GNU Linux-libre 5.10.217-gnu1
[releases.git] / fs / nilfs2 / super.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * super.c - NILFS module and super block management.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  */
9 /*
10  *  linux/fs/ext2/super.c
11  *
12  * Copyright (C) 1992, 1993, 1994, 1995
13  * Remy Card (card@masi.ibp.fr)
14  * Laboratoire MASI - Institut Blaise Pascal
15  * Universite Pierre et Marie Curie (Paris VI)
16  *
17  *  from
18  *
19  *  linux/fs/minix/inode.c
20  *
21  *  Copyright (C) 1991, 1992  Linus Torvalds
22  *
23  *  Big-endian to little-endian byte-swapping/bitmaps by
24  *        David S. Miller (davem@caip.rutgers.edu), 1995
25  */
26
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/blkdev.h>
32 #include <linux/parser.h>
33 #include <linux/crc32.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h>
36 #include <linux/seq_file.h>
37 #include <linux/mount.h>
38 #include "nilfs.h"
39 #include "export.h"
40 #include "mdt.h"
41 #include "alloc.h"
42 #include "btree.h"
43 #include "btnode.h"
44 #include "page.h"
45 #include "cpfile.h"
46 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
47 #include "ifile.h"
48 #include "dat.h"
49 #include "segment.h"
50 #include "segbuf.h"
51
52 MODULE_AUTHOR("NTT Corp.");
53 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
54                    "(NILFS)");
55 MODULE_LICENSE("GPL");
56
57 static struct kmem_cache *nilfs_inode_cachep;
58 struct kmem_cache *nilfs_transaction_cachep;
59 struct kmem_cache *nilfs_segbuf_cachep;
60 struct kmem_cache *nilfs_btree_path_cache;
61
62 static int nilfs_setup_super(struct super_block *sb, int is_mount);
63 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
64
65 void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
66 {
67         struct va_format vaf;
68         va_list args;
69         int level;
70
71         va_start(args, fmt);
72
73         level = printk_get_level(fmt);
74         vaf.fmt = printk_skip_level(fmt);
75         vaf.va = &args;
76
77         if (sb)
78                 printk("%c%cNILFS (%s): %pV\n",
79                        KERN_SOH_ASCII, level, sb->s_id, &vaf);
80         else
81                 printk("%c%cNILFS: %pV\n",
82                        KERN_SOH_ASCII, level, &vaf);
83
84         va_end(args);
85 }
86
87 static void nilfs_set_error(struct super_block *sb)
88 {
89         struct the_nilfs *nilfs = sb->s_fs_info;
90         struct nilfs_super_block **sbp;
91
92         down_write(&nilfs->ns_sem);
93         if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
94                 nilfs->ns_mount_state |= NILFS_ERROR_FS;
95                 sbp = nilfs_prepare_super(sb, 0);
96                 if (likely(sbp)) {
97                         sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
98                         if (sbp[1])
99                                 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
100                         nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
101                 }
102         }
103         up_write(&nilfs->ns_sem);
104 }
105
106 /**
107  * __nilfs_error() - report failure condition on a filesystem
108  *
109  * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
110  * reporting an error message.  This function should be called when
111  * NILFS detects incoherences or defects of meta data on disk.
112  *
113  * This implements the body of nilfs_error() macro.  Normally,
114  * nilfs_error() should be used.  As for sustainable errors such as a
115  * single-shot I/O error, nilfs_err() should be used instead.
116  *
117  * Callers should not add a trailing newline since this will do it.
118  */
119 void __nilfs_error(struct super_block *sb, const char *function,
120                    const char *fmt, ...)
121 {
122         struct the_nilfs *nilfs = sb->s_fs_info;
123         struct va_format vaf;
124         va_list args;
125
126         va_start(args, fmt);
127
128         vaf.fmt = fmt;
129         vaf.va = &args;
130
131         printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
132                sb->s_id, function, &vaf);
133
134         va_end(args);
135
136         if (!sb_rdonly(sb)) {
137                 nilfs_set_error(sb);
138
139                 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
140                         printk(KERN_CRIT "Remounting filesystem read-only\n");
141                         sb->s_flags |= SB_RDONLY;
142                 }
143         }
144
145         if (nilfs_test_opt(nilfs, ERRORS_PANIC))
146                 panic("NILFS (device %s): panic forced after error\n",
147                       sb->s_id);
148 }
149
150 struct inode *nilfs_alloc_inode(struct super_block *sb)
151 {
152         struct nilfs_inode_info *ii;
153
154         ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
155         if (!ii)
156                 return NULL;
157         ii->i_bh = NULL;
158         ii->i_state = 0;
159         ii->i_cno = 0;
160         ii->i_assoc_inode = NULL;
161         ii->i_bmap = &ii->i_bmap_data;
162         return &ii->vfs_inode;
163 }
164
165 static void nilfs_free_inode(struct inode *inode)
166 {
167         if (nilfs_is_metadata_file_inode(inode))
168                 nilfs_mdt_destroy(inode);
169
170         kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
171 }
172
173 static int nilfs_sync_super(struct super_block *sb, int flag)
174 {
175         struct the_nilfs *nilfs = sb->s_fs_info;
176         int err;
177
178  retry:
179         set_buffer_dirty(nilfs->ns_sbh[0]);
180         if (nilfs_test_opt(nilfs, BARRIER)) {
181                 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
182                                           REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
183         } else {
184                 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
185         }
186
187         if (unlikely(err)) {
188                 nilfs_err(sb, "unable to write superblock: err=%d", err);
189                 if (err == -EIO && nilfs->ns_sbh[1]) {
190                         /*
191                          * sbp[0] points to newer log than sbp[1],
192                          * so copy sbp[0] to sbp[1] to take over sbp[0].
