GNU Linux-libre 4.14.254-gnu1
[releases.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
34
35 #include <cluster/masklog.h>
36
37 #include "ocfs2.h"
38
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
55
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
58
59 DEFINE_SPINLOCK(trans_inc_lock);
60
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
62
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65                               int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70                                       int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72                                  int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74                                  int slot,
75                                  enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78                                             int slot_num,
79                                             struct ocfs2_dinode *la_dinode,
80                                             struct ocfs2_dinode *tl_dinode,
81                                             struct ocfs2_quota_recovery *qrec,
82                                             enum ocfs2_orphan_reco_type orphan_reco_type);
83
84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
85 {
86         return __ocfs2_wait_on_mount(osb, 0);
87 }
88
89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
90 {
91         return __ocfs2_wait_on_mount(osb, 1);
92 }
93
94 /*
95  * This replay_map is to track online/offline slots, so we could recover
96  * offline slots during recovery and mount
97  */
98
99 enum ocfs2_replay_state {
100         REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
101         REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
102         REPLAY_DONE             /* Replay was already queued */
103 };
104
105 struct ocfs2_replay_map {
106         unsigned int rm_slots;
107         enum ocfs2_replay_state rm_state;
108         unsigned char rm_replay_slots[0];
109 };
110
111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
112 {
113         if (!osb->replay_map)
114                 return;
115
116         /* If we've already queued the replay, we don't have any more to do */
117         if (osb->replay_map->rm_state == REPLAY_DONE)
118                 return;
119
120         osb->replay_map->rm_state = state;
121 }
122
123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
124 {
125         struct ocfs2_replay_map *replay_map;
126         int i, node_num;
127
128         /* If replay map is already set, we don't do it again */
129         if (osb->replay_map)
130                 return 0;
131
132         replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133                              (osb->max_slots * sizeof(char)), GFP_KERNEL);
134
135         if (!replay_map) {
136                 mlog_errno(-ENOMEM);
137                 return -ENOMEM;
138         }
139
140         spin_lock(&osb->osb_lock);
141
142         replay_map->rm_slots = osb->max_slots;
143         replay_map->rm_state = REPLAY_UNNEEDED;
144
145         /* set rm_replay_slots for offline slot(s) */
146         for (i = 0; i < replay_map->rm_slots; i++) {
147                 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148                         replay_map->rm_replay_slots[i] = 1;
149         }
150
151         osb->replay_map = replay_map;
152         spin_unlock(&osb->osb_lock);
153         return 0;
154 }
155
156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157                 enum ocfs2_orphan_reco_type orphan_reco_type)
158 {
159         struct ocfs2_replay_map *replay_map = osb->replay_map;
160         int i;
161
162         if (!replay_map)
163                 return;
164
165         if (replay_map->rm_state != REPLAY_NEEDED)
166                 return;
167
168         for (i = 0; i < replay_map->rm_slots; i++)
169                 if (replay_map->rm_replay_slots[i])
170                         ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171                                                         NULL, NULL,
172                                                         orphan_reco_type);
173         replay_map->rm_state = REPLAY_DONE;
174 }
175
176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
177 {
178         struct ocfs2_replay_map *replay_map = osb->replay_map;
179
180         if (!osb->replay_map)
181                 return;
182
183         kfree(replay_map);
184         osb->replay_map = NULL;
185 }
186
187 int ocfs2_recovery_init(struct ocfs2_super *osb)
188 {
189         struct ocfs2_recovery_map *rm;
190
191         mutex_init(&osb->recovery_lock);
192         osb->disable_recovery = 0;
193         osb->recovery_thread_task = NULL;
194         init_waitqueue_head(&osb->recovery_event);
195
196         rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197                      osb->max_slots * sizeof(unsigned int),
198                      GFP_KERNEL);
199         if (!rm) {
200                 mlog_errno(-ENOMEM);
201                 return -ENOMEM;
202         }
203
204         rm->rm_entries = (unsigned int *)((char *)rm +
205                                           sizeof(struct ocfs2_recovery_map));
206         osb->recovery_map = rm;
207
208         return 0;
209 }
210
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212  * memory barriers to make sure that we'll see the null task before
213  * being woken up */
214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
215 {
216         mb();
217         return osb->recovery_thread_task != NULL;
218 }
219
220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
221 {
222         struct ocfs2_recovery_map *rm;
223
224         /* disable any new recovery threads and wait for any currently
225          * running ones to exit. Do this before setting the vol_state. */
226         mutex_lock(&osb->recovery_lock);
227         osb->disable_recovery = 1;
228         mutex_unlock(&osb->recovery_lock);
229         wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
230
231         /* At this point, we know that no more recovery threads can be
232          * launched, so wait for any recovery completion work to
233          * complete. */
234         if (osb->ocfs2_wq)
235                 flush_workqueue(osb->ocfs2_wq);
236
237         /*
238          * Now that recovery is shut down, and the osb is about to be
239          * freed,  the osb_lock is not taken here.
240          */
241         rm = osb->recovery_map;
242         /* XXX: Should we bug if there are dirty entries? */
243
244         kfree(rm);
245 }
246
247 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
248                                      unsigned int node_num)
249 {
250         int i;
251         struct ocfs2_recovery_map *rm = osb->recovery_map;
252
253         assert_spin_locked(&osb->osb_lock);
254
255         for (i = 0; i < rm->rm_used; i++) {
256                 if (rm->rm_entries[i] == node_num)
257                         return 1;
258         }
259
260         return 0;
261 }
262
263 /* Behaves like test-and-set.  Returns the previous value */
264 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
265                                   unsigned int node_num)
266 {
267         struct ocfs2_recovery_map *rm = osb->recovery_map;
268
269         spin_lock(&osb->osb_lock);
270         if (__ocfs2_recovery_map_test(osb, node_num)) {
271                 spin_unlock(&osb->osb_lock);
272                 return 1;
273         }
274
275         /* XXX: Can this be exploited? Not from o2dlm... */
276         BUG_ON(rm->rm_used >= osb->max_slots);
277
278         rm->rm_entries[rm->rm_used] = node_num;
279         rm->rm_used++;
280         spin_unlock(&osb->osb_lock);
281
282         return 0;
283 }
284
285 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
286                                      unsigned int node_num)
287 {
288         int i;
289         struct ocfs2_recovery_map *rm = osb->recovery_map;
290
291         spin_lock(&osb->osb_lock);
292
293         for (i = 0; i < rm->rm_used; i++) {
294                 if (rm->rm_entries[i] == node_num)
295                         break;
296         }
297
298         if (i < rm->rm_used) {
299                 /* XXX: be careful with the pointer math */
300                 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
301                         (rm->rm_used - i - 1) * sizeof(unsigned int));
302                 rm->rm_used--;
303         }
304
305         spin_unlock(&osb->osb_lock);
306 }
307
308 static int ocfs2_commit_cache(struct ocfs2_super *osb)
309 {
310         int status = 0;
311         unsigned int flushed;
312         struct ocfs2_journal *journal = NULL;
313
314         journal = osb->journal;
315
316         /* Flush all pending commits and checkpoint the journal. */
317         down_write(&journal->j_trans_barrier);
318
319         flushed = atomic_read(&journal->j_num_trans);
320         trace_ocfs2_commit_cache_begin(flushed);
321         if (flushed == 0) {
322                 up_write(&journal->j_trans_barrier);
323                 goto finally;
324         }
325
326         jbd2_journal_lock_updates(journal->j_journal);
327         status = jbd2_journal_flush(journal->j_journal);
328         jbd2_journal_unlock_updates(journal->j_journal);
329         if (status < 0) {
330                 up_write(&journal->j_trans_barrier);
331                 mlog_errno(status);
332                 goto finally;
333         }
334
335         ocfs2_inc_trans_id(journal);
336
337         flushed = atomic_read(&journal->j_num_trans);
338         atomic_set(&journal->j_num_trans, 0);
339         up_write(&journal->j_trans_barrier);
340
341         trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
342
343         ocfs2_wake_downconvert_thread(osb);
344         wake_up(&journal->j_checkpointed);
345 finally:
346         return status;
347 }
348
349 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
350 {
351         journal_t *journal = osb->journal->j_journal;
352         handle_t *handle;
353
354         BUG_ON(!osb || !osb->journal->j_journal);
355
356         if (ocfs2_is_hard_readonly(osb))
357                 return ERR_PTR(-EROFS);
358
359         BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
360         BUG_ON(max_buffs <= 0);
361
362         /* Nested transaction? Just return the handle... */
363         if (journal_current_handle())
364                 return jbd2_journal_start(journal, max_buffs);
365
366         sb_start_intwrite(osb->sb);
367
368         down_read(&osb->journal->j_trans_barrier);
369
370         handle = jbd2_journal_start(journal, max_buffs);
371         if (IS_ERR(handle)) {
372                 up_read(&osb->journal->j_trans_barrier);
373                 sb_end_intwrite(osb->sb);
374
375                 mlog_errno(PTR_ERR(handle));
376
377                 if (is_journal_aborted(journal)) {
378                         ocfs2_abort(osb->sb, "Detected aborted journal\n");
379                         handle = ERR_PTR(-EROFS);
380                 }
381         } else {
382                 if (!ocfs2_mount_local(osb))
383                         atomic_inc(&(osb->journal->j_num_trans));
384         }
385
386         return handle;
387 }
388
389 int ocfs2_commit_trans(struct ocfs2_super *osb,
390                        handle_t *handle)
391 {
392         int ret, nested;
393         struct ocfs2_journal *journal = osb->journal;
394
395         BUG_ON(!handle);
396
397         nested = handle->h_ref > 1;
398         ret = jbd2_journal_stop(handle);
399         if (ret < 0)
400                 mlog_errno(ret);
401
402         if (!nested) {
403                 up_read(&journal->j_trans_barrier);
404                 sb_end_intwrite(osb->sb);
405         }
406
407         return ret;
408 }
409
410 /*
411  * 'nblocks' is what you want to add to the current transaction.
