GNU Linux-libre 6.1.86-gnu
[releases.git] / fs / ntfs3 / fslog.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7
8 #include <linux/blkdev.h>
9 #include <linux/fs.h>
10 #include <linux/random.h>
11 #include <linux/slab.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16
17 /*
18  * LOG FILE structs
19  */
20
21 // clang-format off
22
23 #define MaxLogFileSize     0x100000000ull
24 #define DefaultLogPageSize 4096
25 #define MinLogRecordPages  0x30
26
27 struct RESTART_HDR {
28         struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
29         __le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
30         __le32 page_size;     // 0x14: Log page size used for this log file.
31         __le16 ra_off;        // 0x18:
32         __le16 minor_ver;     // 0x1A:
33         __le16 major_ver;     // 0x1C:
34         __le16 fixups[];
35 };
36
37 #define LFS_NO_CLIENT 0xffff
38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
39
40 struct CLIENT_REC {
41         __le64 oldest_lsn;
42         __le64 restart_lsn; // 0x08:
43         __le16 prev_client; // 0x10:
44         __le16 next_client; // 0x12:
45         __le16 seq_num;     // 0x14:
46         u8 align[6];        // 0x16:
47         __le32 name_bytes;  // 0x1C: In bytes.
48         __le16 name[32];    // 0x20: Name of client.
49 };
50
51 static_assert(sizeof(struct CLIENT_REC) == 0x60);
52
53 /* Two copies of these will exist at the beginning of the log file */
54 struct RESTART_AREA {
55         __le64 current_lsn;    // 0x00: Current logical end of log file.
56         __le16 log_clients;    // 0x08: Maximum number of clients.
57         __le16 client_idx[2];  // 0x0A: Free/use index into the client record arrays.
58         __le16 flags;          // 0x0E: See RESTART_SINGLE_PAGE_IO.
59         __le32 seq_num_bits;   // 0x10: The number of bits in sequence number.
60         __le16 ra_len;         // 0x14:
61         __le16 client_off;     // 0x16:
62         __le64 l_size;         // 0x18: Usable log file size.
63         __le32 last_lsn_data_len; // 0x20:
64         __le16 rec_hdr_len;    // 0x24: Log page data offset.
65         __le16 data_off;       // 0x26: Log page data length.
66         __le32 open_log_count; // 0x28:
67         __le32 align[5];       // 0x2C:
68         struct CLIENT_REC clients[]; // 0x40:
69 };
70
71 struct LOG_REC_HDR {
72         __le16 redo_op;      // 0x00:  NTFS_LOG_OPERATION
73         __le16 undo_op;      // 0x02:  NTFS_LOG_OPERATION
74         __le16 redo_off;     // 0x04:  Offset to Redo record.
75         __le16 redo_len;     // 0x06:  Redo length.
76         __le16 undo_off;     // 0x08:  Offset to Undo record.
77         __le16 undo_len;     // 0x0A:  Undo length.
78         __le16 target_attr;  // 0x0C:
79         __le16 lcns_follow;  // 0x0E:
80         __le16 record_off;   // 0x10:
81         __le16 attr_off;     // 0x12:
82         __le16 cluster_off;  // 0x14:
83         __le16 reserved;     // 0x16:
84         __le64 target_vcn;   // 0x18:
85         __le64 page_lcns[];  // 0x20:
86 };
87
88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
89
90 #define RESTART_ENTRY_ALLOCATED    0xFFFFFFFF
91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
92
93 struct RESTART_TABLE {
94         __le16 size;       // 0x00: In bytes
95         __le16 used;       // 0x02: Entries
96         __le16 total;      // 0x04: Entries
97         __le16 res[3];     // 0x06:
98         __le32 free_goal;  // 0x0C:
99         __le32 first_free; // 0x10:
100         __le32 last_free;  // 0x14:
101
102 };
103
104 static_assert(sizeof(struct RESTART_TABLE) == 0x18);
105
106 struct ATTR_NAME_ENTRY {
107         __le16 off; // Offset in the Open attribute Table.
108         __le16 name_bytes;
109         __le16 name[];
110 };
111
112 struct OPEN_ATTR_ENRTY {
113         __le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
114         __le32 bytes_per_index; // 0x04:
115         enum ATTR_TYPE type;    // 0x08:
116         u8 is_dirty_pages;      // 0x0C:
117         u8 is_attr_name;        // 0x0B: Faked field to manage 'ptr'
118         u8 name_len;            // 0x0C: Faked field to manage 'ptr'
119         u8 res;
120         struct MFT_REF ref;     // 0x10: File Reference of file containing attribute
121         __le64 open_record_lsn; // 0x18:
122         void *ptr;              // 0x20:
123 };
124
125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
126 struct OPEN_ATTR_ENRTY_32 {
127         __le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
128         __le32 ptr;             // 0x04:
129         struct MFT_REF ref;     // 0x08:
130         __le64 open_record_lsn; // 0x10:
131         u8 is_dirty_pages;      // 0x18:
132         u8 is_attr_name;        // 0x19:
133         u8 res1[2];
134         enum ATTR_TYPE type;    // 0x1C:
135         u8 name_len;            // 0x20: In wchar
136         u8 res2[3];
137         __le32 AttributeName;   // 0x24:
138         __le32 bytes_per_index; // 0x28:
139 };
140
141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
144
145 /*
146  * One entry exists in the Dirty Pages Table for each page which is dirty at
147  * the time the Restart Area is written.
148  */
149 struct DIR_PAGE_ENTRY {
150         __le32 next;         // 0x00: RESTART_ENTRY_ALLOCATED if allocated
151         __le32 target_attr;  // 0x04: Index into the Open attribute Table
152         __le32 transfer_len; // 0x08:
153         __le32 lcns_follow;  // 0x0C:
154         __le64 vcn;          // 0x10: Vcn of dirty page
155         __le64 oldest_lsn;   // 0x18:
156         __le64 page_lcns[];  // 0x20:
157 };
158
159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
160
161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */
162 struct DIR_PAGE_ENTRY_32 {
163         __le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
164         __le32 target_attr;     // 0x04: Index into the Open attribute Table
165         __le32 transfer_len;    // 0x08:
166         __le32 lcns_follow;     // 0x0C:
167         __le32 reserved;        // 0x10:
168         __le32 vcn_low;         // 0x14: Vcn of dirty page
169         __le32 vcn_hi;          // 0x18: Vcn of dirty page
170         __le32 oldest_lsn_low;  // 0x1C:
171         __le32 oldest_lsn_hi;   // 0x1C:
172         __le32 page_lcns_low;   // 0x24:
173         __le32 page_lcns_hi;    // 0x24:
174 };
175
176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
178
179 enum transact_state {
180         TransactionUninitialized = 0,
181         TransactionActive,
182         TransactionPrepared,
183         TransactionCommitted
184 };
185
186 struct TRANSACTION_ENTRY {
187         __le32 next;          // 0x00: RESTART_ENTRY_ALLOCATED if allocated
188         u8 transact_state;    // 0x04:
189         u8 reserved[3];       // 0x05:
190         __le64 first_lsn;     // 0x08:
191         __le64 prev_lsn;      // 0x10:
192         __le64 undo_next_lsn; // 0x18:
193         __le32 undo_records;  // 0x20: Number of undo log records pending abort
194         __le32 undo_len;      // 0x24: Total undo size
195 };
196
197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
198
199 struct NTFS_RESTART {
200         __le32 major_ver;             // 0x00:
201         __le32 minor_ver;             // 0x04:
202         __le64 check_point_start;     // 0x08:
203         __le64 open_attr_table_lsn;   // 0x10:
204         __le64 attr_names_lsn;        // 0x18:
205         __le64 dirty_pages_table_lsn; // 0x20:
206         __le64 transact_table_lsn;    // 0x28:
207         __le32 open_attr_len;         // 0x30: In bytes
208         __le32 attr_names_len;        // 0x34: In bytes
209         __le32 dirty_pages_len;       // 0x38: In bytes
210         __le32 transact_table_len;    // 0x3C: In bytes
211 };
212
213 static_assert(sizeof(struct NTFS_RESTART) == 0x40);
214
215 struct NEW_ATTRIBUTE_SIZES {
216         __le64 alloc_size;
217         __le64 valid_size;
218         __le64 data_size;
219         __le64 total_size;
220 };
221
222 struct BITMAP_RANGE {
223         __le32 bitmap_off;
224         __le32 bits;
225 };
226
227 struct LCN_RANGE {
228         __le64 lcn;
229         __le64 len;
230 };
231
232 /* The following type defines the different log record types. */
233 #define LfsClientRecord  cpu_to_le32(1)
234 #define LfsClientRestart cpu_to_le32(2)
235
236 /* This is used to uniquely identify a client for a particular log file. */
237 struct CLIENT_ID {
238         __le16 seq_num;
239         __le16 client_idx;
240 };
241
242 /* This is the header that begins every Log Record in the log file. */
243 struct LFS_RECORD_HDR {
244         __le64 this_lsn;                // 0x00:
245         __le64 client_prev_lsn;         // 0x08:
246         __le64 client_undo_next_lsn;    // 0x10:
247         __le32 client_data_len;         // 0x18:
248         struct CLIENT_ID client;        // 0x1C: Owner of this log record.
249         __le32 record_type;             // 0x20: LfsClientRecord or LfsClientRestart.
250         __le32 transact_id;             // 0x24:
251         __le16 flags;                   // 0x28: LOG_RECORD_MULTI_PAGE
252         u8 align[6];                    // 0x2A:
253 };
254
255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
256
257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
258
259 struct LFS_RECORD {
260         __le16 next_record_off; // 0x00: Offset of the free space in the page,
261         u8 align[6];            // 0x02:
262         __le64 last_end_lsn;    // 0x08: lsn for the last log record which ends on the page,
263 };
264
265 static_assert(sizeof(struct LFS_RECORD) == 0x10);
266
267 struct RECORD_PAGE_HDR {
268         struct NTFS_RECORD_HEADER rhdr; // 'RCRD'
269         __le32 rflags;                  // 0x10: See LOG_PAGE_LOG_RECORD_END
270         __le16 page_count;              // 0x14:
271         __le16 page_pos;                // 0x16:
272         struct LFS_RECORD record_hdr;   // 0x18:
273         __le16 fixups[10];              // 0x28:
274         __le32 file_off;                // 0x3c: Used when major version >= 2
275 };
276
277 // clang-format on
278
279 // Page contains the end of a log record.
280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
281
282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
283 {
284         return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
285 }
286
287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
288
289 /*
290  * END of NTFS LOG structures
291  */
292
293 /* Define some tuning parameters to keep the restart tables a reasonable size. */
294 #define INITIAL_NUMBER_TRANSACTIONS 5
295
296 enum NTFS_LOG_OPERATION {
297
298         Noop = 0x00,
299         CompensationLogRecord = 0x01,
300         InitializeFileRecordSegment = 0x02,
301         DeallocateFileRecordSegment = 0x03,
302         WriteEndOfFileRecordSegment = 0x04,
303         CreateAttribute = 0x05,
304         DeleteAttribute = 0x06,
305         UpdateResidentValue = 0x07,
306         UpdateNonresidentValue = 0x08,
307         UpdateMappingPairs = 0x09,
308         DeleteDirtyClusters = 0x0A,
309         SetNewAttributeSizes = 0x0B,
310         AddIndexEntryRoot = 0x0C,
311         DeleteIndexEntryRoot = 0x0D,
312         AddIndexEntryAllocation = 0x0E,
313         DeleteIndexEntryAllocation = 0x0F,
314         WriteEndOfIndexBuffer = 0x10,
315         SetIndexEntryVcnRoot = 0x11,
316         SetIndexEntryVcnAllocation = 0x12,
317         UpdateFileNameRoot = 0x13,
318         UpdateFileNameAllocation = 0x14,
319         SetBitsInNonresidentBitMap = 0x15,
320         ClearBitsInNonresidentBitMap = 0x16,
321         HotFix = 0x17,
322         EndTopLevelAction = 0x18,
323         PrepareTransaction = 0x19,
324         CommitTransaction = 0x1A,
325         ForgetTransaction = 0x1B,
326         OpenNonresidentAttribute = 0x1C,
327         OpenAttributeTableDump = 0x1D,
328         AttributeNamesDump = 0x1E,
329         DirtyPageTableDump = 0x1F,
330         TransactionTableDump = 0x20,
331         UpdateRecordDataRoot = 0x21,
332         UpdateRecordDataAllocation = 0x22,
333
334         UpdateRelativeDataInIndex =
335                 0x23, // NtOfsRestartUpdateRelativeDataInIndex
336         UpdateRelativeDataInIndex2 = 0x24,
337         ZeroEndOfFileRecord = 0x25,
338 };
339
340 /*
341  * Array for log records which require a target attribute.
342  * A true indicates that the corresponding restart operation
343  * requires a target attribute.
344  */
345 static const u8 AttributeRequired[] = {
346         0xFC, 0xFB, 0xFF, 0x10, 0x06,
347 };
348
349 static inline bool is_target_required(u16 op)
350 {
351         bool ret = op <= UpdateRecordDataAllocation &&
352                    (AttributeRequired[op >> 3] >> (op & 7) & 1);
353         return ret;
354 }
355
356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
357 {
358         switch (op) {
359         case Noop:
360         case DeleteDirtyClusters:
361         case HotFix:
362         case EndTopLevelAction:
363         case PrepareTransaction:
364         case CommitTransaction:
365         case ForgetTransaction:
366         case CompensationLogRecord:
367         case OpenNonresidentAttribute:
368         case OpenAttributeTableDump:
369         case AttributeNamesDump:
370         case DirtyPageTableDump:
371         case TransactionTableDump:
372                 return true;
373         default:
374                 return false;
375         }
376 }
377
378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
379
380 /* Bytes per restart table. */
381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
382 {
383         return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
384                sizeof(struct RESTART_TABLE);
385 }
386
387 /* Log record length. */
388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
389 {
390         u16 t16 = le16_to_cpu(lr->lcns_follow);
391
392         return struct_size(lr, page_lcns, max_t(u16, 1, t16));
393 }
394
395 struct lcb {
396         struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
397         struct LOG_REC_HDR *log_rec;
398         u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
399         struct CLIENT_ID client;
400         bool alloc; // If true the we should deallocate 'log_rec'.
401 };
402
403 static void lcb_put(struct lcb *lcb)
404 {
405         if (lcb->alloc)
406                 kfree(lcb->log_rec);
407         kfree(lcb->lrh);
408         kfree(lcb);
409 }
410
411 /* Find the oldest lsn from active clients. */
412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
413                                      __le16 next_client, u64 *oldest_lsn)
414 {
415         while (next_client != LFS_NO_CLIENT_LE) {
416                 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
417                 u64 lsn = le64_to_cpu(cr->oldest_lsn);
418
419                 /* Ignore this block if it's oldest lsn is 0. */
420                 if (lsn && lsn < *oldest_lsn)
421                         *oldest_lsn = lsn;
422
423                 next_client = cr->next_client;
424         }
425 }
426
427 static inline bool is_rst_page_hdr_valid(u32 file_off,
428                                          const struct RESTART_HDR *rhdr)
429 {
430         u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
431         u32 page_size = le32_to_cpu(rhdr->page_size);
432         u32 end_usa;
433         u16 ro;
434
435         if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
436             sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
437                 return false;
438         }
439
440         /* Check that if the file offset isn't 0, it is the system page size. */
441         if (file_off && file_off != sys_page)
442                 return false;
443
444         /* Check support version 1.1+. */
445         if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
446                 return false;
447
448         if (le16_to_cpu(rhdr->major_ver) > 2)
449                 return false;
450
451         ro = le16_to_cpu(rhdr->ra_off);
452         if (!IS_ALIGNED(ro, 8) || ro > sys_page)
453                 return false;
454
455         end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
456         end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
457
458         if (ro < end_usa)
459                 return false;
460
461         return true;
462 }
463
464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
465 {
466         const struct RESTART_AREA *ra;
467         u16 cl, fl, ul;
468         u32 off, l_size, seq_bits;
469         u16 ro = le16_to_cpu(rhdr->ra_off);
470         u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
471
472         if (ro + offsetof(struct RESTART_AREA, l_size) >
473             SECTOR_SIZE - sizeof(short))
474                 return false;
475
476         ra = Add2Ptr(rhdr, ro);
477         cl = le16_to_cpu(ra->log_clients);
478
479         if (cl > 1)
480                 return false;
481
482         off = le16_to_cpu(ra->client_off);
483
484         if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
485                 return false;
486
487         off += cl * sizeof(struct CLIENT_REC);
488
489         if (off > sys_page)
490                 return false;
491
492         /*
493          * Check the restart length field and whether the entire
494          * restart area is contained that length.
495          */
496         if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
497             off > le16_to_cpu(ra->ra_len)) {
498                 return false;
499         }
500
501         /*
502          * As a final check make sure that the use list and the free list
503          * are either empty or point to a valid client.
504          */
505         fl = le16_to_cpu(ra->client_idx[0]);
506         ul = le16_to_cpu(ra->client_idx[1]);
507         if ((fl != LFS_NO_CLIENT && fl >= cl) ||
508             (ul != LFS_NO_CLIENT && ul >= cl))
509                 return false;
510
511         /* Make sure the sequence number bits match the log file size. */
512         l_size = le64_to_cpu(ra->l_size);
513
514         seq_bits = sizeof(u64) * 8 + 3;
515         while (l_size) {
516                 l_size >>= 1;
517                 seq_bits -= 1;
518         }
519
520         if (seq_bits != ra->seq_num_bits)
521                 return false;
522
523         /* The log page data offset and record header length must be quad-aligned. */
524         if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
525             !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
526                 return false;
527
528         return true;
529 }
530
531 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
532                                         bool usa_error)
533 {
534         u16 ro = le16_to_cpu(rhdr->ra_off);
535         const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
536         u16 ra_len = le16_to_cpu(ra->ra_len);
537         const struct CLIENT_REC *ca;
538         u32 i;
539
540         if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
541                 return false;
542
543         /* Find the start of the client array. */
544         ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
545
546         /*
547          * Start with the free list.
548          * Check that all the clients are valid and that there isn't a cycle.
549          * Do the in-use list on the second pass.
550          */
551         for (i = 0; i < 2; i++) {
552                 u16 client_idx = le16_to_cpu(ra->client_idx[i]);
553                 bool first_client = true;
554                 u16 clients = le16_to_cpu(ra->log_clients);
555
556                 while (client_idx != LFS_NO_CLIENT) {
557                         const struct CLIENT_REC *cr;
558
559                         if (!clients ||
560                             client_idx >= le16_to_cpu(ra->log_clients))
561                                 return false;
562
563                         clients -= 1;
564                         cr = ca + client_idx;
565
566                         client_idx = le16_to_cpu(cr->next_client);
567
568                         if (first_client) {
569                                 first_client = false;
570                                 if (cr->prev_client != LFS_NO_CLIENT_LE)
571                                         return false;
572                         }
573                 }
574         }
575
576         return true;
577 }
578
579 /*
580  * remove_client
581  *
582  * Remove a client record from a client record list an restart area.
583  */
584 static inline void remove_client(struct CLIENT_REC *ca,
585                                  const struct CLIENT_REC *cr, __le16 *head)
586 {
587         if (cr->prev_client == LFS_NO_CLIENT_LE)
588                 *head = cr->next_client;
589         else
590                 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
591
592         if (cr->next_client != LFS_NO_CLIENT_LE)
593                 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
594 }
595
596 /*
597  * add_client - Add a client record to the start of a list.
598  */
599 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
600 {
601         struct CLIENT_REC *cr = ca + index;
602
603         cr->prev_client = LFS_NO_CLIENT_LE;
604         cr->next_client = *head;
605
606         if (*head != LFS_NO_CLIENT_LE)
607                 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
608
609         *head = cpu_to_le16(index);
610 }
611
612 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
613 {
614         __le32 *e;
615         u32 bprt;
616         u16 rsize = t ? le16_to_cpu(t->size) : 0;
617
618         if (!c) {
619                 if (!t || !t->total)
620                         return NULL;
621                 e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
622         } else {
623                 e = Add2Ptr(c, rsize);
624         }
625
626         /* Loop until we hit the first one allocated, or the end of the list. */
627         for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
628              e = Add2Ptr(e, rsize)) {
629                 if (*e == RESTART_ENTRY_ALLOCATED_LE)
630                         return e;
631         }
632         return NULL;
633 }
634
635 /*
636  * find_dp - Search for a @vcn in Dirty Page Table.