193                          */
194                         memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
195                                nilfs->ns_sbsize);
196                         nilfs_fall_back_super_block(nilfs);
197                         goto retry;
198                 }
199         } else {
200                 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
201
202                 nilfs->ns_sbwcount++;
203
204                 /*
205                  * The latest segment becomes trailable from the position
206                  * written in superblock.
207                  */
208                 clear_nilfs_discontinued(nilfs);
209
210                 /* update GC protection for recent segments */
211                 if (nilfs->ns_sbh[1]) {
212                         if (flag == NILFS_SB_COMMIT_ALL) {
213                                 set_buffer_dirty(nilfs->ns_sbh[1]);
214                                 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
215                                         goto out;
216                         }
217                         if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
218                             le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
219                                 sbp = nilfs->ns_sbp[1];
220                 }
221
222                 spin_lock(&nilfs->ns_last_segment_lock);
223                 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
224                 spin_unlock(&nilfs->ns_last_segment_lock);
225         }
226  out:
227         return err;
228 }
229
230 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
231                           struct the_nilfs *nilfs)
232 {
233         sector_t nfreeblocks;
234
235         /* nilfs->ns_sem must be locked by the caller. */
236         nilfs_count_free_blocks(nilfs, &nfreeblocks);
237         sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
238
239         spin_lock(&nilfs->ns_last_segment_lock);
240         sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
241         sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
242         sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
243         spin_unlock(&nilfs->ns_last_segment_lock);
244 }
245
246 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
247                                                int flip)
248 {
249         struct the_nilfs *nilfs = sb->s_fs_info;
250         struct nilfs_super_block **sbp = nilfs->ns_sbp;
251
252         /* nilfs->ns_sem must be locked by the caller. */
253         if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
254                 if (sbp[1] &&
255                     sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
256                         memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
257                 } else {
258                         nilfs_crit(sb, "superblock broke");
259                         return NULL;
260                 }
261         } else if (sbp[1] &&
262                    sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
263                 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
264         }
265
266         if (flip && sbp[1])
267                 nilfs_swap_super_block(nilfs);
268
269         return sbp;
270 }
271
272 int nilfs_commit_super(struct super_block *sb, int flag)
273 {
274         struct the_nilfs *nilfs = sb->s_fs_info;
275         struct nilfs_super_block **sbp = nilfs->ns_sbp;
276         time64_t t;
277
278         /* nilfs->ns_sem must be locked by the caller. */
279         t = ktime_get_real_seconds();
280         nilfs->ns_sbwtime = t;
281         sbp[0]->s_wtime = cpu_to_le64(t);
282         sbp[0]->s_sum = 0;
283         sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
284                                              (unsigned char *)sbp[0],
285                                              nilfs->ns_sbsize));
286         if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
287                 sbp[1]->s_wtime = sbp[0]->s_wtime;
288                 sbp[1]->s_sum = 0;
289                 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
290                                             (unsigned char *)sbp[1],
291                                             nilfs->ns_sbsize));
292         }
293         clear_nilfs_sb_dirty(nilfs);
294         nilfs->ns_flushed_device = 1;
295         /* make sure store to ns_flushed_device cannot be reordered */
296         smp_wmb();
297         return nilfs_sync_super(sb, flag);
298 }
299
300 /**
301  * nilfs_cleanup_super() - write filesystem state for cleanup
302  * @sb: super block instance to be unmounted or degraded to read-only
303  *
304  * This function restores state flags in the on-disk super block.
305  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
306  * filesystem was not clean previously.
307  */
308 int nilfs_cleanup_super(struct super_block *sb)
309 {
310         struct the_nilfs *nilfs = sb->s_fs_info;
311         struct nilfs_super_block **sbp;
312         int flag = NILFS_SB_COMMIT;
313         int ret = -EIO;
314
315         sbp = nilfs_prepare_super(sb, 0);
316         if (sbp) {
317                 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
318                 nilfs_set_log_cursor(sbp[0], nilfs);
319                 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
320                         /*
321                          * make the "clean" flag also to the opposite
322                          * super block if both super blocks point to
323                          * the same checkpoint.
324                          */
325                         sbp[1]->s_state = sbp[0]->s_state;
326                         flag = NILFS_SB_COMMIT_ALL;
327                 }
328                 ret = nilfs_commit_super(sb, flag);
329         }
330         return ret;
331 }
332
333 /**
334  * nilfs_move_2nd_super - relocate secondary super block
335  * @sb: super block instance
336  * @sb2off: new offset of the secondary super block (in bytes)
337  */
338 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
339 {
340         struct the_nilfs *nilfs = sb->s_fs_info;
341         struct buffer_head *nsbh;
342         struct nilfs_super_block *nsbp;
343         sector_t blocknr, newblocknr;
344         unsigned long offset;
345         int sb2i;  /* array index of the secondary superblock */
346         int ret = 0;
347
348         /* nilfs->ns_sem must be locked by the caller. */
349         if (nilfs->ns_sbh[1] &&
350             nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
351                 sb2i = 1;
352                 blocknr = nilfs->ns_sbh[1]->b_blocknr;
353         } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
354                 sb2i = 0;
355                 blocknr = nilfs->ns_sbh[0]->b_blocknr;
356         } else {
357                 sb2i = -1;
358                 blocknr = 0;
359         }
360         if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
361                 goto out;  /* super block location is unchanged */
362
363         /* Get new super block buffer */
364         newblocknr = sb2off >> nilfs->ns_blocksize_bits;
365         offset = sb2off & (nilfs->ns_blocksize - 1);
366         nsbh = sb_getblk(sb, newblocknr);
367         if (!nsbh) {
368                 nilfs_warn(sb,
369                            "unable to move secondary superblock to block %llu",
370                            (unsigned long long)newblocknr);
371                 ret = -EIO;
372                 goto out;
373         }
374         nsbp = (void *)nsbh->b_data + offset;
375
376         lock_buffer(nsbh);
377         if (sb2i >= 0) {
378                 /*
379                  * The position of the second superblock only changes by 4KiB,
380                  * which is larger than the maximum superblock data size
381                  * (= 1KiB), so there is no need to use memmove() to allow
382                  * overlap between source and destination.