412  *
413  * This might call jbd2_journal_restart() which will commit dirty buffers
414  * and then restart the transaction. Before calling
415  * ocfs2_extend_trans(), any changed blocks should have been
416  * dirtied. After calling it, all blocks which need to be changed must
417  * go through another set of journal_access/journal_dirty calls.
418  *
419  * WARNING: This will not release any semaphores or disk locks taken
420  * during the transaction, so make sure they were taken *before*
421  * start_trans or we'll have ordering deadlocks.
422  *
423  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
424  * good because transaction ids haven't yet been recorded on the
425  * cluster locks associated with this handle.
426  */
427 int ocfs2_extend_trans(handle_t *handle, int nblocks)
428 {
429         int status, old_nblocks;
430
431         BUG_ON(!handle);
432         BUG_ON(nblocks < 0);
433
434         if (!nblocks)
435                 return 0;
436
437         old_nblocks = handle->h_buffer_credits;
438
439         trace_ocfs2_extend_trans(old_nblocks, nblocks);
440
441 #ifdef CONFIG_OCFS2_DEBUG_FS
442         status = 1;
443 #else
444         status = jbd2_journal_extend(handle, nblocks);
445         if (status < 0) {
446                 mlog_errno(status);
447                 goto bail;
448         }
449 #endif
450
451         if (status > 0) {
452                 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
453                 status = jbd2_journal_restart(handle,
454                                               old_nblocks + nblocks);
455                 if (status < 0) {
456                         mlog_errno(status);
457                         goto bail;
458                 }
459         }
460
461         status = 0;
462 bail:
463         return status;
464 }
465
466 /*
467  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
468  * If that fails, restart the transaction & regain write access for the
469  * buffer head which is used for metadata modifications.
470  * Taken from Ext4: extend_or_restart_transaction()
471  */
472 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
473 {
474         int status, old_nblks;
475
476         BUG_ON(!handle);
477
478         old_nblks = handle->h_buffer_credits;
479         trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
480
481         if (old_nblks < thresh)
482                 return 0;
483
484         status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
485         if (status < 0) {
486                 mlog_errno(status);
487                 goto bail;
488         }
489
490         if (status > 0) {
491                 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
492                 if (status < 0)
493                         mlog_errno(status);
494         }
495
496 bail:
497         return status;
498 }
499
500
501 struct ocfs2_triggers {
502         struct jbd2_buffer_trigger_type ot_triggers;
503         int                             ot_offset;
504 };
505
506 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
507 {
508         return container_of(triggers, struct ocfs2_triggers, ot_triggers);
509 }
510
511 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
512                                  struct buffer_head *bh,
513                                  void *data, size_t size)
514 {
515         struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
516
517         /*
518          * We aren't guaranteed to have the superblock here, so we
519          * must unconditionally compute the ecc data.
520          * __ocfs2_journal_access() will only set the triggers if
521          * metaecc is enabled.
522          */
523         ocfs2_block_check_compute(data, size, data + ot->ot_offset);
524 }
525
526 /*
527  * Quota blocks have their own trigger because the struct ocfs2_block_check
528  * offset depends on the blocksize.
529  */
530 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
531                                  struct buffer_head *bh,
532                                  void *data, size_t size)
533 {
534         struct ocfs2_disk_dqtrailer *dqt =
535                 ocfs2_block_dqtrailer(size, data);
536
537         /*
538          * We aren't guaranteed to have the superblock here, so we
539          * must unconditionally compute the ecc data.
540          * __ocfs2_journal_access() will only set the triggers if
541          * metaecc is enabled.
542          */
543         ocfs2_block_check_compute(data, size, &dqt->dq_check);
544 }
545
546 /*
547  * Directory blocks also have their own trigger because the
548  * struct ocfs2_block_check offset depends on the blocksize.
549  */
550 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
551                                  struct buffer_head *bh,
552                                  void *data, size_t size)
553 {
554         struct ocfs2_dir_block_trailer *trailer =
555                 ocfs2_dir_trailer_from_size(size, data);
556
557         /*
558          * We aren't guaranteed to have the superblock here, so we
559          * must unconditionally compute the ecc data.
560          * __ocfs2_journal_access() will only set the triggers if
561          * metaecc is enabled.
562          */
563         ocfs2_block_check_compute(data, size, &trailer->db_check);
564 }
565
566 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
567                                 struct buffer_head *bh)
568 {
569         mlog(ML_ERROR,
570              "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
571              "bh->b_blocknr = %llu\n",
572              (unsigned long)bh,
573              (unsigned long long)bh->b_blocknr);
574
575         ocfs2_error(bh->b_bdev->bd_super,
576                     "JBD2 has aborted our journal, ocfs2 cannot continue\n");
577 }
578
579 static struct ocfs2_triggers di_triggers = {
580         .ot_triggers = {
581                 .t_frozen = ocfs2_frozen_trigger,
582                 .t_abort = ocfs2_abort_trigger,
583         },
584         .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
585 };
586
587 static struct ocfs2_triggers eb_triggers = {
588         .ot_triggers = {
589                 .t_frozen = ocfs2_frozen_trigger,
590                 .t_abort = ocfs2_abort_trigger,
591         },
592         .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
593 };
594
595 static struct ocfs2_triggers rb_triggers = {
596         .ot_triggers = {
597                 .t_frozen = ocfs2_frozen_trigger,
598                 .t_abort = ocfs2_abort_trigger,
599         },
600         .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
601 };
602
603 static struct ocfs2_triggers gd_triggers = {
604         .ot_triggers = {
605                 .t_frozen = ocfs2_frozen_trigger,
606                 .t_abort = ocfs2_abort_trigger,
607         },
608         .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
609 };
610
611 static struct ocfs2_triggers db_triggers = {
612         .ot_triggers = {
613                 .t_frozen = ocfs2_db_frozen_trigger,
614                 .t_abort = ocfs2_abort_trigger,
615         },
616 };
617
618 static struct ocfs2_triggers xb_triggers = {
619         .ot_triggers = {
620                 .t_frozen = ocfs2_frozen_trigger,
621                 .t_abort = ocfs2_abort_trigger,
622         },
623         .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
624 };
625
626 static struct ocfs2_triggers dq_triggers = {
627         .ot_triggers = {
628                 .t_frozen = ocfs2_dq_frozen_trigger,
629                 .t_abort = ocfs2_abort_trigger,
630         },
631 };
632
633 static struct ocfs2_triggers dr_triggers = {
634         .ot_triggers = {
635                 .t_frozen = ocfs2_frozen_trigger,
636                 .t_abort = ocfs2_abort_trigger,
637         },
638         .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
639 };
640
641 static struct ocfs2_triggers dl_triggers = {
642         .ot_triggers = {
643                 .t_frozen = ocfs2_frozen_trigger,
644                 .t_abort = ocfs2_abort_trigger,
645         },
646         .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
647 };
648
649 static int __ocfs2_journal_access(handle_t *handle,
650                                   struct ocfs2_caching_info *ci,
651                                   struct buffer_head *bh,
652                                   struct ocfs2_triggers *triggers,
653                                   int type)
654 {
655         int status;
656         struct ocfs2_super *osb =
657                 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
658
659         BUG_ON(!ci || !ci->ci_ops);
660         BUG_ON(!handle);
661         BUG_ON(!bh);
662
663         trace_ocfs2_journal_access(
664                 (unsigned long long)ocfs2_metadata_cache_owner(ci),
665                 (unsigned long long)bh->b_blocknr, type, bh->b_size);
666
667         /* we can safely remove this assertion after testing. */
668         if (!buffer_uptodate(bh)) {
669                 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
670                 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
671                      (unsigned long long)bh->b_blocknr, bh->b_state);
672
673                 lock_buffer(bh);
674                 /*
675                  * A previous transaction with a couple of buffer heads fail
676                  * to checkpoint, so all the bhs are marked as BH_Write_EIO.
