GNU Linux-libre 4.9.301-gnu1
[releases.git] / fs / nilfs2 / segment.c
1 /*
2  * segment.c - NILFS segment constructor.
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * Written by Ryusuke Konishi.
17  *
18  */
19
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/bitops.h>
24 #include <linux/bio.h>
25 #include <linux/completion.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/freezer.h>
29 #include <linux/kthread.h>
30 #include <linux/crc32.h>
31 #include <linux/pagevec.h>
32 #include <linux/slab.h>
33 #include "nilfs.h"
34 #include "btnode.h"
35 #include "page.h"
36 #include "segment.h"
37 #include "sufile.h"
38 #include "cpfile.h"
39 #include "ifile.h"
40 #include "segbuf.h"
41
42
43 /*
44  * Segment constructor
45  */
46 #define SC_N_INODEVEC   16   /* Size of locally allocated inode vector */
47
48 #define SC_MAX_SEGDELTA 64   /*
49                               * Upper limit of the number of segments
50                               * appended in collection retry loop
51                               */
52
53 /* Construction mode */
54 enum {
55         SC_LSEG_SR = 1, /* Make a logical segment having a super root */
56         SC_LSEG_DSYNC,  /*
57                          * Flush data blocks of a given file and make
58                          * a logical segment without a super root.
59                          */
60         SC_FLUSH_FILE,  /*
61                          * Flush data files, leads to segment writes without
62                          * creating a checkpoint.
63                          */
64         SC_FLUSH_DAT,   /*
65                          * Flush DAT file.  This also creates segments
66                          * without a checkpoint.
67                          */
68 };
69
70 /* Stage numbers of dirty block collection */
71 enum {
72         NILFS_ST_INIT = 0,
73         NILFS_ST_GC,            /* Collecting dirty blocks for GC */
74         NILFS_ST_FILE,
75         NILFS_ST_IFILE,
76         NILFS_ST_CPFILE,
77         NILFS_ST_SUFILE,
78         NILFS_ST_DAT,
79         NILFS_ST_SR,            /* Super root */
80         NILFS_ST_DSYNC,         /* Data sync blocks */
81         NILFS_ST_DONE,
82 };
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/nilfs2.h>
86
87 /*
88  * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
89  * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
90  * the variable must use them because transition of stage count must involve
91  * trace events (trace_nilfs2_collection_stage_transition).
92  *
93  * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
94  * produce tracepoint events. It is provided just for making the intention
95  * clear.
96  */
97 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci)
98 {
99         sci->sc_stage.scnt++;
100         trace_nilfs2_collection_stage_transition(sci);
101 }
102
103 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt)
104 {
105         sci->sc_stage.scnt = next_scnt;
106         trace_nilfs2_collection_stage_transition(sci);
107 }
108
109 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci)
110 {
111         return sci->sc_stage.scnt;
112 }
113
114 /* State flags of collection */
115 #define NILFS_CF_NODE           0x0001  /* Collecting node blocks */
116 #define NILFS_CF_IFILE_STARTED  0x0002  /* IFILE stage has started */
117 #define NILFS_CF_SUFREED        0x0004  /* segment usages has been freed */
118 #define NILFS_CF_HISTORY_MASK   (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
119
120 /* Operations depending on the construction mode and file type */
121 struct nilfs_sc_operations {
122         int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
123                             struct inode *);
124         int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
125                             struct inode *);
126         int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
127                             struct inode *);
128         void (*write_data_binfo)(struct nilfs_sc_info *,
129                                  struct nilfs_segsum_pointer *,
130                                  union nilfs_binfo *);
131         void (*write_node_binfo)(struct nilfs_sc_info *,
132                                  struct nilfs_segsum_pointer *,
133                                  union nilfs_binfo *);
134 };
135
136 /*
137  * Other definitions
138  */
139 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
140 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
141 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
142 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
143
144 #define nilfs_cnt32_gt(a, b)   \
145         (typecheck(__u32, a) && typecheck(__u32, b) && \
146          ((__s32)(b) - (__s32)(a) < 0))
147 #define nilfs_cnt32_ge(a, b)   \
148         (typecheck(__u32, a) && typecheck(__u32, b) && \
149          ((__s32)(a) - (__s32)(b) >= 0))
150 #define nilfs_cnt32_lt(a, b)  nilfs_cnt32_gt(b, a)
151 #define nilfs_cnt32_le(a, b)  nilfs_cnt32_ge(b, a)
152
153 static int nilfs_prepare_segment_lock(struct super_block *sb,
154                                       struct nilfs_transaction_info *ti)
155 {
156         struct nilfs_transaction_info *cur_ti = current->journal_info;
157         void *save = NULL;
158
159         if (cur_ti) {
160                 if (cur_ti->ti_magic == NILFS_TI_MAGIC)
161                         return ++cur_ti->ti_count;
162
163                 /*
164                  * If journal_info field is occupied by other FS,
165                  * it is saved and will be restored on
166                  * nilfs_transaction_commit().
167                  */
168                 nilfs_msg(sb, KERN_WARNING, "journal info from a different FS");
169                 save = current->journal_info;
170         }
171         if (!ti) {
172                 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
173                 if (!ti)
174                         return -ENOMEM;
175                 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
176         } else {
177                 ti->ti_flags = 0;
178         }
179         ti->ti_count = 0;
180         ti->ti_save = save;
181         ti->ti_magic = NILFS_TI_MAGIC;
182         current->journal_info = ti;
183         return 0;
184 }
185
186 /**
187  * nilfs_transaction_begin - start indivisible file operations.
188  * @sb: super block
189  * @ti: nilfs_transaction_info
190  * @vacancy_check: flags for vacancy rate checks
191  *
192  * nilfs_transaction_begin() acquires a reader/writer semaphore, called
193  * the segment semaphore, to make a segment construction and write tasks
194  * exclusive.  The function is used with nilfs_transaction_commit() in pairs.