383                  */
384                 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
385
386                 /*
387                  * Zero fill after copy to avoid overwriting in case of move
388                  * within the same block.
389                  */
390                 memset(nsbh->b_data, 0, offset);
391                 memset((void *)nsbp + nilfs->ns_sbsize, 0,
392                        nsbh->b_size - offset - nilfs->ns_sbsize);
393         } else {
394                 memset(nsbh->b_data, 0, nsbh->b_size);
395         }
396         set_buffer_uptodate(nsbh);
397         unlock_buffer(nsbh);
398
399         if (sb2i >= 0) {
400                 brelse(nilfs->ns_sbh[sb2i]);
401                 nilfs->ns_sbh[sb2i] = nsbh;
402                 nilfs->ns_sbp[sb2i] = nsbp;
403         } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
404                 /* secondary super block will be restored to index 1 */
405                 nilfs->ns_sbh[1] = nsbh;
406                 nilfs->ns_sbp[1] = nsbp;
407         } else {
408                 brelse(nsbh);
409         }
410 out:
411         return ret;
412 }
413
414 /**
415  * nilfs_resize_fs - resize the filesystem
416  * @sb: super block instance
417  * @newsize: new size of the filesystem (in bytes)
418  */
419 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
420 {
421         struct the_nilfs *nilfs = sb->s_fs_info;
422         struct nilfs_super_block **sbp;
423         __u64 devsize, newnsegs;
424         loff_t sb2off;
425         int ret;
426
427         ret = -ERANGE;
428         devsize = i_size_read(sb->s_bdev->bd_inode);
429         if (newsize > devsize)
430                 goto out;
431
432         /*
433          * Prevent underflow in second superblock position calculation.
434          * The exact minimum size check is done in nilfs_sufile_resize().
435          */
436         if (newsize < 4096) {
437                 ret = -ENOSPC;
438                 goto out;
439         }
440
441         /*
442          * Write lock is required to protect some functions depending
443          * on the number of segments, the number of reserved segments,
444          * and so forth.
445          */
446         down_write(&nilfs->ns_segctor_sem);
447
448         sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
449         newnsegs = sb2off >> nilfs->ns_blocksize_bits;
450         do_div(newnsegs, nilfs->ns_blocks_per_segment);
451
452         ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
453         up_write(&nilfs->ns_segctor_sem);
454         if (ret < 0)
455                 goto out;
456
457         ret = nilfs_construct_segment(sb);
458         if (ret < 0)
459                 goto out;
460
461         down_write(&nilfs->ns_sem);
462         nilfs_move_2nd_super(sb, sb2off);
463         ret = -EIO;
464         sbp = nilfs_prepare_super(sb, 0);
465         if (likely(sbp)) {
466                 nilfs_set_log_cursor(sbp[0], nilfs);
467                 /*
468                  * Drop NILFS_RESIZE_FS flag for compatibility with
469                  * mount-time resize which may be implemented in a
470                  * future release.
471                  */
472                 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
473                                               ~NILFS_RESIZE_FS);
474                 sbp[0]->s_dev_size = cpu_to_le64(newsize);
475                 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
476                 if (sbp[1])
477                         memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
478                 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
479         }
480         up_write(&nilfs->ns_sem);
481
482         /*
483          * Reset the range of allocatable segments last.  This order
484          * is important in the case of expansion because the secondary
485          * superblock must be protected from log write until migration
486          * completes.
487          */
488         if (!ret)
489                 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
490 out:
491         return ret;
492 }
493
494 static void nilfs_put_super(struct super_block *sb)
495 {
496         struct the_nilfs *nilfs = sb->s_fs_info;
497
498         nilfs_detach_log_writer(sb);
499
500         if (!sb_rdonly(sb)) {
501                 down_write(&nilfs->ns_sem);
502                 nilfs_cleanup_super(sb);
503                 up_write(&nilfs->ns_sem);
504         }
505
506         nilfs_sysfs_delete_device_group(nilfs);
507         iput(nilfs->ns_sufile);
508         iput(nilfs->ns_cpfile);
509         iput(nilfs->ns_dat);
510
511         destroy_nilfs(nilfs);
512         sb->s_fs_info = NULL;
513 }
514
515 static int nilfs_sync_fs(struct super_block *sb, int wait)
516 {
517         struct the_nilfs *nilfs = sb->s_fs_info;
518         struct nilfs_super_block **sbp;
519         int err = 0;
520
521         /* This function is called when super block should be written back */
522         if (wait)
523                 err = nilfs_construct_segment(sb);
524
525         down_write(&nilfs->ns_sem);
526         if (nilfs_sb_dirty(nilfs)) {
527                 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
528                 if (likely(sbp)) {
529                         nilfs_set_log_cursor(sbp[0], nilfs);
530                         nilfs_commit_super(sb, NILFS_SB_COMMIT);
531                 }
532         }
533         up_write(&nilfs->ns_sem);
534
535         if (!err)
536                 err = nilfs_flush_device(nilfs);
537
538         return err;
539 }
540
541 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
542                             struct nilfs_root **rootp)
543 {
544         struct the_nilfs *nilfs = sb->s_fs_info;
545         struct nilfs_root *root;
546         struct nilfs_checkpoint *raw_cp;
547         struct buffer_head *bh_cp;
548         int err = -ENOMEM;
549
550         root = nilfs_find_or_create_root(
551                 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
552         if (!root)
553                 return err;
554
555         if (root->ifile)
556                 goto reuse; /* already attached checkpoint */
557
558         down_read(&nilfs->ns_segctor_sem);
559         err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
560                                           &bh_cp);
561         up_read(&nilfs->ns_segctor_sem);
562         if (unlikely(err)) {
563                 if (err == -ENOENT || err == -EINVAL) {
564                         nilfs_err(sb,
565                                   "Invalid checkpoint (checkpoint number=%llu)",
566                                   (unsigned long long)cno);
567                         err = -EINVAL;
568                 }
569                 goto failed;
570         }
571
572         err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
573                                &raw_cp->cp_ifile_inode, &root->ifile);
574         if (err)
575                 goto failed_bh;
576
577         atomic64_set(&root->inodes_count,
578                         le64_to_cpu(raw_cp->cp_inodes_count));
