GNU Linux-libre 6.1.86-gnu
[releases.git] / fs / ntfs3 / lib / decompress_common.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * decompress_common.h - Code shared by the XPRESS and LZX decompressors
4  *
5  * Copyright (C) 2015 Eric Biggers
6  */
7
8 #ifndef _LINUX_NTFS3_LIB_DECOMPRESS_COMMON_H
9 #define _LINUX_NTFS3_LIB_DECOMPRESS_COMMON_H
10
11 #include <linux/string.h>
12 #include <linux/compiler.h>
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <asm/unaligned.h>
16
17
18 /* "Force inline" macro (not required, but helpful for performance)  */
19 #define forceinline __always_inline
20
21 /* Enable whole-word match copying on selected architectures  */
22 #if defined(__i386__) || defined(__x86_64__) || defined(__ARM_FEATURE_UNALIGNED)
23 #  define FAST_UNALIGNED_ACCESS
24 #endif
25
26 /* Size of a machine word  */
27 #define WORDBYTES (sizeof(size_t))
28
29 static forceinline void
30 copy_unaligned_word(const void *src, void *dst)
31 {
32         put_unaligned(get_unaligned((const size_t *)src), (size_t *)dst);
33 }
34
35
36 /* Generate a "word" with platform-dependent size whose bytes all contain the
37  * value 'b'.
38  */
39 static forceinline size_t repeat_byte(u8 b)
40 {
41         size_t v;
42
43         v = b;
44         v |= v << 8;
45         v |= v << 16;
46         v |= v << ((WORDBYTES == 8) ? 32 : 0);
47         return v;
48 }
49
50 /* Structure that encapsulates a block of in-memory data being interpreted as a
51  * stream of bits, optionally with interwoven literal bytes.  Bits are assumed
52  * to be stored in little endian 16-bit coding units, with the bits ordered high
53  * to low.
54  */
55 struct input_bitstream {
56
57         /* Bits that have been read from the input buffer.  The bits are
58          * left-justified; the next bit is always bit 31.
59          */
60         u32 bitbuf;
61
62         /* Number of bits currently held in @bitbuf.  */
63         u32 bitsleft;
64
65         /* Pointer to the next byte to be retrieved from the input buffer.  */
66         const u8 *next;
67
68         /* Pointer to just past the end of the input buffer.  */
69         const u8 *end;
70 };
71
72 /* Initialize a bitstream to read from the specified input buffer.  */
73 static forceinline void init_input_bitstream(struct input_bitstream *is,
74                                              const void *buffer, u32 size)
75 {
76         is->bitbuf = 0;
77         is->bitsleft = 0;
78         is->next = buffer;
79         is->end = is->next + size;
80 }
81
82 /* Ensure the bit buffer variable for the bitstream contains at least @num_bits
83  * bits.  Following this, bitstream_peek_bits() and/or bitstream_remove_bits()
84  * may be called on the bitstream to peek or remove up to @num_bits bits.  Note
85  * that @num_bits must be <= 16.
86  */
87 static forceinline void bitstream_ensure_bits(struct input_bitstream *is,
88                                               u32 num_bits)
89 {
90         if (is->bitsleft < num_bits) {
91                 if (is->end - is->next >= 2) {
92                         is->bitbuf |= (u32)get_unaligned_le16(is->next)
93                                         << (16 - is->bitsleft);
94                         is->next += 2;
95                 }
96                 is->bitsleft += 16;
97         }
98 }
99
100 /* Return the next @num_bits bits from the bitstream, without removing them.
101  * There must be at least @num_bits remaining in the buffer variable, from a
102  * previous call to bitstream_ensure_bits().
103  */
104 static forceinline u32
105 bitstream_peek_bits(const struct input_bitstream *is, const u32 num_bits)
106 {
107         return (is->bitbuf >> 1) >> (sizeof(is->bitbuf) * 8 - num_bits - 1);
108 }
109
110 /* Remove @num_bits from the bitstream.  There must be at least @num_bits
111  * remaining in the buffer variable, from a previous call to
112  * bitstream_ensure_bits().