195  * The region enclosed by these two functions can be nested.  To avoid a
196  * deadlock, the semaphore is only acquired or released in the outermost call.
197  *
198  * This function allocates a nilfs_transaction_info struct to keep context
199  * information on it.  It is initialized and hooked onto the current task in
200  * the outermost call.  If a pre-allocated struct is given to @ti, it is used
201  * instead; otherwise a new struct is assigned from a slab.
202  *
203  * When @vacancy_check flag is set, this function will check the amount of
204  * free space, and will wait for the GC to reclaim disk space if low capacity.
205  *
206  * Return Value: On success, 0 is returned. On error, one of the following
207  * negative error code is returned.
208  *
209  * %-ENOMEM - Insufficient memory available.
210  *
211  * %-ENOSPC - No space left on device
212  */
213 int nilfs_transaction_begin(struct super_block *sb,
214                             struct nilfs_transaction_info *ti,
215                             int vacancy_check)
216 {
217         struct the_nilfs *nilfs;
218         int ret = nilfs_prepare_segment_lock(sb, ti);
219         struct nilfs_transaction_info *trace_ti;
220
221         if (unlikely(ret < 0))
222                 return ret;
223         if (ret > 0) {
224                 trace_ti = current->journal_info;
225
226                 trace_nilfs2_transaction_transition(sb, trace_ti,
227                                     trace_ti->ti_count, trace_ti->ti_flags,
228                                     TRACE_NILFS2_TRANSACTION_BEGIN);
229                 return 0;
230         }
231
232         sb_start_intwrite(sb);
233
234         nilfs = sb->s_fs_info;
235         down_read(&nilfs->ns_segctor_sem);
236         if (vacancy_check && nilfs_near_disk_full(nilfs)) {
237                 up_read(&nilfs->ns_segctor_sem);
238                 ret = -ENOSPC;
239                 goto failed;
240         }
241
242         trace_ti = current->journal_info;
243         trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count,
244                                             trace_ti->ti_flags,
245                                             TRACE_NILFS2_TRANSACTION_BEGIN);
246         return 0;
247
248  failed:
249         ti = current->journal_info;
250         current->journal_info = ti->ti_save;
251         if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
252                 kmem_cache_free(nilfs_transaction_cachep, ti);
253         sb_end_intwrite(sb);
254         return ret;
255 }
256
257 /**
258  * nilfs_transaction_commit - commit indivisible file operations.
259  * @sb: super block
260  *
261  * nilfs_transaction_commit() releases the read semaphore which is
262  * acquired by nilfs_transaction_begin(). This is only performed
263  * in outermost call of this function.  If a commit flag is set,
264  * nilfs_transaction_commit() sets a timer to start the segment
265  * constructor.  If a sync flag is set, it starts construction
266  * directly.
267  */
268 int nilfs_transaction_commit(struct super_block *sb)
269 {
270         struct nilfs_transaction_info *ti = current->journal_info;
271         struct the_nilfs *nilfs = sb->s_fs_info;
272         int err = 0;
273
274         BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
275         ti->ti_flags |= NILFS_TI_COMMIT;
276         if (ti->ti_count > 0) {
277                 ti->ti_count--;
278                 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
279                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
280                 return 0;
281         }
282         if (nilfs->ns_writer) {
283                 struct nilfs_sc_info *sci = nilfs->ns_writer;
284
285                 if (ti->ti_flags & NILFS_TI_COMMIT)
286                         nilfs_segctor_start_timer(sci);
287                 if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
288                         nilfs_segctor_do_flush(sci, 0);
289         }
290         up_read(&nilfs->ns_segctor_sem);
291         trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
292                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
293
294         current->journal_info = ti->ti_save;
295
296         if (ti->ti_flags & NILFS_TI_SYNC)
297                 err = nilfs_construct_segment(sb);
298         if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
299                 kmem_cache_free(nilfs_transaction_cachep, ti);
300         sb_end_intwrite(sb);
301         return err;
302 }
303
304 void nilfs_transaction_abort(struct super_block *sb)
305 {
306         struct nilfs_transaction_info *ti = current->journal_info;
307         struct the_nilfs *nilfs = sb->s_fs_info;
308
309         BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
310         if (ti->ti_count > 0) {
311                 ti->ti_count--;
312                 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
313                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
314                 return;
315         }
316         up_read(&nilfs->ns_segctor_sem);
317
318         trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
319                     ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
320
321         current->journal_info = ti->ti_save;
322         if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
323                 kmem_cache_free(nilfs_transaction_cachep, ti);
324         sb_end_intwrite(sb);
325 }
326
327 void nilfs_relax_pressure_in_lock(struct super_block *sb)
328 {
329         struct the_nilfs *nilfs = sb->s_fs_info;
330         struct nilfs_sc_info *sci = nilfs->ns_writer;
331
332         if (!sci || !sci->sc_flush_request)
333                 return;
334
335         set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
336         up_read(&nilfs->ns_segctor_sem);
337
338         down_write(&nilfs->ns_segctor_sem);
339         if (sci->sc_flush_request &&
340             test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
341                 struct nilfs_transaction_info *ti = current->journal_info;
342
343                 ti->ti_flags |= NILFS_TI_WRITER;
344                 nilfs_segctor_do_immediate_flush(sci);
345                 ti->ti_flags &= ~NILFS_TI_WRITER;
346         }
347         downgrade_write(&nilfs->ns_segctor_sem);
348 }
349
350 static void nilfs_transaction_lock(struct super_block *sb,
351                                    struct nilfs_transaction_info *ti,
352                                    int gcflag)
353 {
354         struct nilfs_transaction_info *cur_ti = current->journal_info;
355         struct the_nilfs *nilfs = sb->s_fs_info;
356         struct nilfs_sc_info *sci = nilfs->ns_writer;
357
358         WARN_ON(cur_ti);
359         ti->ti_flags = NILFS_TI_WRITER;
360         ti->ti_count = 0;
361         ti->ti_save = cur_ti;
362         ti->ti_magic = NILFS_TI_MAGIC;
363         current->journal_info = ti;
364
365         for (;;) {
366                 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
367                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK);
368
369                 down_write(&nilfs->ns_segctor_sem);
370                 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
371                         break;
372
373                 nilfs_segctor_do_immediate_flush(sci);
374
375                 up_write(&nilfs->ns_segctor_sem);
376                 cond_resched();
377         }
378         if (gcflag)
379                 ti->ti_flags |= NILFS_TI_GC;
380
381         trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
382                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK);
383 }
384
385 static void nilfs_transaction_unlock(struct super_block *sb)
386 {
387         struct nilfs_transaction_info *ti = current->journal_info;