579         atomic64_set(&root->blocks_count,
580                         le64_to_cpu(raw_cp->cp_blocks_count));
581
582         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
583
584  reuse:
585         *rootp = root;
586         return 0;
587
588  failed_bh:
589         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
590  failed:
591         nilfs_put_root(root);
592
593         return err;
594 }
595
596 static int nilfs_freeze(struct super_block *sb)
597 {
598         struct the_nilfs *nilfs = sb->s_fs_info;
599         int err;
600
601         if (sb_rdonly(sb))
602                 return 0;
603
604         /* Mark super block clean */
605         down_write(&nilfs->ns_sem);
606         err = nilfs_cleanup_super(sb);
607         up_write(&nilfs->ns_sem);
608         return err;
609 }
610
611 static int nilfs_unfreeze(struct super_block *sb)
612 {
613         struct the_nilfs *nilfs = sb->s_fs_info;
614
615         if (sb_rdonly(sb))
616                 return 0;
617
618         down_write(&nilfs->ns_sem);
619         nilfs_setup_super(sb, false);
620         up_write(&nilfs->ns_sem);
621         return 0;
622 }
623
624 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
625 {
626         struct super_block *sb = dentry->d_sb;
627         struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
628         struct the_nilfs *nilfs = root->nilfs;
629         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
630         unsigned long long blocks;
631         unsigned long overhead;
632         unsigned long nrsvblocks;
633         sector_t nfreeblocks;
634         u64 nmaxinodes, nfreeinodes;
635         int err;
636
637         /*
638          * Compute all of the segment blocks
639          *
640          * The blocks before first segment and after last segment
641          * are excluded.
642          */
643         blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
644                 - nilfs->ns_first_data_block;
645         nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
646
647         /*
648          * Compute the overhead
649          *
650          * When distributing meta data blocks outside segment structure,
651          * We must count them as the overhead.
652          */
653         overhead = 0;
654
655         err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
656         if (unlikely(err))
657                 return err;
658
659         err = nilfs_ifile_count_free_inodes(root->ifile,
660                                             &nmaxinodes, &nfreeinodes);
661         if (unlikely(err)) {
662                 nilfs_warn(sb, "failed to count free inodes: err=%d", err);
663                 if (err == -ERANGE) {
664                         /*
665                          * If nilfs_palloc_count_max_entries() returns
666                          * -ERANGE error code then we simply treat
667                          * curent inodes count as maximum possible and
668                          * zero as free inodes value.
669                          */
670                         nmaxinodes = atomic64_read(&root->inodes_count);
671                         nfreeinodes = 0;
672                         err = 0;
673                 } else
674                         return err;
675         }
676
677         buf->f_type = NILFS_SUPER_MAGIC;
678         buf->f_bsize = sb->s_blocksize;
679         buf->f_blocks = blocks - overhead;
680         buf->f_bfree = nfreeblocks;
681         buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
682                 (buf->f_bfree - nrsvblocks) : 0;
683         buf->f_files = nmaxinodes;
684         buf->f_ffree = nfreeinodes;
685         buf->f_namelen = NILFS_NAME_LEN;
686         buf->f_fsid = u64_to_fsid(id);
687
688         return 0;
689 }
690
691 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
692 {
693         struct super_block *sb = dentry->d_sb;
694         struct the_nilfs *nilfs = sb->s_fs_info;
695         struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
696
697         if (!nilfs_test_opt(nilfs, BARRIER))
698                 seq_puts(seq, ",nobarrier");
699         if (root->cno != NILFS_CPTREE_CURRENT_CNO)
700                 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
701         if (nilfs_test_opt(nilfs, ERRORS_PANIC))
702                 seq_puts(seq, ",errors=panic");
703         if (nilfs_test_opt(nilfs, ERRORS_CONT))
704                 seq_puts(seq, ",errors=continue");
705         if (nilfs_test_opt(nilfs, STRICT_ORDER))
706                 seq_puts(seq, ",order=strict");
707         if (nilfs_test_opt(nilfs, NORECOVERY))
708                 seq_puts(seq, ",norecovery");
709         if (nilfs_test_opt(nilfs, DISCARD))
710                 seq_puts(seq, ",discard");
711
712         return 0;
713 }
714
715 static const struct super_operations nilfs_sops = {
716         .alloc_inode    = nilfs_alloc_inode,
717         .free_inode     = nilfs_free_inode,
718         .dirty_inode    = nilfs_dirty_inode,
719         .evict_inode    = nilfs_evict_inode,
720         .put_super      = nilfs_put_super,
721         .sync_fs        = nilfs_sync_fs,
722         .freeze_fs      = nilfs_freeze,
723         .unfreeze_fs    = nilfs_unfreeze,
724         .statfs         = nilfs_statfs,
725         .remount_fs     = nilfs_remount,
726         .show_options = nilfs_show_options
727 };
728
729 enum {
730         Opt_err_cont, Opt_err_panic, Opt_err_ro,
731         Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
732         Opt_discard, Opt_nodiscard, Opt_err,
733 };
734
735 static match_table_t tokens = {
736         {Opt_err_cont, "errors=continue"},
737         {Opt_err_panic, "errors=panic"},
738         {Opt_err_ro, "errors=remount-ro"},
739         {Opt_barrier, "barrier"},
740         {Opt_nobarrier, "nobarrier"},
741         {Opt_snapshot, "cp=%u"},
742         {Opt_order, "order=%s"},
743         {Opt_norecovery, "norecovery"},
744         {Opt_discard, "discard"},
745         {Opt_nodiscard, "nodiscard"},
746         {Opt_err, NULL}
747 };
748
749 static int parse_options(char *options, struct super_block *sb, int is_remount)
750 {
751         struct the_nilfs *nilfs = sb->s_fs_info;
752         char *p;
753         substring_t args[MAX_OPT_ARGS];
754
755         if (!options)
756                 return 1;
757
758         while ((p = strsep(&options, ",")) != NULL) {
759                 int token;
760
761                 if (!*p)
762                         continue;
763
764                 token = match_token(p, tokens, args);
765                 switch (token) {
766                 case Opt_barrier:
767                         nilfs_set_opt(nilfs, BARRIER);
768                         break;
769                 case Opt_nobarrier:
770                         nilfs_clear_opt(nilfs, BARRIER);
771                         break;
772                 case Opt_order:
773                         if (strcmp(args[0].from, "relaxed") == 0)
774                                 /* Ordered data semantics */
775                                 nilfs_clear_opt(nilfs, STRICT_ORDER);