113  */
114 static forceinline void
115 bitstream_remove_bits(struct input_bitstream *is, u32 num_bits)
116 {
117         is->bitbuf <<= num_bits;
118         is->bitsleft -= num_bits;
119 }
120
121 /* Remove and return @num_bits bits from the bitstream.  There must be at least
122  * @num_bits remaining in the buffer variable, from a previous call to
123  * bitstream_ensure_bits().
124  */
125 static forceinline u32
126 bitstream_pop_bits(struct input_bitstream *is, u32 num_bits)
127 {
128         u32 bits = bitstream_peek_bits(is, num_bits);
129
130         bitstream_remove_bits(is, num_bits);
131         return bits;
132 }
133
134 /* Read and return the next @num_bits bits from the bitstream.  */
135 static forceinline u32
136 bitstream_read_bits(struct input_bitstream *is, u32 num_bits)
137 {
138         bitstream_ensure_bits(is, num_bits);
139         return bitstream_pop_bits(is, num_bits);
140 }
141
142 /* Read and return the next literal byte embedded in the bitstream.  */
143 static forceinline u8
144 bitstream_read_byte(struct input_bitstream *is)
145 {
146         if (unlikely(is->end == is->next))
147                 return 0;
148         return *is->next++;
149 }
150
151 /* Read and return the next 16-bit integer embedded in the bitstream.  */
152 static forceinline u16
153 bitstream_read_u16(struct input_bitstream *is)
154 {
155         u16 v;
156
157         if (unlikely(is->end - is->next < 2))
158                 return 0;
159         v = get_unaligned_le16(is->next);
160         is->next += 2;
161         return v;
162 }
163
164 /* Read and return the next 32-bit integer embedded in the bitstream.  */
165 static forceinline u32
166 bitstream_read_u32(struct input_bitstream *is)
167 {
168         u32 v;
169
170         if (unlikely(is->end - is->next < 4))
171                 return 0;
172         v = get_unaligned_le32(is->next);
173         is->next += 4;
174         return v;
175 }
176
177 /* Read into @dst_buffer an array of literal bytes embedded in the bitstream.
178  * Return either a pointer to the byte past the last written, or NULL if the
179  * read overflows the input buffer.
180  */
181 static forceinline void *bitstream_read_bytes(struct input_bitstream *is,
182                                               void *dst_buffer, size_t count)
183 {
184         if ((size_t)(is->end - is->next) < count)
185                 return NULL;
186         memcpy(dst_buffer, is->next, count);
187         is->next += count;
188         return (u8 *)dst_buffer + count;
189 }
190
191 /* Align the input bitstream on a coding-unit boundary.  */
192 static forceinline void bitstream_align(struct input_bitstream *is)
193 {
194         is->bitsleft = 0;
195         is->bitbuf = 0;
196 }
197
198 extern int make_huffman_decode_table(u16 decode_table[], const u32 num_syms,
199                                      const u32 num_bits, const u8 lens[],
200                                      const u32 max_codeword_len,
201                                      u16 working_space[]);
202
203
204 /* Reads and returns the next Huffman-encoded symbol from a bitstream.  If the
205  * input data is exhausted, the Huffman symbol is decoded as if the missing bits
206  * are all zeroes.
207  */
208 static forceinline u32 read_huffsym(struct input_bitstream *istream,
209                                          const u16 decode_table[],
210                                          u32 table_bits,
211                                          u32 max_codeword_len)
212 {
213         u32 entry;
214         u32 key_bits;
215
216         bitstream_ensure_bits(istream, max_codeword_len);
217
218         /* Index the decode table by the next table_bits bits of the input.  */
219         key_bits = bitstream_peek_bits(istream, table_bits);
220         entry = decode_table[key_bits];
221         if (entry < 0xC000) {
222                 /* Fast case: The decode table directly provided the
223                  * symbol and codeword length.  The low 11 bits are the
224                  * symbol, and the high 5 bits are the codeword length.
225                  */
226                 bitstream_remove_bits(istream, entry >> 11);
227                 return entry & 0x7FF;
228         }
229         /* Slow case: The codeword for the symbol is longer than
230          * table_bits, so the symbol does not have an entry
231          * directly in the first (1 << table_bits) entries of the
232          * decode table.  Traverse the appropriate binary tree
233          * bit-by-bit to decode the symbol.