388         struct the_nilfs *nilfs = sb->s_fs_info;
389
390         BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
391         BUG_ON(ti->ti_count > 0);
392
393         up_write(&nilfs->ns_segctor_sem);
394         current->journal_info = ti->ti_save;
395
396         trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
397                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK);
398 }
399
400 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
401                                             struct nilfs_segsum_pointer *ssp,
402                                             unsigned int bytes)
403 {
404         struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
405         unsigned int blocksize = sci->sc_super->s_blocksize;
406         void *p;
407
408         if (unlikely(ssp->offset + bytes > blocksize)) {
409                 ssp->offset = 0;
410                 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
411                                                &segbuf->sb_segsum_buffers));
412                 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
413         }
414         p = ssp->bh->b_data + ssp->offset;
415         ssp->offset += bytes;
416         return p;
417 }
418
419 /**
420  * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
421  * @sci: nilfs_sc_info
422  */
423 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
424 {
425         struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
426         struct buffer_head *sumbh;
427         unsigned int sumbytes;
428         unsigned int flags = 0;
429         int err;
430
431         if (nilfs_doing_gc())
432                 flags = NILFS_SS_GC;
433         err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
434         if (unlikely(err))
435                 return err;
436
437         sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
438         sumbytes = segbuf->sb_sum.sumbytes;
439         sci->sc_finfo_ptr.bh = sumbh;  sci->sc_finfo_ptr.offset = sumbytes;
440         sci->sc_binfo_ptr.bh = sumbh;  sci->sc_binfo_ptr.offset = sumbytes;
441         sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
442         return 0;
443 }
444
445 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
446 {
447         sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
448         if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
449                 return -E2BIG; /*
450                                 * The current segment is filled up
451                                 * (internal code)
452                                 */
453         sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
454         return nilfs_segctor_reset_segment_buffer(sci);
455 }
456
457 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
458 {
459         struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
460         int err;
461
462         if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
463                 err = nilfs_segctor_feed_segment(sci);
464                 if (err)
465                         return err;
466                 segbuf = sci->sc_curseg;
467         }
468         err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
469         if (likely(!err))
470                 segbuf->sb_sum.flags |= NILFS_SS_SR;
471         return err;
472 }
473
474 /*
475  * Functions for making segment summary and payloads
476  */
477 static int nilfs_segctor_segsum_block_required(
478         struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
479         unsigned int binfo_size)
480 {
481         unsigned int blocksize = sci->sc_super->s_blocksize;
482         /* Size of finfo and binfo is enough small against blocksize */
483
484         return ssp->offset + binfo_size +
485                 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
486                 blocksize;
487 }
488
489 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
490                                       struct inode *inode)
491 {
492         sci->sc_curseg->sb_sum.nfinfo++;
493         sci->sc_binfo_ptr = sci->sc_finfo_ptr;
494         nilfs_segctor_map_segsum_entry(
495                 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
496
497         if (NILFS_I(inode)->i_root &&
498             !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
499                 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
500         /* skip finfo */
501 }
502
503 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
504                                     struct inode *inode)
505 {
506         struct nilfs_finfo *finfo;
507         struct nilfs_inode_info *ii;
508         struct nilfs_segment_buffer *segbuf;
509         __u64 cno;
510
511         if (sci->sc_blk_cnt == 0)
512                 return;
513
514         ii = NILFS_I(inode);
515
516         if (test_bit(NILFS_I_GCINODE, &ii->i_state))
517                 cno = ii->i_cno;
518         else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
519                 cno = 0;
520         else
521                 cno = sci->sc_cno;
522
523         finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
524                                                  sizeof(*finfo));
525         finfo->fi_ino = cpu_to_le64(inode->i_ino);
526         finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
527         finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
528         finfo->fi_cno = cpu_to_le64(cno);
529
530         segbuf = sci->sc_curseg;
531         segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
532                 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
533         sci->sc_finfo_ptr = sci->sc_binfo_ptr;
534         sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
535 }
536
537 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
538                                         struct buffer_head *bh,
539                                         struct inode *inode,
540                                         unsigned int binfo_size)
541 {
542         struct nilfs_segment_buffer *segbuf;
543         int required, err = 0;
544
545  retry:
546         segbuf = sci->sc_curseg;
547         required = nilfs_segctor_segsum_block_required(
548                 sci, &sci->sc_binfo_ptr, binfo_size);
549         if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
550                 nilfs_segctor_end_finfo(sci, inode);
551                 err = nilfs_segctor_feed_segment(sci);
552                 if (err)
553                         return err;
554                 goto retry;
555         }
556         if (unlikely(required)) {
557                 err = nilfs_segbuf_extend_segsum(segbuf);
558                 if (unlikely(err))
559                         goto failed;
560         }
561         if (sci->sc_blk_cnt == 0)
562                 nilfs_segctor_begin_finfo(sci, inode);
563
564         nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
565         /* Substitution to vblocknr is delayed until update_blocknr() */
566         nilfs_segbuf_add_file_buffer(segbuf, bh);
567         sci->sc_blk_cnt++;
568  failed:
569         return err;
570 }
571
572 /*
573  * Callback functions that enumerate, mark, and collect dirty blocks
574  */
575 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
576                                    struct buffer_head *bh, struct inode *inode)
577 {
578         int err;
579
580         err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
581         if (err < 0)
582                 return err;
583
584         err = nilfs_segctor_add_file_block(sci, bh, inode,
585                                            sizeof(struct nilfs_binfo_v));
586         if (!err)
587                 sci->sc_datablk_cnt++;
588         return err;
589 }
590
