2];
1013         int error;
1014
1015         error = __do_pipe_flags(fd, files, flags);
1016         if (!error) {
1017                 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1018                         fput(files[0]);
1019                         fput(files[1]);
1020                         put_unused_fd(fd[0]);
1021                         put_unused_fd(fd[1]);
1022                         error = -EFAULT;
1023                 } else {
1024                         fd_install(fd[0], files[0]);
1025                         fd_install(fd[1], files[1]);
1026                 }
1027         }
1028         return error;
1029 }
1030
1031 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1032 {
1033         return do_pipe2(fildes, flags);
1034 }
1035
1036 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1037 {
1038         return do_pipe2(fildes, 0);
1039 }
1040
1041 /*
1042  * This is the stupid "wait for pipe to be readable or writable"
1043  * model.
1044  *
1045  * See pipe_read/write() for the proper kind of exclusive wait,
1046  * but that requires that we wake up any other readers/writers
1047  * if we then do not end up reading everything (ie the whole
1048  * "wake_next_reader/writer" logic in pipe_read/write()).
1049  */
1050 void pipe_wait_readable(struct pipe_inode_info *pipe)
1051 {
1052         pipe_unlock(pipe);
1053         wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1054         pipe_lock(pipe);
1055 }
1056
1057 void pipe_wait_writable(struct pipe_inode_info *pipe)
1058 {
1059         pipe_unlock(pipe);
1060         wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1061         pipe_lock(pipe);
1062 }
1063
1064 /*
1065  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1066  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1067  * race with the count check and waitqueue prep.
1068  *
1069  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1070  * then check the condition you're waiting for, and only then sleep. But
1071  * because of the pipe lock, we can check the condition before being on
1072  * the wait queue.
1073  *
1074  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1075  */
1076 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1077 {
1078         DEFINE_WAIT(rdwait);
1079         int cur = *cnt;
1080
1081         while (cur == *cnt) {
1082                 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1083                 pipe_unlock(pipe);
1084                 schedule();
1085                 finish_wait(&pipe->rd_wait, &rdwait);
1086                 pipe_lock(pipe);
1087                 if (signal_pending(current))
1088                         break;
1089         }
1090         return cur == *cnt ? -ERESTARTSYS : 0;
1091 }
1092
1093 static void wake_up_partner(struct pipe_inode_info *pipe)
1094 {
1095         wake_up_interruptible_all(&pipe->rd_wait);
1096 }
1097
1098 static int fifo_open(struct inode *inode, struct file *filp)
1099 {
1100         struct pipe_inode_info *pipe;
1101         bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1102         int ret;
1103
1104         filp->f_version = 0;
1105
1106         spin_lock(&inode->i_lock);
1107         if (inode->i_pipe) {
1108                 pipe = inode->i_pipe;
1109                 pipe->files++;
1110                 spin_unlock(&inode->i_lock);
1111         } else {
1112                 spin_unlock(&inode->i_lock);
1113                 pipe = alloc_pipe_info();
1114                 if (!pipe)
1115                         return -ENOMEM;
1116                 pipe->files = 1;
1117                 spin_lock(&inode->i_lock);
1118                 if (unlikely(inode->i_pipe)) {
1119                         inode->i_pipe->files++;
1120                         spin_unlock(&inode->i_lock);
1121                         free_pipe_info(pipe);
1122                         pipe = inode->i_pipe;
1123                 } else {
1124                         inode->i_pipe = pipe;
1125                         spin_unlock(&inode->i_lock);
1126                 }
1127         }
1128         filp->private_data = pipe;
1129         /* OK, we have a pipe and it's pinned down */
1130
1131         __pipe_lock(pipe);
1132
1133         /* We can only do regular read/write on fifos */
1134         stream_open(inode, filp);
1135
1136         switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1137         case FMODE_READ:
1138         /*
1139          *  O_RDONLY
1140          *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1141          *  opened, even when there is no process writing the FIFO.
