1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * File open, close, extend, truncate
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/capability.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 #include <linux/backing-dev.h>
42 #include <cluster/masklog.h>
50 #include "extent_map.h"
63 #include "refcounttree.h"
64 #include "ocfs2_trace.h"
66 #include "buffer_head_io.h"
68 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
70 struct ocfs2_file_private *fp;
72 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
77 mutex_init(&fp->fp_mutex);
78 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
79 file->private_data = fp;
84 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
86 struct ocfs2_file_private *fp = file->private_data;
87 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
90 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
91 ocfs2_lock_res_free(&fp->fp_flock);
93 file->private_data = NULL;
97 static int ocfs2_file_open(struct inode *inode, struct file *file)
100 int mode = file->f_flags;
101 struct ocfs2_inode_info *oi = OCFS2_I(inode);
103 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
104 (unsigned long long)OCFS2_I(inode)->ip_blkno,
105 file->f_path.dentry->d_name.len,
106 file->f_path.dentry->d_name.name, mode);
108 if (file->f_mode & FMODE_WRITE) {
109 status = dquot_initialize(inode);
114 spin_lock(&oi->ip_lock);
116 /* Check that the inode hasn't been wiped from disk by another
117 * node. If it hasn't then we're safe as long as we hold the
118 * spin lock until our increment of open count. */
119 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
120 spin_unlock(&oi->ip_lock);
127 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
130 spin_unlock(&oi->ip_lock);
132 status = ocfs2_init_file_private(inode, file);
135 * We want to set open count back if we're failing the
138 spin_lock(&oi->ip_lock);
140 spin_unlock(&oi->ip_lock);
147 static int ocfs2_file_release(struct inode *inode, struct file *file)
149 struct ocfs2_inode_info *oi = OCFS2_I(inode);
151 spin_lock(&oi->ip_lock);
152 if (!--oi->ip_open_count)
153 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
155 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
157 file->f_path.dentry->d_name.len,
158 file->f_path.dentry->d_name.name,
160 spin_unlock(&oi->ip_lock);
162 ocfs2_free_file_private(inode, file);
167 static int ocfs2_dir_open(struct inode *inode, struct file *file)
169 return ocfs2_init_file_private(inode, file);
172 static int ocfs2_dir_release(struct inode *inode, struct file *file)
174 ocfs2_free_file_private(inode, file);
178 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
182 struct inode *inode = file->f_mapping->host;
183 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
184 struct ocfs2_inode_info *oi = OCFS2_I(inode);
185 journal_t *journal = osb->journal->j_journal;
188 bool needs_barrier = false;
190 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
191 OCFS2_I(inode)->ip_blkno,
192 file->f_path.dentry->d_name.len,
193 file->f_path.dentry->d_name.name,
194 (unsigned long long)datasync);
196 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
199 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
203 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
204 if (journal->j_flags & JBD2_BARRIER &&
205 !jbd2_trans_will_send_data_barrier(journal, commit_tid))
206 needs_barrier = true;
207 err = jbd2_complete_transaction(journal, commit_tid);
209 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
217 return (err < 0) ? -EIO : 0;
220 int ocfs2_should_update_atime(struct inode *inode,
221 struct vfsmount *vfsmnt)
224 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
226 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
229 if ((inode->i_flags & S_NOATIME) ||
230 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
234 * We can be called with no vfsmnt structure - NFSD will
237 * Note that our action here is different than touch_atime() -
238 * if we can't tell whether this is a noatime mount, then we
239 * don't know whether to trust the value of s_atime_quantum.
244 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
245 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
248 if (vfsmnt->mnt_flags & MNT_RELATIME) {
249 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
250 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
256 now = current_time(inode);
257 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
263 int ocfs2_update_inode_atime(struct inode *inode,
264 struct buffer_head *bh)
267 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
269 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
271 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
272 if (IS_ERR(handle)) {
273 ret = PTR_ERR(handle);
278 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
279 OCFS2_JOURNAL_ACCESS_WRITE);
286 * Don't use ocfs2_mark_inode_dirty() here as we don't always
287 * have i_mutex to guard against concurrent changes to other
290 inode->i_atime = current_time(inode);
291 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
292 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
293 ocfs2_update_inode_fsync_trans(handle, inode, 0);
294 ocfs2_journal_dirty(handle, bh);
297 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
302 int ocfs2_set_inode_size(handle_t *handle,
304 struct buffer_head *fe_bh,
309 i_size_write(inode, new_i_size);
310 inode->i_blocks = ocfs2_inode_sector_count(inode);
311 inode->i_ctime = inode->i_mtime = current_time(inode);
313 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
323 int ocfs2_simple_size_update(struct inode *inode,
324 struct buffer_head *di_bh,
328 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
329 handle_t *handle = NULL;
331 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
332 if (IS_ERR(handle)) {
333 ret = PTR_ERR(handle);
338 ret = ocfs2_set_inode_size(handle, inode, di_bh,
343 ocfs2_update_inode_fsync_trans(handle, inode, 0);
344 ocfs2_commit_trans(osb, handle);
349 static int ocfs2_cow_file_pos(struct inode *inode,
350 struct buffer_head *fe_bh,
354 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
355 unsigned int num_clusters = 0;
356 unsigned int ext_flags = 0;
359 * If the new offset is aligned to the range of the cluster, there is
360 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
363 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
366 status = ocfs2_get_clusters(inode, cpos, &phys,
367 &num_clusters, &ext_flags);
373 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
376 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
382 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
384 struct buffer_head *fe_bh,
389 struct ocfs2_dinode *di;
393 * We need to CoW the cluster contains the offset if it is reflinked
394 * since we will call ocfs2_zero_range_for_truncate later which will
395 * write "0" from offset to the end of the cluster.
397 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
403 /* TODO: This needs to actually orphan the inode in this
406 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
407 if (IS_ERR(handle)) {
408 status = PTR_ERR(handle);
413 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
414 OCFS2_JOURNAL_ACCESS_WRITE);
421 * Do this before setting i_size.