591 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
592                                    struct buffer_head *bh,
593                                    struct inode *inode)
594 {
595         return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
596 }
597
598 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
599                                    struct buffer_head *bh,
600                                    struct inode *inode)
601 {
602         WARN_ON(!buffer_dirty(bh));
603         return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
604 }
605
606 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
607                                         struct nilfs_segsum_pointer *ssp,
608                                         union nilfs_binfo *binfo)
609 {
610         struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
611                 sci, ssp, sizeof(*binfo_v));
612         *binfo_v = binfo->bi_v;
613 }
614
615 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
616                                         struct nilfs_segsum_pointer *ssp,
617                                         union nilfs_binfo *binfo)
618 {
619         __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
620                 sci, ssp, sizeof(*vblocknr));
621         *vblocknr = binfo->bi_v.bi_vblocknr;
622 }
623
624 static const struct nilfs_sc_operations nilfs_sc_file_ops = {
625         .collect_data = nilfs_collect_file_data,
626         .collect_node = nilfs_collect_file_node,
627         .collect_bmap = nilfs_collect_file_bmap,
628         .write_data_binfo = nilfs_write_file_data_binfo,
629         .write_node_binfo = nilfs_write_file_node_binfo,
630 };
631
632 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
633                                   struct buffer_head *bh, struct inode *inode)
634 {
635         int err;
636
637         err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
638         if (err < 0)
639                 return err;
640
641         err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
642         if (!err)
643                 sci->sc_datablk_cnt++;
644         return err;
645 }
646
647 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
648                                   struct buffer_head *bh, struct inode *inode)
649 {
650         WARN_ON(!buffer_dirty(bh));
651         return nilfs_segctor_add_file_block(sci, bh, inode,
652                                             sizeof(struct nilfs_binfo_dat));
653 }
654
655 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
656                                        struct nilfs_segsum_pointer *ssp,
657                                        union nilfs_binfo *binfo)
658 {
659         __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
660                                                           sizeof(*blkoff));
661         *blkoff = binfo->bi_dat.bi_blkoff;
662 }
663
664 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
665                                        struct nilfs_segsum_pointer *ssp,
666                                        union nilfs_binfo *binfo)
667 {
668         struct nilfs_binfo_dat *binfo_dat =
669                 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
670         *binfo_dat = binfo->bi_dat;
671 }
672
673 static const struct nilfs_sc_operations nilfs_sc_dat_ops = {
674         .collect_data = nilfs_collect_dat_data,
675         .collect_node = nilfs_collect_file_node,
676         .collect_bmap = nilfs_collect_dat_bmap,
677         .write_data_binfo = nilfs_write_dat_data_binfo,
678         .write_node_binfo = nilfs_write_dat_node_binfo,
679 };
680
681 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = {
682         .collect_data = nilfs_collect_file_data,
683         .collect_node = NULL,
684         .collect_bmap = NULL,
685         .write_data_binfo = nilfs_write_file_data_binfo,
686         .write_node_binfo = NULL,
687 };
688
689 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
690                                               struct list_head *listp,
691                                               size_t nlimit,
692                                               loff_t start, loff_t end)
693 {
694         struct address_space *mapping = inode->i_mapping;
695         struct pagevec pvec;
696         pgoff_t index = 0, last = ULONG_MAX;
697         size_t ndirties = 0;
698         int i;
699
700         if (unlikely(start != 0 || end != LLONG_MAX)) {
701                 /*
702                  * A valid range is given for sync-ing data pages. The
703                  * range is rounded to per-page; extra dirty buffers
704                  * may be included if blocksize < pagesize.
705                  */
706                 index = start >> PAGE_SHIFT;
707                 last = end >> PAGE_SHIFT;
708         }
709         pagevec_init(&pvec, 0);
710  repeat:
711         if (unlikely(index > last) ||
712             !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
713                                 min_t(pgoff_t, last - index,
714                                       PAGEVEC_SIZE - 1) + 1))
715                 return ndirties;
716
717         for (i = 0; i < pagevec_count(&pvec); i++) {
718                 struct buffer_head *bh, *head;
719                 struct page *page = pvec.pages[i];
720
721                 if (unlikely(page->index > last))
722                         break;
723
724                 lock_page(page);
725                 if (!page_has_buffers(page))
726                         create_empty_buffers(page, i_blocksize(inode), 0);
727                 unlock_page(page);
728
729                 bh = head = page_buffers(page);
730                 do {
731                         if (!buffer_dirty(bh) || buffer_async_write(bh))
732                                 continue;
733                         get_bh(bh);
734                         list_add_tail(&bh->b_assoc_buffers, listp);
735                         ndirties++;
736                         if (unlikely(ndirties >= nlimit)) {
737                                 pagevec_release(&pvec);
738                                 cond_resched();
739                                 return ndirties;
740                         }
741                 } while (bh = bh->b_this_page, bh != head);
742         }
743         pagevec_release(&pvec);
744         cond_resched();
745         goto repeat;
746 }
747
748 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
749                                             struct list_head *listp)
750 {
751         struct nilfs_inode_info *ii = NILFS_I(inode);
752         struct address_space *mapping = &ii->i_btnode_cache;
753         struct pagevec pvec;
754         struct buffer_head *bh, *head;
755         unsigned int i;
756         pgoff_t index = 0;
757
758         pagevec_init(&pvec, 0);
759
760         while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
761                                   PAGEVEC_SIZE)) {
762                 for (i = 0; i < pagevec_count(&pvec); i++) {
763                         bh = head = page_buffers(pvec.pages[i]);
764                         do {
765                                 if (buffer_dirty(bh) &&
766                                                 !buffer_async_write(bh)) {
767                                         get_bh(bh);
768                                         list_add_tail(&bh->b_assoc_buffers,
769                                                       listp);
770                                 }
771                                 bh = bh->b_this_page;
772                         } while (bh != head);
773                 }
774                 pagevec_release(&pvec);
775                 cond_resched();
776         }
777 }
778
779 static void nilfs_dispose_list(struct the_nilfs *nilfs,