637  */
638 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
639                                              u32 target_attr, u64 vcn)
640 {
641         __le32 ta = cpu_to_le32(target_attr);
642         struct DIR_PAGE_ENTRY *dp = NULL;
643
644         while ((dp = enum_rstbl(dptbl, dp))) {
645                 u64 dp_vcn = le64_to_cpu(dp->vcn);
646
647                 if (dp->target_attr == ta && vcn >= dp_vcn &&
648                     vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
649                         return dp;
650                 }
651         }
652         return NULL;
653 }
654
655 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
656 {
657         if (use_default)
658                 page_size = DefaultLogPageSize;
659
660         /* Round the file size down to a system page boundary. */
661         *l_size &= ~(page_size - 1);
662
663         /* File should contain at least 2 restart pages and MinLogRecordPages pages. */
664         if (*l_size < (MinLogRecordPages + 2) * page_size)
665                 return 0;
666
667         return page_size;
668 }
669
670 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
671                           u32 bytes_per_attr_entry)
672 {
673         u16 t16;
674
675         if (bytes < sizeof(struct LOG_REC_HDR))
676                 return false;
677         if (!tr)
678                 return false;
679
680         if ((tr - sizeof(struct RESTART_TABLE)) %
681             sizeof(struct TRANSACTION_ENTRY))
682                 return false;
683
684         if (le16_to_cpu(lr->redo_off) & 7)
685                 return false;
686
687         if (le16_to_cpu(lr->undo_off) & 7)
688                 return false;
689
690         if (lr->target_attr)
691                 goto check_lcns;
692
693         if (is_target_required(le16_to_cpu(lr->redo_op)))
694                 return false;
695
696         if (is_target_required(le16_to_cpu(lr->undo_op)))
697                 return false;
698
699 check_lcns:
700         if (!lr->lcns_follow)
701                 goto check_length;
702
703         t16 = le16_to_cpu(lr->target_attr);
704         if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
705                 return false;
706
707 check_length:
708         if (bytes < lrh_length(lr))
709                 return false;
710
711         return true;
712 }
713
714 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
715 {
716         u32 ts;
717         u32 i, off;
718         u16 rsize = le16_to_cpu(rt->size);
719         u16 ne = le16_to_cpu(rt->used);
720         u32 ff = le32_to_cpu(rt->first_free);
721         u32 lf = le32_to_cpu(rt->last_free);
722
723         ts = rsize * ne + sizeof(struct RESTART_TABLE);
724
725         if (!rsize || rsize > bytes ||
726             rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
727             le16_to_cpu(rt->total) > ne || ff > ts || lf > ts ||
728             (ff && ff < sizeof(struct RESTART_TABLE)) ||
729             (lf && lf < sizeof(struct RESTART_TABLE))) {
730                 return false;
731         }
732
733         /*
734          * Verify each entry is either allocated or points
735          * to a valid offset the table.
736          */
737         for (i = 0; i < ne; i++) {
738                 off = le32_to_cpu(*(__le32 *)Add2Ptr(
739                         rt, i * rsize + sizeof(struct RESTART_TABLE)));
740
741                 if (off != RESTART_ENTRY_ALLOCATED && off &&
742                     (off < sizeof(struct RESTART_TABLE) ||
743                      ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
744                         return false;
745                 }
746         }
747
748         /*
749          * Walk through the list headed by the first entry to make
750          * sure none of the entries are currently being used.
751          */
752         for (off = ff; off;) {
753                 if (off == RESTART_ENTRY_ALLOCATED)
754                         return false;
755
756                 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
757         }
758
759         return true;
760 }
761
762 /*
763  * free_rsttbl_idx - Free a previously allocated index a Restart Table.
764  */
765 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
766 {
767         __le32 *e;
768         u32 lf = le32_to_cpu(rt->last_free);
769         __le32 off_le = cpu_to_le32(off);
770
771         e = Add2Ptr(rt, off);
772
773         if (off < le32_to_cpu(rt->free_goal)) {
774                 *e = rt->first_free;
775                 rt->first_free = off_le;
776                 if (!lf)
777                         rt->last_free = off_le;
778         } else {
779                 if (lf)
780                         *(__le32 *)Add2Ptr(rt, lf) = off_le;
781                 else
782                         rt->first_free = off_le;
783
784                 rt->last_free = off_le;
785                 *e = 0;
786         }
787
788         le16_sub_cpu(&rt->total, 1);
789 }
790
791 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
792 {
793         __le32 *e, *last_free;
794         u32 off;
795         u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
796         u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
797         struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
798
799         if (!t)
800                 return NULL;
801
802         t->size = cpu_to_le16(esize);
803         t->used = cpu_to_le16(used);
804         t->free_goal = cpu_to_le32(~0u);
805         t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
806         t->last_free = cpu_to_le32(lf);
807
808         e = (__le32 *)(t + 1);
809         last_free = Add2Ptr(t, lf);
810
811         for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
812              e = Add2Ptr(e, esize), off += esize) {
813                 *e = cpu_to_le32(off);
814         }
815         return t;
816 }
817
818 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
819                                                   u32 add, u32 free_goal)
820 {
821         u16 esize = le16_to_cpu(tbl->size);
822         __le32 osize = cpu_to_le32(bytes_per_rt(tbl));
823         u32 used = le16_to_cpu(tbl->used);
824         struct RESTART_TABLE *rt;
825
826         rt = init_rsttbl(esize, used + add);
827         if (!rt)
828                 return NULL;
829
830         memcpy(rt + 1, tbl + 1, esize * used);
831
832         rt->free_goal = free_goal == ~0u
833                                 ? cpu_to_le32(~0u)
834                                 : cpu_to_le32(sizeof(struct RESTART_TABLE) +
835                                               free_goal * esize);
836
837         if (tbl->first_free) {
838                 rt->first_free = tbl->first_free;
839                 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
840         } else {
841                 rt->first_free = osize;
842         }
843
844         rt->total = tbl->total;
845
846         kfree(tbl);
847         return rt;
848 }
849
850 /*
851  * alloc_rsttbl_idx
852  *
853  * Allocate an index from within a previously initialized Restart Table.
854  */
855 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
856 {
857         u32 off;
858         __le32 *e;
859         struct RESTART_TABLE *t = *tbl;
860
861         if (!t->first_free) {
862                 *tbl = t = extend_rsttbl(t, 16, ~0u);
863                 if (!t)
864                         return NULL;
865         }
866
867         off = le32_to_cpu(t->first_free);
868
869         /* Dequeue this entry and zero it. */
870         e = Add2Ptr(t, off);
871
872         t->first_free = *e;
873
874         memset(e, 0, le16_to_cpu(t->size));
875
876         *e = RESTART_ENTRY_ALLOCATED_LE;
877
878         /* If list is going empty, then we fix the last_free as well. */
879         if (!t->first_free)
880                 t->last_free = 0;
881
882         le16_add_cpu(&t->total, 1);
883
884         return Add2Ptr(t, off);
885 }
886
887 /*
888  * alloc_rsttbl_from_idx
889  *
890  * Allocate a specific index from within a previously initialized Restart Table.
891  */
892 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
893 {
894         u32 off;
895         __le32 *e;
896         struct RESTART_TABLE *rt = *tbl;
897         u32 bytes = bytes_per_rt(rt);
898         u16 esize = le16_to_cpu(rt->size);
899
900         /* If the entry is not the table, we will have to extend the table. */
901         if (vbo >= bytes) {
902                 /*
903                  * Extend the size by computing the number of entries between
904                  * the existing size and the desired index and adding 1 to that.
905                  */
906                 u32 bytes2idx = vbo - bytes;
907
908                 /*
909                  * There should always be an integral number of entries
910                  * being added. Now extend the table.
911                  */
912                 *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
913                 if (!rt)
914                         return NULL;
915         }
916
917         /* See if the entry is already allocated, and just return if it is. */
918         e = Add2Ptr(rt, vbo);
919
920         if (*e == RESTART_ENTRY_ALLOCATED_LE)
921                 return e;
922
923         /*
924          * Walk through the table, looking for the entry we're
925          * interested and the previous entry.
926          */
927         off = le32_to_cpu(rt->first_free);
928         e = Add2Ptr(rt, off);
929
930         if (off == vbo) {
931                 /* this is a match */
932                 rt->first_free = *e;
933                 goto skip_looking;
934         }
935
936         /*
937          * Need to walk through the list looking for the predecessor
938          * of our entry.
939          */
940         for (;;) {
941                 /* Remember the entry just found */
942                 u32 last_off = off;
943                 __le32 *last_e = e;
944
945                 /* Should never run of entries. */
946
947                 /* Lookup up the next entry the list. */
948                 off = le32_to_cpu(*last_e);
949                 e = Add2Ptr(rt, off);
950
951                 /* If this is our match we are done. */
952                 if (off == vbo) {
953                         *last_e = *e;
954
955                         /*
956                          * If this was the last entry, we update that
957                          * table as well.
958                          */
959                         if (le32_to_cpu(rt->last_free) == off)
960                                 rt->last_free = cpu_to_le32(last_off);
961                         break;
962                 }
963         }
964
965 skip_looking:
966         /* If the list is now empty, we fix the last_free as well. */
967         if (!rt->first_free)
968                 rt->last_free = 0;
969
970         /* Zero this entry. */
971         memset(e, 0, esize);
972         *e = RESTART_ENTRY_ALLOCATED_LE;
973
974         le16_add_cpu(&rt->total, 1);
975
976         return e;
977 }
978
979 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
980
981 #define NTFSLOG_WRAPPED 0x00000001
982 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
983 #define NTFSLOG_NO_LAST_LSN 0x00000004
984 #define NTFSLOG_REUSE_TAIL 0x00000010
985 #define NTFSLOG_NO_OLDEST_LSN 0x00000020
986
987 /* Helper struct to work with NTFS $LogFile. */
988 struct ntfs_log {
989         struct ntfs_inode *ni;
990
991         u32 l_size;
992         u32 sys_page_size;
993         u32 sys_page_mask;
994         u32 page_size;
995         u32 page_mask; // page_size - 1
996         u8 page_bits;
997         struct RECORD_PAGE_HDR *one_page_buf;
998
999         struct RESTART_TABLE *open_attr_tbl;
1000         u32 transaction_id;
1001         u32 clst_per_page;
1002
1003         u32 first_page;
1004         u32 next_page;
1005         u32 ra_off;
1006         u32 data_off;
1007         u32 restart_size;
1008         u32 data_size;
1009         u16 record_header_len;
1010         u64 seq_num;
1011         u32 seq_num_bits;
1012         u32 file_data_bits;
1013         u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1014
1015         struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1016         u32 ra_size; /* The usable size of the restart area. */
1017
1018         /*
1019          * If true, then the in-memory restart area is to be written
1020          * to the first position on the disk.
1021          */
1022         bool init_ra;
1023         bool set_dirty; /* True if we need to set dirty flag. */
1024
1025         u64 oldest_lsn;
1026
1027         u32 oldest_lsn_off;
1028         u64 last_lsn;
1029
1030         u32 total_avail;
1031         u32 total_avail_pages;
1032         u32 total_undo_commit;
1033         u32 max_current_avail;
1034         u32 current_avail;
1035         u32 reserved;
1036
1037         short major_ver;
1038         short minor_ver;
1039
1040         u32 l_flags; /* See NTFSLOG_XXX */
1041         u32 current_openlog_count; /* On-disk value for open_log_count. */
1042
1043         struct CLIENT_ID client_id;
1044         u32 client_undo_commit;
1045 };
1046
1047 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1048 {
1049         u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1050
1051         return vbo;
1052 }
1053
1054 /* Compute the offset in the log file of the next log page. */
1055 static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1056 {
1057         off = (off & ~log->sys_page_mask) + log->page_size;
1058         return off >= log->l_size ? log->first_page : off;
1059 }
1060
1061 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1062 {
1063         return (((u32)lsn) << 3) & log->page_mask;
1064 }
1065
1066 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1067 {
1068         return (off >> 3) + (Seq << log->file_data_bits);
1069 }
1070
1071 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1072 {
1073         return lsn >= log->oldest_lsn &&
1074                lsn <= le64_to_cpu(log->ra->current_lsn);
1075 }
1076
1077 static inline u32 hdr_file_off(struct ntfs_log *log,
1078                                struct RECORD_PAGE_HDR *hdr)
1079 {
1080         if (log->major_ver < 2)
1081                 return le64_to_cpu(hdr->rhdr.lsn);
1082
1083         return le32_to_cpu(hdr->file_off);
1084 }
1085
1086 static inline u64 base_lsn(struct ntfs_log *log,
1087                            const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1088 {
1089         u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1090         u64 ret = (((h_lsn >> log->file_data_bits) +
1091                     (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1092                    << log->file_data_bits) +
1093                   ((((is_log_record_end(hdr) &&
1094                       h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn))
1095                              ? le16_to_cpu(hdr->record_hdr.next_record_off)
1096                              : log->page_size) +
1097                     lsn) >>
1098                    3);
1099
1100         return ret;
1101 }
1102
1103 static inline bool verify_client_lsn(struct ntfs_log *log,
1104                                      const struct CLIENT_REC *client, u64 lsn)
1105 {
1106         return lsn >= le64_to_cpu(client->oldest_lsn) &&
1107                lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1108 }
1109
1110 struct restart_info {
1111         u64 last_lsn;
1112         struct RESTART_HDR *r_page;
1113         u32 vbo;
1114         bool chkdsk_was_run;
1115         bool valid_page;
1116         bool initialized;
1117         bool restart;
1118 };
1119
1120 static int read_log_page(struct ntfs_log *log, u32 vbo,
1121                          struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1122 {
1123         int err = 0;
1124         u32 page_idx = vbo >> log->page_bits;
1125         u32 page_off = vbo & log->page_mask;
1126         u32 bytes = log->page_size - page_off;
1127         void *to_free = NULL;
1128         u32 page_vbo = page_idx << log->page_bits;
1129         struct RECORD_PAGE_HDR *page_buf;
1130         struct ntfs_inode *ni = log->ni;
1131         bool bBAAD;
1132
1133         if (vbo >= log->l_size)
1134                 return -EINVAL;
1135
1136         if (!*buffer) {
1137                 to_free = kmalloc(log->page_size, GFP_NOFS);
1138                 if (!to_free)
1139                         return -ENOMEM;
1140                 *buffer = to_free;
1141         }
1142
1143         page_buf = page_off ? log->one_page_buf : *buffer;
1144
1145         err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1146                                log->page_size, NULL);
1147         if (err)
1148                 goto out;
1149
1150         if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1151                 ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1152
1153         if (page_buf != *buffer)
1154                 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1155
1156         bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1157
1158         if (usa_error)
1159                 *usa_error = bBAAD;
1160         /* Check that the update sequence array for this page is valid */
1161         /* If we don't allow errors, raise an error status */
1162         else if (bBAAD)
1163                 err = -EINVAL;
1164
1165 out:
1166         if (err && to_free) {
1167                 kfree(to_free);
1168                 *buffer = NULL;
1169         }
1170
1171         return err;
1172 }
1173
1174 /*
1175  * log_read_rst
1176  *
1177  * It walks through 512 blocks of the file looking for a valid
1178  * restart page header. It will stop the first time we find a
1179  * valid page header.
1180  */
1181 static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first,
1182                         struct restart_info *info)
1183 {
1184         u32 skip, vbo;
1185         struct RESTART_HDR *r_page = NULL;
1186
1187         /* Determine which restart area we are looking for. */
1188         if (first) {
1189                 vbo = 0;
1190                 skip = 512;
1191         } else {
1192                 vbo = 512;
1193                 skip = 0;
1194         }
1195
1196         /* Loop continuously until we succeed. */
1197         for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) {
1198                 bool usa_error;
1199                 bool brst, bchk;
1200                 struct RESTART_AREA *ra;
1201
1202                 /* Read a page header at the current offset. */
1203                 if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1204                                   &usa_error)) {
1205                         /* Ignore any errors. */
1206                         continue;
1207                 }
1208
1209                 /* Exit if the signature is a log record page. */
1210                 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1211                         info->initialized = true;
1212                         break;
1213                 }
1214
1215                 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1216                 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1217
1218                 if (!bchk && !brst) {
1219                         if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1220                                 /*
1221                                  * Remember if the signature does not
1222                                  * indicate uninitialized file.
1223                                  */
1224                                 info->initialized = true;
1225                         }
1226                         continue;
1227                 }
1228
1229                 ra = NULL;
1230                 info->valid_page = false;
1231                 info->initialized = true;
1232                 info->vbo = vbo;
1233
1234                 /* Let's check the restart area if this is a valid page. */
1235                 if (!is_rst_page_hdr_valid(vbo, r_page))
1236                         goto check_result;
1237                 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1238
1239                 if (!is_rst_area_valid(r_page))
1240                         goto check_result;
1241
1242                 /*
1243                  * We have a valid restart page header and restart area.
1244                  * If chkdsk was run or we have no clients then we have
1245                  * no more checking to do.
1246                  */
1247                 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1248                         info->valid_page = true;
1249                         goto check_result;
1250                 }
1251
1252                 if (is_client_area_valid(r_page, usa_error)) {
1253                         info->valid_page = true;
1254                         ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1255                 }
1256
1257 check_result:
1258                 /*
1259                  * If chkdsk was run then update the caller's
1260                  * values and return.
1261                  */
1262                 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1263                         info->chkdsk_was_run = true;
1264                         info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1265                         info->restart = true;
1266                         info->r_page = r_page;
1267                         return 0;
1268                 }
1269
1270                 /*
1271                  * If we have a valid page then copy the values
1272                  * we need from it.
1273                  */
1274                 if (info->valid_page) {
1275                         info->last_lsn = le64_to_cpu(ra->current_lsn);
1276                         info->restart = true;
1277                         info->r_page = r_page;
1278                         return 0;
1279                 }
1280         }
1281
1282         kfree(r_page);
1283
1284         return 0;
1285 }
1286
1287 /*
1288  * Ilog_init_pg_hdr - Init @log from restart page header.
1289  */
1290 static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size,
1291                             u32 page_size, u16 major_ver, u16 minor_ver)
1292 {
1293         log->sys_page_size = sys_page_size;
1294         log->sys_page_mask = sys_page_size - 1;
1295         log->page_size = page_size;
1296         log->page_mask = page_size - 1;
1297         log->page_bits = blksize_bits(page_size);
1298
1299         log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1300         if (!log->clst_per_page)
1301                 log->clst_per_page = 1;
1302
1303         log->first_page = major_ver >= 2
1304                                   ? 0x22 * page_size
1305                                   : ((sys_page_size << 1) + (page_size << 1));
1306         log->major_ver = major_ver;
1307         log->minor_ver = minor_ver;
1308 }
1309
1310 /*
1311  * log_create - Init @log in cases when we don't have a restart area to use.
1312  */
1313 static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn,
1314                        u32 open_log_count, bool wrapped, bool use_multi_page)
1315 {
1316         log->l_size = l_size;
1317         /* All file offsets must be quadword aligned. */
1318         log->file_data_bits = blksize_bits(l_size) - 3;
1319         log->seq_num_mask = (8 << log->file_data_bits) - 1;
1320         log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1321         log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1322         log->next_page = log->first_page;
1323         log->oldest_lsn = log->seq_num << log->file_data_bits;
1324         log->oldest_lsn_off = 0;
1325         log->last_lsn = log->oldest_lsn;
1326
1327         log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1328
1329         /* Set the correct flags for the I/O and indicate if we have wrapped. */
1330         if (wrapped)
1331                 log->l_flags |= NTFSLOG_WRAPPED;
1332
1333         if (use_multi_page)
1334                 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1335
1336         /* Compute the log page values. */
1337         log->data_off = ALIGN(
1338                 offsetof(struct RECORD_PAGE_HDR, fixups) +
1339                         sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1340                 8);
1341         log->data_size = log->page_size - log->data_off;
1342         log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1343
1344         /* Remember the different page sizes for reservation. */
1345         log->reserved = log->data_size - log->record_header_len;
1346
1347         /* Compute the restart page values. */
1348         log->ra_off = ALIGN(
1349                 offsetof(struct RESTART_HDR, fixups) +
1350                         sizeof(short) *
1351                                 ((log->sys_page_size >> SECTOR_SHIFT) + 1),
1352                 8);
1353         log->restart_size = log->sys_page_size - log->ra_off;
1354         log->ra_size = struct_size(log->ra, clients, 1);
1355         log->current_openlog_count = open_log_count;
1356
1357         /*
1358          * The total available log file space is the number of
1359          * log file pages times the space available on each page.