423 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
424 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
431 i_size_write(inode, new_i_size);
432 inode->i_ctime = inode->i_mtime = current_time(inode);
434 di = (struct ocfs2_dinode *) fe_bh->b_data;
435 di->i_size = cpu_to_le64(new_i_size);
436 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
437 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
438 ocfs2_update_inode_fsync_trans(handle, inode, 0);
440 ocfs2_journal_dirty(handle, fe_bh);
443 ocfs2_commit_trans(osb, handle);
448 int ocfs2_truncate_file(struct inode *inode,
449 struct buffer_head *di_bh,
453 struct ocfs2_dinode *fe = NULL;
454 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
456 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
457 * already validated it */
458 fe = (struct ocfs2_dinode *) di_bh->b_data;
460 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
461 (unsigned long long)le64_to_cpu(fe->i_size),
462 (unsigned long long)new_i_size);
464 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
465 "Inode %llu, inode i_size = %lld != di "
466 "i_size = %llu, i_flags = 0x%x\n",
467 (unsigned long long)OCFS2_I(inode)->ip_blkno,
469 (unsigned long long)le64_to_cpu(fe->i_size),
470 le32_to_cpu(fe->i_flags));
472 if (new_i_size > le64_to_cpu(fe->i_size)) {
473 trace_ocfs2_truncate_file_error(
474 (unsigned long long)le64_to_cpu(fe->i_size),
475 (unsigned long long)new_i_size);
481 down_write(&OCFS2_I(inode)->ip_alloc_sem);
483 ocfs2_resv_discard(&osb->osb_la_resmap,
484 &OCFS2_I(inode)->ip_la_data_resv);
487 * The inode lock forced other nodes to sync and drop their
488 * pages, which (correctly) happens even if we have a truncate
489 * without allocation change - ocfs2 cluster sizes can be much
490 * greater than page size, so we have to truncate them
494 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
495 unmap_mapping_range(inode->i_mapping,
496 new_i_size + PAGE_SIZE - 1, 0, 1);
497 truncate_inode_pages(inode->i_mapping, new_i_size);
498 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
499 i_size_read(inode), 1);
503 goto bail_unlock_sem;
506 /* alright, we're going to need to do a full blown alloc size
507 * change. Orphan the inode so that recovery can complete the
508 * truncate if necessary. This does the task of marking
510 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
513 goto bail_unlock_sem;
516 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
517 truncate_inode_pages(inode->i_mapping, new_i_size);
519 status = ocfs2_commit_truncate(osb, inode, di_bh);
522 goto bail_unlock_sem;
525 /* TODO: orphan dir cleanup here. */
527 up_write(&OCFS2_I(inode)->ip_alloc_sem);
530 if (!status && OCFS2_I(inode)->ip_clusters == 0)
531 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
537 * extend file allocation only here.
538 * we'll update all the disk stuff, and oip->alloc_size
540 * expect stuff to be locked, a transaction started and enough data /
541 * metadata reservations in the contexts.
543 * Will return -EAGAIN, and a reason if a restart is needed.
544 * If passed in, *reason will always be set, even in error.
546 int ocfs2_add_inode_data(struct ocfs2_super *osb,
551 struct buffer_head *fe_bh,
553 struct ocfs2_alloc_context *data_ac,
554 struct ocfs2_alloc_context *meta_ac,
555 enum ocfs2_alloc_restarted *reason_ret)
558 struct ocfs2_extent_tree et;
560 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
561 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
562 clusters_to_add, mark_unwritten,
563 data_ac, meta_ac, reason_ret);
568 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
569 u32 clusters_to_add, int mark_unwritten)
572 int restart_func = 0;
575 struct buffer_head *bh = NULL;
576 struct ocfs2_dinode *fe = NULL;
577 handle_t *handle = NULL;
578 struct ocfs2_alloc_context *data_ac = NULL;
579 struct ocfs2_alloc_context *meta_ac = NULL;
580 enum ocfs2_alloc_restarted why = RESTART_NONE;
581 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
582 struct ocfs2_extent_tree et;
586 * Unwritten extent only exists for file systems which
589 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
591 status = ocfs2_read_inode_block(inode, &bh);
596 fe = (struct ocfs2_dinode *) bh->b_data;
599 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
601 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
602 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
609 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
610 handle = ocfs2_start_trans(osb, credits);
611 if (IS_ERR(handle)) {
612 status = PTR_ERR(handle);
618 restarted_transaction:
619 trace_ocfs2_extend_allocation(
620 (unsigned long long)OCFS2_I(inode)->ip_blkno,
621 (unsigned long long)i_size_read(inode),
622 le32_to_cpu(fe->i_clusters), clusters_to_add,
625 status = dquot_alloc_space_nodirty(inode,
626 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
631 /* reserve a write to the file entry early on - that we if we
632 * run out of credits in the allocation path, we can still
634 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
635 OCFS2_JOURNAL_ACCESS_WRITE);
641 prev_clusters = OCFS2_I(inode)->ip_clusters;
643 status = ocfs2_add_inode_data(osb,
653 if ((status < 0) && (status != -EAGAIN)) {
654 if (status != -ENOSPC)
658 ocfs2_update_inode_fsync_trans(handle, inode, 1);
659 ocfs2_journal_dirty(handle, bh);
661 spin_lock(&OCFS2_I(inode)->ip_lock);
662 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
663 spin_unlock(&OCFS2_I(inode)->ip_lock);
664 /* Release unused quota reservation */
665 dquot_free_space(inode,
666 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
669 if (why != RESTART_NONE && clusters_to_add) {
670 if (why == RESTART_META) {
674 BUG_ON(why != RESTART_TRANS);
676 status = ocfs2_allocate_extend_trans(handle, 1);
678 /* handle still has to be committed at
684 goto restarted_transaction;
688 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
689 le32_to_cpu(fe->i_clusters),
690 (unsigned long long)le64_to_cpu(fe->i_size),
691 OCFS2_I(inode)->ip_clusters,
692 (unsigned long long)i_size_read(inode));
695 if (status < 0 && did_quota)
696 dquot_free_space(inode,
697 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
699 ocfs2_commit_trans(osb, handle);
703 ocfs2_free_alloc_context(data_ac);
707 ocfs2_free_alloc_context(meta_ac);
710 if ((!status) && restart_func) {
720 int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
721 u32 clusters_to_add, int mark_unwritten)
723 return __ocfs2_extend_allocation(inode, logical_start,
724 clusters_to_add, mark_unwritten);
728 * While a write will already be ordering the data, a truncate will not.