780                                struct list_head *head, int force)
781 {
782         struct nilfs_inode_info *ii, *n;
783         struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
784         unsigned int nv = 0;
785
786         while (!list_empty(head)) {
787                 spin_lock(&nilfs->ns_inode_lock);
788                 list_for_each_entry_safe(ii, n, head, i_dirty) {
789                         list_del_init(&ii->i_dirty);
790                         if (force) {
791                                 if (unlikely(ii->i_bh)) {
792                                         brelse(ii->i_bh);
793                                         ii->i_bh = NULL;
794                                 }
795                         } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
796                                 set_bit(NILFS_I_QUEUED, &ii->i_state);
797                                 list_add_tail(&ii->i_dirty,
798                                               &nilfs->ns_dirty_files);
799                                 continue;
800                         }
801                         ivec[nv++] = ii;
802                         if (nv == SC_N_INODEVEC)
803                                 break;
804                 }
805                 spin_unlock(&nilfs->ns_inode_lock);
806
807                 for (pii = ivec; nv > 0; pii++, nv--)
808                         iput(&(*pii)->vfs_inode);
809         }
810 }
811
812 static void nilfs_iput_work_func(struct work_struct *work)
813 {
814         struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
815                                                  sc_iput_work);
816         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
817
818         nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
819 }
820
821 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
822                                      struct nilfs_root *root)
823 {
824         int ret = 0;
825
826         if (nilfs_mdt_fetch_dirty(root->ifile))
827                 ret++;
828         if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
829                 ret++;
830         if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
831                 ret++;
832         if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
833                 ret++;
834         return ret;
835 }
836
837 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
838 {
839         return list_empty(&sci->sc_dirty_files) &&
840                 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
841                 sci->sc_nfreesegs == 0 &&
842                 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
843 }
844
845 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
846 {
847         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
848         int ret = 0;
849
850         if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
851                 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
852
853         spin_lock(&nilfs->ns_inode_lock);
854         if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
855                 ret++;
856
857         spin_unlock(&nilfs->ns_inode_lock);
858         return ret;
859 }
860
861 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
862 {
863         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
864
865         nilfs_mdt_clear_dirty(sci->sc_root->ifile);
866         nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
867         nilfs_mdt_clear_dirty(nilfs->ns_sufile);
868         nilfs_mdt_clear_dirty(nilfs->ns_dat);
869 }
870
871 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
872 {
873         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
874         struct buffer_head *bh_cp;
875         struct nilfs_checkpoint *raw_cp;
876         int err;
877
878         /* XXX: this interface will be changed */
879         err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
880                                           &raw_cp, &bh_cp);
881         if (likely(!err)) {
882                 /*
883                  * The following code is duplicated with cpfile.  But, it is
884                  * needed to collect the checkpoint even if it was not newly
885                  * created.
886                  */
887                 mark_buffer_dirty(bh_cp);
888                 nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
889                 nilfs_cpfile_put_checkpoint(
890                         nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
891         } else
892                 WARN_ON(err == -EINVAL || err == -ENOENT);
893
894         return err;
895 }
896
897 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
898 {
899         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
900         struct buffer_head *bh_cp;
901         struct nilfs_checkpoint *raw_cp;
902         int err;
903
904         err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
905                                           &raw_cp, &bh_cp);
906         if (unlikely(err)) {
907                 WARN_ON(err == -EINVAL || err == -ENOENT);
908                 goto failed_ibh;
909         }
910         raw_cp->cp_snapshot_list.ssl_next = 0;
911         raw_cp->cp_snapshot_list.ssl_prev = 0;
912         raw_cp->cp_inodes_count =
913                 cpu_to_le64(atomic64_read(&sci->sc_root->inodes_count));
914         raw_cp->cp_blocks_count =
915                 cpu_to_le64(atomic64_read(&sci->sc_root->blocks_count));
916         raw_cp->cp_nblk_inc =
917                 cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
918         raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
919         raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
920
921         if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
922                 nilfs_checkpoint_clear_minor(raw_cp);
923         else
924                 nilfs_checkpoint_set_minor(raw_cp);
925
926         nilfs_write_inode_common(sci->sc_root->ifile,
927                                  &raw_cp->cp_ifile_inode, 1);
928         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
929         return 0;
930
931  failed_ibh:
932         return err;
933 }
934
935 static void nilfs_fill_in_file_bmap(struct inode *ifile,
936                                     struct nilfs_inode_info *ii)
937
938 {
939         struct buffer_head *ibh;
940         struct nilfs_inode *raw_inode;
941
942         if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
943                 ibh = ii->i_bh;
944                 BUG_ON(!ibh);
945                 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
946                                                   ibh);
947                 nilfs_bmap_write(ii->i_bmap, raw_inode);
948                 nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
949         }
950 }
951
952 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
953 {
954         struct nilfs_inode_info *ii;
955
956         list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
957                 nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
958                 set_bit(NILFS_I_COLLECTED, &ii->i_state);
959         }
960 }
961
962 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
963                                              struct the_nilfs *nilfs)
964 {
965         struct buffer_head *bh_sr;
966         struct nilfs_super_root *raw_sr;
967         unsigned int isz, srsz;
968
969         bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
970         raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
971         isz = nilfs->ns_inode_size;
972         srsz = NILFS_SR_BYTES(isz);
973
974         raw_sr->sr_bytes = cpu_to_le16(srsz);
975         raw_sr->sr_nongc_ctime
976                 = cpu_to_le64(nilfs_doing_gc() ?