677                  * For current transaction, the bh is just among those error
678                  * bhs which previous transaction handle. We can't just clear
679                  * its BH_Write_EIO and reuse directly, since other bhs are
680                  * not written to disk yet and that will cause metadata
681                  * inconsistency. So we should set fs read-only to avoid
682                  * further damage.
683                  */
684                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
685                         unlock_buffer(bh);
686                         return ocfs2_error(osb->sb, "A previous attempt to "
687                                         "write this buffer head failed\n");
688                 }
689                 unlock_buffer(bh);
690         }
691
692         /* Set the current transaction information on the ci so
693          * that the locking code knows whether it can drop it's locks
694          * on this ci or not. We're protected from the commit
695          * thread updating the current transaction id until
696          * ocfs2_commit_trans() because ocfs2_start_trans() took
697          * j_trans_barrier for us. */
698         ocfs2_set_ci_lock_trans(osb->journal, ci);
699
700         ocfs2_metadata_cache_io_lock(ci);
701         switch (type) {
702         case OCFS2_JOURNAL_ACCESS_CREATE:
703         case OCFS2_JOURNAL_ACCESS_WRITE:
704                 status = jbd2_journal_get_write_access(handle, bh);
705                 break;
706
707         case OCFS2_JOURNAL_ACCESS_UNDO:
708                 status = jbd2_journal_get_undo_access(handle, bh);
709                 break;
710
711         default:
712                 status = -EINVAL;
713                 mlog(ML_ERROR, "Unknown access type!\n");
714         }
715         if (!status && ocfs2_meta_ecc(osb) && triggers)
716                 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
717         ocfs2_metadata_cache_io_unlock(ci);
718
719         if (status < 0)
720                 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
721                      status, type);
722
723         return status;
724 }
725
726 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
727                             struct buffer_head *bh, int type)
728 {
729         return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
730 }
731
732 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
733                             struct buffer_head *bh, int type)
734 {
735         return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
736 }
737
738 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
739                             struct buffer_head *bh, int type)
740 {
741         return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
742                                       type);
743 }
744
745 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
746                             struct buffer_head *bh, int type)
747 {
748         return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
749 }
750
751 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
752                             struct buffer_head *bh, int type)
753 {
754         return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
755 }
756
757 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
758                             struct buffer_head *bh, int type)
759 {
760         return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
761 }
762
763 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
764                             struct buffer_head *bh, int type)
765 {
766         return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
767 }
768
769 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
770                             struct buffer_head *bh, int type)
771 {
772         return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
773 }
774
775 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
776                             struct buffer_head *bh, int type)
777 {
778         return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
779 }
780
781 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
782                          struct buffer_head *bh, int type)
783 {
784         return __ocfs2_journal_access(handle, ci, bh, NULL, type);
785 }
786
787 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
788 {
789         int status;
790
791         trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
792
793         status = jbd2_journal_dirty_metadata(handle, bh);
794         if (status) {
795                 mlog_errno(status);
796                 if (!is_handle_aborted(handle)) {
797                         journal_t *journal = handle->h_transaction->t_journal;
798                         struct super_block *sb = bh->b_bdev->bd_super;
799
800                         mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
801                                         "Aborting transaction and journal.\n");
802                         handle->h_err = status;
803                         jbd2_journal_abort_handle(handle);
804                         jbd2_journal_abort(journal, status);
805                         ocfs2_abort(sb, "Journal already aborted.\n");
806                 }
807         }
808 }
809
810 #define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
811
812 void ocfs2_set_journal_params(struct ocfs2_super *osb)
813 {
814         journal_t *journal = osb->journal->j_journal;
815         unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
816
817         if (osb->osb_commit_interval)
818                 commit_interval = osb->osb_commit_interval;
819
820         write_lock(&journal->j_state_lock);
821         journal->j_commit_interval = commit_interval;
822         if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
823                 journal->j_flags |= JBD2_BARRIER;
824         else
825                 journal->j_flags &= ~JBD2_BARRIER;
826         write_unlock(&journal->j_state_lock);
827 }
828
829 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
830 {
831         int status = -1;
832         struct inode *inode = NULL; /* the journal inode */
833         journal_t *j_journal = NULL;
834         struct ocfs2_dinode *di = NULL;
835         struct buffer_head *bh = NULL;
836         struct ocfs2_super *osb;
837         int inode_lock = 0;
838
839         BUG_ON(!journal);
840
841         osb = journal->j_osb;
842
843         /* already have the inode for our journal */
844         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
845                                             osb->slot_num);
846         if (inode == NULL) {
847                 status = -EACCES;
848                 mlog_errno(status);
849                 goto done;
850         }
851         if (is_bad_inode(inode)) {
852                 mlog(ML_ERROR, "access error (bad inode)\n");
853                 iput(inode);
854                 inode = NULL;
855                 status = -EACCES;
856                 goto done;
857         }
858
859         SET_INODE_JOURNAL(inode);
860         OCFS2_I(inode)->ip_open_count++;
861
862         /* Skip recovery waits here - journal inode metadata never
863          * changes in a live cluster so it can be considered an
864          * exception to the rule. */
865         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
866         if (status < 0) {
867                 if (status != -ERESTARTSYS)
868                         mlog(ML_ERROR, "Could not get lock on journal!\n");
869                 goto done;
870         }
871
872         inode_lock = 1;
873         di = (struct ocfs2_dinode *)bh->b_data;
874
875         if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
876                 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
877                      i_size_read(inode));
878                 status = -EINVAL;
879                 goto done;
880         }
881
882         trace_ocfs2_journal_init(i_size_read(inode),
883                                  (unsigned long long)inode->i_blocks,
884                                  OCFS2_I(inode)->ip_clusters);
885
886         /* call the kernels journal init function now */
887         j_journal = jbd2_journal_init_inode(inode);
888         if (j_journal == NULL) {
889                 mlog(ML_ERROR, "Linux journal layer error\n");
890                 status = -EINVAL;
891                 goto done;
892         }
893
894         trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
895
896         *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
897                   OCFS2_JOURNAL_DIRTY_FL);
898
899         journal->j_journal = j_journal;
900         journal->j_inode = inode;
901         journal->j_bh = bh;
902
903         ocfs2_set_journal_params(osb);
904
905         journal->j_state = OCFS2_JOURNAL_LOADED;
906
907         status = 0;
908 done:
909         if (status < 0) {
910                 if (inode_lock)
911                         ocfs2_inode_unlock(inode, 1);
912                 brelse(bh);
913                 if (inode) {
914                         OCFS2_I(inode)->ip_open_count--;
915                         iput(inode);
916                 }
917         }
918
919         return status;
920 }
921
922 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
923 {
924         le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
925 }
926
927 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
928 {
929         return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
930 }
931
932 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
933                                       int dirty, int replayed)
934 {
935         int status;
936         unsigned int flags;
937         struct ocfs2_journal *journal = osb->journal;
938         struct buffer_head *bh = journal->j_bh;
939         struct ocfs2_dinode *fe;
940
941         fe = (struct ocfs2_dinode *)bh->b_data;
942
943         /* The journal bh on the osb always comes from ocfs2_journal_init()
944          * and was validated there inside ocfs2_inode_lock_full().  It's a
945          * code bug if we mess it up. */
946         BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
947
948         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
949         if (dirty)
950                 flags |= OCFS2_JOURNAL_DIRTY_FL;
951         else
952                 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
953         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
954
955         if (replayed)
956                 ocfs2_bump_recovery_generation(fe);
957
958         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
959         status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
960         if (status < 0)
961                 mlog_errno(status);
962
963         return status;
964 }
965
966 /*
967  * If the journal has been kmalloc'd it needs to be freed after this
968  * call.
969  */
970 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
971 {
972         struct ocfs2_journal *journal = NULL;
973         int status = 0;
974         struct inode *inode = NULL;
975         int num_running_trans = 0;
976
977         BUG_ON(!osb);
978
979         journal = osb->journal;
980         if (!journal)
981                 goto done;
982
983         inode = journal->j_inode;
984
985         if (journal->j_state != OCFS2_JOURNAL_LOADED)
986                 goto done;
987
988         /* need to inc inode use count - jbd2_journal_destroy will iput. */
989         if (!igrab(inode))
990                 BUG();
991
992         num_running_trans = atomic_read(&(osb->journal->j_num_trans));
993         trace_ocfs2_journal_shutdown(num_running_trans);
994
995         /* Do a commit_cache here. It will flush our journal, *and*
996          * release any locks that are still held.