234          */
235         bitstream_remove_bits(istream, table_bits);
236         do {
237                 key_bits = (entry & 0x3FFF) + bitstream_pop_bits(istream, 1);
238         } while ((entry = decode_table[key_bits]) >= 0xC000);
239         return entry;
240 }
241
242 /*
243  * Copy an LZ77 match at (dst - offset) to dst.
244  *
245  * The length and offset must be already validated --- that is, (dst - offset)
246  * can't underrun the output buffer, and (dst + length) can't overrun the output
247  * buffer.  Also, the length cannot be 0.
248  *
249  * @bufend points to the byte past the end of the output buffer.  This function
250  * won't write any data beyond this position.
251  *
252  * Returns dst + length.
253  */
254 static forceinline u8 *lz_copy(u8 *dst, u32 length, u32 offset, const u8 *bufend,
255                                u32 min_length)
256 {
257         const u8 *src = dst - offset;
258
259         /*
260          * Try to copy one machine word at a time.  On i386 and x86_64 this is
261          * faster than copying one byte at a time, unless the data is
262          * near-random and all the matches have very short lengths.  Note that
263          * since this requires unaligned memory accesses, it won't necessarily
264          * be faster on every architecture.
265          *
266          * Also note that we might copy more than the length of the match.  For
267          * example, if a word is 8 bytes and the match is of length 5, then
268          * we'll simply copy 8 bytes.  This is okay as long as we don't write
269          * beyond the end of the output buffer, hence the check for (bufend -
270          * end >= WORDBYTES - 1).
271          */
272 #ifdef FAST_UNALIGNED_ACCESS
273         u8 * const end = dst + length;
274
275         if (bufend - end >= (ptrdiff_t)(WORDBYTES - 1)) {
276
277                 if (offset >= WORDBYTES) {
278                         /* The source and destination words don't overlap.  */
279
280                         /* To improve branch prediction, one iteration of this
281                          * loop is unrolled.  Most matches are short and will
282                          * fail the first check.  But if that check passes, then
283                          * it becomes increasing likely that the match is long
284                          * and we'll need to continue copying.
285                          */
286
287                         copy_unaligned_word(src, dst);
288                         src += WORDBYTES;
289                         dst += WORDBYTES;
290
291                         if (dst < end) {
292                                 do {
293                                         copy_unaligned_word(src, dst);
294                                         src += WORDBYTES;
295                                         dst += WORDBYTES;
296                                 } while (dst < end);
297                         }
298                         return end;
299                 } else if (offset == 1) {
300
301                         /* Offset 1 matches are equivalent to run-length
302                          * encoding of the previous byte.  This case is common
303                          * if the data contains many repeated bytes.
304                          */
305                         size_t v = repeat_byte(*(dst - 1));
306
307                         do {
308                                 put_unaligned(v, (size_t *)dst);
309                                 src += WORDBYTES;
310                                 dst += WORDBYTES;
311                         } while (dst < end);
312                         return end;
313                 }
314                 /*
315                  * We don't bother with special cases for other 'offset <
316                  * WORDBYTES', which are usually rarer than 'offset == 1'.  Extra
317                  * checks will just slow things down.  Actually, it's possible
318                  * to handle all the 'offset < WORDBYTES' cases using the same
319                  * code, but it still becomes more complicated doesn't seem any
320                  * faster overall; it definitely slows down the more common
321                  * 'offset == 1' case.
322                  */
323         }
324 #endif /* FAST_UNALIGNED_ACCESS */
325
326         /* Fall back to a bytewise copy.  */
327
328         if (min_length >= 2) {
329                 *dst++ = *src++;
330                 length--;
331         }
332         if (min_length >= 3) {
333                 *dst++ = *src++;
334                 length--;
335         }
336         do {
337                 *dst++ = *src++;
338         } while (--length);
339
340         return dst;
341 }
342
343 #endif /* _LINUX_NTFS3_LIB_DECOMPRESS_COMMON_H */