729 * Thus, we need to explicitly order the zeroed pages.
731 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
732 struct buffer_head *di_bh)
734 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
735 handle_t *handle = NULL;
738 if (!ocfs2_should_order_data(inode))
741 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
742 if (IS_ERR(handle)) {
748 ret = ocfs2_jbd2_file_inode(handle, inode);
754 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
755 OCFS2_JOURNAL_ACCESS_WRITE);
758 ocfs2_update_inode_fsync_trans(handle, inode, 1);
763 ocfs2_commit_trans(osb, handle);
764 handle = ERR_PTR(ret);
769 /* Some parts of this taken from generic_cont_expand, which turned out
770 * to be too fragile to do exactly what we need without us having to
771 * worry about recursive locking in ->write_begin() and ->write_end(). */
772 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
773 u64 abs_to, struct buffer_head *di_bh)
775 struct address_space *mapping = inode->i_mapping;
777 unsigned long index = abs_from >> PAGE_SHIFT;
780 unsigned zero_from, zero_to, block_start, block_end;
781 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
783 BUG_ON(abs_from >= abs_to);
784 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
785 BUG_ON(abs_from & (inode->i_blkbits - 1));
787 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh);
788 if (IS_ERR(handle)) {
789 ret = PTR_ERR(handle);
793 page = find_or_create_page(mapping, index, GFP_NOFS);
797 goto out_commit_trans;
800 /* Get the offsets within the page that we want to zero */
801 zero_from = abs_from & (PAGE_SIZE - 1);
802 zero_to = abs_to & (PAGE_SIZE - 1);
806 trace_ocfs2_write_zero_page(
807 (unsigned long long)OCFS2_I(inode)->ip_blkno,
808 (unsigned long long)abs_from,
809 (unsigned long long)abs_to,
810 index, zero_from, zero_to);
812 /* We know that zero_from is block aligned */
813 for (block_start = zero_from; block_start < zero_to;
814 block_start = block_end) {
815 block_end = block_start + i_blocksize(inode);
818 * block_start is block-aligned. Bump it by one to force
819 * __block_write_begin and block_commit_write to zero the
822 ret = __block_write_begin(page, block_start + 1, 0,
830 /* must not update i_size! */
831 ret = block_commit_write(page, block_start + 1,
840 * fs-writeback will release the dirty pages without page lock
841 * whose offset are over inode size, the release happens at
842 * block_write_full_page().
844 i_size_write(inode, abs_to);
845 inode->i_blocks = ocfs2_inode_sector_count(inode);
846 di->i_size = cpu_to_le64((u64)i_size_read(inode));
847 inode->i_mtime = inode->i_ctime = current_time(inode);
848 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
849 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
850 di->i_mtime_nsec = di->i_ctime_nsec;
852 ocfs2_journal_dirty(handle, di_bh);
853 ocfs2_update_inode_fsync_trans(handle, inode, 1);
861 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
867 * Find the next range to zero. We do this in terms of bytes because
868 * that's what ocfs2_zero_extend() wants, and it is dealing with the
869 * pagecache. We may return multiple extents.
871 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
872 * needs to be zeroed. range_start and range_end return the next zeroing
873 * range. A subsequent call should pass the previous range_end as its
874 * zero_start. If range_end is 0, there's nothing to do.
876 * Unwritten extents are skipped over. Refcounted extents are CoWd.
878 static int ocfs2_zero_extend_get_range(struct inode *inode,
879 struct buffer_head *di_bh,
880 u64 zero_start, u64 zero_end,
881 u64 *range_start, u64 *range_end)
883 int rc = 0, needs_cow = 0;
884 u32 p_cpos, zero_clusters = 0;
886 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
887 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
888 unsigned int num_clusters = 0;
889 unsigned int ext_flags = 0;
891 while (zero_cpos < last_cpos) {
892 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
893 &num_clusters, &ext_flags);
899 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
900 zero_clusters = num_clusters;
901 if (ext_flags & OCFS2_EXT_REFCOUNTED)
906 zero_cpos += num_clusters;
908 if (!zero_clusters) {
913 while ((zero_cpos + zero_clusters) < last_cpos) {
914 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
915 &p_cpos, &num_clusters,
922 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
924 if (ext_flags & OCFS2_EXT_REFCOUNTED)
926 zero_clusters += num_clusters;
928 if ((zero_cpos + zero_clusters) > last_cpos)
929 zero_clusters = last_cpos - zero_cpos;
932 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
933 zero_clusters, UINT_MAX);
940 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
941 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
942 zero_cpos + zero_clusters);
949 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
950 * has made sure that the entire range needs zeroing.
952 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
953 u64 range_end, struct buffer_head *di_bh)
957 u64 zero_pos = range_start;
959 trace_ocfs2_zero_extend_range(
960 (unsigned long long)OCFS2_I(inode)->ip_blkno,
961 (unsigned long long)range_start,
962 (unsigned long long)range_end);
963 BUG_ON(range_start >= range_end);
965 while (zero_pos < range_end) {
966 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
967 if (next_pos > range_end)
968 next_pos = range_end;
969 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
977 * Very large extends have the potential to lock up
978 * the cpu for extended periods of time.