997          * set the SHUTDOWN flag and release the trans lock.
998          * the commit thread will take the trans lock for us below. */
999         journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1000
1001         /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1002          * drop the trans_lock (which we want to hold until we
1003          * completely destroy the journal. */
1004         if (osb->commit_task) {
1005                 /* Wait for the commit thread */
1006                 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1007                 kthread_stop(osb->commit_task);
1008                 osb->commit_task = NULL;
1009         }
1010
1011         BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1012
1013         if (ocfs2_mount_local(osb)) {
1014                 jbd2_journal_lock_updates(journal->j_journal);
1015                 status = jbd2_journal_flush(journal->j_journal);
1016                 jbd2_journal_unlock_updates(journal->j_journal);
1017                 if (status < 0)
1018                         mlog_errno(status);
1019         }
1020
1021         /* Shutdown the kernel journal system */
1022         if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1023                 /*
1024                  * Do not toggle if flush was unsuccessful otherwise
1025                  * will leave dirty metadata in a "clean" journal
1026                  */
1027                 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1028                 if (status < 0)
1029                         mlog_errno(status);
1030         }
1031         journal->j_journal = NULL;
1032
1033         OCFS2_I(inode)->ip_open_count--;
1034
1035         /* unlock our journal */
1036         ocfs2_inode_unlock(inode, 1);
1037
1038         brelse(journal->j_bh);
1039         journal->j_bh = NULL;
1040
1041         journal->j_state = OCFS2_JOURNAL_FREE;
1042
1043 //      up_write(&journal->j_trans_barrier);
1044 done:
1045         iput(inode);
1046 }
1047
1048 static void ocfs2_clear_journal_error(struct super_block *sb,
1049                                       journal_t *journal,
1050                                       int slot)
1051 {
1052         int olderr;
1053
1054         olderr = jbd2_journal_errno(journal);
1055         if (olderr) {
1056                 mlog(ML_ERROR, "File system error %d recorded in "
1057                      "journal %u.\n", olderr, slot);
1058                 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1059                      sb->s_id);
1060
1061                 jbd2_journal_ack_err(journal);
1062                 jbd2_journal_clear_err(journal);
1063         }
1064 }
1065
1066 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1067 {
1068         int status = 0;
1069         struct ocfs2_super *osb;
1070
1071         BUG_ON(!journal);
1072
1073         osb = journal->j_osb;
1074
1075         status = jbd2_journal_load(journal->j_journal);
1076         if (status < 0) {
1077                 mlog(ML_ERROR, "Failed to load journal!\n");
1078                 goto done;
1079         }
1080
1081         ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1082
1083         if (replayed) {
1084                 jbd2_journal_lock_updates(journal->j_journal);
1085                 status = jbd2_journal_flush(journal->j_journal);
1086                 jbd2_journal_unlock_updates(journal->j_journal);
1087                 if (status < 0)
1088                         mlog_errno(status);
1089         }
1090
1091         status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1092         if (status < 0) {
1093                 mlog_errno(status);
1094                 goto done;
1095         }
1096
1097         /* Launch the commit thread */
1098         if (!local) {
1099                 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1100                                 "ocfs2cmt-%s", osb->uuid_str);
1101                 if (IS_ERR(osb->commit_task)) {
1102                         status = PTR_ERR(osb->commit_task);
1103                         osb->commit_task = NULL;
1104                         mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1105                              "error=%d", status);
1106                         goto done;
1107                 }
1108         } else
1109                 osb->commit_task = NULL;
1110
1111 done:
1112         return status;
1113 }
1114
1115
1116 /* 'full' flag tells us whether we clear out all blocks or if we just
1117  * mark the journal clean */
1118 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1119 {
1120         int status;
1121
1122         BUG_ON(!journal);
1123
1124         status = jbd2_journal_wipe(journal->j_journal, full);
1125         if (status < 0) {
1126                 mlog_errno(status);
1127                 goto bail;
1128         }
1129
1130         status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1131         if (status < 0)
1132                 mlog_errno(status);
1133
1134 bail:
1135         return status;
1136 }
1137
1138 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1139 {
1140         int empty;
1141         struct ocfs2_recovery_map *rm = osb->recovery_map;
1142
1143         spin_lock(&osb->osb_lock);
1144         empty = (rm->rm_used == 0);
1145         spin_unlock(&osb->osb_lock);
1146
1147         return empty;
1148 }
1149
1150 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1151 {
1152         wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1153 }
1154
1155 /*
1156  * JBD Might read a cached version of another nodes journal file. We
1157  * don't want this as this file changes often and we get no
1158  * notification on those changes. The only way to be sure that we've
1159  * got the most up to date version of those blocks then is to force
1160  * read them off disk. Just searching through the buffer cache won't
1161  * work as there may be pages backing this file which are still marked
1162  * up to date. We know things can't change on this file underneath us
1163  * as we have the lock by now :)
1164  */
1165 static int ocfs2_force_read_journal(struct inode *inode)
1166 {
1167         int status = 0;
1168         int i;
1169         u64 v_blkno, p_blkno, p_blocks, num_blocks;
1170         struct buffer_head *bh = NULL;
1171         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1172
1173         num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1174         v_blkno = 0;
1175         while (v_blkno < num_blocks) {
1176                 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1177                                                      &p_blkno, &p_blocks, NULL);
1178                 if (status < 0) {
1179                         mlog_errno(status);
1180                         goto bail;
1181                 }
1182
1183                 for (i = 0; i < p_blocks; i++, p_blkno++) {
1184                         bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1185                                         osb->sb->s_blocksize);
1186                         /* block not cached. */
1187                         if (!bh)
1188                                 continue;
1189
1190                         brelse(bh);
1191                         bh = NULL;
1192                         /* We are reading journal data which should not
1193                          * be put in the uptodate cache.
1194                          */
1195                         status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1196                         if (status < 0) {
1197                                 mlog_errno(status);
1198                                 goto bail;
1199                         }
1200
1201                         brelse(bh);
1202                         bh = NULL;
1203                 }
1204
1205                 v_blkno += p_blocks;
1206         }
1207
1208 bail:
1209         return status;
1210 }
1211
1212 struct ocfs2_la_recovery_item {
1213         struct list_head        lri_list;
1214         int                     lri_slot;
1215         struct ocfs2_dinode     *lri_la_dinode;
1216         struct ocfs2_dinode     *lri_tl_dinode;
1217         struct ocfs2_quota_recovery *lri_qrec;
1218         enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1219 };
1220
1221 /* Does the second half of the recovery process. By this point, the
1222  * node is marked clean and can actually be considered recovered,
1223  * hence it's no longer in the recovery map, but there's still some
1224  * cleanup we can do which shouldn't happen within the recovery thread
1225  * as locking in that context becomes very difficult if we are to take
1226  * recovering nodes into account.
1227  *
1228  * NOTE: This function can and will sleep on recovery of other nodes
1229  * during cluster locking, just like any other ocfs2 process.