977                               nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
978         raw_sr->sr_flags = 0;
979
980         nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
981                                  NILFS_SR_DAT_OFFSET(isz), 1);
982         nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
983                                  NILFS_SR_CPFILE_OFFSET(isz), 1);
984         nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
985                                  NILFS_SR_SUFILE_OFFSET(isz), 1);
986         memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
987 }
988
989 static void nilfs_redirty_inodes(struct list_head *head)
990 {
991         struct nilfs_inode_info *ii;
992
993         list_for_each_entry(ii, head, i_dirty) {
994                 if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
995                         clear_bit(NILFS_I_COLLECTED, &ii->i_state);
996         }
997 }
998
999 static void nilfs_drop_collected_inodes(struct list_head *head)
1000 {
1001         struct nilfs_inode_info *ii;
1002
1003         list_for_each_entry(ii, head, i_dirty) {
1004                 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
1005                         continue;
1006
1007                 clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
1008                 set_bit(NILFS_I_UPDATED, &ii->i_state);
1009         }
1010 }
1011
1012 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
1013                                        struct inode *inode,
1014                                        struct list_head *listp,
1015                                        int (*collect)(struct nilfs_sc_info *,
1016                                                       struct buffer_head *,
1017                                                       struct inode *))
1018 {
1019         struct buffer_head *bh, *n;
1020         int err = 0;
1021
1022         if (collect) {
1023                 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
1024                         list_del_init(&bh->b_assoc_buffers);
1025                         err = collect(sci, bh, inode);
1026                         brelse(bh);
1027                         if (unlikely(err))
1028                                 goto dispose_buffers;
1029                 }
1030                 return 0;
1031         }
1032
1033  dispose_buffers:
1034         while (!list_empty(listp)) {
1035                 bh = list_first_entry(listp, struct buffer_head,
1036                                       b_assoc_buffers);
1037                 list_del_init(&bh->b_assoc_buffers);
1038                 brelse(bh);
1039         }
1040         return err;
1041 }
1042
1043 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
1044 {
1045         /* Remaining number of blocks within segment buffer */
1046         return sci->sc_segbuf_nblocks -
1047                 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
1048 }
1049
1050 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
1051                                    struct inode *inode,
1052                                    const struct nilfs_sc_operations *sc_ops)
1053 {
1054         LIST_HEAD(data_buffers);
1055         LIST_HEAD(node_buffers);
1056         int err;
1057
1058         if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1059                 size_t n, rest = nilfs_segctor_buffer_rest(sci);
1060
1061                 n = nilfs_lookup_dirty_data_buffers(
1062                         inode, &data_buffers, rest + 1, 0, LLONG_MAX);
1063                 if (n > rest) {
1064                         err = nilfs_segctor_apply_buffers(
1065                                 sci, inode, &data_buffers,
1066                                 sc_ops->collect_data);
1067                         BUG_ON(!err); /* always receive -E2BIG or true error */
1068                         goto break_or_fail;
1069                 }
1070         }
1071         nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1072
1073         if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1074                 err = nilfs_segctor_apply_buffers(
1075                         sci, inode, &data_buffers, sc_ops->collect_data);
1076                 if (unlikely(err)) {
1077                         /* dispose node list */
1078                         nilfs_segctor_apply_buffers(
1079                                 sci, inode, &node_buffers, NULL);
1080                         goto break_or_fail;
1081                 }
1082                 sci->sc_stage.flags |= NILFS_CF_NODE;
1083         }
1084         /* Collect node */
1085         err = nilfs_segctor_apply_buffers(
1086                 sci, inode, &node_buffers, sc_ops->collect_node);
1087         if (unlikely(err))
1088                 goto break_or_fail;
1089
1090         nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1091         err = nilfs_segctor_apply_buffers(
1092                 sci, inode, &node_buffers, sc_ops->collect_bmap);
1093         if (unlikely(err))
1094                 goto break_or_fail;
1095
1096         nilfs_segctor_end_finfo(sci, inode);
1097         sci->sc_stage.flags &= ~NILFS_CF_NODE;
1098
1099  break_or_fail:
1100         return err;
1101 }
1102
1103 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1104                                          struct inode *inode)
1105 {
1106         LIST_HEAD(data_buffers);
1107         size_t n, rest = nilfs_segctor_buffer_rest(sci);
1108         int err;
1109
1110         n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1111                                             sci->sc_dsync_start,
1112                                             sci->sc_dsync_end);
1113
1114         err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1115                                           nilfs_collect_file_data);
1116         if (!err) {
1117                 nilfs_segctor_end_finfo(sci, inode);
1118                 BUG_ON(n > rest);
1119                 /* always receive -E2BIG or true error if n > rest */
1120         }
1121         return err;
1122 }
1123
1124 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1125 {
1126         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1127         struct list_head *head;
1128         struct nilfs_inode_info *ii;
1129         size_t ndone;
1130         int err = 0;
1131
1132         switch (nilfs_sc_cstage_get(sci)) {
1133         case NILFS_ST_INIT:
1134                 /* Pre-processes */
1135                 sci->sc_stage.flags = 0;
1136
1137                 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1138                         sci->sc_nblk_inc = 0;
1139                         sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1140                         if (mode == SC_LSEG_DSYNC) {
1141                                 nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC);
1142                                 goto dsync_mode;
1143                         }
1144                 }
1145
1146                 sci->sc_stage.dirty_file_ptr = NULL;
1147                 sci->sc_stage.gc_inode_ptr = NULL;
1148                 if (mode == SC_FLUSH_DAT) {
1149                         nilfs_sc_cstage_set(sci, NILFS_ST_DAT);
1150                         goto dat_stage;
1151                 }
1152                 nilfs_sc_cstage_inc(sci);  /* Fall through */
1153         case NILFS_ST_GC:
1154                 if (nilfs_doing_gc()) {
1155                         head = &sci->sc_gc_inodes;
1156                         ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1157                                                 head, i_dirty);
1158                         list_for_each_entry_continue(ii, head, i_dirty) {
1159                                 err = nilfs_segctor_scan_file(
1160                                         sci, &ii->vfs_inode,
1161                                         &nilfs_sc_file_ops);
1162                                 if (unlikely(err)) {
1163                                         sci->sc_stage.gc_inode_ptr = list_entry(
1164                                                 ii->i_dirty.prev,
1165                                                 struct nilfs_inode_info,
1166                                                 i_dirty);
1167                                         goto break_or_fail;
1168                                 }
1169                                 set_bit(NILFS_I_COLLECTED, &ii->i_state);
1170                         }
1171                         sci->sc_stage.gc_inode_ptr = NULL;