986 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
990 u64 zero_start, range_start = 0, range_end = 0;
991 struct super_block *sb = inode->i_sb;
993 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
994 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
995 (unsigned long long)zero_start,
996 (unsigned long long)i_size_read(inode));
997 while (zero_start < zero_to_size) {
998 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
1009 if (range_start < zero_start)
1010 range_start = zero_start;
1011 if (range_end > zero_to_size)
1012 range_end = zero_to_size;
1014 ret = ocfs2_zero_extend_range(inode, range_start,
1020 zero_start = range_end;
1026 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1027 u64 new_i_size, u64 zero_to)
1030 u32 clusters_to_add;
1031 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1034 * Only quota files call this without a bh, and they can't be
1037 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1038 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1040 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1041 if (clusters_to_add < oi->ip_clusters)
1042 clusters_to_add = 0;
1044 clusters_to_add -= oi->ip_clusters;
1046 if (clusters_to_add) {
1047 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1048 clusters_to_add, 0);
1056 * Call this even if we don't add any clusters to the tree. We
1057 * still need to zero the area between the old i_size and the
1060 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1068 static int ocfs2_extend_file(struct inode *inode,
1069 struct buffer_head *di_bh,
1073 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1077 /* setattr sometimes calls us like this. */
1078 if (new_i_size == 0)
1081 if (i_size_read(inode) == new_i_size)
1083 BUG_ON(new_i_size < i_size_read(inode));
1086 * The alloc sem blocks people in read/write from reading our
1087 * allocation until we're done changing it. We depend on
1088 * i_mutex to block other extend/truncate calls while we're
1089 * here. We even have to hold it for sparse files because there
1090 * might be some tail zeroing.
1092 down_write(&oi->ip_alloc_sem);
1094 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1096 * We can optimize small extends by keeping the inodes
1099 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1100 up_write(&oi->ip_alloc_sem);
1101 goto out_update_size;
1104 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1106 up_write(&oi->ip_alloc_sem);
1112 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1113 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1115 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1118 up_write(&oi->ip_alloc_sem);
1126 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1134 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1136 int status = 0, size_change;
1137 int inode_locked = 0;
1138 struct inode *inode = d_inode(dentry);
1139 struct super_block *sb = inode->i_sb;
1140 struct ocfs2_super *osb = OCFS2_SB(sb);
1141 struct buffer_head *bh = NULL;
1142 handle_t *handle = NULL;
1143 struct dquot *transfer_to[MAXQUOTAS] = { };
1146 trace_ocfs2_setattr(inode, dentry,
1147 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1148 dentry->d_name.len, dentry->d_name.name,
1149 attr->ia_valid, attr->ia_mode,
1150 from_kuid(&init_user_ns, attr->ia_uid),
1151 from_kgid(&init_user_ns, attr->ia_gid));
1153 /* ensuring we don't even attempt to truncate a symlink */
1154 if (S_ISLNK(inode->i_mode))
1155 attr->ia_valid &= ~ATTR_SIZE;
1157 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1158 | ATTR_GID | ATTR_UID | ATTR_MODE)
1159 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1162 status = setattr_prepare(dentry, attr);
1166 if (is_quota_modification(inode, attr)) {
1167 status = dquot_initialize(inode);
1171 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1174 * Here we should wait dio to finish before inode lock
1175 * to avoid a deadlock between ocfs2_setattr() and
1176 * ocfs2_dio_end_io_write()
1178 inode_dio_wait(inode);
1180 status = ocfs2_rw_lock(inode, 1);
1187 status = ocfs2_inode_lock(inode, &bh, 1);
1189 if (status != -ENOENT)
1191 goto bail_unlock_rw;
1196 status = inode_newsize_ok(inode, attr->ia_size);
1200 if (i_size_read(inode) >= attr->ia_size) {
1201 if (ocfs2_should_order_data(inode)) {
1202 status = ocfs2_begin_ordered_truncate(inode,
1207 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1209 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1211 if (status != -ENOSPC)
1218 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1219 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1221 * Gather pointers to quota structures so that allocation /
1222 * freeing of quota structures happens here and not inside
1223 * dquot_transfer() where we have problems with lock ordering
1225 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1226 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1227 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1228 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1229 if (IS_ERR(transfer_to[USRQUOTA])) {
1230 status = PTR_ERR(transfer_to[USRQUOTA]);
1234 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1235 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1236 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1237 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1238 if (IS_ERR(transfer_to[GRPQUOTA])) {
1239 status = PTR_ERR(transfer_to[GRPQUOTA]);
1243 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1244 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1245 2 * ocfs2_quota_trans_credits(sb));
1246 if (IS_ERR(handle)) {
1247 status = PTR_ERR(handle);
1249 goto bail_unlock_alloc;
1251 status = __dquot_transfer(inode, transfer_to);
1255 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1256 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1257 if (IS_ERR(handle)) {
1258 status = PTR_ERR(handle);
1260 goto bail_unlock_alloc;
1264 setattr_copy(inode, attr);
1265 mark_inode_dirty(inode);
1267 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1272 ocfs2_commit_trans(osb, handle);
1274 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1277 ocfs2_inode_unlock(inode, 1);
1282 ocfs2_rw_unlock(inode, 1);
1285 /* Release quota pointers in case we acquired them */
1286 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1287 dqput(transfer_to[qtype]);
1289 if (!status && attr->ia_valid & ATTR_MODE) {
1290 status = ocfs2_acl_chmod(inode, bh);
1295 ocfs2_inode_unlock(inode, 1);
1301 int ocfs2_getattr(struct vfsmount *mnt,
1302 struct dentry *dentry,
1305 struct inode *inode = d_inode(dentry);
1306 struct super_block *sb = dentry->d_sb;
1307 struct ocfs2_super *osb = sb->s_fs_info;
1310 err = ocfs2_inode_revalidate(dentry);
1317 generic_fillattr(inode, stat);
1319 * If there is inline data in the inode, the inode will normally not
1320 * have data blocks allocated (it may have an external xattr block).
1321 * Report at least one sector for such files, so tools like tar, rsync,
1322 * others don't incorrectly think the file is completely sparse.