776                         else if (strcmp(args[0].from, "strict") == 0)
777                                 /* Strict in-order semantics */
778                                 nilfs_set_opt(nilfs, STRICT_ORDER);
779                         else
780                                 return 0;
781                         break;
782                 case Opt_err_panic:
783                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
784                         break;
785                 case Opt_err_ro:
786                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
787                         break;
788                 case Opt_err_cont:
789                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
790                         break;
791                 case Opt_snapshot:
792                         if (is_remount) {
793                                 nilfs_err(sb,
794                                           "\"%s\" option is invalid for remount",
795                                           p);
796                                 return 0;
797                         }
798                         break;
799                 case Opt_norecovery:
800                         nilfs_set_opt(nilfs, NORECOVERY);
801                         break;
802                 case Opt_discard:
803                         nilfs_set_opt(nilfs, DISCARD);
804                         break;
805                 case Opt_nodiscard:
806                         nilfs_clear_opt(nilfs, DISCARD);
807                         break;
808                 default:
809                         nilfs_err(sb, "unrecognized mount option \"%s\"", p);
810                         return 0;
811                 }
812         }
813         return 1;
814 }
815
816 static inline void
817 nilfs_set_default_options(struct super_block *sb,
818                           struct nilfs_super_block *sbp)
819 {
820         struct the_nilfs *nilfs = sb->s_fs_info;
821
822         nilfs->ns_mount_opt =
823                 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
824 }
825
826 static int nilfs_setup_super(struct super_block *sb, int is_mount)
827 {
828         struct the_nilfs *nilfs = sb->s_fs_info;
829         struct nilfs_super_block **sbp;
830         int max_mnt_count;
831         int mnt_count;
832
833         /* nilfs->ns_sem must be locked by the caller. */
834         sbp = nilfs_prepare_super(sb, 0);
835         if (!sbp)
836                 return -EIO;
837
838         if (!is_mount)
839                 goto skip_mount_setup;
840
841         max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
842         mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
843
844         if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
845                 nilfs_warn(sb, "mounting fs with errors");
846 #if 0
847         } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
848                 nilfs_warn(sb, "maximal mount count reached");
849 #endif
850         }
851         if (!max_mnt_count)
852                 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
853
854         sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
855         sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
856
857 skip_mount_setup:
858         sbp[0]->s_state =
859                 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
860         /* synchronize sbp[1] with sbp[0] */
861         if (sbp[1])
862                 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
863         return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
864 }
865
866 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
867                                                  u64 pos, int blocksize,
868                                                  struct buffer_head **pbh)
869 {
870         unsigned long long sb_index = pos;
871         unsigned long offset;
872
873         offset = do_div(sb_index, blocksize);
874         *pbh = sb_bread(sb, sb_index);
875         if (!*pbh)
876                 return NULL;
877         return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
878 }
879
880 int nilfs_store_magic_and_option(struct super_block *sb,
881                                  struct nilfs_super_block *sbp,
882                                  char *data)
883 {
884         struct the_nilfs *nilfs = sb->s_fs_info;
885
886         sb->s_magic = le16_to_cpu(sbp->s_magic);
887
888         /* FS independent flags */
889 #ifdef NILFS_ATIME_DISABLE
890         sb->s_flags |= SB_NOATIME;
891 #endif
892
893         nilfs_set_default_options(sb, sbp);
894
895         nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
896         nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
897         nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
898         nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
899
900         return !parse_options(data, sb, 0) ? -EINVAL : 0;
901 }
902
903 int nilfs_check_feature_compatibility(struct super_block *sb,
904                                       struct nilfs_super_block *sbp)
905 {
906         __u64 features;
907
908         features = le64_to_cpu(sbp->s_feature_incompat) &
909                 ~NILFS_FEATURE_INCOMPAT_SUPP;
910         if (features) {
911                 nilfs_err(sb,
912                           "couldn't mount because of unsupported optional features (%llx)",
913                           (unsigned long long)features);
914                 return -EINVAL;
915         }
916         features = le64_to_cpu(sbp->s_feature_compat_ro) &
917                 ~NILFS_FEATURE_COMPAT_RO_SUPP;
918         if (!sb_rdonly(sb) && features) {
919                 nilfs_err(sb,
920                           "couldn't mount RDWR because of unsupported optional features (%llx)",
921                           (unsigned long long)features);
922                 return -EINVAL;
923         }
924         return 0;
925 }
926
927 static int nilfs_get_root_dentry(struct super_block *sb,
928                                  struct nilfs_root *root,
929                                  struct dentry **root_dentry)
930 {
931         struct inode *inode;
932         struct dentry *dentry;
933         int ret = 0;
934
935         inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
936         if (IS_ERR(inode)) {
937                 ret = PTR_ERR(inode);
938                 nilfs_err(sb, "error %d getting root inode", ret);
939                 goto out;
940         }
941         if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
942                 iput(inode);
943                 nilfs_err(sb, "corrupt root inode");
944                 ret = -EINVAL;
945                 goto out;
946         }
947
948         if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
949                 dentry = d_find_alias(inode);
950                 if (!dentry) {
951                         dentry = d_make_root(inode);
952                         if (!dentry) {
953                                 ret = -ENOMEM;
954                                 goto failed_dentry;
955                         }
956                 } else {
957                         iput(inode);