1360          */
1361         log->total_avail_pages = log->l_size - log->first_page;
1362         log->total_avail = log->total_avail_pages >> log->page_bits;
1363
1364         /*
1365          * We assume that we can't use the end of the page less than
1366          * the file record size.
1367          * Then we won't need to reserve more than the caller asks for.
1368          */
1369         log->max_current_avail = log->total_avail * log->reserved;
1370         log->total_avail = log->total_avail * log->data_size;
1371         log->current_avail = log->max_current_avail;
1372 }
1373
1374 /*
1375  * log_create_ra - Fill a restart area from the values stored in @log.
1376  */
1377 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1378 {
1379         struct CLIENT_REC *cr;
1380         struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
1381
1382         if (!ra)
1383                 return NULL;
1384
1385         ra->current_lsn = cpu_to_le64(log->last_lsn);
1386         ra->log_clients = cpu_to_le16(1);
1387         ra->client_idx[1] = LFS_NO_CLIENT_LE;
1388         if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1389                 ra->flags = RESTART_SINGLE_PAGE_IO;
1390         ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1391         ra->ra_len = cpu_to_le16(log->ra_size);
1392         ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1393         ra->l_size = cpu_to_le64(log->l_size);
1394         ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1395         ra->data_off = cpu_to_le16(log->data_off);
1396         ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1397
1398         cr = ra->clients;
1399
1400         cr->prev_client = LFS_NO_CLIENT_LE;
1401         cr->next_client = LFS_NO_CLIENT_LE;
1402
1403         return ra;
1404 }
1405
1406 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1407 {
1408         u32 base_vbo = lsn << 3;
1409         u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1410         u32 page_off = base_vbo & log->page_mask;
1411         u32 tail = log->page_size - page_off;
1412
1413         page_off -= 1;
1414
1415         /* Add the length of the header. */
1416         data_len += log->record_header_len;
1417
1418         /*
1419          * If this lsn is contained this log page we are done.
1420          * Otherwise we need to walk through several log pages.
1421          */
1422         if (data_len > tail) {
1423                 data_len -= tail;
1424                 tail = log->data_size;
1425                 page_off = log->data_off - 1;
1426
1427                 for (;;) {
1428                         final_log_off = next_page_off(log, final_log_off);
1429
1430                         /*
1431                          * We are done if the remaining bytes
1432                          * fit on this page.
1433                          */
1434                         if (data_len <= tail)
1435                                 break;
1436                         data_len -= tail;
1437                 }
1438         }
1439
1440         /*
1441          * We add the remaining bytes to our starting position on this page
1442          * and then add that value to the file offset of this log page.
1443          */
1444         return final_log_off + data_len + page_off;
1445 }
1446
1447 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1448                         u64 *lsn)
1449 {
1450         int err;
1451         u64 this_lsn = le64_to_cpu(rh->this_lsn);
1452         u32 vbo = lsn_to_vbo(log, this_lsn);
1453         u32 end =
1454                 final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1455         u32 hdr_off = end & ~log->sys_page_mask;
1456         u64 seq = this_lsn >> log->file_data_bits;
1457         struct RECORD_PAGE_HDR *page = NULL;
1458
1459         /* Remember if we wrapped. */
1460         if (end <= vbo)
1461                 seq += 1;
1462
1463         /* Log page header for this page. */
1464         err = read_log_page(log, hdr_off, &page, NULL);
1465         if (err)
1466                 return err;
1467
1468         /*
1469          * If the lsn we were given was not the last lsn on this page,
1470          * then the starting offset for the next lsn is on a quad word
1471          * boundary following the last file offset for the current lsn.
1472          * Otherwise the file offset is the start of the data on the next page.
1473          */
1474         if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1475                 /* If we wrapped, we need to increment the sequence number. */
1476                 hdr_off = next_page_off(log, hdr_off);
1477                 if (hdr_off == log->first_page)
1478                         seq += 1;
1479
1480                 vbo = hdr_off + log->data_off;
1481         } else {
1482                 vbo = ALIGN(end, 8);
1483         }
1484
1485         /* Compute the lsn based on the file offset and the sequence count. */
1486         *lsn = vbo_to_lsn(log, vbo, seq);
1487
1488         /*
1489          * If this lsn is within the legal range for the file, we return true.
1490          * Otherwise false indicates that there are no more lsn's.
1491          */
1492         if (!is_lsn_in_file(log, *lsn))
1493                 *lsn = 0;
1494
1495         kfree(page);
1496
1497         return 0;
1498 }
1499
1500 /*
1501  * current_log_avail - Calculate the number of bytes available for log records.
1502  */
1503 static u32 current_log_avail(struct ntfs_log *log)
1504 {
1505         u32 oldest_off, next_free_off, free_bytes;
1506
1507         if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1508                 /* The entire file is available. */
1509                 return log->max_current_avail;
1510         }
1511
1512         /*
1513          * If there is a last lsn the restart area then we know that we will
1514          * have to compute the free range.
1515          * If there is no oldest lsn then start at the first page of the file.
1516          */
1517         oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN)
1518                              ? log->first_page
1519                              : (log->oldest_lsn_off & ~log->sys_page_mask);
1520
1521         /*
1522          * We will use the next log page offset to compute the next free page.
1523          * If we are going to reuse this page go to the next page.
1524          * If we are at the first page then use the end of the file.
1525          */
1526         next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL)
1527                                 ? log->next_page + log->page_size
1528                                 : log->next_page == log->first_page
1529                                           ? log->l_size
1530                                           : log->next_page;
1531
1532         /* If the two offsets are the same then there is no available space. */
1533         if (oldest_off == next_free_off)
1534                 return 0;
1535         /*
1536          * If the free offset follows the oldest offset then subtract
1537          * this range from the total available pages.
1538          */
1539         free_bytes =
1540                 oldest_off < next_free_off
1541                         ? log->total_avail_pages - (next_free_off - oldest_off)
1542                         : oldest_off - next_free_off;
1543
1544         free_bytes >>= log->page_bits;
1545         return free_bytes * log->reserved;
1546 }
1547
1548 static bool check_subseq_log_page(struct ntfs_log *log,
1549                                   const struct RECORD_PAGE_HDR *rp, u32 vbo,
1550                                   u64 seq)
1551 {
1552         u64 lsn_seq;
1553         const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1554         u64 lsn = le64_to_cpu(rhdr->lsn);
1555
1556         if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1557                 return false;
1558
1559         /*
1560          * If the last lsn on the page occurs was written after the page
1561          * that caused the original error then we have a fatal error.
1562          */
1563         lsn_seq = lsn >> log->file_data_bits;
1564
1565         /*
1566          * If the sequence number for the lsn the page is equal or greater
1567          * than lsn we expect, then this is a subsequent write.
1568          */
1569         return lsn_seq >= seq ||
1570                (lsn_seq == seq - 1 && log->first_page == vbo &&
1571                 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1572 }
1573
1574 /*
1575  * last_log_lsn
1576  *
1577  * Walks through the log pages for a file, searching for the
1578  * last log page written to the file.
1579  */
1580 static int last_log_lsn(struct ntfs_log *log)
1581 {
1582         int err;
1583         bool usa_error = false;
1584         bool replace_page = false;
1585         bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1586         bool wrapped_file, wrapped;
1587
1588         u32 page_cnt = 1, page_pos = 1;
1589         u32 page_off = 0, page_off1 = 0, saved_off = 0;
1590         u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1591         u32 first_file_off = 0, second_file_off = 0;
1592         u32 part_io_count = 0;
1593         u32 tails = 0;
1594         u32 this_off, curpage_off, nextpage_off, remain_pages;
1595
1596         u64 expected_seq, seq_base = 0, lsn_base = 0;
1597         u64 best_lsn, best_lsn1, best_lsn2;
1598         u64 lsn_cur, lsn1, lsn2;
1599         u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1600
1601         u16 cur_pos, best_page_pos;
1602
1603         struct RECORD_PAGE_HDR *page = NULL;
1604         struct RECORD_PAGE_HDR *tst_page = NULL;
1605         struct RECORD_PAGE_HDR *first_tail = NULL;
1606         struct RECORD_PAGE_HDR *second_tail = NULL;
1607         struct RECORD_PAGE_HDR *tail_page = NULL;
1608         struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1609         struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1610         struct RECORD_PAGE_HDR *page_bufs = NULL;
1611         struct RECORD_PAGE_HDR *best_page;
1612
1613         if (log->major_ver >= 2) {
1614                 final_off = 0x02 * log->page_size;
1615                 second_off = 0x12 * log->page_size;
1616
1617                 // 0x10 == 0x12 - 0x2
1618                 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
1619                 if (!page_bufs)
1620                         return -ENOMEM;
1621         } else {
1622                 second_off = log->first_page - log->page_size;
1623                 final_off = second_off - log->page_size;
1624         }
1625
1626 next_tail:
1627         /* Read second tail page (at pos 3/0x12000). */
1628         if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1629             usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1630                 kfree(second_tail);
1631                 second_tail = NULL;
1632                 second_file_off = 0;
1633                 lsn2 = 0;
1634         } else {
1635                 second_file_off = hdr_file_off(log, second_tail);
1636                 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1637         }
1638
1639         /* Read first tail page (at pos 2/0x2000). */
1640         if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1641             usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1642                 kfree(first_tail);
1643                 first_tail = NULL;
1644                 first_file_off = 0;
1645                 lsn1 = 0;
1646         } else {
1647                 first_file_off = hdr_file_off(log, first_tail);
1648                 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1649         }
1650
1651         if (log->major_ver < 2) {
1652                 int best_page;
1653
1654                 first_tail_prev = first_tail;
1655                 final_off_prev = first_file_off;
1656                 second_tail_prev = second_tail;
1657                 second_off_prev = second_file_off;
1658                 tails = 1;
1659
1660                 if (!first_tail && !second_tail)
1661                         goto tail_read;
1662
1663                 if (first_tail && second_tail)
1664                         best_page = lsn1 < lsn2 ? 1 : 0;
1665                 else if (first_tail)
1666                         best_page = 0;
1667                 else
1668                         best_page = 1;
1669
1670                 page_off = best_page ? second_file_off : first_file_off;
1671                 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1672                 goto tail_read;
1673         }
1674
1675         best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1676         best_lsn2 =
1677                 second_tail ? base_lsn(log, second_tail, second_file_off) : 0;
1678
1679         if (first_tail && second_tail) {
1680                 if (best_lsn1 > best_lsn2) {
1681                         best_lsn = best_lsn1;
1682                         best_page = first_tail;
1683                         this_off = first_file_off;
1684                 } else {
1685                         best_lsn = best_lsn2;
1686                         best_page = second_tail;
1687                         this_off = second_file_off;
1688                 }
1689         } else if (first_tail) {
1690                 best_lsn = best_lsn1;
1691                 best_page = first_tail;
1692                 this_off = first_file_off;
1693         } else if (second_tail) {
1694                 best_lsn = best_lsn2;
1695                 best_page = second_tail;
1696                 this_off = second_file_off;
1697         } else {
1698                 goto tail_read;
1699         }
1700
1701         best_page_pos = le16_to_cpu(best_page->page_pos);
1702
1703         if (!tails) {
1704                 if (best_page_pos == page_pos) {
1705                         seq_base = best_lsn >> log->file_data_bits;
1706                         saved_off = page_off = le32_to_cpu(best_page->file_off);
1707                         lsn_base = best_lsn;
1708
1709                         memmove(page_bufs, best_page, log->page_size);
1710
1711                         page_cnt = le16_to_cpu(best_page->page_count);
1712                         if (page_cnt > 1)
1713                                 page_pos += 1;
1714
1715                         tails = 1;
1716                 }
1717         } else if (seq_base == (best_lsn >> log->file_data_bits) &&
1718                    saved_off + log->page_size == this_off &&
1719                    lsn_base < best_lsn &&
1720                    (page_pos != page_cnt || best_page_pos == page_pos ||
1721                     best_page_pos == 1) &&
1722                    (page_pos >= page_cnt || best_page_pos == page_pos)) {
1723                 u16 bppc = le16_to_cpu(best_page->page_count);
1724
1725                 saved_off += log->page_size;
1726                 lsn_base = best_lsn;
1727
1728                 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1729                         log->page_size);
1730
1731                 tails += 1;
1732
1733                 if (best_page_pos != bppc) {
1734                         page_cnt = bppc;
1735                         page_pos = best_page_pos;
1736
1737                         if (page_cnt > 1)
1738                                 page_pos += 1;
1739                 } else {
1740                         page_pos = page_cnt = 1;
1741                 }
1742         } else {
1743                 kfree(first_tail);
1744                 kfree(second_tail);
1745                 goto tail_read;
1746         }
1747
1748         kfree(first_tail_prev);
1749         first_tail_prev = first_tail;
1750         final_off_prev = first_file_off;
1751         first_tail = NULL;
1752
1753         kfree(second_tail_prev);
1754         second_tail_prev = second_tail;
1755         second_off_prev = second_file_off;
1756         second_tail = NULL;
1757
1758         final_off += log->page_size;
1759         second_off += log->page_size;
1760
1761         if (tails < 0x10)
1762                 goto next_tail;
1763 tail_read:
1764         first_tail = first_tail_prev;
1765         final_off = final_off_prev;
1766
1767         second_tail = second_tail_prev;
1768         second_off = second_off_prev;
1769
1770         page_cnt = page_pos = 1;
1771
1772         curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off)
1773                                                : log->next_page;
1774
1775         wrapped_file =
1776                 curpage_off == log->first_page &&
1777                 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1778
1779         expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1780
1781         nextpage_off = curpage_off;
1782
1783 next_page:
1784         tail_page = NULL;
1785         /* Read the next log page. */
1786         err = read_log_page(log, curpage_off, &page, &usa_error);
1787
1788         /* Compute the next log page offset the file. */
1789         nextpage_off = next_page_off(log, curpage_off);
1790         wrapped = nextpage_off == log->first_page;
1791
1792         if (tails > 1) {
1793                 struct RECORD_PAGE_HDR *cur_page =
1794                         Add2Ptr(page_bufs, curpage_off - page_off);
1795
1796                 if (curpage_off == saved_off) {
1797                         tail_page = cur_page;
1798                         goto use_tail_page;
1799                 }
1800
1801                 if (page_off > curpage_off || curpage_off >= saved_off)
1802                         goto use_tail_page;
1803
1804                 if (page_off1)
1805                         goto use_cur_page;
1806
1807                 if (!err && !usa_error &&
1808                     page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1809                     cur_page->rhdr.lsn == page->rhdr.lsn &&
1810                     cur_page->record_hdr.next_record_off ==
1811                             page->record_hdr.next_record_off &&
1812                     ((page_pos == page_cnt &&
1813                       le16_to_cpu(page->page_pos) == 1) ||
1814                      (page_pos != page_cnt &&
1815                       le16_to_cpu(page->page_pos) == page_pos + 1 &&
1816                       le16_to_cpu(page->page_count) == page_cnt))) {
1817                         cur_page = NULL;
1818                         goto use_tail_page;
1819                 }
1820
1821                 page_off1 = page_off;
1822
1823 use_cur_page:
1824
1825                 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1826
1827                 if (last_ok_lsn !=
1828                             le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1829                     ((lsn_cur >> log->file_data_bits) +
1830                      ((curpage_off <
1831                        (lsn_to_vbo(log, lsn_cur) & ~log->page_mask))
1832                               ? 1
1833                               : 0)) != expected_seq) {
1834                         goto check_tail;
1835                 }
1836
1837                 if (!is_log_record_end(cur_page)) {
1838                         tail_page = NULL;
1839                         last_ok_lsn = lsn_cur;
1840                         goto next_page_1;
1841                 }
1842
1843                 log->seq_num = expected_seq;
1844                 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1845                 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1846                 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1847
1848                 if (log->record_header_len <=
1849                     log->page_size -
1850                             le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1851                         log->l_flags |= NTFSLOG_REUSE_TAIL;
1852                         log->next_page = curpage_off;
1853                 } else {
1854                         log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1855                         log->next_page = nextpage_off;
1856                 }
1857
1858                 if (wrapped_file)
1859                         log->l_flags |= NTFSLOG_WRAPPED;
1860
1861                 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1862                 goto next_page_1;
1863         }
1864
1865         /*
1866          * If we are at the expected first page of a transfer check to see
1867          * if either tail copy is at this offset.
1868          * If this page is the last page of a transfer, check if we wrote
1869          * a subsequent tail copy.
1870          */
1871         if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1872                 /*
1873                  * Check if the offset matches either the first or second
1874                  * tail copy. It is possible it will match both.
1875                  */
1876                 if (curpage_off == final_off)
1877                         tail_page = first_tail;
1878
1879                 /*
1880                  * If we already matched on the first page then
1881                  * check the ending lsn's.
1882                  */
1883                 if (curpage_off == second_off) {
1884                         if (!tail_page ||
1885                             (second_tail &&
1886                              le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1887                                      le64_to_cpu(first_tail->record_hdr
1888                                                          .last_end_lsn))) {
1889                                 tail_page = second_tail;
1890                         }
1891                 }
1892         }
1893
1894 use_tail_page:
1895         if (tail_page) {
1896                 /* We have a candidate for a tail copy. */
1897                 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1898
1899                 if (last_ok_lsn < lsn_cur) {
1900                         /*
1901                          * If the sequence number is not expected,
1902                          * then don't use the tail copy.
1903                          */
1904                         if (expected_seq != (lsn_cur >> log->file_data_bits))
1905                                 tail_page = NULL;
1906                 } else if (last_ok_lsn > lsn_cur) {
1907                         /*
1908                          * If the last lsn is greater than the one on
1909                          * this page then forget this tail.
1910                          */
1911                         tail_page = NULL;
1912                 }
1913         }
1914
1915         /*
1916          *If we have an error on the current page,
1917          * we will break of this loop.
1918          */
1919         if (err || usa_error)
1920                 goto check_tail;
1921
1922         /*
1923          * Done if the last lsn on this page doesn't match the previous known
1924          * last lsn or the sequence number is not expected.
1925          */
1926         lsn_cur = le64_to_cpu(page->rhdr.lsn);
1927         if (last_ok_lsn != lsn_cur &&
1928             expected_seq != (lsn_cur >> log->file_data_bits)) {
1929                 goto check_tail;
1930         }
1931
1932         /*
1933          * Check that the page position and page count values are correct.
1934          * If this is the first page of a transfer the position must be 1
1935          * and the count will be unknown.
1936          */
1937         if (page_cnt == page_pos) {
1938                 if (page->page_pos != cpu_to_le16(1) &&
1939                     (!reuse_page || page->page_pos != page->page_count)) {
1940                         /*
1941                          * If the current page is the first page we are
1942                          * looking at and we are reusing this page then
1943                          * it can be either the first or last page of a
1944                          * transfer. Otherwise it can only be the first.
1945                          */
1946                         goto check_tail;
1947                 }
1948         } else if (le16_to_cpu(page->page_count) != page_cnt ||
1949                    le16_to_cpu(page->page_pos) != page_pos + 1) {
1950                 /*
1951                  * The page position better be 1 more than the last page
1952                  * position and the page count better match.
1953                  */
1954                 goto check_tail;
1955         }
1956
1957         /*
1958          * We have a valid page the file and may have a valid page
1959          * the tail copy area.
1960          * If the tail page was written after the page the file then
1961          * break of the loop.
1962          */
1963         if (tail_page &&
1964             le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1965                 /* Remember if we will replace the page. */
1966                 replace_page = true;
1967                 goto check_tail;
1968         }
1969
1970         tail_page = NULL;
1971
1972         if (is_log_record_end(page)) {
1973                 /*
1974                  * Since we have read this page we know the sequence number
1975                  * is the same as our expected value.