1324 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1325 stat->blocks += (stat->size + 511)>>9;
1327 /* We set the blksize from the cluster size for performance */
1328 stat->blksize = osb->s_clustersize;
1334 int ocfs2_permission(struct inode *inode, int mask)
1338 if (mask & MAY_NOT_BLOCK)
1341 ret = ocfs2_inode_lock(inode, NULL, 0);
1348 ret = generic_permission(inode, mask);
1350 ocfs2_inode_unlock(inode, 0);
1355 static int __ocfs2_write_remove_suid(struct inode *inode,
1356 struct buffer_head *bh)
1360 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1361 struct ocfs2_dinode *di;
1363 trace_ocfs2_write_remove_suid(
1364 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1367 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1368 if (IS_ERR(handle)) {
1369 ret = PTR_ERR(handle);
1374 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1375 OCFS2_JOURNAL_ACCESS_WRITE);
1381 inode->i_mode &= ~S_ISUID;
1382 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1383 inode->i_mode &= ~S_ISGID;
1385 di = (struct ocfs2_dinode *) bh->b_data;
1386 di->i_mode = cpu_to_le16(inode->i_mode);
1387 ocfs2_update_inode_fsync_trans(handle, inode, 0);
1389 ocfs2_journal_dirty(handle, bh);
1392 ocfs2_commit_trans(osb, handle);
1397 static int ocfs2_write_remove_suid(struct inode *inode)
1400 struct buffer_head *bh = NULL;
1402 ret = ocfs2_read_inode_block(inode, &bh);
1408 ret = __ocfs2_write_remove_suid(inode, bh);
1415 * Allocate enough extents to cover the region starting at byte offset
1416 * start for len bytes. Existing extents are skipped, any extents
1417 * added are marked as "unwritten".
1419 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1423 u32 cpos, phys_cpos, clusters, alloc_size;
1424 u64 end = start + len;
1425 struct buffer_head *di_bh = NULL;
1427 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1428 ret = ocfs2_read_inode_block(inode, &di_bh);
1435 * Nothing to do if the requested reservation range
1436 * fits within the inode.
1438 if (ocfs2_size_fits_inline_data(di_bh, end))
1441 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1449 * We consider both start and len to be inclusive.
1451 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1452 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1456 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1464 * Hole or existing extent len can be arbitrary, so
1465 * cap it to our own allocation request.
1467 if (alloc_size > clusters)
1468 alloc_size = clusters;
1472 * We already have an allocation at this
1473 * region so we can safely skip it.
1478 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1487 clusters -= alloc_size;
1498 * Truncate a byte range, avoiding pages within partial clusters. This
1499 * preserves those pages for the zeroing code to write to.
1501 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1504 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1506 struct address_space *mapping = inode->i_mapping;
1508 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1509 end = byte_start + byte_len;
1510 end = end & ~(osb->s_clustersize - 1);
1513 unmap_mapping_range(mapping, start, end - start, 0);
1514 truncate_inode_pages_range(mapping, start, end - 1);
1519 * zero out partial blocks of one cluster.
1521 * start: file offset where zero starts, will be made upper block aligned.
1522 * len: it will be trimmed to the end of current cluster if "start + len"
1523 * is bigger than it.
1525 static int ocfs2_zeroout_partial_cluster(struct inode *inode,
1529 u64 start_block, end_block, nr_blocks;
1530 u64 p_block, offset;
1531 u32 cluster, p_cluster, nr_clusters;
1532 struct super_block *sb = inode->i_sb;
1533 u64 end = ocfs2_align_bytes_to_clusters(sb, start);
1535 if (start + len < end)
1538 start_block = ocfs2_blocks_for_bytes(sb, start);
1539 end_block = ocfs2_blocks_for_bytes(sb, end);
1540 nr_blocks = end_block - start_block;
1544 cluster = ocfs2_bytes_to_clusters(sb, start);
1545 ret = ocfs2_get_clusters(inode, cluster, &p_cluster,
1546 &nr_clusters, NULL);
1552 offset = start_block - ocfs2_clusters_to_blocks(sb, cluster);
1553 p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset;
1554 return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS);
1557 static int ocfs2_zero_partial_clusters(struct inode *inode,
1562 u64 end = start + len;
1563 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1564 unsigned int csize = osb->s_clustersize;
1566 loff_t isize = i_size_read(inode);
1569 * The "start" and "end" values are NOT necessarily part of
1570 * the range whose allocation is being deleted. Rather, this
1571 * is what the user passed in with the request. We must zero
1572 * partial clusters here. There's no need to worry about
1573 * physical allocation - the zeroing code knows to skip holes.
1575 trace_ocfs2_zero_partial_clusters(
1576 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1577 (unsigned long long)start, (unsigned long long)end);
1580 * If both edges are on a cluster boundary then there's no
1581 * zeroing required as the region is part of the allocation to
1584 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1587 /* No page cache for EOF blocks, issue zero out to disk. */
1590 * zeroout eof blocks in last cluster starting from
1591 * "isize" even "start" > "isize" because it is
1592 * complicated to zeroout just at "start" as "start"
1593 * may be not aligned with block size, buffer write
1594 * would be required to do that, but out of eof buffer
1595 * write is not supported.
1597 ret = ocfs2_zeroout_partial_cluster(inode, isize,
1607 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1608 if (IS_ERR(handle)) {
1609 ret = PTR_ERR(handle);
1615 * If start is on a cluster boundary and end is somewhere in another
1616 * cluster, we have not COWed the cluster starting at start, unless
1617 * end is also within the same cluster. So, in this case, we skip this
1618 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1621 if ((start & (csize - 1)) != 0) {
1623 * We want to get the byte offset of the end of the 1st
1626 tmpend = (u64)osb->s_clustersize +
1627 (start & ~(osb->s_clustersize - 1));
1631 trace_ocfs2_zero_partial_clusters_range1(
1632 (unsigned long long)start,
1633 (unsigned long long)tmpend);
1635 ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1643 * This may make start and end equal, but the zeroing
1644 * code will skip any work in that case so there's no
1645 * need to catch it up here.