958                 }
959         } else {
960                 dentry = d_obtain_root(inode);
961                 if (IS_ERR(dentry)) {
962                         ret = PTR_ERR(dentry);
963                         goto failed_dentry;
964                 }
965         }
966         *root_dentry = dentry;
967  out:
968         return ret;
969
970  failed_dentry:
971         nilfs_err(sb, "error %d getting root dentry", ret);
972         goto out;
973 }
974
975 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
976                                  struct dentry **root_dentry)
977 {
978         struct the_nilfs *nilfs = s->s_fs_info;
979         struct nilfs_root *root;
980         int ret;
981
982         mutex_lock(&nilfs->ns_snapshot_mount_mutex);
983
984         down_read(&nilfs->ns_segctor_sem);
985         ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
986         up_read(&nilfs->ns_segctor_sem);
987         if (ret < 0) {
988                 ret = (ret == -ENOENT) ? -EINVAL : ret;
989                 goto out;
990         } else if (!ret) {
991                 nilfs_err(s,
992                           "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
993                           (unsigned long long)cno);
994                 ret = -EINVAL;
995                 goto out;
996         }
997
998         ret = nilfs_attach_checkpoint(s, cno, false, &root);
999         if (ret) {
1000                 nilfs_err(s,
1001                           "error %d while loading snapshot (checkpoint number=%llu)",
1002                           ret, (unsigned long long)cno);
1003                 goto out;
1004         }
1005         ret = nilfs_get_root_dentry(s, root, root_dentry);
1006         nilfs_put_root(root);
1007  out:
1008         mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1009         return ret;
1010 }
1011
1012 /**
1013  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1014  * @root_dentry: root dentry of the tree to be shrunk
1015  *
1016  * This function returns true if the tree was in-use.
1017  */
1018 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1019 {
1020         shrink_dcache_parent(root_dentry);
1021         return d_count(root_dentry) > 1;
1022 }
1023
1024 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1025 {
1026         struct the_nilfs *nilfs = sb->s_fs_info;
1027         struct nilfs_root *root;
1028         struct inode *inode;
1029         struct dentry *dentry;
1030         int ret;
1031
1032         if (cno > nilfs->ns_cno)
1033                 return false;
1034
1035         if (cno >= nilfs_last_cno(nilfs))
1036                 return true;    /* protect recent checkpoints */
1037
1038         ret = false;
1039         root = nilfs_lookup_root(nilfs, cno);
1040         if (root) {
1041                 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1042                 if (inode) {
1043                         dentry = d_find_alias(inode);
1044                         if (dentry) {
1045                                 ret = nilfs_tree_is_busy(dentry);
1046                                 dput(dentry);
1047                         }
1048                         iput(inode);
1049                 }
1050                 nilfs_put_root(root);
1051         }
1052         return ret;
1053 }
1054
1055 /**
1056  * nilfs_fill_super() - initialize a super block instance
1057  * @sb: super_block
1058  * @data: mount options
1059  * @silent: silent mode flag
1060  *
1061  * This function is called exclusively by nilfs->ns_mount_mutex.
1062  * So, the recovery process is protected from other simultaneous mounts.
1063  */
1064 static int
1065 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1066 {
1067         struct the_nilfs *nilfs;
1068         struct nilfs_root *fsroot;
1069         __u64 cno;
1070         int err;
1071
1072         nilfs = alloc_nilfs(sb);
1073         if (!nilfs)
1074                 return -ENOMEM;
1075
1076         sb->s_fs_info = nilfs;
1077
1078         err = init_nilfs(nilfs, sb, (char *)data);
1079         if (err)
1080                 goto failed_nilfs;
1081
1082         sb->s_op = &nilfs_sops;
1083         sb->s_export_op = &nilfs_export_ops;
1084         sb->s_root = NULL;
1085         sb->s_time_gran = 1;
1086         sb->s_max_links = NILFS_LINK_MAX;
1087
1088         sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1089
1090         err = load_nilfs(nilfs, sb);
1091         if (err)
1092                 goto failed_nilfs;
1093
1094         cno = nilfs_last_cno(nilfs);
1095         err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1096         if (err) {
1097                 nilfs_err(sb,
1098                           "error %d while loading last checkpoint (checkpoint number=%llu)",
1099                           err, (unsigned long long)cno);
1100                 goto failed_unload;
1101         }
1102
1103         if (!sb_rdonly(sb)) {
1104                 err = nilfs_attach_log_writer(sb, fsroot);
1105                 if (err)
1106                         goto failed_checkpoint;
1107         }
1108
1109         err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1110         if (err)
1111                 goto failed_segctor;
1112
1113         nilfs_put_root(fsroot);
1114
1115         if (!sb_rdonly(sb)) {
1116                 down_write(&nilfs->ns_sem);
1117                 nilfs_setup_super(sb, true);
1118                 up_write(&nilfs->ns_sem);
1119         }
1120
1121         return 0;
1122
1123  failed_segctor:
1124         nilfs_detach_log_writer(sb);
1125
1126  failed_checkpoint:
1127         nilfs_put_root(fsroot);
1128
1129  failed_unload:
1130         nilfs_sysfs_delete_device_group(nilfs);
1131         iput(nilfs->ns_sufile);
1132         iput(nilfs->ns_cpfile);
1133         iput(nilfs->ns_dat);
1134
1135  failed_nilfs:
1136         destroy_nilfs(nilfs);
1137         return err;
1138 }
1139
1140 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1141 {
1142         struct the_nilfs *nilfs = sb->s_fs_info;
1143         unsigned long old_sb_flags;
1144         unsigned long old_mount_opt;
1145         int err;
1146
1147         sync_filesystem(sb);
1148         old_sb_flags = sb->s_flags;
1149         old_mount_opt = nilfs->ns_mount_opt;
1150
1151         if (!parse_options(data, sb, 1)) {
1152                 err = -EINVAL;
1153                 goto restore_opts;
1154         }
1155         sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1156
1157         err = -EINVAL;
1158
1159         if (!nilfs_valid_fs(nilfs)) {
1160                 nilfs_warn(sb,
1161                            "couldn't remount because the filesystem is in an incomplete recovery state");
1162                 goto restore_opts;
1163         }
1164
1165         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1166                 goto out;
1167         if (*flags & SB_RDONLY) {
1168                 sb->s_flags |= SB_RDONLY;
1169
1170                 /*
1171                  * Remounting a valid RW partition RDONLY, so set
1172                  * the RDONLY flag and then mark the partition as valid again.