1172                 }
1173                 nilfs_sc_cstage_inc(sci);  /* Fall through */
1174         case NILFS_ST_FILE:
1175                 head = &sci->sc_dirty_files;
1176                 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1177                                         i_dirty);
1178                 list_for_each_entry_continue(ii, head, i_dirty) {
1179                         clear_bit(NILFS_I_DIRTY, &ii->i_state);
1180
1181                         err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1182                                                       &nilfs_sc_file_ops);
1183                         if (unlikely(err)) {
1184                                 sci->sc_stage.dirty_file_ptr =
1185                                         list_entry(ii->i_dirty.prev,
1186                                                    struct nilfs_inode_info,
1187                                                    i_dirty);
1188                                 goto break_or_fail;
1189                         }
1190                         /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1191                         /* XXX: required ? */
1192                 }
1193                 sci->sc_stage.dirty_file_ptr = NULL;
1194                 if (mode == SC_FLUSH_FILE) {
1195                         nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1196                         return 0;
1197                 }
1198                 nilfs_sc_cstage_inc(sci);
1199                 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1200                 /* Fall through */
1201         case NILFS_ST_IFILE:
1202                 err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
1203                                               &nilfs_sc_file_ops);
1204                 if (unlikely(err))
1205                         break;
1206                 nilfs_sc_cstage_inc(sci);
1207                 /* Creating a checkpoint */
1208                 err = nilfs_segctor_create_checkpoint(sci);
1209                 if (unlikely(err))
1210                         break;
1211                 /* Fall through */
1212         case NILFS_ST_CPFILE:
1213                 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1214                                               &nilfs_sc_file_ops);
1215                 if (unlikely(err))
1216                         break;
1217                 nilfs_sc_cstage_inc(sci);  /* Fall through */
1218         case NILFS_ST_SUFILE:
1219                 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1220                                          sci->sc_nfreesegs, &ndone);
1221                 if (unlikely(err)) {
1222                         nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1223                                                   sci->sc_freesegs, ndone,
1224                                                   NULL);
1225                         break;
1226                 }
1227                 sci->sc_stage.flags |= NILFS_CF_SUFREED;
1228
1229                 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1230                                               &nilfs_sc_file_ops);
1231                 if (unlikely(err))
1232                         break;
1233                 nilfs_sc_cstage_inc(sci);  /* Fall through */
1234         case NILFS_ST_DAT:
1235  dat_stage:
1236                 err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
1237                                               &nilfs_sc_dat_ops);
1238                 if (unlikely(err))
1239                         break;
1240                 if (mode == SC_FLUSH_DAT) {
1241                         nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1242                         return 0;
1243                 }
1244                 nilfs_sc_cstage_inc(sci);  /* Fall through */
1245         case NILFS_ST_SR:
1246                 if (mode == SC_LSEG_SR) {
1247                         /* Appending a super root */
1248                         err = nilfs_segctor_add_super_root(sci);
1249                         if (unlikely(err))
1250                                 break;
1251                 }
1252                 /* End of a logical segment */
1253                 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1254                 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1255                 return 0;
1256         case NILFS_ST_DSYNC:
1257  dsync_mode:
1258                 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1259                 ii = sci->sc_dsync_inode;
1260                 if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1261                         break;
1262
1263                 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1264                 if (unlikely(err))
1265                         break;
1266                 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1267                 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1268                 return 0;
1269         case NILFS_ST_DONE:
1270                 return 0;
1271         default:
1272                 BUG();
1273         }
1274
1275  break_or_fail:
1276         return err;
1277 }
1278
1279 /**
1280  * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1281  * @sci: nilfs_sc_info
1282  * @nilfs: nilfs object
1283  */
1284 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1285                                             struct the_nilfs *nilfs)
1286 {
1287         struct nilfs_segment_buffer *segbuf, *prev;
1288         __u64 nextnum;
1289         int err, alloc = 0;
1290
1291         segbuf = nilfs_segbuf_new(sci->sc_super);
1292         if (unlikely(!segbuf))
1293                 return -ENOMEM;
1294
1295         if (list_empty(&sci->sc_write_logs)) {
1296                 nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1297                                  nilfs->ns_pseg_offset, nilfs);
1298                 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1299                         nilfs_shift_to_next_segment(nilfs);
1300                         nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1301                 }
1302
1303                 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1304                 nextnum = nilfs->ns_nextnum;
1305
1306                 if (nilfs->ns_segnum == nilfs->ns_nextnum)
1307                         /* Start from the head of a new full segment */
1308                         alloc++;
1309         } else {
1310                 /* Continue logs */
1311                 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1312                 nilfs_segbuf_map_cont(segbuf, prev);
1313                 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1314                 nextnum = prev->sb_nextnum;
1315
1316                 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1317                         nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1318                         segbuf->sb_sum.seg_seq++;
1319                         alloc++;
1320                 }
1321         }
1322
1323         err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1324         if (err)
1325                 goto failed;
1326
1327         if (alloc) {
1328                 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1329                 if (err)
1330                         goto failed;
1331         }
1332         nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1333
1334         BUG_ON(!list_empty(&sci->sc_segbufs));
1335         list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1336         sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1337         return 0;
1338
1339  failed:
1340         nilfs_segbuf_free(segbuf);
1341         return err;
1342 }
1343
1344 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1345                                          struct the_nilfs *nilfs, int nadd)
1346 {
1347         struct nilfs_segment_buffer *segbuf, *prev;
1348         struct inode *sufile = nilfs->ns_sufile;
1349         __u64 nextnextnum;
1350         LIST_HEAD(list);
1351         int err, ret, i;
1352
1353         prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1354         /*
1355          * Since the segment specified with nextnum might be allocated during
1356          * the previous construction, the buffer including its segusage may
1357          * not be dirty.  The following call ensures that the buffer is dirty
1358          * and will pin the buffer on memory until the sufile is written.