1647 start = end & ~(osb->s_clustersize - 1);
1649 trace_ocfs2_zero_partial_clusters_range2(
1650 (unsigned long long)start, (unsigned long long)end);
1652 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1656 ocfs2_update_inode_fsync_trans(handle, inode, 1);
1658 ocfs2_commit_trans(osb, handle);
1663 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1666 struct ocfs2_extent_rec *rec = NULL;
1668 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1670 rec = &el->l_recs[i];
1672 if (le32_to_cpu(rec->e_cpos) < pos)
1680 * Helper to calculate the punching pos and length in one run, we handle the
1681 * following three cases in order:
1683 * - remove the entire record
1684 * - remove a partial record
1685 * - no record needs to be removed (hole-punching completed)
1687 static void ocfs2_calc_trunc_pos(struct inode *inode,
1688 struct ocfs2_extent_list *el,
1689 struct ocfs2_extent_rec *rec,
1690 u32 trunc_start, u32 *trunc_cpos,
1691 u32 *trunc_len, u32 *trunc_end,
1692 u64 *blkno, int *done)
1697 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1699 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1701 * remove an entire extent record.
1703 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1705 * Skip holes if any.
1707 if (range < *trunc_end)
1709 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1710 *blkno = le64_to_cpu(rec->e_blkno);
1711 *trunc_end = le32_to_cpu(rec->e_cpos);
1712 } else if (range > trunc_start) {
1714 * remove a partial extent record, which means we're
1715 * removing the last extent record.
1717 *trunc_cpos = trunc_start;
1721 if (range < *trunc_end)
1723 *trunc_len = *trunc_end - trunc_start;
1724 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1725 *blkno = le64_to_cpu(rec->e_blkno) +
1726 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1727 *trunc_end = trunc_start;
1730 * It may have two following possibilities:
1732 * - last record has been removed
1733 * - trunc_start was within a hole
1735 * both two cases mean the completion of hole punching.
1743 static int ocfs2_remove_inode_range(struct inode *inode,
1744 struct buffer_head *di_bh, u64 byte_start,
1747 int ret = 0, flags = 0, done = 0, i;
1748 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1750 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1751 struct ocfs2_cached_dealloc_ctxt dealloc;
1752 struct address_space *mapping = inode->i_mapping;
1753 struct ocfs2_extent_tree et;
1754 struct ocfs2_path *path = NULL;
1755 struct ocfs2_extent_list *el = NULL;
1756 struct ocfs2_extent_rec *rec = NULL;
1757 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1758 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1760 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1761 ocfs2_init_dealloc_ctxt(&dealloc);
1763 trace_ocfs2_remove_inode_range(
1764 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1765 (unsigned long long)byte_start,
1766 (unsigned long long)byte_len);
1771 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1772 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1773 byte_start + byte_len, 0);
1779 * There's no need to get fancy with the page cache
1780 * truncate of an inline-data inode. We're talking
1781 * about less than a page here, which will be cached
1782 * in the dinode buffer anyway.
1784 unmap_mapping_range(mapping, 0, 0, 0);
1785 truncate_inode_pages(mapping, 0);
1790 * For reflinks, we may need to CoW 2 clusters which might be
1791 * partially zero'd later, if hole's start and end offset were
1792 * within one cluster(means is not exactly aligned to clustersize).
1795 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1797 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1803 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1810 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1811 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1812 cluster_in_el = trunc_end;
1814 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1820 path = ocfs2_new_path_from_et(&et);
1827 while (trunc_end > trunc_start) {
1829 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1836 el = path_leaf_el(path);
1838 i = ocfs2_find_rec(el, trunc_end);
1840 * Need to go to previous extent block.
1843 if (path->p_tree_depth == 0)
1846 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1855 * We've reached the leftmost extent block,
1856 * it's safe to leave.
1858 if (cluster_in_el == 0)
1862 * The 'pos' searched for previous extent block is
1863 * always one cluster less than actual trunc_end.
1865 trunc_end = cluster_in_el + 1;
1867 ocfs2_reinit_path(path, 1);
1872 rec = &el->l_recs[i];
1874 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1875 &trunc_len, &trunc_end, &blkno, &done);
1879 flags = rec->e_flags;
1880 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1882 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1883 phys_cpos, trunc_len, flags,
1884 &dealloc, refcount_loc, false);
1890 cluster_in_el = trunc_end;
1892 ocfs2_reinit_path(path, 1);
1895 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1898 ocfs2_free_path(path);
1899 ocfs2_schedule_truncate_log_flush(osb, 1);
1900 ocfs2_run_deallocs(osb, &dealloc);
1906 * Parts of this function taken from xfs_change_file_space()
1908 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1909 loff_t f_pos, unsigned int cmd,
1910 struct ocfs2_space_resv *sr,
1915 loff_t size, orig_isize;
1916 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1917 struct buffer_head *di_bh = NULL;
1919 unsigned long long max_off = inode->i_sb->s_maxbytes;
1921 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1927 * This prevents concurrent writes on other nodes
1929 ret = ocfs2_rw_lock(inode, 1);
1935 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1941 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1943 goto out_inode_unlock;
1946 switch (sr->l_whence) {
1947 case 0: /*SEEK_SET*/
1949 case 1: /*SEEK_CUR*/
1950 sr->l_start += f_pos;
1952 case 2: /*SEEK_END*/
1953 sr->l_start += i_size_read(inode);
1957 goto out_inode_unlock;
1961 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1964 || sr->l_start > max_off
1965 || (sr->l_start + llen) < 0
1966 || (sr->l_start + llen) > max_off) {
1968 goto out_inode_unlock;
1970 size = sr->l_start + sr->l_len;
1972 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1973 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1974 if (sr->l_len <= 0) {
1976 goto out_inode_unlock;
1980 if (file && should_remove_suid(file->f_path.dentry)) {
1981 ret = __ocfs2_write_remove_suid(inode, di_bh);
1984 goto out_inode_unlock;
1988 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1990 case OCFS2_IOC_RESVSP:
1991 case OCFS2_IOC_RESVSP64:
1993 * This takes unsigned offsets, but the signed ones we
1994 * pass have been checked against overflow above.