1173                  */
1174                 down_write(&nilfs->ns_sem);
1175                 nilfs_cleanup_super(sb);
1176                 up_write(&nilfs->ns_sem);
1177         } else {
1178                 __u64 features;
1179                 struct nilfs_root *root;
1180
1181                 /*
1182                  * Mounting a RDONLY partition read-write, so reread and
1183                  * store the current valid flag.  (It may have been changed
1184                  * by fsck since we originally mounted the partition.)
1185                  */
1186                 down_read(&nilfs->ns_sem);
1187                 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1188                         ~NILFS_FEATURE_COMPAT_RO_SUPP;
1189                 up_read(&nilfs->ns_sem);
1190                 if (features) {
1191                         nilfs_warn(sb,
1192                                    "couldn't remount RDWR because of unsupported optional features (%llx)",
1193                                    (unsigned long long)features);
1194                         err = -EROFS;
1195                         goto restore_opts;
1196                 }
1197
1198                 sb->s_flags &= ~SB_RDONLY;
1199
1200                 root = NILFS_I(d_inode(sb->s_root))->i_root;
1201                 err = nilfs_attach_log_writer(sb, root);
1202                 if (err)
1203                         goto restore_opts;
1204
1205                 down_write(&nilfs->ns_sem);
1206                 nilfs_setup_super(sb, true);
1207                 up_write(&nilfs->ns_sem);
1208         }
1209  out:
1210         return 0;
1211
1212  restore_opts:
1213         sb->s_flags = old_sb_flags;
1214         nilfs->ns_mount_opt = old_mount_opt;
1215         return err;
1216 }
1217
1218 struct nilfs_super_data {
1219         struct block_device *bdev;
1220         __u64 cno;
1221         int flags;
1222 };
1223
1224 static int nilfs_parse_snapshot_option(const char *option,
1225                                        const substring_t *arg,
1226                                        struct nilfs_super_data *sd)
1227 {
1228         unsigned long long val;
1229         const char *msg = NULL;
1230         int err;
1231
1232         if (!(sd->flags & SB_RDONLY)) {
1233                 msg = "read-only option is not specified";
1234                 goto parse_error;
1235         }
1236
1237         err = kstrtoull(arg->from, 0, &val);
1238         if (err) {
1239                 if (err == -ERANGE)
1240                         msg = "too large checkpoint number";
1241                 else
1242                         msg = "malformed argument";
1243                 goto parse_error;
1244         } else if (val == 0) {
1245                 msg = "invalid checkpoint number 0";
1246                 goto parse_error;
1247         }
1248         sd->cno = val;
1249         return 0;
1250
1251 parse_error:
1252         nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1253         return 1;
1254 }
1255
1256 /**
1257  * nilfs_identify - pre-read mount options needed to identify mount instance
1258  * @data: mount options
1259  * @sd: nilfs_super_data
1260  */
1261 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1262 {
1263         char *p, *options = data;
1264         substring_t args[MAX_OPT_ARGS];
1265         int token;
1266         int ret = 0;
1267
1268         do {
1269                 p = strsep(&options, ",");
1270                 if (p != NULL && *p) {
1271                         token = match_token(p, tokens, args);
1272                         if (token == Opt_snapshot)
1273                                 ret = nilfs_parse_snapshot_option(p, &args[0],
1274                                                                   sd);
1275                 }
1276                 if (!options)
1277                         break;
1278                 BUG_ON(options == data);
1279                 *(options - 1) = ',';
1280         } while (!ret);
1281         return ret;
1282 }
1283
1284 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1285 {
1286         s->s_bdev = data;
1287         s->s_dev = s->s_bdev->bd_dev;
1288         return 0;
1289 }
1290
1291 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1292 {
1293         return (void *)s->s_bdev == data;
1294 }
1295
1296 static struct dentry *
1297 nilfs_mount(struct file_system_type *fs_type, int flags,
1298              const char *dev_name, void *data)
1299 {
1300         struct nilfs_super_data sd;
1301         struct super_block *s;
1302         fmode_t mode = FMODE_READ | FMODE_EXCL;
1303         struct dentry *root_dentry;
1304         int err, s_new = false;
1305
1306         if (!(flags & SB_RDONLY))
1307                 mode |= FMODE_WRITE;
1308
1309         sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1310         if (IS_ERR(sd.bdev))
1311                 return ERR_CAST(sd.bdev);
1312
1313         sd.cno = 0;
1314         sd.flags = flags;
1315         if (nilfs_identify((char *)data, &sd)) {
1316                 err = -EINVAL;
1317                 goto failed;
1318         }
1319
1320         /*
1321          * once the super is inserted into the list by sget, s_umount
1322          * will protect the lockfs code from trying to start a snapshot
1323          * while we are mounting
1324          */
1325         mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1326         if (sd.bdev->bd_fsfreeze_count > 0) {
1327                 mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1328                 err = -EBUSY;
1329                 goto failed;
1330         }
1331         s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1332                  sd.bdev);
1333         mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1334         if (IS_ERR(s)) {
1335                 err = PTR_ERR(s);
1336                 goto failed;
1337         }
1338
1339         if (!s->s_root) {
1340                 s_new = true;
1341
1342                 /* New superblock instance created */
1343                 s->s_mode = mode;
1344                 snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1345                 sb_set_blocksize(s, block_size(sd.bdev));
1346
1347                 err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1348                 if (err)
1349                         goto failed_super;
1350
1351                 s->s_flags |= SB_ACTIVE;
1352         } else if (!sd.cno) {
1353                 if (nilfs_tree_is_busy(s->s_root)) {
1354                         if ((flags ^ s->s_flags) & SB_RDONLY) {
1355                                 nilfs_err(s,
1356                                           "the device already has a %s mount.",
1357                                           sb_rdonly(s) ? "read-only" : "read/write");
1358                                 err = -EBUSY;
1359                                 goto failed_super;
1360                         }
1361                 } else {
1362                         /*
1363                          * Try remount to setup mount states if the current
1364                          * tree is not mounted and only snapshots use this sb.