1230  */
1231 void ocfs2_complete_recovery(struct work_struct *work)
1232 {
1233         int ret = 0;
1234         struct ocfs2_journal *journal =
1235                 container_of(work, struct ocfs2_journal, j_recovery_work);
1236         struct ocfs2_super *osb = journal->j_osb;
1237         struct ocfs2_dinode *la_dinode, *tl_dinode;
1238         struct ocfs2_la_recovery_item *item, *n;
1239         struct ocfs2_quota_recovery *qrec;
1240         enum ocfs2_orphan_reco_type orphan_reco_type;
1241         LIST_HEAD(tmp_la_list);
1242
1243         trace_ocfs2_complete_recovery(
1244                 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1245
1246         spin_lock(&journal->j_lock);
1247         list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1248         spin_unlock(&journal->j_lock);
1249
1250         list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1251                 list_del_init(&item->lri_list);
1252
1253                 ocfs2_wait_on_quotas(osb);
1254
1255                 la_dinode = item->lri_la_dinode;
1256                 tl_dinode = item->lri_tl_dinode;
1257                 qrec = item->lri_qrec;
1258                 orphan_reco_type = item->lri_orphan_reco_type;
1259
1260                 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1261                         la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1262                         tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1263                         qrec);
1264
1265                 if (la_dinode) {
1266                         ret = ocfs2_complete_local_alloc_recovery(osb,
1267                                                                   la_dinode);
1268                         if (ret < 0)
1269                                 mlog_errno(ret);
1270
1271                         kfree(la_dinode);
1272                 }
1273
1274                 if (tl_dinode) {
1275                         ret = ocfs2_complete_truncate_log_recovery(osb,
1276                                                                    tl_dinode);
1277                         if (ret < 0)
1278                                 mlog_errno(ret);
1279
1280                         kfree(tl_dinode);
1281                 }
1282
1283                 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1284                                 orphan_reco_type);
1285                 if (ret < 0)
1286                         mlog_errno(ret);
1287
1288                 if (qrec) {
1289                         ret = ocfs2_finish_quota_recovery(osb, qrec,
1290                                                           item->lri_slot);
1291                         if (ret < 0)
1292                                 mlog_errno(ret);
1293                         /* Recovery info is already freed now */
1294                 }
1295
1296                 kfree(item);
1297         }
1298
1299         trace_ocfs2_complete_recovery_end(ret);
1300 }
1301
1302 /* NOTE: This function always eats your references to la_dinode and
1303  * tl_dinode, either manually on error, or by passing them to
1304  * ocfs2_complete_recovery */
1305 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1306                                             int slot_num,
1307                                             struct ocfs2_dinode *la_dinode,
1308                                             struct ocfs2_dinode *tl_dinode,
1309                                             struct ocfs2_quota_recovery *qrec,
1310                                             enum ocfs2_orphan_reco_type orphan_reco_type)
1311 {
1312         struct ocfs2_la_recovery_item *item;
1313
1314         item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1315         if (!item) {
1316                 /* Though we wish to avoid it, we are in fact safe in
1317                  * skipping local alloc cleanup as fsck.ocfs2 is more
1318                  * than capable of reclaiming unused space. */
1319                 kfree(la_dinode);
1320                 kfree(tl_dinode);
1321
1322                 if (qrec)
1323                         ocfs2_free_quota_recovery(qrec);
1324
1325                 mlog_errno(-ENOMEM);
1326                 return;
1327         }
1328
1329         INIT_LIST_HEAD(&item->lri_list);
1330         item->lri_la_dinode = la_dinode;
1331         item->lri_slot = slot_num;
1332         item->lri_tl_dinode = tl_dinode;
1333         item->lri_qrec = qrec;
1334         item->lri_orphan_reco_type = orphan_reco_type;
1335
1336         spin_lock(&journal->j_lock);
1337         list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1338         queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1339         spin_unlock(&journal->j_lock);
1340 }
1341
1342 /* Called by the mount code to queue recovery the last part of
1343  * recovery for it's own and offline slot(s). */
1344 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1345 {
1346         struct ocfs2_journal *journal = osb->journal;
1347
1348         if (ocfs2_is_hard_readonly(osb))
1349                 return;
1350
1351         /* No need to queue up our truncate_log as regular cleanup will catch
1352          * that */
1353         ocfs2_queue_recovery_completion(journal, osb->slot_num,
1354                                         osb->local_alloc_copy, NULL, NULL,
1355                                         ORPHAN_NEED_TRUNCATE);
1356         ocfs2_schedule_truncate_log_flush(osb, 0);
1357
1358         osb->local_alloc_copy = NULL;
1359
1360         /* queue to recover orphan slots for all offline slots */
1361         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1362         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1363         ocfs2_free_replay_slots(osb);
1364 }
1365
1366 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1367 {
1368         if (osb->quota_rec) {
1369                 ocfs2_queue_recovery_completion(osb->journal,
1370                                                 osb->slot_num,
1371                                                 NULL,
1372                                                 NULL,
1373                                                 osb->quota_rec,
1374                                                 ORPHAN_NEED_TRUNCATE);
1375                 osb->quota_rec = NULL;
1376         }
1377 }
1378
1379 static int __ocfs2_recovery_thread(void *arg)
1380 {
1381         int status, node_num, slot_num;
1382         struct ocfs2_super *osb = arg;
1383         struct ocfs2_recovery_map *rm = osb->recovery_map;
1384         int *rm_quota = NULL;
1385         int rm_quota_used = 0, i;
1386         struct ocfs2_quota_recovery *qrec;
1387
1388         status = ocfs2_wait_on_mount(osb);
1389         if (status < 0) {
1390                 goto bail;
1391         }
1392
1393         rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1394         if (!rm_quota) {
1395                 status = -ENOMEM;
1396                 goto bail;
1397         }
1398 restart:
1399         status = ocfs2_super_lock(osb, 1);
1400         if (status < 0) {
1401                 mlog_errno(status);
1402                 goto bail;
1403         }
1404
1405         status = ocfs2_compute_replay_slots(osb);
1406         if (status < 0)
1407                 mlog_errno(status);
1408
1409         /* queue recovery for our own slot */
1410         ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1411                                         NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1412
1413         spin_lock(&osb->osb_lock);
1414         while (rm->rm_used) {
1415                 /* It's always safe to remove entry zero, as we won't
1416                  * clear it until ocfs2_recover_node() has succeeded. */
1417                 node_num = rm->rm_entries[0];
1418                 spin_unlock(&osb->osb_lock);
1419                 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1420                 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1421                 if (slot_num == -ENOENT) {
1422                         status = 0;
1423                         goto skip_recovery;
1424                 }
1425
1426                 /* It is a bit subtle with quota recovery. We cannot do it
1427                  * immediately because we have to obtain cluster locks from
1428                  * quota files and we also don't want to just skip it because
1429                  * then quota usage would be out of sync until some node takes
1430                  * the slot. So we remember which nodes need quota recovery
1431                  * and when everything else is done, we recover quotas. */
1432                 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1433                 if (i == rm_quota_used)
1434                         rm_quota[rm_quota_used++] = slot_num;
1435
1436                 status = ocfs2_recover_node(osb, node_num, slot_num);
1437 skip_recovery:
1438                 if (!status) {
1439                         ocfs2_recovery_map_clear(osb, node_num);
1440                 } else {
1441                         mlog(ML_ERROR,
1442                              "Error %d recovering node %d on device (%u,%u)!\n",
1443                              status, node_num,
1444                              MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1445                         mlog(ML_ERROR, "Volume requires unmount.\n");
1446                 }
1447
1448                 spin_lock(&osb->osb_lock);
1449         }
1450         spin_unlock(&osb->osb_lock);
1451         trace_ocfs2_recovery_thread_end(status);
1452
1453         /* Refresh all journal recovery generations from disk */
1454         status = ocfs2_check_journals_nolocks(osb);
1455         status = (status == -EROFS) ? 0 : status;
1456         if (status < 0)
1457                 mlog_errno(status);
1458
1459         /* Now it is right time to recover quotas... We have to do this under
1460          * superblock lock so that no one can start using the slot (and crash)
1461          * before we recover it */
1462         for (i = 0; i < rm_quota_used; i++) {
1463                 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1464                 if (IS_ERR(qrec)) {
1465                         status = PTR_ERR(qrec);
1466                         mlog_errno(status);
1467                         continue;
1468                 }
1469                 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1470                                                 NULL, NULL, qrec,
1471                                                 ORPHAN_NEED_TRUNCATE);
1472         }
1473
1474         ocfs2_super_unlock(osb, 1);
1475
1476         /* queue recovery for offline slots */
1477         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1478
1479 bail:
1480         mutex_lock(&osb->recovery_lock);
1481         if (!status && !ocfs2_recovery_completed(osb)) {
1482                 mutex_unlock(&osb->recovery_lock);
1483                 goto restart;
1484         }
1485
1486         ocfs2_free_replay_slots(osb);
1487         osb->recovery_thread_task = NULL;
1488         mb(); /* sync with ocfs2_recovery_thread_running */
1489         wake_up(&osb->recovery_event);
1490
1491         mutex_unlock(&osb->recovery_lock);
1492
1493         kfree(rm_quota);
1494
1495         /* no one is callint kthread_stop() for us so the kthread() api
1496          * requires that we call do_exit().  And it isn't exported, but
1497          * complete_and_exit() seems to be a minimal wrapper around it. */
1498         complete_and_exit(NULL, status);
1499 }
1500
1501 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1502 {
1503         mutex_lock(&osb->recovery_lock);
1504
1505         trace_ocfs2_recovery_thread(node_num, osb->node_num,
1506                 osb->disable_recovery, osb->recovery_thread_task,
1507                 osb->disable_recovery ?