1142          */
1143                 pipe->r_counter++;
1144                 if (pipe->readers++ == 0)
1145                         wake_up_partner(pipe);
1146
1147                 if (!is_pipe && !pipe->writers) {
1148                         if ((filp->f_flags & O_NONBLOCK)) {
1149                                 /* suppress EPOLLHUP until we have
1150                                  * seen a writer */
1151                                 filp->f_version = pipe->w_counter;
1152                         } else {
1153                                 if (wait_for_partner(pipe, &pipe->w_counter))
1154                                         goto err_rd;
1155                         }
1156                 }
1157                 break;
1158
1159         case FMODE_WRITE:
1160         /*
1161          *  O_WRONLY
1162          *  POSIX.1 says that O_NONBLOCK means return -1 with
1163          *  errno=ENXIO when there is no process reading the FIFO.
1164          */
1165                 ret = -ENXIO;
1166                 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1167                         goto err;
1168
1169                 pipe->w_counter++;
1170                 if (!pipe->writers++)
1171                         wake_up_partner(pipe);
1172
1173                 if (!is_pipe && !pipe->readers) {
1174                         if (wait_for_partner(pipe, &pipe->r_counter))
1175                                 goto err_wr;
1176                 }
1177                 break;
1178
1179         case FMODE_READ | FMODE_WRITE:
1180         /*
1181          *  O_RDWR
1182          *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1183          *  This implementation will NEVER block on a O_RDWR open, since
1184          *  the process can at least talk to itself.
1185          */
1186
1187                 pipe->readers++;
1188                 pipe->writers++;
1189                 pipe->r_counter++;
1190                 pipe->w_counter++;
1191                 if (pipe->readers == 1 || pipe->writers == 1)
1192                         wake_up_partner(pipe);
1193                 break;
1194
1195         default:
1196                 ret = -EINVAL;
1197                 goto err;
1198         }
1199
1200         /* Ok! */
1201         __pipe_unlock(pipe);
1202         return 0;
1203
1204 err_rd:
1205         if (!--pipe->readers)
1206                 wake_up_interruptible(&pipe->wr_wait);
1207         ret = -ERESTARTSYS;
1208         goto err;
1209
1210 err_wr:
1211         if (!--pipe->writers)
1212                 wake_up_interruptible_all(&pipe->rd_wait);
1213         ret = -ERESTARTSYS;
1214         goto err;
1215
1216 err:
1217         __pipe_unlock(pipe);
1218
1219         put_pipe_info(inode, pipe);
1220         return ret;
1221 }
1222
1223 const struct file_operations pipefifo_fops = {
1224         .open           = fifo_open,
1225         .llseek         = no_llseek,
1226         .read_iter      = pipe_read,
1227         .write_iter     = pipe_write,
1228         .poll           = pipe_poll,
1229         .unlocked_ioctl = pipe_ioctl,
1230         .release        = pipe_release,
1231         .fasync         = pipe_fasync,
1232         .splice_write   = iter_file_splice_write,
1233 };
1234
1235 /*
1236  * Currently we rely on the pipe array holding a power-of-2 number
1237  * of pages. Returns 0 on error.
1238  */
1239 unsigned int round_pipe_size(unsigned long size)
1240 {
1241         if (size > (1U << 31))
1242                 return 0;
1243
1244         /* Minimum pipe size, as required by POSIX */
1245         if (size < PAGE_SIZE)
1246                 return PAGE_SIZE;
1247
1248         return roundup_pow_of_two(size);
1249 }
1250
1251 /*
1252  * Resize the pipe ring to a number of slots.
1253  *
1254  * Note the pipe can be reduced in capacity, but only if the current
1255  * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1256  * returned instead.
1257  */
1258 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1259 {
1260         struct pipe_buffer *bufs;
1261         unsigned int head, tail, mask, n;
1262
1263         bufs = kcalloc(nr_slots, sizeof(*bufs),
1264                        GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1265         if (unlikely(!bufs))
1266                 return -ENOMEM;
1267
1268         spin_lock_irq(&pipe->rd_wait.lock);
1269         mask = pipe->ring_size - 1;
1270         head = pipe->head;
1271         tail = pipe->tail;
1272
1273         n = pipe_occupancy(head, tail);
1274         if (nr_slots < n) {
1275                 spin_unlock_irq(&pipe->rd_wait.lock);
1276                 kfree(bufs);
1277                 return -EBUSY;
1278         }
1279
1280         /*
1281          * The pipe array wraps around, so just start the new one at zero
1282          * and adjust the indices.