1365                          */
1366                         err = nilfs_remount(s, &flags, data);
1367                         if (err)
1368                                 goto failed_super;
1369                 }
1370         }
1371
1372         if (sd.cno) {
1373                 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1374                 if (err)
1375                         goto failed_super;
1376         } else {
1377                 root_dentry = dget(s->s_root);
1378         }
1379
1380         if (!s_new)
1381                 blkdev_put(sd.bdev, mode);
1382
1383         return root_dentry;
1384
1385  failed_super:
1386         deactivate_locked_super(s);
1387
1388  failed:
1389         if (!s_new)
1390                 blkdev_put(sd.bdev, mode);
1391         return ERR_PTR(err);
1392 }
1393
1394 struct file_system_type nilfs_fs_type = {
1395         .owner    = THIS_MODULE,
1396         .name     = "nilfs2",
1397         .mount    = nilfs_mount,
1398         .kill_sb  = kill_block_super,
1399         .fs_flags = FS_REQUIRES_DEV,
1400 };
1401 MODULE_ALIAS_FS("nilfs2");
1402
1403 static void nilfs_inode_init_once(void *obj)
1404 {
1405         struct nilfs_inode_info *ii = obj;
1406
1407         INIT_LIST_HEAD(&ii->i_dirty);
1408 #ifdef CONFIG_NILFS_XATTR
1409         init_rwsem(&ii->xattr_sem);
1410 #endif
1411         inode_init_once(&ii->vfs_inode);
1412 }
1413
1414 static void nilfs_segbuf_init_once(void *obj)
1415 {
1416         memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1417 }
1418
1419 static void nilfs_destroy_cachep(void)
1420 {
1421         /*
1422          * Make sure all delayed rcu free inodes are flushed before we
1423          * destroy cache.
1424          */
1425         rcu_barrier();
1426
1427         kmem_cache_destroy(nilfs_inode_cachep);
1428         kmem_cache_destroy(nilfs_transaction_cachep);
1429         kmem_cache_destroy(nilfs_segbuf_cachep);
1430         kmem_cache_destroy(nilfs_btree_path_cache);
1431 }
1432
1433 static int __init nilfs_init_cachep(void)
1434 {
1435         nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1436                         sizeof(struct nilfs_inode_info), 0,
1437                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1438                         nilfs_inode_init_once);
1439         if (!nilfs_inode_cachep)
1440                 goto fail;
1441
1442         nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1443                         sizeof(struct nilfs_transaction_info), 0,
1444                         SLAB_RECLAIM_ACCOUNT, NULL);
1445         if (!nilfs_transaction_cachep)
1446                 goto fail;
1447
1448         nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1449                         sizeof(struct nilfs_segment_buffer), 0,
1450                         SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1451         if (!nilfs_segbuf_cachep)
1452                 goto fail;
1453
1454         nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1455                         sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1456                         0, 0, NULL);
1457         if (!nilfs_btree_path_cache)
1458                 goto fail;
1459
1460         return 0;
1461
1462 fail:
1463         nilfs_destroy_cachep();
1464         return -ENOMEM;
1465 }
1466
1467 static int __init init_nilfs_fs(void)
1468 {
1469         int err;
1470
1471         err = nilfs_init_cachep();
1472         if (err)
1473                 goto fail;
1474
1475         err = nilfs_sysfs_init();
1476         if (err)
1477                 goto free_cachep;
1478
1479         err = register_filesystem(&nilfs_fs_type);
1480         if (err)
1481                 goto deinit_sysfs_entry;
1482
1483         printk(KERN_INFO "NILFS version 2 loaded\n");
1484         return 0;
1485
1486 deinit_sysfs_entry:
1487         nilfs_sysfs_exit();
1488 free_cachep:
1489         nilfs_destroy_cachep();
1490 fail:
1491         return err;
1492 }
1493
1494 static void __exit exit_nilfs_fs(void)
1495 {
1496         nilfs_destroy_cachep();
1497         nilfs_sysfs_exit();
1498         unregister_filesystem(&nilfs_fs_type);
1499 }
1500
1501 module_init(init_nilfs_fs)
1502 module_exit(exit_nilfs_fs)