1976                  */
1977                 log->seq_num = expected_seq;
1978                 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
1979                 log->ra->current_lsn = page->record_hdr.last_end_lsn;
1980                 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1981
1982                 /*
1983                  * If there is room on this page for another header then
1984                  * remember we want to reuse the page.
1985                  */
1986                 if (log->record_header_len <=
1987                     log->page_size -
1988                             le16_to_cpu(page->record_hdr.next_record_off)) {
1989                         log->l_flags |= NTFSLOG_REUSE_TAIL;
1990                         log->next_page = curpage_off;
1991                 } else {
1992                         log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1993                         log->next_page = nextpage_off;
1994                 }
1995
1996                 /* Remember if we wrapped the log file. */
1997                 if (wrapped_file)
1998                         log->l_flags |= NTFSLOG_WRAPPED;
1999         }
2000
2001         /*
2002          * Remember the last page count and position.
2003          * Also remember the last known lsn.
2004          */
2005         page_cnt = le16_to_cpu(page->page_count);
2006         page_pos = le16_to_cpu(page->page_pos);
2007         last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2008
2009 next_page_1:
2010
2011         if (wrapped) {
2012                 expected_seq += 1;
2013                 wrapped_file = 1;
2014         }
2015
2016         curpage_off = nextpage_off;
2017         kfree(page);
2018         page = NULL;
2019         reuse_page = 0;
2020         goto next_page;
2021
2022 check_tail:
2023         if (tail_page) {
2024                 log->seq_num = expected_seq;
2025                 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2026                 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2027                 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2028
2029                 if (log->page_size -
2030                             le16_to_cpu(
2031                                     tail_page->record_hdr.next_record_off) >=
2032                     log->record_header_len) {
2033                         log->l_flags |= NTFSLOG_REUSE_TAIL;
2034                         log->next_page = curpage_off;
2035                 } else {
2036                         log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2037                         log->next_page = nextpage_off;
2038                 }
2039
2040                 if (wrapped)
2041                         log->l_flags |= NTFSLOG_WRAPPED;
2042         }
2043
2044         /* Remember that the partial IO will start at the next page. */
2045         second_off = nextpage_off;
2046
2047         /*
2048          * If the next page is the first page of the file then update
2049          * the sequence number for log records which begon the next page.
2050          */
2051         if (wrapped)
2052                 expected_seq += 1;
2053
2054         /*
2055          * If we have a tail copy or are performing single page I/O we can
2056          * immediately look at the next page.
2057          */
2058         if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2059                 page_cnt = 2;
2060                 page_pos = 1;
2061                 goto check_valid;
2062         }
2063
2064         if (page_pos != page_cnt)
2065                 goto check_valid;
2066         /*
2067          * If the next page causes us to wrap to the beginning of the log
2068          * file then we know which page to check next.
2069          */
2070         if (wrapped) {
2071                 page_cnt = 2;
2072                 page_pos = 1;
2073                 goto check_valid;
2074         }
2075
2076         cur_pos = 2;
2077
2078 next_test_page:
2079         kfree(tst_page);
2080         tst_page = NULL;
2081
2082         /* Walk through the file, reading log pages. */
2083         err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2084
2085         /*
2086          * If we get a USA error then assume that we correctly found
2087          * the end of the original transfer.
2088          */
2089         if (usa_error)
2090                 goto file_is_valid;
2091
2092         /*
2093          * If we were able to read the page, we examine it to see if it
2094          * is the same or different Io block.
2095          */
2096         if (err)
2097                 goto next_test_page_1;
2098
2099         if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2100             check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2101                 page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2102                 page_pos = le16_to_cpu(tst_page->page_pos);
2103                 goto check_valid;
2104         } else {
2105                 goto file_is_valid;
2106         }
2107
2108 next_test_page_1:
2109
2110         nextpage_off = next_page_off(log, curpage_off);
2111         wrapped = nextpage_off == log->first_page;
2112
2113         if (wrapped) {
2114                 expected_seq += 1;
2115                 page_cnt = 2;
2116                 page_pos = 1;
2117         }
2118
2119         cur_pos += 1;
2120         part_io_count += 1;
2121         if (!wrapped)
2122                 goto next_test_page;
2123
2124 check_valid:
2125         /* Skip over the remaining pages this transfer. */
2126         remain_pages = page_cnt - page_pos - 1;
2127         part_io_count += remain_pages;
2128
2129         while (remain_pages--) {
2130                 nextpage_off = next_page_off(log, curpage_off);
2131                 wrapped = nextpage_off == log->first_page;
2132
2133                 if (wrapped)
2134                         expected_seq += 1;
2135         }
2136
2137         /* Call our routine to check this log page. */
2138         kfree(tst_page);
2139         tst_page = NULL;
2140
2141         err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2142         if (!err && !usa_error &&
2143             check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2144                 err = -EINVAL;
2145                 goto out;
2146         }
2147
2148 file_is_valid:
2149
2150         /* We have a valid file. */
2151         if (page_off1 || tail_page) {
2152                 struct RECORD_PAGE_HDR *tmp_page;
2153
2154                 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2155                         err = -EROFS;
2156                         goto out;
2157                 }
2158
2159                 if (page_off1) {
2160                         tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2161                         tails -= (page_off1 - page_off) / log->page_size;
2162                         if (!tail_page)
2163                                 tails -= 1;
2164                 } else {
2165                         tmp_page = tail_page;
2166                         tails = 1;
2167                 }
2168
2169                 while (tails--) {
2170                         u64 off = hdr_file_off(log, tmp_page);
2171
2172                         if (!page) {
2173                                 page = kmalloc(log->page_size, GFP_NOFS);
2174                                 if (!page) {
2175                                         err = -ENOMEM;
2176                                         goto out;
2177                                 }
2178                         }
2179
2180                         /*
2181                          * Correct page and copy the data from this page
2182                          * into it and flush it to disk.
2183                          */
2184                         memcpy(page, tmp_page, log->page_size);
2185
2186                         /* Fill last flushed lsn value flush the page. */
2187                         if (log->major_ver < 2)
2188                                 page->rhdr.lsn = page->record_hdr.last_end_lsn;
2189                         else
2190                                 page->file_off = 0;
2191
2192                         page->page_pos = page->page_count = cpu_to_le16(1);
2193
2194                         ntfs_fix_pre_write(&page->rhdr, log->page_size);
2195
2196                         err = ntfs_sb_write_run(log->ni->mi.sbi,
2197                                                 &log->ni->file.run, off, page,
2198                                                 log->page_size, 0);
2199
2200                         if (err)
2201                                 goto out;
2202
2203                         if (part_io_count && second_off == off) {
2204                                 second_off += log->page_size;
2205                                 part_io_count -= 1;
2206                         }
2207
2208                         tmp_page = Add2Ptr(tmp_page, log->page_size);
2209                 }
2210         }
2211
2212         if (part_io_count) {
2213                 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2214                         err = -EROFS;
2215                         goto out;
2216                 }
2217         }
2218
2219 out:
2220         kfree(second_tail);
2221         kfree(first_tail);
2222         kfree(page);
2223         kfree(tst_page);
2224         kfree(page_bufs);
2225
2226         return err;
2227 }
2228
2229 /*
2230  * read_log_rec_buf - Copy a log record from the file to a buffer.
2231  *
2232  * The log record may span several log pages and may even wrap the file.
2233  */
2234 static int read_log_rec_buf(struct ntfs_log *log,
2235                             const struct LFS_RECORD_HDR *rh, void *buffer)
2236 {
2237         int err;
2238         struct RECORD_PAGE_HDR *ph = NULL;
2239         u64 lsn = le64_to_cpu(rh->this_lsn);
2240         u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2241         u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2242         u32 data_len = le32_to_cpu(rh->client_data_len);
2243
2244         /*
2245          * While there are more bytes to transfer,
2246          * we continue to attempt to perform the read.
2247          */
2248         for (;;) {
2249                 bool usa_error;
2250                 u32 tail = log->page_size - off;
2251
2252                 if (tail >= data_len)
2253                         tail = data_len;
2254
2255                 data_len -= tail;
2256
2257                 err = read_log_page(log, vbo, &ph, &usa_error);
2258                 if (err)
2259                         goto out;
2260
2261                 /*
2262                  * The last lsn on this page better be greater or equal
2263                  * to the lsn we are copying.
2264                  */
2265                 if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2266                         err = -EINVAL;
2267                         goto out;
2268                 }
2269
2270                 memcpy(buffer, Add2Ptr(ph, off), tail);
2271
2272                 /* If there are no more bytes to transfer, we exit the loop. */
2273                 if (!data_len) {
2274                         if (!is_log_record_end(ph) ||
2275                             lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2276                                 err = -EINVAL;
2277                                 goto out;
2278                         }
2279                         break;
2280                 }
2281
2282                 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2283                     lsn > le64_to_cpu(ph->rhdr.lsn)) {
2284                         err = -EINVAL;
2285                         goto out;
2286                 }
2287
2288                 vbo = next_page_off(log, vbo);
2289                 off = log->data_off;
2290
2291                 /*
2292                  * Adjust our pointer the user's buffer to transfer
2293                  * the next block to.
2294                  */
2295                 buffer = Add2Ptr(buffer, tail);
2296         }
2297
2298 out:
2299         kfree(ph);
2300         return err;
2301 }
2302
2303 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2304                          u64 *lsn)
2305 {
2306         int err;
2307         struct LFS_RECORD_HDR *rh = NULL;
2308         const struct CLIENT_REC *cr =
2309                 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2310         u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2311         u32 len;
2312         struct NTFS_RESTART *rst;
2313
2314         *lsn = 0;
2315         *rst_ = NULL;
2316
2317         /* If the client doesn't have a restart area, go ahead and exit now. */
2318         if (!lsnc)
2319                 return 0;
2320
2321         err = read_log_page(log, lsn_to_vbo(log, lsnc),
2322                             (struct RECORD_PAGE_HDR **)&rh, NULL);
2323         if (err)
2324                 return err;
2325
2326         rst = NULL;
2327         lsnr = le64_to_cpu(rh->this_lsn);
2328
2329         if (lsnc != lsnr) {
2330                 /* If the lsn values don't match, then the disk is corrupt. */
2331                 err = -EINVAL;
2332                 goto out;
2333         }
2334
2335         *lsn = lsnr;
2336         len = le32_to_cpu(rh->client_data_len);
2337
2338         if (!len) {
2339                 err = 0;
2340                 goto out;
2341         }
2342
2343         if (len < sizeof(struct NTFS_RESTART)) {
2344                 err = -EINVAL;
2345                 goto out;
2346         }
2347
2348         rst = kmalloc(len, GFP_NOFS);
2349         if (!rst) {
2350                 err = -ENOMEM;
2351                 goto out;
2352         }
2353
2354         /* Copy the data into the 'rst' buffer. */
2355         err = read_log_rec_buf(log, rh, rst);
2356         if (err)
2357                 goto out;
2358
2359         *rst_ = rst;
2360         rst = NULL;
2361
2362 out:
2363         kfree(rh);
2364         kfree(rst);
2365
2366         return err;
2367 }
2368
2369 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2370 {
2371         int err;
2372         struct LFS_RECORD_HDR *rh = lcb->lrh;
2373         u32 rec_len, len;
2374
2375         /* Read the record header for this lsn. */
2376         if (!rh) {
2377                 err = read_log_page(log, lsn_to_vbo(log, lsn),
2378                                     (struct RECORD_PAGE_HDR **)&rh, NULL);
2379
2380                 lcb->lrh = rh;
2381                 if (err)
2382                         return err;
2383         }
2384
2385         /*
2386          * If the lsn the log record doesn't match the desired
2387          * lsn then the disk is corrupt.
2388          */
2389         if (lsn != le64_to_cpu(rh->this_lsn))
2390                 return -EINVAL;
2391
2392         len = le32_to_cpu(rh->client_data_len);
2393
2394         /*
2395          * Check that the length field isn't greater than the total
2396          * available space the log file.
2397          */
2398         rec_len = len + log->record_header_len;
2399         if (rec_len >= log->total_avail)
2400                 return -EINVAL;
2401
2402         /*
2403          * If the entire log record is on this log page,
2404          * put a pointer to the log record the context block.
2405          */
2406         if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2407                 void *lr = kmalloc(len, GFP_NOFS);
2408
2409                 if (!lr)
2410                         return -ENOMEM;
2411
2412                 lcb->log_rec = lr;
2413                 lcb->alloc = true;
2414
2415                 /* Copy the data into the buffer returned. */
2416                 err = read_log_rec_buf(log, rh, lr);
2417                 if (err)
2418                         return err;
2419         } else {
2420                 /* If beyond the end of the current page -> an error. */
2421                 u32 page_off = lsn_to_page_off(log, lsn);
2422
2423                 if (page_off + len + log->record_header_len > log->page_size)
2424                         return -EINVAL;
2425
2426                 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2427                 lcb->alloc = false;
2428         }
2429
2430         return 0;
2431 }
2432
2433 /*
2434  * read_log_rec_lcb - Init the query operation.
2435  */
2436 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2437                             struct lcb **lcb_)
2438 {
2439         int err;
2440         const struct CLIENT_REC *cr;
2441         struct lcb *lcb;
2442
2443         switch (ctx_mode) {
2444         case lcb_ctx_undo_next:
2445         case lcb_ctx_prev:
2446         case lcb_ctx_next:
2447                 break;
2448         default:
2449                 return -EINVAL;
2450         }
2451
2452         /* Check that the given lsn is the legal range for this client. */
2453         cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2454
2455         if (!verify_client_lsn(log, cr, lsn))
2456                 return -EINVAL;
2457
2458         lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
2459         if (!lcb)
2460                 return -ENOMEM;
2461         lcb->client = log->client_id;
2462         lcb->ctx_mode = ctx_mode;
2463
2464         /* Find the log record indicated by the given lsn. */
2465         err = find_log_rec(log, lsn, lcb);
2466         if (err)
2467                 goto out;
2468
2469         *lcb_ = lcb;
2470         return 0;
2471
2472 out:
2473         lcb_put(lcb);
2474         *lcb_ = NULL;
2475         return err;
2476 }
2477
2478 /*
2479  * find_client_next_lsn
2480  *
2481  * Attempt to find the next lsn to return to a client based on the context mode.