1283          */
1284         if (n > 0) {
1285                 unsigned int h = head & mask;
1286                 unsigned int t = tail & mask;
1287                 if (h > t) {
1288                         memcpy(bufs, pipe->bufs + t,
1289                                n * sizeof(struct pipe_buffer));
1290                 } else {
1291                         unsigned int tsize = pipe->ring_size - t;
1292                         if (h > 0)
1293                                 memcpy(bufs + tsize, pipe->bufs,
1294                                        h * sizeof(struct pipe_buffer));
1295                         memcpy(bufs, pipe->bufs + t,
1296                                tsize * sizeof(struct pipe_buffer));
1297                 }
1298         }
1299
1300         head = n;
1301         tail = 0;
1302
1303         kfree(pipe->bufs);
1304         pipe->bufs = bufs;
1305         pipe->ring_size = nr_slots;
1306         if (pipe->max_usage > nr_slots)
1307                 pipe->max_usage = nr_slots;
1308         pipe->tail = tail;
1309         pipe->head = head;
1310
1311         if (!pipe_has_watch_queue(pipe)) {
1312                 pipe->max_usage = nr_slots;
1313                 pipe->nr_accounted = nr_slots;
1314         }
1315
1316         spin_unlock_irq(&pipe->rd_wait.lock);
1317
1318         /* This might have made more room for writers */
1319         wake_up_interruptible(&pipe->wr_wait);
1320         return 0;
1321 }
1322
1323 /*
1324  * Allocate a new array of pipe buffers and copy the info over. Returns the
1325  * pipe size if successful, or return -ERROR on error.
1326  */
1327 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1328 {
1329         unsigned long user_bufs;
1330         unsigned int nr_slots, size;
1331         long ret = 0;
1332
1333         if (pipe_has_watch_queue(pipe))
1334                 return -EBUSY;
1335
1336         size = round_pipe_size(arg);
1337         nr_slots = size >> PAGE_SHIFT;
1338
1339         if (!nr_slots)
1340                 return -EINVAL;
1341
1342         /*
1343          * If trying to increase the pipe capacity, check that an
1344          * unprivileged user is not trying to exceed various limits
1345          * (soft limit check here, hard limit check just below).
1346          * Decreasing the pipe capacity is always permitted, even
1347          * if the user is currently over a limit.
1348          */
1349         if (nr_slots > pipe->max_usage &&
1350                         size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1351                 return -EPERM;
1352
1353         user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1354
1355         if (nr_slots > pipe->max_usage &&
1356                         (too_many_pipe_buffers_hard(user_bufs) ||
1357                          too_many_pipe_buffers_soft(user_bufs)) &&
1358                         pipe_is_unprivileged_user()) {
1359                 ret = -EPERM;
1360                 goto out_revert_acct;
1361         }
1362
1363         ret = pipe_resize_ring(pipe, nr_slots);
1364         if (ret < 0)
1365                 goto out_revert_acct;
1366
1367         return pipe->max_usage * PAGE_SIZE;
1368
1369 out_revert_acct:
1370         (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1371         return ret;
1372 }
1373
1374 /*
1375  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1376  * not enough to verify that this is a pipe.