1508                 -1 : ocfs2_recovery_map_set(osb, node_num));
1509
1510         if (osb->disable_recovery)
1511                 goto out;
1512
1513         if (osb->recovery_thread_task)
1514                 goto out;
1515
1516         osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1517                         "ocfs2rec-%s", osb->uuid_str);
1518         if (IS_ERR(osb->recovery_thread_task)) {
1519                 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1520                 osb->recovery_thread_task = NULL;
1521         }
1522
1523 out:
1524         mutex_unlock(&osb->recovery_lock);
1525         wake_up(&osb->recovery_event);
1526 }
1527
1528 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1529                                     int slot_num,
1530                                     struct buffer_head **bh,
1531                                     struct inode **ret_inode)
1532 {
1533         int status = -EACCES;
1534         struct inode *inode = NULL;
1535
1536         BUG_ON(slot_num >= osb->max_slots);
1537
1538         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1539                                             slot_num);
1540         if (!inode || is_bad_inode(inode)) {
1541                 mlog_errno(status);
1542                 goto bail;
1543         }
1544         SET_INODE_JOURNAL(inode);
1545
1546         status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1547         if (status < 0) {
1548                 mlog_errno(status);
1549                 goto bail;
1550         }
1551
1552         status = 0;
1553
1554 bail:
1555         if (inode) {
1556                 if (status || !ret_inode)
1557                         iput(inode);
1558                 else
1559                         *ret_inode = inode;
1560         }
1561         return status;
1562 }
1563
1564 /* Does the actual journal replay and marks the journal inode as
1565  * clean. Will only replay if the journal inode is marked dirty. */
1566 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1567                                 int node_num,
1568                                 int slot_num)
1569 {
1570         int status;
1571         int got_lock = 0;
1572         unsigned int flags;
1573         struct inode *inode = NULL;
1574         struct ocfs2_dinode *fe;
1575         journal_t *journal = NULL;
1576         struct buffer_head *bh = NULL;
1577         u32 slot_reco_gen;
1578
1579         status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1580         if (status) {
1581                 mlog_errno(status);
1582                 goto done;
1583         }
1584
1585         fe = (struct ocfs2_dinode *)bh->b_data;
1586         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1587         brelse(bh);
1588         bh = NULL;
1589
1590         /*
1591          * As the fs recovery is asynchronous, there is a small chance that
1592          * another node mounted (and recovered) the slot before the recovery
1593          * thread could get the lock. To handle that, we dirty read the journal
1594          * inode for that slot to get the recovery generation. If it is
1595          * different than what we expected, the slot has been recovered.
1596          * If not, it needs recovery.
1597          */
1598         if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1599                 trace_ocfs2_replay_journal_recovered(slot_num,
1600                      osb->slot_recovery_generations[slot_num], slot_reco_gen);
1601                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1602                 status = -EBUSY;
1603                 goto done;
1604         }
1605
1606         /* Continue with recovery as the journal has not yet been recovered */
1607
1608         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1609         if (status < 0) {
1610                 trace_ocfs2_replay_journal_lock_err(status);
1611                 if (status != -ERESTARTSYS)
1612                         mlog(ML_ERROR, "Could not lock journal!\n");
1613                 goto done;
1614         }
1615         got_lock = 1;
1616
1617         fe = (struct ocfs2_dinode *) bh->b_data;
1618
1619         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1620         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1621
1622         if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1623                 trace_ocfs2_replay_journal_skip(node_num);
1624                 /* Refresh recovery generation for the slot */
1625                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1626                 goto done;
1627         }
1628
1629         /* we need to run complete recovery for offline orphan slots */
1630         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1631
1632         printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1633                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1634                MINOR(osb->sb->s_dev));
1635
1636         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1637
1638         status = ocfs2_force_read_journal(inode);
1639         if (status < 0) {
1640                 mlog_errno(status);
1641                 goto done;
1642         }
1643
1644         journal = jbd2_journal_init_inode(inode);
1645         if (journal == NULL) {
1646                 mlog(ML_ERROR, "Linux journal layer error\n");
1647                 status = -EIO;
1648                 goto done;
1649         }
1650
1651         status = jbd2_journal_load(journal);
1652         if (status < 0) {
1653                 mlog_errno(status);
1654                 if (!igrab(inode))
1655                         BUG();
1656                 jbd2_journal_destroy(journal);
1657                 goto done;
1658         }
1659
1660         ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1661
1662         /* wipe the journal */
1663         jbd2_journal_lock_updates(journal);
1664         status = jbd2_journal_flush(journal);
1665         jbd2_journal_unlock_updates(journal);
1666         if (status < 0)
1667                 mlog_errno(status);
1668
1669         /* This will mark the node clean */
1670         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1671         flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1672         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1673
1674         /* Increment recovery generation to indicate successful recovery */
1675         ocfs2_bump_recovery_generation(fe);
1676         osb->slot_recovery_generations[slot_num] =
1677                                         ocfs2_get_recovery_generation(fe);
1678
1679         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1680         status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1681         if (status < 0)
1682                 mlog_errno(status);
1683
1684         if (!igrab(inode))
1685                 BUG();
1686
1687         jbd2_journal_destroy(journal);
1688
1689         printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1690                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1691                MINOR(osb->sb->s_dev));
1692 done:
1693         /* drop the lock on this nodes journal */
1694         if (got_lock)
1695                 ocfs2_inode_unlock(inode, 1);
1696
1697         iput(inode);
1698         brelse(bh);
1699
1700         return status;
1701 }
1702
1703 /*
1704  * Do the most important parts of node recovery:
1705  *  - Replay it's journal
1706  *  - Stamp a clean local allocator file
1707  *  - Stamp a clean truncate log
1708  *  - Mark the node clean
1709  *
1710  * If this function completes without error, a node in OCFS2 can be
1711  * said to have been safely recovered. As a result, failure during the
1712  * second part of a nodes recovery process (local alloc recovery) is
1713  * far less concerning.
1714  */
1715 static int ocfs2_recover_node(struct ocfs2_super *osb,
1716                               int node_num, int slot_num)
1717 {
1718         int status = 0;
1719         struct ocfs2_dinode *la_copy = NULL;
1720         struct ocfs2_dinode *tl_copy = NULL;
1721
1722         trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1723
1724         /* Should not ever be called to recover ourselves -- in that
1725          * case we should've called ocfs2_journal_load instead. */
1726         BUG_ON(osb->node_num == node_num);
1727
1728         status = ocfs2_replay_journal(osb, node_num, slot_num);
1729         if (status < 0) {
1730                 if (status == -EBUSY) {
1731                         trace_ocfs2_recover_node_skip(slot_num, node_num);
1732                         status = 0;
1733                         goto done;
1734                 }
1735                 mlog_errno(status);
1736                 goto done;
1737         }
1738
1739         /* Stamp a clean local alloc file AFTER recovering the journal... */
1740         status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1741         if (status < 0) {
1742                 mlog_errno(status);
1743                 goto done;
1744         }
1745
1746         /* An error from begin_truncate_log_recovery is not
1747          * serious enough to warrant halting the rest of
1748          * recovery. */
1749         status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1750         if (status < 0)
1751                 mlog_errno(status);
1752
1753         /* Likewise, this would be a strange but ultimately not so
1754          * harmful place to get an error... */
1755         status = ocfs2_clear_slot(osb, slot_num);
1756         if (status < 0)
1757                 mlog_errno(status);
1758
1759         /* This will kfree the memory pointed to by la_copy and tl_copy */
1760         ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1761                                         tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1762
1763         status = 0;
1764 done:
1765
1766         return status;
1767 }
1768
1769 /* Test node liveness by trylocking his journal. If we get the lock,
1770  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1771  * still alive (we couldn't get the lock) and < 0 on error. */
1772 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1773                                  int slot_num)
1774 {
1775         int status, flags;
1776         struct inode *inode = NULL;
1777
1778         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1779                                             slot_num);
1780         if (inode == NULL) {
1781                 mlog(ML_ERROR, "access error\n");
1782                 status = -EACCES;
1783                 goto bail;
1784         }
1785         if (is_bad_inode(inode)) {
1786                 mlog(ML_ERROR, "access error (bad inode)\n");
1787                 iput(inode);
1788                 inode = NULL;
1789                 status = -EACCES;
1790                 goto bail;
1791         }
1792         SET_INODE_JOURNAL(inode);
1793
1794         flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1795         status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1796         if (status < 0) {
1797                 if (status != -EAGAIN)
1798                         mlog_errno(status);
1799                 goto bail;
1800         }
1801
1802         ocfs2_inode_unlock(inode, 1);
1803 bail:
1804         iput(inode);
1805
1806         return status;
1807 }
1808
1809 /* Call this underneath ocfs2_super_lock. It also assumes that the
1810  * slot info struct has been updated from disk. */
1811 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1812 {
1813         unsigned int node_num;
1814         int status, i;
1815         u32 gen;
1816         struct buffer_head *bh = NULL;
1817         struct ocfs2_dinode *di;
1818
1819         /* This is called with the super block cluster lock, so we
1820          * know that the slot map can't change underneath us. */
1821
1822         for (i = 0; i < osb->max_slots; i++) {
1823                 /* Read journal inode to get the recovery generation */
1824                 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1825                 if (status) {
1826                         mlog_errno(status);
1827                         goto bail;
1828                 }
1829                 di = (struct ocfs2_dinode *)bh->b_data;
1830                 gen = ocfs2_get_recovery_generation(di);
1831                 brelse(bh);
1832                 bh = NULL;
1833
1834                 spin_lock(&osb->osb_lock);
1835                 osb->slot_recovery_generations[i] = gen;
1836
1837                 trace_ocfs2_mark_dead_nodes(i,
1838                                             osb->slot_recovery_generations[i]);
1839
1840                 if (i == osb->slot_num) {
1841                         spin_unlock(&osb->osb_lock);
1842                         continue;
1843                 }
1844
1845                 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1846                 if (status == -ENOENT) {
1847                         spin_unlock(&osb->osb_lock);
1848                         continue;
1849                 }
1850
1851                 if (__ocfs2_recovery_map_test(osb, node_num)) {
1852                         spin_unlock(&osb->osb_lock);
1853                         continue;
1854                 }
1855                 spin_unlock(&osb->osb_lock);
1856
1857                 /* Ok, we have a slot occupied by another node which
1858                  * is not in the recovery map. We trylock his journal
1859                  * file here to test if he's alive. */
1860                 status = ocfs2_trylock_journal(osb, i);
1861                 if (!status) {
1862                         /* Since we're called from mount, we know that
1863                          * the recovery thread can't race us on
1864                          * setting / checking the recovery bits. */
1865                         ocfs2_recovery_thread(osb, node_num);
1866                 } else if ((status < 0) && (status != -EAGAIN)) {
1867                         mlog_errno(status);
1868                         goto bail;
1869                 }
1870         }
1871
1872         status = 0;
1873 bail:
1874         return status;
1875 }
1876
1877 /*
1878  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1879  * randomness to the timeout to minimize multple nodes firing the timer at the
1880  * same time.