1996 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1999 case OCFS2_IOC_UNRESVSP:
2000 case OCFS2_IOC_UNRESVSP64:
2001 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
2008 orig_isize = i_size_read(inode);
2009 /* zeroout eof blocks in the cluster. */
2010 if (!ret && change_size && orig_isize < size) {
2011 ret = ocfs2_zeroout_partial_cluster(inode, orig_isize,
2014 i_size_write(inode, size);
2016 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2019 goto out_inode_unlock;
2023 * We update c/mtime for these changes
2025 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
2026 if (IS_ERR(handle)) {
2027 ret = PTR_ERR(handle);
2029 goto out_inode_unlock;
2032 inode->i_ctime = inode->i_mtime = current_time(inode);
2033 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
2037 if (file && (file->f_flags & O_SYNC))
2040 ocfs2_commit_trans(osb, handle);
2044 ocfs2_inode_unlock(inode, 1);
2046 ocfs2_rw_unlock(inode, 1);
2049 inode_unlock(inode);
2053 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2054 struct ocfs2_space_resv *sr)
2056 struct inode *inode = file_inode(file);
2057 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2060 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2061 !ocfs2_writes_unwritten_extents(osb))
2063 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2064 !ocfs2_sparse_alloc(osb))
2067 if (!S_ISREG(inode->i_mode))
2070 if (!(file->f_mode & FMODE_WRITE))
2073 ret = mnt_want_write_file(file);
2076 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2077 mnt_drop_write_file(file);
2081 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2084 struct inode *inode = file_inode(file);
2085 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2086 struct ocfs2_space_resv sr;
2087 int change_size = 1;
2088 int cmd = OCFS2_IOC_RESVSP64;
2090 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2092 if (!ocfs2_writes_unwritten_extents(osb))
2095 if (mode & FALLOC_FL_KEEP_SIZE)
2098 if (mode & FALLOC_FL_PUNCH_HOLE)
2099 cmd = OCFS2_IOC_UNRESVSP64;
2102 sr.l_start = (s64)offset;
2103 sr.l_len = (s64)len;
2105 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2109 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2113 unsigned int extent_flags;
2114 u32 cpos, clusters, extent_len, phys_cpos;
2115 struct super_block *sb = inode->i_sb;
2117 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2118 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2119 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2122 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2123 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2126 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2133 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2138 if (extent_len > clusters)
2139 extent_len = clusters;
2141 clusters -= extent_len;
2148 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2150 int blockmask = inode->i_sb->s_blocksize - 1;
2151 loff_t final_size = pos + count;
2153 if ((pos & blockmask) || (final_size & blockmask))
2158 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2160 loff_t pos, size_t count,
2164 struct buffer_head *di_bh = NULL;
2165 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2167 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2169 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2177 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2185 static int ocfs2_prepare_inode_for_write(struct file *file,
2189 int ret = 0, meta_level = 0;
2190 struct dentry *dentry = file->f_path.dentry;
2191 struct inode *inode = d_inode(dentry);
2195 * We start with a read level meta lock and only jump to an ex
2196 * if we need to make modifications here.
2199 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2206 /* Clear suid / sgid if necessary. We do this here
2207 * instead of later in the write path because
2208 * remove_suid() calls ->setattr without any hint that
2209 * we may have already done our cluster locking. Since
2210 * ocfs2_setattr() *must* take cluster locks to
2211 * proceed, this will lead us to recursively lock the
2212 * inode. There's also the dinode i_size state which
2213 * can be lost via setattr during extending writes (we
2214 * set inode->i_size at the end of a write. */
2215 if (should_remove_suid(dentry)) {
2216 if (meta_level == 0) {
2217 ocfs2_inode_unlock(inode, meta_level);
2222 ret = ocfs2_write_remove_suid(inode);
2231 ret = ocfs2_check_range_for_refcount(inode, pos, count);
2233 ocfs2_inode_unlock(inode, meta_level);
2236 ret = ocfs2_prepare_inode_for_refcount(inode,
2252 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2255 if (meta_level >= 0)
2256 ocfs2_inode_unlock(inode, meta_level);
2262 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2263 struct iov_iter *from)
2265 int direct_io, rw_level;
2266 ssize_t written = 0;
2268 size_t count = iov_iter_count(from);
2269 struct file *file = iocb->ki_filp;
2270 struct inode *inode = file_inode(file);
2271 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2272 int full_coherency = !(osb->s_mount_opt &
2273 OCFS2_MOUNT_COHERENCY_BUFFERED);
2274 void *saved_ki_complete = NULL;
2275 int append_write = ((iocb->ki_pos + count) >=
2276 i_size_read(inode) ? 1 : 0);
2278 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2279 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2280 file->f_path.dentry->d_name.len,
2281 file->f_path.dentry->d_name.name,
2282 (unsigned int)from->nr_segs); /* GRRRRR */
2287 direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2292 * Concurrent O_DIRECT writes are allowed with
2293 * mount_option "coherency=buffered".
2294 * For append write, we must take rw EX.
2296 rw_level = (!direct_io || full_coherency || append_write);
2298 ret = ocfs2_rw_lock(inode, rw_level);
2305 * O_DIRECT writes with "coherency=full" need to take EX cluster
2306 * inode_lock to guarantee coherency.
2308 if (direct_io && full_coherency) {
2310 * We need to take and drop the inode lock to force
2311 * other nodes to drop their caches. Buffered I/O
2312 * already does this in write_begin().
2314 ret = ocfs2_inode_lock(inode, NULL, 1);
2320 ocfs2_inode_unlock(inode, 1);
2323 ret = generic_write_checks(iocb, from);
2331 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count);
2337 if (direct_io && !is_sync_kiocb(iocb) &&
2338 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2340 * Make it a sync io if it's an unaligned aio.
2342 saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2345 /* communicate with ocfs2_dio_end_io */
2346 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2348 written = __generic_file_write_iter(iocb, from);
2349 /* buffered aio wouldn't have proper lock coverage today */
2350 BUG_ON(written == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2353 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2354 * function pointer which is called when o_direct io completes so that
2355 * it can unlock our rw lock.
2356 * Unfortunately there are error cases which call end_io and others
2357 * that don't. so we don't have to unlock the rw_lock if either an
2358 * async dio is going to do it in the future or an end_io after an
2359 * error has already done it.