2482  */
2483 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2484 {
2485         int err;
2486         u64 next_lsn;
2487         struct LFS_RECORD_HDR *hdr;
2488
2489         hdr = lcb->lrh;
2490         *lsn = 0;
2491
2492         if (lcb_ctx_next != lcb->ctx_mode)
2493                 goto check_undo_next;
2494
2495         /* Loop as long as another lsn can be found. */
2496         for (;;) {
2497                 u64 current_lsn;
2498
2499                 err = next_log_lsn(log, hdr, &current_lsn);
2500                 if (err)
2501                         goto out;
2502
2503                 if (!current_lsn)
2504                         break;
2505
2506                 if (hdr != lcb->lrh)
2507                         kfree(hdr);
2508
2509                 hdr = NULL;
2510                 err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2511                                     (struct RECORD_PAGE_HDR **)&hdr, NULL);
2512                 if (err)
2513                         goto out;
2514
2515                 if (memcmp(&hdr->client, &lcb->client,
2516                            sizeof(struct CLIENT_ID))) {
2517                         /*err = -EINVAL; */
2518                 } else if (LfsClientRecord == hdr->record_type) {
2519                         kfree(lcb->lrh);
2520                         lcb->lrh = hdr;
2521                         *lsn = current_lsn;
2522                         return 0;
2523                 }
2524         }
2525
2526 out:
2527         if (hdr != lcb->lrh)
2528                 kfree(hdr);
2529         return err;
2530
2531 check_undo_next:
2532         if (lcb_ctx_undo_next == lcb->ctx_mode)
2533                 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2534         else if (lcb_ctx_prev == lcb->ctx_mode)
2535                 next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2536         else
2537                 return 0;
2538
2539         if (!next_lsn)
2540                 return 0;
2541
2542         if (!verify_client_lsn(
2543                     log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2544                     next_lsn))
2545                 return 0;
2546
2547         hdr = NULL;
2548         err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2549                             (struct RECORD_PAGE_HDR **)&hdr, NULL);
2550         if (err)
2551                 return err;
2552         kfree(lcb->lrh);
2553         lcb->lrh = hdr;
2554
2555         *lsn = next_lsn;
2556
2557         return 0;
2558 }
2559
2560 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2561 {
2562         int err;
2563
2564         err = find_client_next_lsn(log, lcb, lsn);
2565         if (err)
2566                 return err;
2567
2568         if (!*lsn)
2569                 return 0;
2570
2571         if (lcb->alloc)
2572                 kfree(lcb->log_rec);
2573
2574         lcb->log_rec = NULL;
2575         lcb->alloc = false;
2576         kfree(lcb->lrh);
2577         lcb->lrh = NULL;
2578
2579         return find_log_rec(log, *lsn, lcb);
2580 }
2581
2582 bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2583 {
2584         __le16 mask;
2585         u32 min_de, de_off, used, total;
2586         const struct NTFS_DE *e;
2587
2588         if (hdr_has_subnode(hdr)) {
2589                 min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2590                 mask = NTFS_IE_HAS_SUBNODES;
2591         } else {
2592                 min_de = sizeof(struct NTFS_DE);
2593                 mask = 0;
2594         }
2595
2596         de_off = le32_to_cpu(hdr->de_off);
2597         used = le32_to_cpu(hdr->used);
2598         total = le32_to_cpu(hdr->total);
2599
2600         if (de_off > bytes - min_de || used > bytes || total > bytes ||
2601             de_off + min_de > used || used > total) {
2602                 return false;
2603         }
2604
2605         e = Add2Ptr(hdr, de_off);
2606         for (;;) {
2607                 u16 esize = le16_to_cpu(e->size);
2608                 struct NTFS_DE *next = Add2Ptr(e, esize);
2609
2610                 if (esize < min_de || PtrOffset(hdr, next) > used ||
2611                     (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2612                         return false;
2613                 }
2614
2615                 if (de_is_last(e))
2616                         break;
2617
2618                 e = next;
2619         }
2620
2621         return true;
2622 }
2623
2624 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2625 {
2626         u16 fo;
2627         const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2628
2629         if (r->sign != NTFS_INDX_SIGNATURE)
2630                 return false;
2631
2632         fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2633
2634         if (le16_to_cpu(r->fix_off) > fo)
2635                 return false;
2636
2637         if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2638                 return false;
2639
2640         return check_index_header(&ib->ihdr,
2641                                   bytes - offsetof(struct INDEX_BUFFER, ihdr));
2642 }
2643
2644 static inline bool check_index_root(const struct ATTRIB *attr,
2645                                     struct ntfs_sb_info *sbi)
2646 {
2647         bool ret;
2648         const struct INDEX_ROOT *root = resident_data(attr);
2649         u8 index_bits = le32_to_cpu(root->index_block_size) >= sbi->cluster_size
2650                                 ? sbi->cluster_bits
2651                                 : SECTOR_SHIFT;
2652         u8 block_clst = root->index_block_clst;
2653
2654         if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2655             (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2656             (root->type == ATTR_NAME &&
2657              root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2658             (le32_to_cpu(root->index_block_size) !=
2659              (block_clst << index_bits)) ||
2660             (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2661              block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2662              block_clst != 0x40 && block_clst != 0x80)) {
2663                 return false;
2664         }
2665
2666         ret = check_index_header(&root->ihdr,
2667                                  le32_to_cpu(attr->res.data_size) -
2668                                          offsetof(struct INDEX_ROOT, ihdr));
2669         return ret;
2670 }
2671
2672 static inline bool check_attr(const struct MFT_REC *rec,
2673                               const struct ATTRIB *attr,
2674                               struct ntfs_sb_info *sbi)
2675 {
2676         u32 asize = le32_to_cpu(attr->size);
2677         u32 rsize = 0;
2678         u64 dsize, svcn, evcn;
2679         u16 run_off;
2680
2681         /* Check the fixed part of the attribute record header. */
2682         if (asize >= sbi->record_size ||
2683             asize + PtrOffset(rec, attr) >= sbi->record_size ||
2684             (attr->name_len &&
2685              le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2686                      asize)) {
2687                 return false;
2688         }
2689
2690         /* Check the attribute fields. */
2691         switch (attr->non_res) {
2692         case 0:
2693                 rsize = le32_to_cpu(attr->res.data_size);
2694                 if (rsize >= asize ||
2695                     le16_to_cpu(attr->res.data_off) + rsize > asize) {
2696                         return false;
2697                 }
2698                 break;
2699
2700         case 1:
2701                 dsize = le64_to_cpu(attr->nres.data_size);
2702                 svcn = le64_to_cpu(attr->nres.svcn);
2703                 evcn = le64_to_cpu(attr->nres.evcn);
2704                 run_off = le16_to_cpu(attr->nres.run_off);
2705
2706                 if (svcn > evcn + 1 || run_off >= asize ||
2707                     le64_to_cpu(attr->nres.valid_size) > dsize ||
2708                     dsize > le64_to_cpu(attr->nres.alloc_size)) {
2709                         return false;
2710                 }
2711
2712                 if (run_off > asize)
2713                         return false;
2714
2715                 if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2716                                Add2Ptr(attr, run_off), asize - run_off) < 0) {
2717                         return false;
2718                 }
2719
2720                 return true;
2721
2722         default:
2723                 return false;
2724         }
2725
2726         switch (attr->type) {
2727         case ATTR_NAME:
2728                 if (fname_full_size(Add2Ptr(
2729                             attr, le16_to_cpu(attr->res.data_off))) > asize) {
2730                         return false;
2731                 }
2732                 break;
2733
2734         case ATTR_ROOT:
2735                 return check_index_root(attr, sbi);
2736
2737         case ATTR_STD:
2738                 if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2739                     rsize != sizeof(struct ATTR_STD_INFO)) {
2740                         return false;
2741                 }
2742                 break;
2743
2744         case ATTR_LIST:
2745         case ATTR_ID:
2746         case ATTR_SECURE:
2747         case ATTR_LABEL:
2748         case ATTR_VOL_INFO:
2749         case ATTR_DATA:
2750         case ATTR_ALLOC:
2751         case ATTR_BITMAP:
2752         case ATTR_REPARSE:
2753         case ATTR_EA_INFO:
2754         case ATTR_EA:
2755         case ATTR_PROPERTYSET:
2756         case ATTR_LOGGED_UTILITY_STREAM:
2757                 break;
2758
2759         default:
2760                 return false;
2761         }
2762
2763         return true;
2764 }
2765
2766 static inline bool check_file_record(const struct MFT_REC *rec,
2767                                      const struct MFT_REC *rec2,
2768                                      struct ntfs_sb_info *sbi)
2769 {
2770         const struct ATTRIB *attr;
2771         u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2772         u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2773         u16 ao = le16_to_cpu(rec->attr_off);
2774         u32 rs = sbi->record_size;
2775
2776         /* Check the file record header for consistency. */
2777         if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2778             fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2779             (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2780             ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2781             le32_to_cpu(rec->total) != rs) {
2782                 return false;
2783         }
2784
2785         /* Loop to check all of the attributes. */
2786         for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2787              attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2788                 if (check_attr(rec, attr, sbi))
2789                         continue;
2790                 return false;
2791         }
2792
2793         return true;
2794 }
2795
2796 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2797                             const u64 *rlsn)
2798 {
2799         u64 lsn;
2800
2801         if (!rlsn)
2802                 return true;
2803
2804         lsn = le64_to_cpu(hdr->lsn);
2805
2806         if (hdr->sign == NTFS_HOLE_SIGNATURE)
2807                 return false;
2808
2809         if (*rlsn > lsn)
2810                 return true;
2811
2812         return false;
2813 }
2814
2815 static inline bool check_if_attr(const struct MFT_REC *rec,
2816                                  const struct LOG_REC_HDR *lrh)
2817 {
2818         u16 ro = le16_to_cpu(lrh->record_off);
2819         u16 o = le16_to_cpu(rec->attr_off);
2820         const struct ATTRIB *attr = Add2Ptr(rec, o);
2821
2822         while (o < ro) {
2823                 u32 asize;
2824
2825                 if (attr->type == ATTR_END)
2826                         break;
2827
2828                 asize = le32_to_cpu(attr->size);
2829                 if (!asize)
2830                         break;
2831
2832                 o += asize;
2833                 attr = Add2Ptr(attr, asize);
2834         }
2835
2836         return o == ro;
2837 }
2838
2839 static inline bool check_if_index_root(const struct MFT_REC *rec,
2840                                        const struct LOG_REC_HDR *lrh)
2841 {
2842         u16 ro = le16_to_cpu(lrh->record_off);
2843         u16 o = le16_to_cpu(rec->attr_off);
2844         const struct ATTRIB *attr = Add2Ptr(rec, o);
2845
2846         while (o < ro) {
2847                 u32 asize;
2848
2849                 if (attr->type == ATTR_END)
2850                         break;
2851
2852                 asize = le32_to_cpu(attr->size);
2853                 if (!asize)
2854                         break;
2855
2856                 o += asize;
2857                 attr = Add2Ptr(attr, asize);
2858         }
2859
2860         return o == ro && attr->type == ATTR_ROOT;
2861 }
2862
2863 static inline bool check_if_root_index(const struct ATTRIB *attr,
2864                                        const struct INDEX_HDR *hdr,
2865                                        const struct LOG_REC_HDR *lrh)
2866 {
2867         u16 ao = le16_to_cpu(lrh->attr_off);
2868         u32 de_off = le32_to_cpu(hdr->de_off);
2869         u32 o = PtrOffset(attr, hdr) + de_off;
2870         const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2871         u32 asize = le32_to_cpu(attr->size);
2872
2873         while (o < ao) {
2874                 u16 esize;
2875
2876                 if (o >= asize)
2877                         break;
2878
2879                 esize = le16_to_cpu(e->size);
2880                 if (!esize)
2881                         break;
2882
2883                 o += esize;
2884                 e = Add2Ptr(e, esize);
2885         }
2886
2887         return o == ao;
2888 }
2889
2890 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2891                                         u32 attr_off)
2892 {
2893         u32 de_off = le32_to_cpu(hdr->de_off);
2894         u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2895         const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2896         u32 used = le32_to_cpu(hdr->used);
2897
2898         while (o < attr_off) {
2899                 u16 esize;
2900
2901                 if (de_off >= used)
2902                         break;
2903
2904                 esize = le16_to_cpu(e->size);
2905                 if (!esize)
2906                         break;
2907
2908                 o += esize;
2909                 de_off += esize;
2910                 e = Add2Ptr(e, esize);
2911         }
2912
2913         return o == attr_off;
2914 }
2915
2916 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2917                                     u32 nsize)
2918 {
2919         u32 asize = le32_to_cpu(attr->size);
2920         int dsize = nsize - asize;
2921         u8 *next = Add2Ptr(attr, asize);
2922         u32 used = le32_to_cpu(rec->used);
2923
2924         memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2925
2926         rec->used = cpu_to_le32(used + dsize);
2927         attr->size = cpu_to_le32(nsize);
2928 }
2929
2930 struct OpenAttr {
2931         struct ATTRIB *attr;
2932         struct runs_tree *run1;
2933         struct runs_tree run0;
2934         struct ntfs_inode *ni;
2935         // CLST rno;
2936 };
2937
2938 /*
2939  * cmp_type_and_name
2940  *
2941  * Return: 0 if 'attr' has the same type and name.
2942  */
2943 static inline int cmp_type_and_name(const struct ATTRIB *a1,
2944                                     const struct ATTRIB *a2)
2945 {
2946         return a1->type != a2->type || a1->name_len != a2->name_len ||
2947                (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2948                                        a1->name_len * sizeof(short)));
2949 }
2950
2951 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2952                                          const struct ATTRIB *attr, CLST rno)
2953 {
2954         struct OPEN_ATTR_ENRTY *oe = NULL;
2955
2956         while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2957                 struct OpenAttr *op_attr;
2958
2959                 if (ino_get(&oe->ref) != rno)
2960                         continue;
2961
2962                 op_attr = (struct OpenAttr *)oe->ptr;
2963                 if (!cmp_type_and_name(op_attr->attr, attr))
2964                         return op_attr;
2965         }
2966         return NULL;
2967 }
2968
2969 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2970                                              enum ATTR_TYPE type, u64 size,
2971                                              const u16 *name, size_t name_len,
2972                                              __le16 flags)
2973 {
2974         struct ATTRIB *attr;
2975         u32 name_size = ALIGN(name_len * sizeof(short), 8);
2976         bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2977         u32 asize = name_size +
2978                     (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2979
2980         attr = kzalloc(asize, GFP_NOFS);
2981         if (!attr)
2982                 return NULL;
2983
2984         attr->type = type;
2985         attr->size = cpu_to_le32(asize);
2986         attr->flags = flags;
2987         attr->non_res = 1;
2988         attr->name_len = name_len;
2989
2990         attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
2991         attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
2992         attr->nres.data_size = cpu_to_le64(size);
2993         attr->nres.valid_size = attr->nres.data_size;
2994         if (is_ext) {
2995                 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
2996                 if (is_attr_compressed(attr))
2997                         attr->nres.c_unit = COMPRESSION_UNIT;
2998
2999                 attr->nres.run_off =
3000                         cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
3001                 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
3002                        name_len * sizeof(short));
3003         } else {
3004                 attr->name_off = SIZEOF_NONRESIDENT_LE;
3005                 attr->nres.run_off =
3006                         cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3007                 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3008                        name_len * sizeof(short));
3009         }
3010
3011         return attr;
3012 }
3013
3014 /*
3015  * do_action - Common routine for the Redo and Undo Passes.
3016  * @rlsn: If it is NULL then undo.
3017  */
3018 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3019                      const struct LOG_REC_HDR *lrh, u32 op, void *data,
3020                      u32 dlen, u32 rec_len, const u64 *rlsn)
3021 {
3022         int err = 0;
3023         struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3024         struct inode *inode = NULL, *inode_parent;
3025         struct mft_inode *mi = NULL, *mi2_child = NULL;
3026         CLST rno = 0, rno_base = 0;
3027         struct INDEX_BUFFER *ib = NULL;
3028         struct MFT_REC *rec = NULL;
3029         struct ATTRIB *attr = NULL, *attr2;
3030         struct INDEX_HDR *hdr;
3031         struct INDEX_ROOT *root;
3032         struct NTFS_DE *e, *e1, *e2;
3033         struct NEW_ATTRIBUTE_SIZES *new_sz;
3034         struct ATTR_FILE_NAME *fname;
3035         struct OpenAttr *oa, *oa2;
3036         u32 nsize, t32, asize, used, esize, bmp_off, bmp_bits;
3037         u16 id, id2;
3038         u32 record_size = sbi->record_size;
3039         u64 t64;
3040         u16 roff = le16_to_cpu(lrh->record_off);
3041         u16 aoff = le16_to_cpu(lrh->attr_off);
3042         u64 lco = 0;
3043         u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3044         u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3045         u64 vbo = cbo + tvo;
3046         void *buffer_le = NULL;
3047         u32 bytes = 0;
3048         bool a_dirty = false;
3049         u16 data_off;
3050
3051         oa = oe->ptr;
3052
3053         /* Big switch to prepare. */
3054         switch (op) {
3055         /* ============================================================
3056          * Process MFT records, as described by the current log record.
3057          * ============================================================
3058          */
3059         case InitializeFileRecordSegment:
3060         case DeallocateFileRecordSegment:
3061         case WriteEndOfFileRecordSegment:
3062         case CreateAttribute:
3063         case DeleteAttribute:
3064         case UpdateResidentValue:
3065         case UpdateMappingPairs:
3066         case SetNewAttributeSizes:
3067         case AddIndexEntryRoot:
3068         case DeleteIndexEntryRoot:
3069         case SetIndexEntryVcnRoot:
3070         case UpdateFileNameRoot:
3071         case UpdateRecordDataRoot:
3072         case ZeroEndOfFileRecord:
3073                 rno = vbo >> sbi->record_bits;
3074                 inode = ilookup(sbi->sb, rno);
3075                 if (inode) {
3076                         mi = &ntfs_i(inode)->mi;
3077                 } else if (op == InitializeFileRecordSegment) {
3078                         mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
3079                         if (!mi)
3080                                 return -ENOMEM;
3081                         err = mi_format_new(mi, sbi, rno, 0, false);
3082                         if (err)
3083                                 goto out;
3084                 } else {
3085                         /* Read from disk. */
3086                         err = mi_get(sbi, rno, &mi);
3087                         if (err)
3088                                 return err;
3089                 }
3090                 rec = mi->mrec;
3091
3092                 if (op == DeallocateFileRecordSegment)
3093                         goto skip_load_parent;
3094
3095                 if (InitializeFileRecordSegment != op) {
3096                         if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3097                                 goto dirty_vol;
3098                         if (!check_lsn(&rec->rhdr, rlsn))
3099                                 goto out;
3100                         if (!check_file_record(rec, NULL, sbi))
3101                                 goto dirty_vol;
3102                         attr = Add2Ptr(rec, roff);
3103                 }
3104
3105                 if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3106                         rno_base = rno;
3107                         goto skip_load_parent;
3108                 }
3109
3110                 rno_base = ino_get(&rec->parent_ref);
3111                 inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3112                 if (IS_ERR(inode_parent))
3113                         goto skip_load_parent;
3114
3115                 if (is_bad_inode(inode_parent)) {
3116                         iput(inode_parent);
3117                         goto skip_load_parent;
3118                 }
3119
3120                 if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3121                         iput(inode_parent);
3122                 } else {
3123                         if (mi2_child->mrec != mi->mrec)
3124                                 memcpy(mi2_child->mrec, mi->mrec,
3125                                        sbi->record_size);
3126
3127                         if (inode)
3128                                 iput(inode);
3129                         else if (mi)
3130                                 mi_put(mi);
3131
3132                         inode = inode_parent;
3133                         mi = mi2_child;
3134                         rec = mi2_child->mrec;
3135                         attr = Add2Ptr(rec, roff);
3136                 }
3137
3138 skip_load_parent:
3139                 inode_parent = NULL;
3140                 break;
3141
3142         /*
3143          * Process attributes, as described by the current log record.
3144          */
3145         case UpdateNonresidentValue:
3146         case AddIndexEntryAllocation:
3147         case DeleteIndexEntryAllocation:
3148         case WriteEndOfIndexBuffer:
3149         case SetIndexEntryVcnAllocation:
3150         case UpdateFileNameAllocation:
3151         case SetBitsInNonresidentBitMap:
3152         case ClearBitsInNonresidentBitMap:
3153         case UpdateRecordDataAllocation:
3154                 attr = oa->attr;
3155                 bytes = UpdateNonresidentValue == op ? dlen : 0;
3156                 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3157
3158                 if (attr->type == ATTR_ALLOC) {
3159                         t32 = le32_to_cpu(oe->bytes_per_index);
3160                         if (bytes < t32)
3161                                 bytes = t32;
3162                 }
3163
3164                 if (!bytes)
3165                         bytes = lco - cbo;
3166
3167                 bytes += roff;
3168                 if (attr->type == ATTR_ALLOC)
3169                         bytes = (bytes + 511) & ~511; // align
3170
3171                 buffer_le = kmalloc(bytes, GFP_NOFS);
3172                 if (!buffer_le)
3173                         return -ENOMEM;
3174
3175                 err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3176                                        NULL);
3177                 if (err)
3178                         goto out;
3179
3180                 if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3181                         ntfs_fix_post_read(buffer_le, bytes, false);
3182                 break;
3183
3184         default:
3185                 WARN_ON(1);
3186         }
3187
3188         /* Big switch to do operation. */
3189         switch (op) {
3190         case InitializeFileRecordSegment:
3191                 if (roff + dlen > record_size)
3192                         goto dirty_vol;
3193
3194                 memcpy(Add2Ptr(rec, roff), data, dlen);
3195                 mi->dirty = true;
3196                 break;
3197
3198         case DeallocateFileRecordSegment:
3199                 clear_rec_inuse(rec);
3200                 le16_add_cpu(&rec->seq, 1);
3201                 mi->dirty = true;
3202                 break;
3203
3204         case WriteEndOfFileRecordSegment:
3205                 attr2 = (struct ATTRIB *)data;
3206                 if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3207                         goto dirty_vol;
3208
3209                 memmove(attr, attr2, dlen);
3210                 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3211
3212                 mi->dirty = true;
3213                 break;
3214
3215         case CreateAttribute:
3216                 attr2 = (struct ATTRIB *)data;
3217                 asize = le32_to_cpu(attr2->size);
3218                 used = le32_to_cpu(rec->used);
3219
3220                 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3221                     !IS_ALIGNED(asize, 8) ||
3222                     Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3223                     dlen > record_size - used) {
3224                         goto dirty_vol;
3225                 }
3226
3227                 memmove(Add2Ptr(attr, asize), attr, used - roff);
3228                 memcpy(attr, attr2, asize);
3229
3230                 rec->used = cpu_to_le32(used + asize);
3231                 id = le16_to_cpu(rec->next_attr_id);
3232                 id2 = le16_to_cpu(attr2->id);
3233                 if (id <= id2)
3234                         rec->next_attr_id = cpu_to_le16(id2 + 1);
3235                 if (is_attr_indexed(attr))
3236                         le16_add_cpu(&rec->hard_links, 1);
3237
3238                 oa2 = find_loaded_attr(log, attr, rno_base);
3239                 if (oa2) {
3240                         void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3241                                            GFP_NOFS);
3242                         if (p2) {
3243                                 // run_close(oa2->run1);
3244                                 kfree(oa2->attr);
3245                                 oa2->attr = p2;
3246                         }
3247                 }
3248
3249                 mi->dirty = true;
3250                 break;
3251
3252         case DeleteAttribute:
3253                 asize = le32_to_cpu(attr->size);
3254                 used = le32_to_cpu(rec->used);
3255
3256                 if (!check_if_attr(rec, lrh))
3257                         goto dirty_vol;
3258
3259                 rec->used = cpu_to_le32(used - asize);
3260                 if (is_attr_indexed(attr))
3261                         le16_add_cpu(&rec->hard_links, -1);
3262
3263                 memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3264
3265                 mi->dirty = true;
3266                 break;
3267
3268         case UpdateResidentValue:
3269                 nsize = aoff + dlen;
3270
3271                 if (!check_if_attr(rec, lrh))
3272                         goto dirty_vol;
3273
3274                 asize = le32_to_cpu(attr->size);
3275                 used = le32_to_cpu(rec->used);
3276
3277                 if (lrh->redo_len == lrh->undo_len) {
3278                         if (nsize > asize)
3279                                 goto dirty_vol;
3280                         goto move_data;
3281                 }
3282
3283                 if (nsize > asize && nsize - asize > record_size - used)
3284                         goto dirty_vol;
3285
3286                 nsize = ALIGN(nsize, 8);
3287                 data_off = le16_to_cpu(attr->res.data_off);
3288
3289                 if (nsize < asize) {
3290                         memmove(Add2Ptr(attr, aoff), data, dlen);
3291                         data = NULL; // To skip below memmove().