1881  */
1882 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1883 {
1884         unsigned long time;
1885
1886         get_random_bytes(&time, sizeof(time));
1887         time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1888         return msecs_to_jiffies(time);
1889 }
1890
1891 /*
1892  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1893  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1894  * is done to catch any orphans that are left over in orphan directories.
1895  *
1896  * It scans all slots, even ones that are in use. It does so to handle the
1897  * case described below:
1898  *
1899  *   Node 1 has an inode it was using. The dentry went away due to memory
1900  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1901  *   has the open lock.
1902  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1903  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1904  *   open lock, sees that another node has a PR, and does nothing.
1905  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1906  *   open lock, sees the PR still, and does nothing.
1907  *   Basically, we have to trigger an orphan iput on node 1. The only way
1908  *   for this to happen is if node 1 runs node 2's orphan dir.
1909  *
1910  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1911  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1912  * stored in LVB. If the sequence number has changed, it means some other
1913  * node has done the scan.  This node skips the scan and tracks the
1914  * sequence number.  If the sequence number didn't change, it means a scan
1915  * hasn't happened.  The node queues a scan and increments the
1916  * sequence number in the LVB.
1917  */
1918 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1919 {
1920         struct ocfs2_orphan_scan *os;
1921         int status, i;
1922         u32 seqno = 0;
1923
1924         os = &osb->osb_orphan_scan;
1925
1926         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1927                 goto out;
1928
1929         trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1930                                             atomic_read(&os->os_state));
1931
1932         status = ocfs2_orphan_scan_lock(osb, &seqno);
1933         if (status < 0) {
1934                 if (status != -EAGAIN)
1935                         mlog_errno(status);
1936                 goto out;
1937         }
1938
1939         /* Do no queue the tasks if the volume is being umounted */
1940         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1941                 goto unlock;
1942
1943         if (os->os_seqno != seqno) {
1944                 os->os_seqno = seqno;
1945                 goto unlock;
1946         }
1947
1948         for (i = 0; i < osb->max_slots; i++)
1949                 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1950                                                 NULL, ORPHAN_NO_NEED_TRUNCATE);
1951         /*
1952          * We queued a recovery on orphan slots, increment the sequence
1953          * number and update LVB so other node will skip the scan for a while
1954          */
1955         seqno++;
1956         os->os_count++;
1957         os->os_scantime = ktime_get_seconds();
1958 unlock:
1959         ocfs2_orphan_scan_unlock(osb, seqno);
1960 out:
1961         trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1962                                           atomic_read(&os->os_state));
1963         return;
1964 }
1965
1966 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1967 static void ocfs2_orphan_scan_work(struct work_struct *work)
1968 {
1969         struct ocfs2_orphan_scan *os;
1970         struct ocfs2_super *osb;
1971
1972         os = container_of(work, struct ocfs2_orphan_scan,
1973                           os_orphan_scan_work.work);
1974         osb = os->os_osb;
1975
1976         mutex_lock(&os->os_lock);
1977         ocfs2_queue_orphan_scan(osb);
1978         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1979                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1980                                       ocfs2_orphan_scan_timeout());
1981         mutex_unlock(&os->os_lock);
1982 }
1983
1984 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1985 {
1986         struct ocfs2_orphan_scan *os;
1987
1988         os = &osb->osb_orphan_scan;
1989         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1990                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1991                 mutex_lock(&os->os_lock);
1992                 cancel_delayed_work(&os->os_orphan_scan_work);
1993                 mutex_unlock(&os->os_lock);
1994         }
1995 }
1996
1997 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1998 {
1999         struct ocfs2_orphan_scan *os;
2000
2001         os = &osb->osb_orphan_scan;
2002         os->os_osb = osb;
2003         os->os_count = 0;
2004         os->os_seqno = 0;
2005         mutex_init(&os->os_lock);
2006         INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2007 }
2008
2009 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2010 {
2011         struct ocfs2_orphan_scan *os;
2012
2013         os = &osb->osb_orphan_scan;
2014         os->os_scantime = ktime_get_seconds();
2015         if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2016                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2017         else {
2018                 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2019                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2020                                    ocfs2_orphan_scan_timeout());
2021         }
2022 }
2023
2024 struct ocfs2_orphan_filldir_priv {
2025         struct dir_context      ctx;
2026         struct inode            *head;
2027         struct ocfs2_super      *osb;
2028         enum ocfs2_orphan_reco_type orphan_reco_type;
2029 };
2030
2031 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2032                                 int name_len, loff_t pos, u64 ino,
2033                                 unsigned type)
2034 {
2035         struct ocfs2_orphan_filldir_priv *p =
2036                 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2037         struct inode *iter;
2038
2039         if (name_len == 1 && !strncmp(".", name, 1))
2040                 return 0;
2041         if (name_len == 2 && !strncmp("..", name, 2))
2042                 return 0;
2043
2044         /* do not include dio entry in case of orphan scan */
2045         if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2046                         (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2047                         OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2048                 return 0;
2049
2050         /* Skip bad inodes so that recovery can continue */
2051         iter = ocfs2_iget(p->osb, ino,
2052                           OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2053         if (IS_ERR(iter))
2054                 return 0;
2055
2056         if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2057                         OCFS2_DIO_ORPHAN_PREFIX_LEN))
2058                 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2059
2060         /* Skip inodes which are already added to recover list, since dio may
2061          * happen concurrently with unlink/rename */
2062         if (OCFS2_I(iter)->ip_next_orphan) {
2063                 iput(iter);
2064                 return 0;
2065         }
2066
2067         trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2068         /* No locking is required for the next_orphan queue as there
2069          * is only ever a single process doing orphan recovery. */
2070         OCFS2_I(iter)->ip_next_orphan = p->head;
2071         p->head = iter;
2072
2073         return 0;
2074 }
2075
2076 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2077                                int slot,
2078                                struct inode **head,
2079                                enum ocfs2_orphan_reco_type orphan_reco_type)
2080 {
2081         int status;
2082         struct inode *orphan_dir_inode = NULL;
2083         struct ocfs2_orphan_filldir_priv priv = {
2084                 .ctx.actor = ocfs2_orphan_filldir,
2085                 .osb = osb,
2086                 .head = *head,
2087                 .orphan_reco_type = orphan_reco_type
2088         };
2089
2090         orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2091                                                        ORPHAN_DIR_SYSTEM_INODE,
2092                                                        slot);
2093         if  (!orphan_dir_inode) {
2094                 status = -ENOENT;
2095                 mlog_errno(status);
2096                 return status;
2097         }
2098
2099         inode_lock(orphan_dir_inode);
2100         status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2101         if (status < 0) {
2102                 mlog_errno(status);
2103                 goto out;
2104         }
2105
2106         status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2107         if (status) {
2108                 mlog_errno(status);
2109                 goto out_cluster;
2110         }
2111
2112         *head = priv.head;
2113
2114 out_cluster:
2115         ocfs2_inode_unlock(orphan_dir_inode, 0);
2116 out:
2117         inode_unlock(orphan_dir_inode);
2118         iput(orphan_dir_inode);
2119         return status;
2120 }
2121
2122 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2123                                               int slot)
2124 {
2125         int ret;
2126
2127         spin_lock(&osb->osb_lock);
2128         ret = !osb->osb_orphan_wipes[slot];
2129         spin_unlock(&osb->osb_lock);
2130         return ret;
2131 }
2132
2133 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2134                                              int slot)
2135 {
2136         spin_lock(&osb->osb_lock);
2137         /* Mark ourselves such that new processes in delete_inode()
2138          * know to quit early. */
2139         ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2140         while (osb->osb_orphan_wipes[slot]) {
2141                 /* If any processes are already in the middle of an
2142                  * orphan wipe on this dir, then we need to wait for
2143                  * them. */
2144                 spin_unlock(&osb->osb_lock);
2145                 wait_event_interruptible(osb->osb_wipe_event,
2146                                          ocfs2_orphan_recovery_can_continue(osb, slot));
2147                 spin_lock(&osb->osb_lock);
2148         }
2149         spin_unlock(&osb->osb_lock);
2150 }
2151
2152 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2153                                               int slot)
2154 {
2155         ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2156 }
2157
2158 /*
2159  * Orphan recovery. Each mounted node has it's own orphan dir which we
2160  * must run during recovery. Our strategy here is to build a list of
2161  * the inodes in the orphan dir and iget/iput them. The VFS does
2162  * (most) of the rest of the work.