2361 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2365 if (unlikely(written <= 0))
2368 if (((file->f_flags & O_DSYNC) && !direct_io) ||
2370 ret = filemap_fdatawrite_range(file->f_mapping,
2371 iocb->ki_pos - written,
2377 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2383 ret = filemap_fdatawait_range(file->f_mapping,
2384 iocb->ki_pos - written,
2389 if (saved_ki_complete)
2390 xchg(&iocb->ki_complete, saved_ki_complete);
2393 ocfs2_rw_unlock(inode, rw_level);
2396 inode_unlock(inode);
2403 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2404 struct iov_iter *to)
2406 int ret = 0, rw_level = -1, lock_level = 0;
2407 struct file *filp = iocb->ki_filp;
2408 struct inode *inode = file_inode(filp);
2410 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2411 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2412 filp->f_path.dentry->d_name.len,
2413 filp->f_path.dentry->d_name.name,
2414 to->nr_segs); /* GRRRRR */
2424 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2425 * need locks to protect pending reads from racing with truncate.
2427 if (iocb->ki_flags & IOCB_DIRECT) {
2428 ret = ocfs2_rw_lock(inode, 0);
2434 /* communicate with ocfs2_dio_end_io */
2435 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2439 * We're fine letting folks race truncates and extending
2440 * writes with read across the cluster, just like they can
2441 * locally. Hence no rw_lock during read.
2443 * Take and drop the meta data lock to update inode fields
2444 * like i_size. This allows the checks down below
2445 * generic_file_aio_read() a chance of actually working.
2447 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
2452 ocfs2_inode_unlock(inode, lock_level);
2454 ret = generic_file_read_iter(iocb, to);
2455 trace_generic_file_aio_read_ret(ret);
2457 /* buffered aio wouldn't have proper lock coverage today */
2458 BUG_ON(ret == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2460 /* see ocfs2_file_write_iter */
2461 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2467 ocfs2_rw_unlock(inode, rw_level);
2472 /* Refer generic_file_llseek_unlocked() */
2473 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2475 struct inode *inode = file->f_mapping->host;
2484 /* SEEK_END requires the OCFS2 inode lock for the file
2485 * because it references the file's size.
2487 ret = ocfs2_inode_lock(inode, NULL, 0);
2492 offset += i_size_read(inode);
2493 ocfs2_inode_unlock(inode, 0);
2497 offset = file->f_pos;
2500 offset += file->f_pos;
2504 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2513 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2516 inode_unlock(inode);
2522 const struct inode_operations ocfs2_file_iops = {
2523 .setattr = ocfs2_setattr,
2524 .getattr = ocfs2_getattr,
2525 .permission = ocfs2_permission,
2526 .listxattr = ocfs2_listxattr,
2527 .fiemap = ocfs2_fiemap,
2528 .get_acl = ocfs2_iop_get_acl,
2529 .set_acl = ocfs2_iop_set_acl,
2532 const struct inode_operations ocfs2_special_file_iops = {
2533 .setattr = ocfs2_setattr,
2534 .getattr = ocfs2_getattr,
2535 .permission = ocfs2_permission,
2536 .get_acl = ocfs2_iop_get_acl,
2537 .set_acl = ocfs2_iop_set_acl,
2541 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2542 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2544 const struct file_operations ocfs2_fops = {
2545 .llseek = ocfs2_file_llseek,
2547 .fsync = ocfs2_sync_file,
2548 .release = ocfs2_file_release,
2549 .open = ocfs2_file_open,
2550 .read_iter = ocfs2_file_read_iter,
2551 .write_iter = ocfs2_file_write_iter,
2552 .unlocked_ioctl = ocfs2_ioctl,
2553 #ifdef CONFIG_COMPAT
2554 .compat_ioctl = ocfs2_compat_ioctl,
2557 .flock = ocfs2_flock,
2558 .splice_read = generic_file_splice_read,
2559 .splice_write = iter_file_splice_write,
2560 .fallocate = ocfs2_fallocate,
2563 const struct file_operations ocfs2_dops = {
2564 .llseek = generic_file_llseek,
2565 .read = generic_read_dir,
2566 .iterate = ocfs2_readdir,
2567 .fsync = ocfs2_sync_file,
2568 .release = ocfs2_dir_release,
2569 .open = ocfs2_dir_open,
2570 .unlocked_ioctl = ocfs2_ioctl,
2571 #ifdef CONFIG_COMPAT
2572 .compat_ioctl = ocfs2_compat_ioctl,
2575 .flock = ocfs2_flock,
2579 * POSIX-lockless variants of our file_operations.
2581 * These will be used if the underlying cluster stack does not support
2582 * posix file locking, if the user passes the "localflocks" mount
2583 * option, or if we have a local-only fs.
2585 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2586 * so we still want it in the case of no stack support for
2587 * plocks. Internally, it will do the right thing when asked to ignore
2590 const struct file_operations ocfs2_fops_no_plocks = {
2591 .llseek = ocfs2_file_llseek,
2593 .fsync = ocfs2_sync_file,
2594 .release = ocfs2_file_release,
2595 .open = ocfs2_file_open,
2596 .read_iter = ocfs2_file_read_iter,
2597 .write_iter = ocfs2_file_write_iter,
2598 .unlocked_ioctl = ocfs2_ioctl,
2599 #ifdef CONFIG_COMPAT
2600 .compat_ioctl = ocfs2_compat_ioctl,
2602 .flock = ocfs2_flock,
2603 .splice_read = generic_file_splice_read,
2604 .splice_write = iter_file_splice_write,
2605 .fallocate = ocfs2_fallocate,
2608 const struct file_operations ocfs2_dops_no_plocks = {
2609 .llseek = generic_file_llseek,
2610 .read = generic_read_dir,
2611 .iterate = ocfs2_readdir,
2612 .fsync = ocfs2_sync_file,
2613 .release = ocfs2_dir_release,
2614 .open = ocfs2_dir_open,
2615 .unlocked_ioctl = ocfs2_ioctl,
2616 #ifdef CONFIG_COMPAT
2617 .compat_ioctl = ocfs2_compat_ioctl,
2619 .flock = ocfs2_flock,