3292                 }
3293
3294                 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3295                         used - le16_to_cpu(lrh->record_off) - asize);
3296
3297                 rec->used = cpu_to_le32(used + nsize - asize);
3298                 attr->size = cpu_to_le32(nsize);
3299                 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3300
3301 move_data:
3302                 if (data)
3303                         memmove(Add2Ptr(attr, aoff), data, dlen);
3304
3305                 oa2 = find_loaded_attr(log, attr, rno_base);
3306                 if (oa2) {
3307                         void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3308                                            GFP_NOFS);
3309                         if (p2) {
3310                                 // run_close(&oa2->run0);
3311                                 oa2->run1 = &oa2->run0;
3312                                 kfree(oa2->attr);
3313                                 oa2->attr = p2;
3314                         }
3315                 }
3316
3317                 mi->dirty = true;
3318                 break;
3319
3320         case UpdateMappingPairs:
3321                 nsize = aoff + dlen;
3322                 asize = le32_to_cpu(attr->size);
3323                 used = le32_to_cpu(rec->used);
3324
3325                 if (!check_if_attr(rec, lrh) || !attr->non_res ||
3326                     aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3327                     (nsize > asize && nsize - asize > record_size - used)) {
3328                         goto dirty_vol;
3329                 }
3330
3331                 nsize = ALIGN(nsize, 8);
3332
3333                 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3334                         used - le16_to_cpu(lrh->record_off) - asize);
3335                 rec->used = cpu_to_le32(used + nsize - asize);
3336                 attr->size = cpu_to_le32(nsize);
3337                 memmove(Add2Ptr(attr, aoff), data, dlen);
3338
3339                 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3340                                         attr_run(attr), &t64)) {
3341                         goto dirty_vol;
3342                 }
3343
3344                 attr->nres.evcn = cpu_to_le64(t64);
3345                 oa2 = find_loaded_attr(log, attr, rno_base);
3346                 if (oa2 && oa2->attr->non_res)
3347                         oa2->attr->nres.evcn = attr->nres.evcn;
3348
3349                 mi->dirty = true;
3350                 break;
3351
3352         case SetNewAttributeSizes:
3353                 new_sz = data;
3354                 if (!check_if_attr(rec, lrh) || !attr->non_res)
3355                         goto dirty_vol;
3356
3357                 attr->nres.alloc_size = new_sz->alloc_size;
3358                 attr->nres.data_size = new_sz->data_size;
3359                 attr->nres.valid_size = new_sz->valid_size;
3360
3361                 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3362                         attr->nres.total_size = new_sz->total_size;
3363
3364                 oa2 = find_loaded_attr(log, attr, rno_base);
3365                 if (oa2) {
3366                         void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3367                                            GFP_NOFS);
3368                         if (p2) {
3369                                 kfree(oa2->attr);
3370                                 oa2->attr = p2;
3371                         }
3372                 }
3373                 mi->dirty = true;
3374                 break;
3375
3376         case AddIndexEntryRoot:
3377                 e = (struct NTFS_DE *)data;
3378                 esize = le16_to_cpu(e->size);
3379                 root = resident_data(attr);
3380                 hdr = &root->ihdr;
3381                 used = le32_to_cpu(hdr->used);
3382
3383                 if (!check_if_index_root(rec, lrh) ||
3384                     !check_if_root_index(attr, hdr, lrh) ||
3385                     Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3386                     esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3387                         goto dirty_vol;
3388                 }
3389
3390                 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3391
3392                 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3393
3394                 memmove(Add2Ptr(e1, esize), e1,
3395                         PtrOffset(e1, Add2Ptr(hdr, used)));
3396                 memmove(e1, e, esize);
3397
3398                 le32_add_cpu(&attr->res.data_size, esize);
3399                 hdr->used = cpu_to_le32(used + esize);
3400                 le32_add_cpu(&hdr->total, esize);
3401
3402                 mi->dirty = true;
3403                 break;
3404
3405         case DeleteIndexEntryRoot:
3406                 root = resident_data(attr);
3407                 hdr = &root->ihdr;
3408                 used = le32_to_cpu(hdr->used);
3409
3410                 if (!check_if_index_root(rec, lrh) ||
3411                     !check_if_root_index(attr, hdr, lrh)) {
3412                         goto dirty_vol;
3413                 }
3414
3415                 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3416                 esize = le16_to_cpu(e1->size);
3417                 e2 = Add2Ptr(e1, esize);
3418
3419                 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3420
3421                 le32_sub_cpu(&attr->res.data_size, esize);
3422                 hdr->used = cpu_to_le32(used - esize);
3423                 le32_sub_cpu(&hdr->total, esize);
3424
3425                 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3426
3427                 mi->dirty = true;
3428                 break;
3429
3430         case SetIndexEntryVcnRoot:
3431                 root = resident_data(attr);
3432                 hdr = &root->ihdr;
3433
3434                 if (!check_if_index_root(rec, lrh) ||
3435                     !check_if_root_index(attr, hdr, lrh)) {
3436                         goto dirty_vol;
3437                 }
3438
3439                 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3440
3441                 de_set_vbn_le(e, *(__le64 *)data);
3442                 mi->dirty = true;
3443                 break;
3444
3445         case UpdateFileNameRoot:
3446                 root = resident_data(attr);
3447                 hdr = &root->ihdr;
3448
3449                 if (!check_if_index_root(rec, lrh) ||
3450                     !check_if_root_index(attr, hdr, lrh)) {
3451                         goto dirty_vol;
3452                 }
3453
3454                 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3455                 fname = (struct ATTR_FILE_NAME *)(e + 1);
3456                 memmove(&fname->dup, data, sizeof(fname->dup)); //
3457                 mi->dirty = true;
3458                 break;
3459
3460         case UpdateRecordDataRoot:
3461                 root = resident_data(attr);
3462                 hdr = &root->ihdr;
3463
3464                 if (!check_if_index_root(rec, lrh) ||
3465                     !check_if_root_index(attr, hdr, lrh)) {
3466                         goto dirty_vol;
3467                 }
3468
3469                 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3470
3471                 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3472
3473                 mi->dirty = true;
3474                 break;
3475
3476         case ZeroEndOfFileRecord:
3477                 if (roff + dlen > record_size)
3478                         goto dirty_vol;
3479
3480                 memset(attr, 0, dlen);
3481                 mi->dirty = true;
3482                 break;
3483
3484         case UpdateNonresidentValue:
3485                 if (lco < cbo + roff + dlen)
3486                         goto dirty_vol;
3487
3488                 memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3489
3490                 a_dirty = true;
3491                 if (attr->type == ATTR_ALLOC)
3492                         ntfs_fix_pre_write(buffer_le, bytes);
3493                 break;
3494
3495         case AddIndexEntryAllocation:
3496                 ib = Add2Ptr(buffer_le, roff);
3497                 hdr = &ib->ihdr;
3498                 e = data;
3499                 esize = le16_to_cpu(e->size);
3500                 e1 = Add2Ptr(ib, aoff);
3501
3502                 if (is_baad(&ib->rhdr))
3503                         goto dirty_vol;
3504                 if (!check_lsn(&ib->rhdr, rlsn))
3505                         goto out;
3506
3507                 used = le32_to_cpu(hdr->used);
3508
3509                 if (!check_index_buffer(ib, bytes) ||
3510                     !check_if_alloc_index(hdr, aoff) ||
3511                     Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3512                     used + esize > le32_to_cpu(hdr->total)) {
3513                         goto dirty_vol;
3514                 }
3515
3516                 memmove(Add2Ptr(e1, esize), e1,
3517                         PtrOffset(e1, Add2Ptr(hdr, used)));
3518                 memcpy(e1, e, esize);
3519
3520                 hdr->used = cpu_to_le32(used + esize);
3521
3522                 a_dirty = true;
3523
3524                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3525                 break;
3526
3527         case DeleteIndexEntryAllocation:
3528                 ib = Add2Ptr(buffer_le, roff);
3529                 hdr = &ib->ihdr;
3530                 e = Add2Ptr(ib, aoff);
3531                 esize = le16_to_cpu(e->size);
3532
3533                 if (is_baad(&ib->rhdr))
3534                         goto dirty_vol;
3535                 if (!check_lsn(&ib->rhdr, rlsn))
3536                         goto out;
3537
3538                 if (!check_index_buffer(ib, bytes) ||
3539                     !check_if_alloc_index(hdr, aoff)) {
3540                         goto dirty_vol;
3541                 }
3542
3543                 e1 = Add2Ptr(e, esize);
3544                 nsize = esize;
3545                 used = le32_to_cpu(hdr->used);
3546
3547                 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3548
3549                 hdr->used = cpu_to_le32(used - nsize);
3550
3551                 a_dirty = true;
3552
3553                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3554                 break;
3555
3556         case WriteEndOfIndexBuffer:
3557                 ib = Add2Ptr(buffer_le, roff);
3558                 hdr = &ib->ihdr;
3559                 e = Add2Ptr(ib, aoff);
3560
3561                 if (is_baad(&ib->rhdr))
3562                         goto dirty_vol;
3563                 if (!check_lsn(&ib->rhdr, rlsn))
3564                         goto out;
3565                 if (!check_index_buffer(ib, bytes) ||
3566                     !check_if_alloc_index(hdr, aoff) ||
3567                     aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3568                                           le32_to_cpu(hdr->total)) {
3569                         goto dirty_vol;
3570                 }
3571
3572                 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3573                 memmove(e, data, dlen);
3574
3575                 a_dirty = true;
3576                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3577                 break;
3578
3579         case SetIndexEntryVcnAllocation:
3580                 ib = Add2Ptr(buffer_le, roff);
3581                 hdr = &ib->ihdr;
3582                 e = Add2Ptr(ib, aoff);
3583
3584                 if (is_baad(&ib->rhdr))
3585                         goto dirty_vol;
3586
3587                 if (!check_lsn(&ib->rhdr, rlsn))
3588                         goto out;
3589                 if (!check_index_buffer(ib, bytes) ||
3590                     !check_if_alloc_index(hdr, aoff)) {
3591                         goto dirty_vol;
3592                 }
3593
3594                 de_set_vbn_le(e, *(__le64 *)data);
3595
3596                 a_dirty = true;
3597                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3598                 break;
3599
3600         case UpdateFileNameAllocation:
3601                 ib = Add2Ptr(buffer_le, roff);
3602                 hdr = &ib->ihdr;
3603                 e = Add2Ptr(ib, aoff);
3604
3605                 if (is_baad(&ib->rhdr))
3606                         goto dirty_vol;
3607
3608                 if (!check_lsn(&ib->rhdr, rlsn))
3609                         goto out;
3610                 if (!check_index_buffer(ib, bytes) ||
3611                     !check_if_alloc_index(hdr, aoff)) {
3612                         goto dirty_vol;
3613                 }
3614
3615                 fname = (struct ATTR_FILE_NAME *)(e + 1);
3616                 memmove(&fname->dup, data, sizeof(fname->dup));
3617
3618                 a_dirty = true;
3619                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3620                 break;
3621
3622         case SetBitsInNonresidentBitMap:
3623                 bmp_off =
3624                         le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3625                 bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3626
3627                 if (cbo + (bmp_off + 7) / 8 > lco ||
3628                     cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) {
3629                         goto dirty_vol;
3630                 }
3631
3632                 __bitmap_set(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits);
3633                 a_dirty = true;
3634                 break;
3635
3636         case ClearBitsInNonresidentBitMap:
3637                 bmp_off =
3638                         le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3639                 bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3640
3641                 if (cbo + (bmp_off + 7) / 8 > lco ||
3642                     cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) {
3643                         goto dirty_vol;
3644                 }
3645
3646                 __bitmap_clear(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits);
3647                 a_dirty = true;
3648                 break;
3649
3650         case UpdateRecordDataAllocation:
3651                 ib = Add2Ptr(buffer_le, roff);
3652                 hdr = &ib->ihdr;
3653                 e = Add2Ptr(ib, aoff);
3654
3655                 if (is_baad(&ib->rhdr))
3656                         goto dirty_vol;
3657
3658                 if (!check_lsn(&ib->rhdr, rlsn))
3659                         goto out;
3660                 if (!check_index_buffer(ib, bytes) ||
3661                     !check_if_alloc_index(hdr, aoff)) {
3662                         goto dirty_vol;
3663                 }
3664
3665                 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3666
3667                 a_dirty = true;
3668                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3669                 break;
3670
3671         default:
3672                 WARN_ON(1);
3673         }
3674
3675         if (rlsn) {
3676                 __le64 t64 = cpu_to_le64(*rlsn);
3677
3678                 if (rec)
3679                         rec->rhdr.lsn = t64;
3680                 if (ib)
3681                         ib->rhdr.lsn = t64;
3682         }
3683
3684         if (mi && mi->dirty) {
3685                 err = mi_write(mi, 0);
3686                 if (err)
3687                         goto out;
3688         }
3689
3690         if (a_dirty) {
3691                 attr = oa->attr;
3692                 err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 0);
3693                 if (err)
3694                         goto out;
3695         }
3696
3697 out:
3698
3699         if (inode)
3700                 iput(inode);
3701         else if (mi != mi2_child)
3702                 mi_put(mi);
3703
3704         kfree(buffer_le);
3705
3706         return err;
3707
3708 dirty_vol:
3709         log->set_dirty = true;
3710         goto out;
3711 }
3712
3713 /*
3714  * log_replay - Replays log and empties it.
3715  *
3716  * This function is called during mount operation.
3717  * It replays log and empties it.
3718  * Initialized is set false if logfile contains '-1'.
3719  */
3720 int log_replay(struct ntfs_inode *ni, bool *initialized)
3721 {
3722         int err;
3723         struct ntfs_sb_info *sbi = ni->mi.sbi;
3724         struct ntfs_log *log;
3725
3726         struct restart_info rst_info, rst_info2;
3727         u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0;
3728         struct ATTR_NAME_ENTRY *attr_names = NULL;
3729         struct ATTR_NAME_ENTRY *ane;
3730         struct RESTART_TABLE *dptbl = NULL;
3731         struct RESTART_TABLE *trtbl = NULL;
3732         const struct RESTART_TABLE *rt;
3733         struct RESTART_TABLE *oatbl = NULL;
3734         struct inode *inode;
3735         struct OpenAttr *oa;
3736         struct ntfs_inode *ni_oe;
3737         struct ATTRIB *attr = NULL;
3738         u64 size, vcn, undo_next_lsn;
3739         CLST rno, lcn, lcn0, len0, clen;
3740         void *data;
3741         struct NTFS_RESTART *rst = NULL;
3742         struct lcb *lcb = NULL;
3743         struct OPEN_ATTR_ENRTY *oe;
3744         struct TRANSACTION_ENTRY *tr;
3745         struct DIR_PAGE_ENTRY *dp;
3746         u32 i, bytes_per_attr_entry;
3747         u32 l_size = ni->vfs_inode.i_size;
3748         u32 orig_file_size = l_size;
3749         u32 page_size, vbo, tail, off, dlen;
3750         u32 saved_len, rec_len, transact_id;
3751         bool use_second_page;
3752         struct RESTART_AREA *ra2, *ra = NULL;
3753         struct CLIENT_REC *ca, *cr;
3754         __le16 client;
3755         struct RESTART_HDR *rh;
3756         const struct LFS_RECORD_HDR *frh;
3757         const struct LOG_REC_HDR *lrh;
3758         bool is_mapped;
3759         bool is_ro = sb_rdonly(sbi->sb);
3760         u64 t64;
3761         u16 t16;
3762         u32 t32;
3763
3764         /* Get the size of page. NOTE: To replay we can use default page. */
3765 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3766         page_size = norm_file_page(PAGE_SIZE, &l_size, true);
3767 #else
3768         page_size = norm_file_page(PAGE_SIZE, &l_size, false);
3769 #endif
3770         if (!page_size)
3771                 return -EINVAL;
3772
3773         log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
3774         if (!log)
3775                 return -ENOMEM;
3776
3777         memset(&rst_info, 0, sizeof(struct restart_info));
3778
3779         log->ni = ni;
3780         log->l_size = l_size;
3781         log->one_page_buf = kmalloc(page_size, GFP_NOFS);
3782         if (!log->one_page_buf) {
3783                 err = -ENOMEM;
3784                 goto out;
3785         }
3786
3787         log->page_size = page_size;
3788         log->page_mask = page_size - 1;
3789         log->page_bits = blksize_bits(page_size);
3790
3791         /* Look for a restart area on the disk. */
3792         err = log_read_rst(log, l_size, true, &rst_info);
3793         if (err)
3794                 goto out;
3795
3796         /* remember 'initialized' */
3797         *initialized = rst_info.initialized;
3798
3799         if (!rst_info.restart) {
3800                 if (rst_info.initialized) {
3801                         /* No restart area but the file is not initialized. */
3802                         err = -EINVAL;
3803                         goto out;
3804                 }
3805
3806                 log_init_pg_hdr(log, page_size, page_size, 1, 1);
3807                 log_create(log, l_size, 0, get_random_u32(), false, false);
3808
3809                 log->ra = ra;
3810
3811                 ra = log_create_ra(log);
3812                 if (!ra) {
3813                         err = -ENOMEM;
3814                         goto out;
3815                 }
3816                 log->ra = ra;
3817                 log->init_ra = true;
3818
3819                 goto process_log;
3820         }
3821
3822         /*
3823          * If the restart offset above wasn't zero then we won't
3824          * look for a second restart.
3825          */
3826         if (rst_info.vbo)
3827                 goto check_restart_area;
3828
3829         memset(&rst_info2, 0, sizeof(struct restart_info));
3830         err = log_read_rst(log, l_size, false, &rst_info2);
3831         if (err)
3832                 goto out;
3833
3834         /* Determine which restart area to use. */
3835         if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn)
3836                 goto use_first_page;
3837
3838         use_second_page = true;
3839
3840         if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) {
3841                 struct RECORD_PAGE_HDR *sp = NULL;
3842                 bool usa_error;
3843
3844                 if (!read_log_page(log, page_size, &sp, &usa_error) &&
3845                     sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3846                         use_second_page = false;
3847                 }
3848                 kfree(sp);
3849         }
3850
3851         if (use_second_page) {
3852                 kfree(rst_info.r_page);
3853                 memcpy(&rst_info, &rst_info2, sizeof(struct restart_info));
3854                 rst_info2.r_page = NULL;
3855         }
3856
3857 use_first_page:
3858         kfree(rst_info2.r_page);
3859
3860 check_restart_area:
3861         /*
3862          * If the restart area is at offset 0, we want
3863          * to write the second restart area first.
3864          */
3865         log->init_ra = !!rst_info.vbo;
3866
3867         /* If we have a valid page then grab a pointer to the restart area. */
3868         ra2 = rst_info.valid_page
3869                       ? Add2Ptr(rst_info.r_page,
3870                                 le16_to_cpu(rst_info.r_page->ra_off))
3871                       : NULL;
3872
3873         if (rst_info.chkdsk_was_run ||
3874             (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3875                 bool wrapped = false;
3876                 bool use_multi_page = false;
3877                 u32 open_log_count;
3878
3879                 /* Do some checks based on whether we have a valid log page. */
3880                 if (!rst_info.valid_page) {
3881                         open_log_count = get_random_u32();
3882                         goto init_log_instance;
3883                 }
3884                 open_log_count = le32_to_cpu(ra2->open_log_count);
3885
3886                 /*
3887                  * If the restart page size isn't changing then we want to
3888                  * check how much work we need to do.
3889                  */
3890                 if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size))
3891                         goto init_log_instance;
3892
3893 init_log_instance:
3894                 log_init_pg_hdr(log, page_size, page_size, 1, 1);
3895
3896                 log_create(log, l_size, rst_info.last_lsn, open_log_count,
3897                            wrapped, use_multi_page);
3898
3899                 ra = log_create_ra(log);
3900                 if (!ra) {
3901                         err = -ENOMEM;
3902                         goto out;
3903                 }
3904                 log->ra = ra;
3905
3906                 /* Put the restart areas and initialize
3907                  * the log file as required.
3908                  */
3909                 goto process_log;
3910         }
3911
3912         if (!ra2) {
3913                 err = -EINVAL;
3914                 goto out;
3915         }
3916
3917         /*
3918          * If the log page or the system page sizes have changed, we can't
3919          * use the log file. We must use the system page size instead of the
3920          * default size if there is not a clean shutdown.