1377  */
1378 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1379 {
1380         struct pipe_inode_info *pipe = file->private_data;
1381
1382         if (file->f_op != &pipefifo_fops || !pipe)
1383                 return NULL;
1384         if (for_splice && pipe_has_watch_queue(pipe))
1385                 return NULL;
1386         return pipe;
1387 }
1388
1389 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1390 {
1391         struct pipe_inode_info *pipe;
1392         long ret;
1393
1394         pipe = get_pipe_info(file, false);
1395         if (!pipe)
1396                 return -EBADF;
1397
1398         __pipe_lock(pipe);
1399
1400         switch (cmd) {
1401         case F_SETPIPE_SZ:
1402                 ret = pipe_set_size(pipe, arg);
1403                 break;
1404         case F_GETPIPE_SZ:
1405                 ret = pipe->max_usage * PAGE_SIZE;
1406                 break;
1407         default:
1408                 ret = -EINVAL;
1409                 break;
1410         }
1411
1412         __pipe_unlock(pipe);
1413         return ret;
1414 }
1415
1416 static const struct super_operations pipefs_ops = {
1417         .destroy_inode = free_inode_nonrcu,
1418         .statfs = simple_statfs,
1419 };
1420
1421 /*
1422  * pipefs should _never_ be mounted by userland - too much of security hassle,
1423  * no real gain from having the whole whorehouse mounted. So we don't need
1424  * any operations on the root directory. However, we need a non-trivial
1425  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1426  */
1427
1428 static int pipefs_init_fs_context(struct fs_context *fc)
1429 {
1430         struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1431         if (!ctx)
1432                 return -ENOMEM;
1433         ctx->ops = &pipefs_ops;
1434         ctx->dops = &pipefs_dentry_operations;
1435         return 0;
1436 }
1437
1438 static struct file_system_type pipe_fs_type = {
1439         .name           = "pipefs",
1440         .init_fs_context = pipefs_init_fs_context,
1441         .kill_sb        = kill_anon_super,
1442 };
1443
1444 #ifdef CONFIG_SYSCTL
1445 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1446                                         unsigned int *valp,
1447                                         int write, void *data)
1448 {
1449         if (write) {
1450                 unsigned int val;
1451
1452                 val = round_pipe_size(*lvalp);
1453                 if (val == 0)
1454                         return -EINVAL;
1455
1456                 *valp = val;
1457         } else {
1458                 unsigned int val = *valp;
1459                 *lvalp = (unsigned long) val;
1460         }
1461
1462         return 0;
1463 }
1464
1465 static int proc_dopipe_max_size(struct ctl_table *table, int write,
1466                                 void *buffer, size_t *lenp, loff_t *ppos)
1467 {
1468         return do_proc_douintvec(table, write, buffer, lenp, ppos,
1469                                  do_proc_dopipe_max_size_conv, NULL);
1470 }
1471
1472 static struct ctl_table fs_pipe_sysctls[] = {
1473         {
1474                 .procname       = "pipe-max-size",
1475                 .data           = &pipe_max_size,
1476                 .maxlen         = sizeof(pipe_max_size),
1477                 .mode           = 0644,
1478                 .proc_handler   = proc_dopipe_max_size,
1479         },
1480         {
1481                 .procname       = "pipe-user-pages-hard",
1482                 .data           = &pipe_user_pages_hard,
1483                 .maxlen         = sizeof(pipe_user_pages_hard),
1484                 .mode           = 0644,
1485                 .proc_handler   = proc_doulongvec_minmax,
1486         },
1487         {
1488                 .procname       = "pipe-user-pages-soft",
1489                 .data           = &pipe_user_pages_soft,
1490                 .maxlen         = sizeof(pipe_user_pages_soft),
1491                 .mode           = 0644,
1492                 .proc_handler   = proc_doulongvec_minmax,
1493         },
1494         { }
1495 };
1496 #endif
1497
1498 static int __init init_pipe_fs(void)
1499 {
1500         int err = register_filesystem(&pipe_fs_type);
1501
1502         if (!err) {
1503                 pipe_mnt = kern_mount(&pipe_fs_type);
1504                 if (IS_ERR(pipe_mnt)) {
1505                         err = PTR_ERR(pipe_mnt);
1506                         unregister_filesystem(&pipe_fs_type);
1507                 }
1508         }
1509 #ifdef CONFIG_SYSCTL
1510         register_sysctl_init("fs", fs_pipe_sysctls);
1511 #endif
1512         return err;
1513 }
1514
1515 fs_initcall(init_pipe_fs);