2163  *
2164  * Orphan recovery can happen at any time, not just mount so we have a
2165  * couple of extra considerations.
2166  *
2167  * - We grab as many inodes as we can under the orphan dir lock -
2168  *   doing iget() outside the orphan dir risks getting a reference on
2169  *   an invalid inode.
2170  * - We must be sure not to deadlock with other processes on the
2171  *   system wanting to run delete_inode(). This can happen when they go
2172  *   to lock the orphan dir and the orphan recovery process attempts to
2173  *   iget() inside the orphan dir lock. This can be avoided by
2174  *   advertising our state to ocfs2_delete_inode().
2175  */
2176 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2177                                  int slot,
2178                                  enum ocfs2_orphan_reco_type orphan_reco_type)
2179 {
2180         int ret = 0;
2181         struct inode *inode = NULL;
2182         struct inode *iter;
2183         struct ocfs2_inode_info *oi;
2184         struct buffer_head *di_bh = NULL;
2185         struct ocfs2_dinode *di = NULL;
2186
2187         trace_ocfs2_recover_orphans(slot);
2188
2189         ocfs2_mark_recovering_orphan_dir(osb, slot);
2190         ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2191         ocfs2_clear_recovering_orphan_dir(osb, slot);
2192
2193         /* Error here should be noted, but we want to continue with as
2194          * many queued inodes as we've got. */
2195         if (ret)
2196                 mlog_errno(ret);
2197
2198         while (inode) {
2199                 oi = OCFS2_I(inode);
2200                 trace_ocfs2_recover_orphans_iput(
2201                                         (unsigned long long)oi->ip_blkno);
2202
2203                 iter = oi->ip_next_orphan;
2204                 oi->ip_next_orphan = NULL;
2205
2206                 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2207                         inode_lock(inode);
2208                         ret = ocfs2_rw_lock(inode, 1);
2209                         if (ret < 0) {
2210                                 mlog_errno(ret);
2211                                 goto unlock_mutex;
2212                         }
2213                         /*
2214                          * We need to take and drop the inode lock to
2215                          * force read inode from disk.
2216                          */
2217                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2218                         if (ret) {
2219                                 mlog_errno(ret);
2220                                 goto unlock_rw;
2221                         }
2222
2223                         di = (struct ocfs2_dinode *)di_bh->b_data;
2224
2225                         if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2226                                 ret = ocfs2_truncate_file(inode, di_bh,
2227                                                 i_size_read(inode));
2228                                 if (ret < 0) {
2229                                         if (ret != -ENOSPC)
2230                                                 mlog_errno(ret);
2231                                         goto unlock_inode;
2232                                 }
2233
2234                                 ret = ocfs2_del_inode_from_orphan(osb, inode,
2235                                                 di_bh, 0, 0);
2236                                 if (ret)
2237                                         mlog_errno(ret);
2238                         }
2239 unlock_inode:
2240                         ocfs2_inode_unlock(inode, 1);
2241                         brelse(di_bh);
2242                         di_bh = NULL;
2243 unlock_rw:
2244                         ocfs2_rw_unlock(inode, 1);
2245 unlock_mutex:
2246                         inode_unlock(inode);
2247
2248                         /* clear dio flag in ocfs2_inode_info */
2249                         oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2250                 } else {
2251                         spin_lock(&oi->ip_lock);
2252                         /* Set the proper information to get us going into
2253                          * ocfs2_delete_inode. */
2254                         oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2255                         spin_unlock(&oi->ip_lock);
2256                 }
2257
2258                 iput(inode);
2259                 inode = iter;
2260         }
2261
2262         return ret;
2263 }
2264
2265 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2266 {
2267         /* This check is good because ocfs2 will wait on our recovery
2268          * thread before changing it to something other than MOUNTED
2269          * or DISABLED. */
2270         wait_event(osb->osb_mount_event,
2271                   (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2272                    atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2273                    atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2274
2275         /* If there's an error on mount, then we may never get to the
2276          * MOUNTED flag, but this is set right before
2277          * dismount_volume() so we can trust it. */
2278         if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2279                 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2280                 mlog(0, "mount error, exiting!\n");
2281                 return -EBUSY;
2282         }
2283
2284         return 0;
2285 }
2286
2287 static int ocfs2_commit_thread(void *arg)
2288 {
2289         int status;
2290         struct ocfs2_super *osb = arg;
2291         struct ocfs2_journal *journal = osb->journal;
2292
2293         /* we can trust j_num_trans here because _should_stop() is only set in
2294          * shutdown and nobody other than ourselves should be able to start
2295          * transactions.  committing on shutdown might take a few iterations
2296          * as final transactions put deleted inodes on the list */
2297         while (!(kthread_should_stop() &&
2298                  atomic_read(&journal->j_num_trans) == 0)) {
2299
2300                 wait_event_interruptible(osb->checkpoint_event,
2301                                          atomic_read(&journal->j_num_trans)
2302                                          || kthread_should_stop());
2303
2304                 status = ocfs2_commit_cache(osb);
2305                 if (status < 0) {
2306                         static unsigned long abort_warn_time;
2307
2308                         /* Warn about this once per minute */
2309                         if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2310                                 mlog(ML_ERROR, "status = %d, journal is "
2311                                                 "already aborted.\n", status);
2312                         /*
2313                          * After ocfs2_commit_cache() fails, j_num_trans has a
2314                          * non-zero value.  Sleep here to avoid a busy-wait
2315                          * loop.
2316                          */
2317                         msleep_interruptible(1000);
2318                 }
2319
2320                 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2321                         mlog(ML_KTHREAD,
2322                              "commit_thread: %u transactions pending on "
2323                              "shutdown\n",
2324                              atomic_read(&journal->j_num_trans));
2325                 }
2326         }
2327
2328         return 0;
2329 }
2330
2331 /* Reads all the journal inodes without taking any cluster locks. Used
2332  * for hard readonly access to determine whether any journal requires
2333  * recovery. Also used to refresh the recovery generation numbers after
2334  * a journal has been recovered by another node.
2335  */
2336 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2337 {
2338         int ret = 0;
2339         unsigned int slot;
2340         struct buffer_head *di_bh = NULL;
2341         struct ocfs2_dinode *di;
2342         int journal_dirty = 0;
2343
2344         for(slot = 0; slot < osb->max_slots; slot++) {
2345                 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2346                 if (ret) {
2347                         mlog_errno(ret);
2348                         goto out;
2349                 }
2350
2351                 di = (struct ocfs2_dinode *) di_bh->b_data;
2352
2353                 osb->slot_recovery_generations[slot] =
2354                                         ocfs2_get_recovery_generation(di);
2355
2356                 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2357                     OCFS2_JOURNAL_DIRTY_FL)
2358                         journal_dirty = 1;
2359
2360                 brelse(di_bh);
2361                 di_bh = NULL;
2362         }
2363
2364 out:
2365         if (journal_dirty)
2366                 ret = -EROFS;
2367         return ret;
2368 }