3921          */
3922         t32 = le32_to_cpu(rst_info.r_page->sys_page_size);
3923         if (page_size != t32) {
3924                 l_size = orig_file_size;
3925                 page_size =
3926                         norm_file_page(t32, &l_size, t32 == DefaultLogPageSize);
3927         }
3928
3929         if (page_size != t32 ||
3930             page_size != le32_to_cpu(rst_info.r_page->page_size)) {
3931                 err = -EINVAL;
3932                 goto out;
3933         }
3934
3935         /* If the file size has shrunk then we won't mount it. */
3936         if (l_size < le64_to_cpu(ra2->l_size)) {
3937                 err = -EINVAL;
3938                 goto out;
3939         }
3940
3941         log_init_pg_hdr(log, page_size, page_size,
3942                         le16_to_cpu(rst_info.r_page->major_ver),
3943                         le16_to_cpu(rst_info.r_page->minor_ver));
3944
3945         log->l_size = le64_to_cpu(ra2->l_size);
3946         log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3947         log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3948         log->seq_num_mask = (8 << log->file_data_bits) - 1;
3949         log->last_lsn = le64_to_cpu(ra2->current_lsn);
3950         log->seq_num = log->last_lsn >> log->file_data_bits;
3951         log->ra_off = le16_to_cpu(rst_info.r_page->ra_off);
3952         log->restart_size = log->sys_page_size - log->ra_off;
3953         log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3954         log->ra_size = le16_to_cpu(ra2->ra_len);
3955         log->data_off = le16_to_cpu(ra2->data_off);
3956         log->data_size = log->page_size - log->data_off;
3957         log->reserved = log->data_size - log->record_header_len;
3958
3959         vbo = lsn_to_vbo(log, log->last_lsn);
3960
3961         if (vbo < log->first_page) {
3962                 /* This is a pseudo lsn. */
3963                 log->l_flags |= NTFSLOG_NO_LAST_LSN;
3964                 log->next_page = log->first_page;
3965                 goto find_oldest;
3966         }
3967
3968         /* Find the end of this log record. */
3969         off = final_log_off(log, log->last_lsn,
3970                             le32_to_cpu(ra2->last_lsn_data_len));
3971
3972         /* If we wrapped the file then increment the sequence number. */
3973         if (off <= vbo) {
3974                 log->seq_num += 1;
3975                 log->l_flags |= NTFSLOG_WRAPPED;
3976         }
3977
3978         /* Now compute the next log page to use. */
3979         vbo &= ~log->sys_page_mask;
3980         tail = log->page_size - (off & log->page_mask) - 1;
3981
3982         /*
3983          *If we can fit another log record on the page,
3984          * move back a page the log file.
3985          */
3986         if (tail >= log->record_header_len) {
3987                 log->l_flags |= NTFSLOG_REUSE_TAIL;
3988                 log->next_page = vbo;
3989         } else {
3990                 log->next_page = next_page_off(log, vbo);
3991         }
3992
3993 find_oldest:
3994         /*
3995          * Find the oldest client lsn. Use the last
3996          * flushed lsn as a starting point.
3997          */
3998         log->oldest_lsn = log->last_lsn;
3999         oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
4000                           ra2->client_idx[1], &log->oldest_lsn);
4001         log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
4002
4003         if (log->oldest_lsn_off < log->first_page)
4004                 log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
4005
4006         if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
4007                 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
4008
4009         log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
4010         log->total_avail_pages = log->l_size - log->first_page;
4011         log->total_avail = log->total_avail_pages >> log->page_bits;
4012         log->max_current_avail = log->total_avail * log->reserved;
4013         log->total_avail = log->total_avail * log->data_size;
4014
4015         log->current_avail = current_log_avail(log);
4016
4017         ra = kzalloc(log->restart_size, GFP_NOFS);
4018         if (!ra) {
4019                 err = -ENOMEM;
4020                 goto out;
4021         }
4022         log->ra = ra;
4023
4024         t16 = le16_to_cpu(ra2->client_off);
4025         if (t16 == offsetof(struct RESTART_AREA, clients)) {
4026                 memcpy(ra, ra2, log->ra_size);
4027         } else {
4028                 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4029                 memcpy(ra->clients, Add2Ptr(ra2, t16),
4030                        le16_to_cpu(ra2->ra_len) - t16);
4031
4032                 log->current_openlog_count = get_random_u32();
4033                 ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4034                 log->ra_size = offsetof(struct RESTART_AREA, clients) +
4035                                sizeof(struct CLIENT_REC);
4036                 ra->client_off =
4037                         cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4038                 ra->ra_len = cpu_to_le16(log->ra_size);
4039         }
4040
4041         le32_add_cpu(&ra->open_log_count, 1);
4042
4043         /* Now we need to walk through looking for the last lsn. */
4044         err = last_log_lsn(log);
4045         if (err)
4046                 goto out;
4047
4048         log->current_avail = current_log_avail(log);
4049
4050         /* Remember which restart area to write first. */
4051         log->init_ra = rst_info.vbo;
4052
4053 process_log:
4054         /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4055         switch ((log->major_ver << 16) + log->minor_ver) {
4056         case 0x10000:
4057         case 0x10001:
4058         case 0x20000:
4059                 break;
4060         default:
4061                 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4062                           log->major_ver, log->minor_ver);
4063                 err = -EOPNOTSUPP;
4064                 log->set_dirty = true;
4065                 goto out;
4066         }
4067
4068         /* One client "NTFS" per logfile. */
4069         ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4070
4071         for (client = ra->client_idx[1];; client = cr->next_client) {
4072                 if (client == LFS_NO_CLIENT_LE) {
4073                         /* Insert "NTFS" client LogFile. */
4074                         client = ra->client_idx[0];
4075                         if (client == LFS_NO_CLIENT_LE) {
4076                                 err = -EINVAL;
4077                                 goto out;
4078                         }
4079
4080                         t16 = le16_to_cpu(client);
4081                         cr = ca + t16;
4082
4083                         remove_client(ca, cr, &ra->client_idx[0]);
4084
4085                         cr->restart_lsn = 0;
4086                         cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4087                         cr->name_bytes = cpu_to_le32(8);
4088                         cr->name[0] = cpu_to_le16('N');
4089                         cr->name[1] = cpu_to_le16('T');
4090                         cr->name[2] = cpu_to_le16('F');
4091                         cr->name[3] = cpu_to_le16('S');
4092
4093                         add_client(ca, t16, &ra->client_idx[1]);
4094                         break;
4095                 }
4096
4097                 cr = ca + le16_to_cpu(client);
4098
4099                 if (cpu_to_le32(8) == cr->name_bytes &&
4100                     cpu_to_le16('N') == cr->name[0] &&
4101                     cpu_to_le16('T') == cr->name[1] &&
4102                     cpu_to_le16('F') == cr->name[2] &&
4103                     cpu_to_le16('S') == cr->name[3])
4104                         break;
4105         }
4106
4107         /* Update the client handle with the client block information. */
4108         log->client_id.seq_num = cr->seq_num;
4109         log->client_id.client_idx = client;
4110
4111         err = read_rst_area(log, &rst, &ra_lsn);
4112         if (err)
4113                 goto out;
4114
4115         if (!rst)
4116                 goto out;
4117
4118         bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4119
4120         checkpt_lsn = le64_to_cpu(rst->check_point_start);
4121         if (!checkpt_lsn)
4122                 checkpt_lsn = ra_lsn;
4123
4124         /* Allocate and Read the Transaction Table. */
4125         if (!rst->transact_table_len)
4126                 goto check_dirty_page_table;
4127
4128         t64 = le64_to_cpu(rst->transact_table_lsn);
4129         err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4130         if (err)
4131                 goto out;
4132
4133         lrh = lcb->log_rec;
4134         frh = lcb->lrh;
4135         rec_len = le32_to_cpu(frh->client_data_len);
4136
4137         if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4138                            bytes_per_attr_entry)) {
4139                 err = -EINVAL;
4140                 goto out;
4141         }
4142
4143         t16 = le16_to_cpu(lrh->redo_off);
4144
4145         rt = Add2Ptr(lrh, t16);
4146         t32 = rec_len - t16;
4147
4148         /* Now check that this is a valid restart table. */
4149         if (!check_rstbl(rt, t32)) {
4150                 err = -EINVAL;
4151                 goto out;
4152         }
4153
4154         trtbl = kmemdup(rt, t32, GFP_NOFS);
4155         if (!trtbl) {
4156                 err = -ENOMEM;
4157                 goto out;
4158         }
4159
4160         lcb_put(lcb);
4161         lcb = NULL;
4162
4163 check_dirty_page_table:
4164         /* The next record back should be the Dirty Pages Table. */
4165         if (!rst->dirty_pages_len)
4166                 goto check_attribute_names;
4167
4168         t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4169         err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4170         if (err)
4171                 goto out;
4172
4173         lrh = lcb->log_rec;
4174         frh = lcb->lrh;
4175         rec_len = le32_to_cpu(frh->client_data_len);
4176
4177         if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4178                            bytes_per_attr_entry)) {
4179                 err = -EINVAL;
4180                 goto out;
4181         }
4182
4183         t16 = le16_to_cpu(lrh->redo_off);
4184
4185         rt = Add2Ptr(lrh, t16);
4186         t32 = rec_len - t16;
4187
4188         /* Now check that this is a valid restart table. */
4189         if (!check_rstbl(rt, t32)) {
4190                 err = -EINVAL;
4191                 goto out;
4192         }
4193
4194         dptbl = kmemdup(rt, t32, GFP_NOFS);
4195         if (!dptbl) {
4196                 err = -ENOMEM;
4197                 goto out;
4198         }
4199
4200         /* Convert Ra version '0' into version '1'. */
4201         if (rst->major_ver)
4202                 goto end_conv_1;
4203
4204         dp = NULL;
4205         while ((dp = enum_rstbl(dptbl, dp))) {
4206                 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4207                 // NOTE: Danger. Check for of boundary.
4208                 memmove(&dp->vcn, &dp0->vcn_low,
4209                         2 * sizeof(u64) +
4210                                 le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4211         }
4212
4213 end_conv_1:
4214         lcb_put(lcb);
4215         lcb = NULL;
4216
4217         /*
4218          * Go through the table and remove the duplicates,
4219          * remembering the oldest lsn values.
4220          */
4221         if (sbi->cluster_size <= log->page_size)
4222                 goto trace_dp_table;
4223
4224         dp = NULL;
4225         while ((dp = enum_rstbl(dptbl, dp))) {
4226                 struct DIR_PAGE_ENTRY *next = dp;
4227
4228                 while ((next = enum_rstbl(dptbl, next))) {
4229                         if (next->target_attr == dp->target_attr &&
4230                             next->vcn == dp->vcn) {
4231                                 if (le64_to_cpu(next->oldest_lsn) <
4232                                     le64_to_cpu(dp->oldest_lsn)) {
4233                                         dp->oldest_lsn = next->oldest_lsn;
4234                                 }
4235
4236                                 free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4237                         }
4238                 }
4239         }
4240 trace_dp_table:
4241 check_attribute_names:
4242         /* The next record should be the Attribute Names. */
4243         if (!rst->attr_names_len)
4244                 goto check_attr_table;
4245
4246         t64 = le64_to_cpu(rst->attr_names_lsn);
4247         err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4248         if (err)
4249                 goto out;
4250
4251         lrh = lcb->log_rec;
4252         frh = lcb->lrh;
4253         rec_len = le32_to_cpu(frh->client_data_len);
4254
4255         if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4256                            bytes_per_attr_entry)) {
4257                 err = -EINVAL;
4258                 goto out;
4259         }
4260
4261         t32 = lrh_length(lrh);
4262         rec_len -= t32;
4263
4264         attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
4265         if (!attr_names) {
4266                 err = -ENOMEM;
4267                 goto out;
4268         }
4269
4270         lcb_put(lcb);
4271         lcb = NULL;
4272
4273 check_attr_table:
4274         /* The next record should be the attribute Table. */
4275         if (!rst->open_attr_len)
4276                 goto check_attribute_names2;
4277
4278         t64 = le64_to_cpu(rst->open_attr_table_lsn);
4279         err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4280         if (err)
4281                 goto out;
4282
4283         lrh = lcb->log_rec;
4284         frh = lcb->lrh;
4285         rec_len = le32_to_cpu(frh->client_data_len);
4286
4287         if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4288                            bytes_per_attr_entry)) {
4289                 err = -EINVAL;
4290                 goto out;
4291         }
4292
4293         t16 = le16_to_cpu(lrh->redo_off);
4294
4295         rt = Add2Ptr(lrh, t16);
4296         t32 = rec_len - t16;
4297
4298         if (!check_rstbl(rt, t32)) {
4299                 err = -EINVAL;
4300                 goto out;
4301         }
4302
4303         oatbl = kmemdup(rt, t32, GFP_NOFS);
4304         if (!oatbl) {
4305                 err = -ENOMEM;
4306                 goto out;
4307         }
4308
4309         log->open_attr_tbl = oatbl;
4310
4311         /* Clear all of the Attr pointers. */
4312         oe = NULL;
4313         while ((oe = enum_rstbl(oatbl, oe))) {
4314                 if (!rst->major_ver) {
4315                         struct OPEN_ATTR_ENRTY_32 oe0;
4316
4317                         /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4318                         memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4319
4320                         oe->bytes_per_index = oe0.bytes_per_index;
4321                         oe->type = oe0.type;
4322                         oe->is_dirty_pages = oe0.is_dirty_pages;
4323                         oe->name_len = 0;
4324                         oe->ref = oe0.ref;
4325                         oe->open_record_lsn = oe0.open_record_lsn;
4326                 }
4327
4328                 oe->is_attr_name = 0;
4329                 oe->ptr = NULL;
4330         }
4331
4332         lcb_put(lcb);
4333         lcb = NULL;
4334
4335 check_attribute_names2:
4336         if (!rst->attr_names_len)
4337                 goto trace_attribute_table;
4338
4339         ane = attr_names;
4340         if (!oatbl)
4341                 goto trace_attribute_table;
4342         while (ane->off) {
4343                 /* TODO: Clear table on exit! */
4344                 oe = Add2Ptr(oatbl, le16_to_cpu(ane->off));
4345                 t16 = le16_to_cpu(ane->name_bytes);
4346                 oe->name_len = t16 / sizeof(short);
4347                 oe->ptr = ane->name;
4348                 oe->is_attr_name = 2;
4349                 ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16);
4350         }
4351
4352 trace_attribute_table:
4353         /*
4354          * If the checkpt_lsn is zero, then this is a freshly
4355          * formatted disk and we have no work to do.
4356          */
4357         if (!checkpt_lsn) {
4358                 err = 0;
4359                 goto out;
4360         }
4361
4362         if (!oatbl) {
4363                 oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4364                 if (!oatbl) {
4365                         err = -ENOMEM;
4366                         goto out;
4367                 }
4368         }
4369
4370         log->open_attr_tbl = oatbl;
4371
4372         /* Start the analysis pass from the Checkpoint lsn. */
4373         rec_lsn = checkpt_lsn;
4374
4375         /* Read the first lsn. */
4376         err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4377         if (err)
4378                 goto out;
4379
4380         /* Loop to read all subsequent records to the end of the log file. */
4381 next_log_record_analyze:
4382         err = read_next_log_rec(log, lcb, &rec_lsn);
4383         if (err)
4384                 goto out;
4385
4386         if (!rec_lsn)
4387                 goto end_log_records_enumerate;
4388
4389         frh = lcb->lrh;
4390         transact_id = le32_to_cpu(frh->transact_id);
4391         rec_len = le32_to_cpu(frh->client_data_len);
4392         lrh = lcb->log_rec;
4393
4394         if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4395                 err = -EINVAL;
4396                 goto out;
4397         }
4398
4399         /*
4400          * The first lsn after the previous lsn remembered
4401          * the checkpoint is the first candidate for the rlsn.
4402          */
4403         if (!rlsn)
4404                 rlsn = rec_lsn;
4405
4406         if (LfsClientRecord != frh->record_type)
4407                 goto next_log_record_analyze;
4408
4409         /*
4410          * Now update the Transaction Table for this transaction. If there
4411          * is no entry present or it is unallocated we allocate the entry.
4412          */
4413         if (!trtbl) {
4414                 trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4415                                     INITIAL_NUMBER_TRANSACTIONS);
4416                 if (!trtbl) {
4417                         err = -ENOMEM;
4418                         goto out;
4419                 }
4420         }
4421
4422         tr = Add2Ptr(trtbl, transact_id);
4423
4424         if (transact_id >= bytes_per_rt(trtbl) ||
4425             tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4426                 tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4427                 if (!tr) {
4428                         err = -ENOMEM;
4429                         goto out;
4430                 }
4431                 tr->transact_state = TransactionActive;
4432                 tr->first_lsn = cpu_to_le64(rec_lsn);
4433         }
4434
4435         tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4436
4437         /*
4438          * If this is a compensation log record, then change
4439          * the undo_next_lsn to be the undo_next_lsn of this record.
4440          */
4441         if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4442                 tr->undo_next_lsn = frh->client_undo_next_lsn;
4443
4444         /* Dispatch to handle log record depending on type. */
4445         switch (le16_to_cpu(lrh->redo_op)) {
4446         case InitializeFileRecordSegment:
4447         case DeallocateFileRecordSegment:
4448         case WriteEndOfFileRecordSegment:
4449         case CreateAttribute:
4450         case DeleteAttribute:
4451         case UpdateResidentValue:
4452         case UpdateNonresidentValue:
4453         case UpdateMappingPairs:
4454         case SetNewAttributeSizes:
4455         case AddIndexEntryRoot:
4456         case DeleteIndexEntryRoot:
4457         case AddIndexEntryAllocation:
4458         case DeleteIndexEntryAllocation:
4459         case WriteEndOfIndexBuffer:
4460         case SetIndexEntryVcnRoot:
4461         case SetIndexEntryVcnAllocation:
4462         case UpdateFileNameRoot:
4463         case UpdateFileNameAllocation:
4464         case SetBitsInNonresidentBitMap:
4465         case ClearBitsInNonresidentBitMap:
4466         case UpdateRecordDataRoot:
4467         case UpdateRecordDataAllocation:
4468         case ZeroEndOfFileRecord:
4469                 t16 = le16_to_cpu(lrh->target_attr);
4470                 t64 = le64_to_cpu(lrh->target_vcn);
4471                 dp = find_dp(dptbl, t16, t64);
4472
4473                 if (dp)
4474                         goto copy_lcns;
4475
4476                 /*
4477                  * Calculate the number of clusters per page the system
4478                  * which wrote the checkpoint, possibly creating the table.
4479                  */
4480                 if (dptbl) {
4481                         t32 = (le16_to_cpu(dptbl->size) -
4482                                sizeof(struct DIR_PAGE_ENTRY)) /
4483                               sizeof(u64);
4484                 } else {
4485                         t32 = log->clst_per_page;
4486                         kfree(dptbl);
4487                         dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4488                                             32);
4489                         if (!dptbl) {
4490                                 err = -ENOMEM;
4491                                 goto out;
4492                         }
4493                 }
4494
4495                 dp = alloc_rsttbl_idx(&dptbl);
4496                 if (!dp) {
4497                         err = -ENOMEM;
4498                         goto out;
4499                 }
4500                 dp->target_attr = cpu_to_le32(t16);
4501                 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4502                 dp->lcns_follow = cpu_to_le32(t32);
4503                 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4504                 dp->oldest_lsn = cpu_to_le64(rec_lsn);
4505
4506 copy_lcns:
4507                 /*
4508                  * Copy the Lcns from the log record into the Dirty Page Entry.
4509                  * TODO: For different page size support, must somehow make
4510                  * whole routine a loop, case Lcns do not fit below.
4511                  */
4512                 t16 = le16_to_cpu(lrh->lcns_follow);
4513                 for (i = 0; i < t16; i++) {
4514                         size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4515                                             le64_to_cpu(dp->vcn));
4516                         dp->page_lcns[j + i] = lrh->page_lcns[i];
4517                 }
4518
4519                 goto next_log_record_analyze;
4520
4521         case DeleteDirtyClusters: {
4522                 u32 range_count =
4523                         le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4524                 const struct LCN_RANGE *r =
4525                         Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4526
4527                 /* Loop through all of the Lcn ranges this log record. */
4528                 for (i = 0; i < range_count; i++, r++) {
4529                         u64 lcn0 = le64_to_cpu(r->lcn);
4530                         u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4531
4532                         dp = NULL;
4533                         while ((dp = enum_rstbl(dptbl, dp))) {
4534                                 u32 j;
4535
4536                                 t32 = le32_to_cpu(dp->lcns_follow);
4537                                 for (j = 0; j < t32; j++) {
4538                                         t64 = le64_to_cpu(dp->page_lcns[j]);
4539                                         if (t64 >= lcn0 && t64 <= lcn_e)
4540                                                 dp->page_lcns[j] = 0;
4541                                 }
4542                         }
4543                 }
4544                 goto next_log_record_analyze;
4545                 ;
4546         }
4547
4548         case OpenNonresidentAttribute:
4549                 t16 = le16_to_cpu(lrh->target_attr);
4550                 if (t16 >= bytes_per_rt(oatbl)) {
4551                         /*
4552                          * Compute how big the table needs to be.
4553                          * Add 10 extra entries for some cushion.
4554                          */
4555                         u32 new_e = t16 / le16_to_cpu(oatbl->size);
4556
4557                         new_e += 10 - le16_to_cpu(oatbl->used);
4558
4559                         oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4560                         log->open_attr_tbl = oatbl;
4561                         if (!oatbl) {
4562                                 err = -ENOMEM;
4563                                 goto out;
4564                         }
4565                 }
4566
4567                 /* Point to the entry being opened. */
4568                 oe = alloc_rsttbl_from_idx(&oatbl, t16);
4569                 log->open_attr_tbl = oatbl;
4570                 if (!oe) {
4571                         err = -ENOMEM;
4572                         goto out;
4573                 }
4574
4575                 /* Initialize this entry from the log record. */
4576                 t16 = le16_to_cpu(lrh->redo_off);
4577                 if (!rst->major_ver) {
4578                         /* Convert version '0' into version '1'. */
4579                         struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4580
4581                         oe->bytes_per_index = oe0->bytes_per_index;
4582                         oe->type = oe0->type;
4583                         oe->is_dirty_pages = oe0->is_dirty_pages;
4584                         oe->name_len = 0; //oe0.name_len;
4585                         oe->ref = oe0->ref;
4586                         oe->open_record_lsn = oe0->open_record_lsn;
4587                 } else {
4588                         memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4589                 }
4590
4591                 t16 = le16_to_cpu(lrh->undo_len);
4592                 if (t16) {
4593                         oe->ptr = kmalloc(t16, GFP_NOFS);
4594                         if (!oe->ptr) {
4595                                 err = -ENOMEM;
4596                                 goto out;
4597                         }
4598                         oe->name_len = t16 / sizeof(short);
4599                         memcpy(oe->ptr,
4600                                Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4601                         oe->is_attr_name = 1;
4602                 } else {
4603                         oe->ptr = NULL;
4604                         oe->is_attr_name = 0;
4605                 }
4606
4607                 goto next_log_record_analyze;
4608
4609         case HotFix:
4610                 t16 = le16_to_cpu(lrh->target_attr);
4611                 t64 = le64_to_cpu(lrh->target_vcn);
4612                 dp = find_dp(dptbl, t16, t64);
4613                 if (dp) {
4614                         size_t j = le64_to_cpu(lrh->target_vcn) -
4615                                    le64_to_cpu(dp->vcn);
4616                         if (dp->page_lcns[j])
4617                                 dp->page_lcns[j] = lrh->page_lcns[0];
4618                 }
4619                 goto next_log_record_analyze;
4620
4621         case EndTopLevelAction:
4622                 tr = Add2Ptr(trtbl, transact_id);
4623                 tr->prev_lsn = cpu_to_le64(rec_lsn);
4624                 tr->undo_next_lsn = frh->client_undo_next_lsn;
4625                 goto next_log_record_analyze;
4626
4627         case PrepareTransaction:
4628                 tr = Add2Ptr(trtbl, transact_id);
4629                 tr->transact_state = TransactionPrepared;
4630                 goto next_log_record_analyze;
4631
4632         case CommitTransaction:
4633                 tr = Add2Ptr(trtbl, transact_id);
4634                 tr->transact_state = TransactionCommitted;
4635                 goto next_log_record_analyze;
4636
4637         case ForgetTransaction:
4638                 free_rsttbl_idx(trtbl, transact_id);
4639                 goto next_log_record_analyze;
4640
4641         case Noop:
4642         case OpenAttributeTableDump:
4643         case AttributeNamesDump:
4644         case DirtyPageTableDump:
4645         case TransactionTableDump:
4646                 /* The following cases require no action the Analysis Pass. */
4647                 goto next_log_record_analyze;
4648
4649         default:
4650                 /*
4651                  * All codes will be explicitly handled.
4652                  * If we see a code we do not expect, then we are trouble.
4653                  */
4654                 goto next_log_record_analyze;
4655         }
4656
4657 end_log_records_enumerate:
4658         lcb_put(lcb);
4659         lcb = NULL;
4660
4661         /*
4662          * Scan the Dirty Page Table and Transaction Table for
4663          * the lowest lsn, and return it as the Redo lsn.
4664          */
4665         dp = NULL;
4666         while ((dp = enum_rstbl(dptbl, dp))) {
4667                 t64 = le64_to_cpu(dp->oldest_lsn);
4668                 if (t64 && t64 < rlsn)
4669                         rlsn = t64;
4670         }
4671
4672         tr = NULL;
4673         while ((tr = enum_rstbl(trtbl, tr))) {
4674                 t64 = le64_to_cpu(tr->first_lsn);
4675                 if (t64 && t64 < rlsn)
4676                         rlsn = t64;
4677         }
4678
4679         /*
4680          * Only proceed if the Dirty Page Table or Transaction
4681          * table are not empty.
4682          */
4683         if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4684                 goto end_reply;
4685
4686         sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4687         if (is_ro)
4688                 goto out;
4689
4690         /* Reopen all of the attributes with dirty pages. */
4691         oe = NULL;
4692 next_open_attribute:
4693
4694         oe = enum_rstbl(oatbl, oe);
4695         if (!oe) {
4696                 err = 0;
4697                 dp = NULL;
4698                 goto next_dirty_page;
4699         }
4700
4701         oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
4702         if (!oa) {
4703                 err = -ENOMEM;
4704                 goto out;
4705         }
4706
4707         inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4708         if (IS_ERR(inode))
4709                 goto fake_attr;
4710
4711         if (is_bad_inode(inode)) {
4712                 iput(inode);
4713 fake_attr:
4714                 if (oa->ni) {
4715                         iput(&oa->ni->vfs_inode);
4716                         oa->ni = NULL;
4717                 }
4718
4719                 attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4720                                               oe->name_len, 0);
4721                 if (!attr) {
4722                         kfree(oa);
4723                         err = -ENOMEM;
4724                         goto out;
4725                 }
4726                 oa->attr = attr;
4727                 oa->run1 = &oa->run0;
4728                 goto final_oe;
4729         }
4730
4731         ni_oe = ntfs_i(inode);
4732         oa->ni = ni_oe;
4733
4734         attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4735                             NULL, NULL);
4736
4737         if (!attr)
4738                 goto fake_attr;
4739
4740         t32 = le32_to_cpu(attr->size);
4741         oa->attr = kmemdup(attr, t32, GFP_NOFS);
4742         if (!oa->attr)
4743                 goto fake_attr;
4744
4745         if (!S_ISDIR(inode->i_mode)) {
4746                 if (attr->type == ATTR_DATA && !attr->name_len) {
4747                         oa->run1 = &ni_oe->file.run;
4748                         goto final_oe;
4749                 }
4750         } else {
4751                 if (attr->type == ATTR_ALLOC &&
4752                     attr->name_len == ARRAY_SIZE(I30_NAME) &&
4753                     !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4754                         oa->run1 = &ni_oe->dir.alloc_run;
4755                         goto final_oe;
4756                 }
4757         }
4758
4759         if (attr->non_res) {
4760                 u16 roff = le16_to_cpu(attr->nres.run_off);
4761                 CLST svcn = le64_to_cpu(attr->nres.svcn);
4762
4763                 if (roff > t32) {
4764                         kfree(oa->attr);
4765                         oa->attr = NULL;
4766                         goto fake_attr;
4767                 }
4768
4769                 err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4770                                  le64_to_cpu(attr->nres.evcn), svcn,
4771                                  Add2Ptr(attr, roff), t32 - roff);
4772                 if (err < 0) {
4773                         kfree(oa->attr);
4774                         oa->attr = NULL;
4775                         goto fake_attr;
4776                 }
4777                 err = 0;
4778         }
4779         oa->run1 = &oa->run0;
4780         attr = oa->attr;
4781
4782 final_oe:
4783         if (oe->is_attr_name == 1)
4784                 kfree(oe->ptr);
4785         oe->is_attr_name = 0;
4786         oe->ptr = oa;
4787         oe->name_len = attr->name_len;
4788
4789         goto next_open_attribute;
4790
4791         /*
4792          * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4793          * Mapping that we have, and insert it into the appropriate run.
4794          */
4795 next_dirty_page:
4796         dp = enum_rstbl(dptbl, dp);
4797         if (!dp)
4798                 goto do_redo_1;
4799
4800         oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4801
4802         if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4803                 goto next_dirty_page;
4804
4805         oa = oe->ptr;
4806         if (!oa)
4807                 goto next_dirty_page;
4808
4809         i = -1;
4810 next_dirty_page_vcn:
4811         i += 1;
4812         if (i >= le32_to_cpu(dp->lcns_follow))
4813                 goto next_dirty_page;
4814
4815         vcn = le64_to_cpu(dp->vcn) + i;
4816         size = (vcn + 1) << sbi->cluster_bits;
4817
4818         if (!dp->page_lcns[i])
4819                 goto next_dirty_page_vcn;
4820
4821         rno = ino_get(&oe->ref);
4822         if (rno <= MFT_REC_MIRR &&
4823             size < (MFT_REC_VOL + 1) * sbi->record_size &&
4824             oe->type == ATTR_DATA) {
4825                 goto next_dirty_page_vcn;
4826         }
4827
4828         lcn = le64_to_cpu(dp->page_lcns[i]);
4829
4830         if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4831              lcn0 != lcn) &&
4832             !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4833                 err = -ENOMEM;
4834                 goto out;
4835         }
4836         attr = oa->attr;
4837         t64 = le64_to_cpu(attr->nres.alloc_size);
4838         if (size > t64) {
4839                 attr->nres.valid_size = attr->nres.data_size =
4840                         attr->nres.alloc_size = cpu_to_le64(size);
4841         }
4842         goto next_dirty_page_vcn;
4843
4844 do_redo_1:
4845         /*
4846          * Perform the Redo Pass, to restore all of the dirty pages to the same
4847          * contents that they had immediately before the crash. If the dirty
4848          * page table is empty, then we can skip the entire Redo Pass.
4849          */
4850         if (!dptbl || !dptbl->total)
4851                 goto do_undo_action;
4852
4853         rec_lsn = rlsn;
4854
4855         /*
4856          * Read the record at the Redo lsn, before falling
4857          * into common code to handle each record.
4858          */
4859         err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4860         if (err)
4861                 goto out;
4862
4863         /*
4864          * Now loop to read all of our log records forwards, until
4865          * we hit the end of the file, cleaning up at the end.
4866          */
4867 do_action_next:
4868         frh = lcb->lrh;
4869
4870         if (LfsClientRecord != frh->record_type)
4871                 goto read_next_log_do_action;
4872
4873         transact_id = le32_to_cpu(frh->transact_id);
4874         rec_len = le32_to_cpu(frh->client_data_len);
4875         lrh = lcb->log_rec;
4876
4877         if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4878                 err = -EINVAL;
4879                 goto out;
4880         }
4881
4882         /* Ignore log records that do not update pages. */
4883         if (lrh->lcns_follow)
4884                 goto find_dirty_page;
4885
4886         goto read_next_log_do_action;
4887
4888 find_dirty_page:
4889         t16 = le16_to_cpu(lrh->target_attr);
4890         t64 = le64_to_cpu(lrh->target_vcn);
4891         dp = find_dp(dptbl, t16, t64);
4892
4893         if (!dp)
4894                 goto read_next_log_do_action;
4895
4896         if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4897                 goto read_next_log_do_action;
4898
4899         t16 = le16_to_cpu(lrh->target_attr);
4900         if (t16 >= bytes_per_rt(oatbl)) {
4901                 err = -EINVAL;
4902                 goto out;
4903         }
4904
4905         oe = Add2Ptr(oatbl, t16);
4906
4907         if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4908                 err = -EINVAL;
4909                 goto out;
4910         }
4911
4912         oa = oe->ptr;
4913
4914         if (!oa) {
4915                 err = -EINVAL;
4916                 goto out;
4917         }
4918         attr = oa->attr;
4919
4920         vcn = le64_to_cpu(lrh->target_vcn);
4921
4922         if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4923             lcn == SPARSE_LCN) {
4924                 goto read_next_log_do_action;
4925         }
4926
4927         /* Point to the Redo data and get its length. */
4928         data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4929         dlen = le16_to_cpu(lrh->redo_len);
4930
4931         /* Shorten length by any Lcns which were deleted. */
4932         saved_len = dlen;
4933
4934         for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4935                 size_t j;
4936                 u32 alen, voff;
4937
4938                 voff = le16_to_cpu(lrh->record_off) +
4939                        le16_to_cpu(lrh->attr_off);
4940                 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4941
4942                 /* If the Vcn question is allocated, we can just get out. */
4943                 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4944                 if (dp->page_lcns[j + i - 1])
4945                         break;
4946
4947                 if (!saved_len)
4948                         saved_len = 1;
4949
4950                 /*
4951                  * Calculate the allocated space left relative to the
4952                  * log record Vcn, after removing this unallocated Vcn.
4953                  */
4954                 alen = (i - 1) << sbi->cluster_bits;
4955
4956                 /*
4957                  * If the update described this log record goes beyond
4958                  * the allocated space, then we will have to reduce the length.
4959                  */
4960                 if (voff >= alen)
4961                         dlen = 0;
4962                 else if (voff + dlen > alen)
4963                         dlen = alen - voff;
4964         }
4965
4966         /*
4967          * If the resulting dlen from above is now zero,
4968          * we can skip this log record.
4969          */
4970         if (!dlen && saved_len)
4971                 goto read_next_log_do_action;
4972
4973         t16 = le16_to_cpu(lrh->redo_op);
4974         if (can_skip_action(t16))
4975                 goto read_next_log_do_action;
4976
4977         /* Apply the Redo operation a common routine. */
4978         err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
4979         if (err)
4980                 goto out;
4981
4982         /* Keep reading and looping back until end of file. */
4983 read_next_log_do_action:
4984         err = read_next_log_rec(log, lcb, &rec_lsn);
4985         if (!err && rec_lsn)
4986                 goto do_action_next;
4987
4988         lcb_put(lcb);
4989         lcb = NULL;
4990
4991 do_undo_action:
4992         /* Scan Transaction Table. */
4993         tr = NULL;
4994 transaction_table_next:
4995         tr = enum_rstbl(trtbl, tr);
4996         if (!tr)
4997                 goto undo_action_done;
4998
4999         if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
5000                 free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
5001                 goto transaction_table_next;
5002         }
5003
5004         log->transaction_id = PtrOffset(trtbl, tr);
5005         undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
5006
5007         /*
5008          * We only have to do anything if the transaction has
5009          * something its undo_next_lsn field.
5010          */
5011         if (!undo_next_lsn)
5012                 goto commit_undo;
5013
5014         /* Read the first record to be undone by this transaction. */
5015         err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
5016         if (err)
5017                 goto out;
5018
5019         /*
5020          * Now loop to read all of our log records forwards,
5021          * until we hit the end of the file, cleaning up at the end.
5022          */
5023 undo_action_next:
5024
5025         lrh = lcb->log_rec;
5026         frh = lcb->lrh;
5027         transact_id = le32_to_cpu(frh->transact_id);
5028         rec_len = le32_to_cpu(frh->client_data_len);
5029
5030         if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5031                 err = -EINVAL;
5032                 goto out;
5033         }
5034
5035         if (lrh->undo_op == cpu_to_le16(Noop))
5036                 goto read_next_log_undo_action;
5037
5038         oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5039         oa = oe->ptr;
5040
5041         t16 = le16_to_cpu(lrh->lcns_follow);
5042         if (!t16)
5043                 goto add_allocated_vcns;
5044
5045         is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5046                                      &lcn, &clen, NULL);
5047
5048         /*
5049          * If the mapping isn't already the table or the  mapping
5050          * corresponds to a hole the mapping, we need to make sure
5051          * there is no partial page already memory.
5052          */
5053         if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5054                 goto add_allocated_vcns;
5055
5056         vcn = le64_to_cpu(lrh->target_vcn);
5057         vcn &= ~(u64)(log->clst_per_page - 1);
5058
5059 add_allocated_vcns:
5060         for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5061             size = (vcn + 1) << sbi->cluster_bits;
5062              i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5063                 attr = oa->attr;
5064                 if (!attr->non_res) {
5065                         if (size > le32_to_cpu(attr->res.data_size))
5066                                 attr->res.data_size = cpu_to_le32(size);
5067                 } else {
5068                         if (size > le64_to_cpu(attr->nres.data_size))
5069                                 attr->nres.valid_size = attr->nres.data_size =
5070                                         attr->nres.alloc_size =
5071                                                 cpu_to_le64(size);
5072                 }
5073         }
5074
5075         t16 = le16_to_cpu(lrh->undo_op);
5076         if (can_skip_action(t16))
5077                 goto read_next_log_undo_action;
5078
5079         /* Point to the Redo data and get its length. */
5080         data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5081         dlen = le16_to_cpu(lrh->undo_len);
5082
5083         /* It is time to apply the undo action. */
5084         err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5085
5086 read_next_log_undo_action:
5087         /*
5088          * Keep reading and looping back until we have read the
5089          * last record for this transaction.
5090          */
5091         err = read_next_log_rec(log, lcb, &rec_lsn);
5092         if (err)
5093                 goto out;
5094
5095         if (rec_lsn)
5096                 goto undo_action_next;
5097
5098         lcb_put(lcb);
5099         lcb = NULL;
5100
5101 commit_undo:
5102         free_rsttbl_idx(trtbl, log->transaction_id);
5103
5104         log->transaction_id = 0;
5105
5106         goto transaction_table_next;
5107
5108 undo_action_done:
5109
5110         ntfs_update_mftmirr(sbi, 0);
5111
5112         sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5113
5114 end_reply:
5115
5116         err = 0;
5117         if (is_ro)
5118                 goto out;
5119
5120         rh = kzalloc(log->page_size, GFP_NOFS);
5121         if (!rh) {
5122                 err = -ENOMEM;
5123                 goto out;
5124         }
5125
5126         rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5127         rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5128         t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5129         rh->rhdr.fix_num = cpu_to_le16(t16);
5130         rh->sys_page_size = cpu_to_le32(log->page_size);
5131         rh->page_size = cpu_to_le32(log->page_size);
5132
5133         t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5134                     8);
5135         rh->ra_off = cpu_to_le16(t16);
5136         rh->minor_ver = cpu_to_le16(1); // 0x1A:
5137         rh->major_ver = cpu_to_le16(1); // 0x1C:
5138
5139         ra2 = Add2Ptr(rh, t16);
5140         memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5141
5142         ra2->client_idx[0] = 0;
5143         ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5144         ra2->flags = cpu_to_le16(2);
5145
5146         le32_add_cpu(&ra2->open_log_count, 1);
5147
5148         ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5149
5150         err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
5151         if (!err)
5152                 err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
5153                                         rh, log->page_size, 0);
5154
5155         kfree(rh);
5156         if (err)
5157                 goto out;
5158
5159 out:
5160         kfree(rst);
5161         if (lcb)
5162                 lcb_put(lcb);
5163
5164         /*
5165          * Scan the Open Attribute Table to close all of
5166          * the open attributes.
5167          */
5168         oe = NULL;
5169         while ((oe = enum_rstbl(oatbl, oe))) {
5170                 rno = ino_get(&oe->ref);
5171
5172                 if (oe->is_attr_name == 1) {
5173                         kfree(oe->ptr);
5174                         oe->ptr = NULL;
5175                         continue;
5176                 }
5177
5178                 if (oe->is_attr_name)
5179                         continue;
5180
5181                 oa = oe->ptr;
5182                 if (!oa)
5183                         continue;
5184
5185                 run_close(&oa->run0);
5186                 kfree(oa->attr);
5187                 if (oa->ni)
5188                         iput(&oa->ni->vfs_inode);
5189                 kfree(oa);
5190         }
5191
5192         kfree(trtbl);
5193         kfree(oatbl);
5194         kfree(dptbl);
5195         kfree(attr_names);
5196         kfree(rst_info.r_page);
5197
5198         kfree(ra);
5199         kfree(log->one_page_buf);
5200
5201         if (err)
5202                 sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5203
5204         if (err == -EROFS)
5205                 err = 0;
5206         else if (log->set_dirty)
5207                 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
5208
5209         kfree(log);
5210
5211         return err;
5212 }