1359          */
1360         err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1361         if (unlikely(err))
1362                 return err;
1363
1364         for (i = 0; i < nadd; i++) {
1365                 /* extend segment info */
1366                 err = -ENOMEM;
1367                 segbuf = nilfs_segbuf_new(sci->sc_super);
1368                 if (unlikely(!segbuf))
1369                         goto failed;
1370
1371                 /* map this buffer to region of segment on-disk */
1372                 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1373                 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1374
1375                 /* allocate the next next full segment */
1376                 err = nilfs_sufile_alloc(sufile, &nextnextnum);
1377                 if (unlikely(err))
1378                         goto failed_segbuf;
1379
1380                 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1381                 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1382
1383                 list_add_tail(&segbuf->sb_list, &list);
1384                 prev = segbuf;
1385         }
1386         list_splice_tail(&list, &sci->sc_segbufs);
1387         return 0;
1388
1389  failed_segbuf:
1390         nilfs_segbuf_free(segbuf);
1391  failed:
1392         list_for_each_entry(segbuf, &list, sb_list) {
1393                 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1394                 WARN_ON(ret); /* never fails */
1395         }
1396         nilfs_destroy_logs(&list);
1397         return err;
1398 }
1399
1400 static void nilfs_free_incomplete_logs(struct list_head *logs,
1401                                        struct the_nilfs *nilfs)
1402 {
1403         struct nilfs_segment_buffer *segbuf, *prev;
1404         struct inode *sufile = nilfs->ns_sufile;
1405         int ret;
1406
1407         segbuf = NILFS_FIRST_SEGBUF(logs);
1408         if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1409                 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1410                 WARN_ON(ret); /* never fails */
1411         }
1412         if (atomic_read(&segbuf->sb_err)) {
1413                 /* Case 1: The first segment failed */
1414                 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1415                         /*
1416                          * Case 1a:  Partial segment appended into an existing
1417                          * segment
1418                          */
1419                         nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1420                                                 segbuf->sb_fseg_end);
1421                 else /* Case 1b:  New full segment */
1422                         set_nilfs_discontinued(nilfs);
1423         }
1424
1425         prev = segbuf;
1426         list_for_each_entry_continue(segbuf, logs, sb_list) {
1427                 if (prev->sb_nextnum != segbuf->sb_nextnum) {
1428                         ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1429                         WARN_ON(ret); /* never fails */
1430                 }
1431                 if (atomic_read(&segbuf->sb_err) &&
1432                     segbuf->sb_segnum != nilfs->ns_nextnum)
1433                         /* Case 2: extended segment (!= next) failed */
1434                         nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1435                 prev = segbuf;
1436         }
1437 }
1438
1439 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1440                                           struct inode *sufile)
1441 {
1442         struct nilfs_segment_buffer *segbuf;
1443         unsigned long live_blocks;
1444         int ret;
1445
1446         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1447                 live_blocks = segbuf->sb_sum.nblocks +
1448                         (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1449                 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1450                                                      live_blocks,
1451                                                      sci->sc_seg_ctime);
1452                 WARN_ON(ret); /* always succeed because the segusage is dirty */
1453         }
1454 }
1455
1456 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1457 {
1458         struct nilfs_segment_buffer *segbuf;
1459         int ret;
1460
1461         segbuf = NILFS_FIRST_SEGBUF(logs);
1462         ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1463                                              segbuf->sb_pseg_start -
1464                                              segbuf->sb_fseg_start, 0);
1465         WARN_ON(ret); /* always succeed because the segusage is dirty */
1466
1467         list_for_each_entry_continue(segbuf, logs, sb_list) {
1468                 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1469                                                      0, 0);
1470                 WARN_ON(ret); /* always succeed */
1471         }
1472 }
1473
1474 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1475                                             struct nilfs_segment_buffer *last,
1476                                             struct inode *sufile)
1477 {
1478         struct nilfs_segment_buffer *segbuf = last;
1479         int ret;
1480
1481         list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1482                 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1483                 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1484                 WARN_ON(ret);
1485         }
1486         nilfs_truncate_logs(&sci->sc_segbufs, last);
1487 }
1488
1489
1490 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1491                                  struct the_nilfs *nilfs, int mode)
1492 {
1493         struct nilfs_cstage prev_stage = sci->sc_stage;
1494         int err, nadd = 1;
1495
1496         /* Collection retry loop */
1497         for (;;) {
1498                 sci->sc_nblk_this_inc = 0;
1499                 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1500
1501                 err = nilfs_segctor_reset_segment_buffer(sci);
1502                 if (unlikely(err))
1503                         goto failed;
1504
1505                 err = nilfs_segctor_collect_blocks(sci, mode);
1506                 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1507                 if (!err)
1508                         break;
1509
1510                 if (unlikely(err != -E2BIG))
1511                         goto failed;
1512
1513                 /* The current segment is filled up */
1514                 if (mode != SC_LSEG_SR ||
1515                     nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE)
1516                         break;
1517
1518                 nilfs_clear_logs(&sci->sc_segbufs);
1519
1520                 if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1521                         err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1522                                                         sci->sc_freesegs,
1523                                                         sci->sc_nfreesegs,
1524                                                         NULL);
1525                         WARN_ON(err); /* do not happen */
1526                         sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
1527                 }
1528
1529                 err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1530                 if (unlikely(err))
1531                         return err;
1532
1533                 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1534                 sci->sc_stage = prev_stage;
1535         }
1536         nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1537         return 0;
1538
1539  failed:
1540         return err;
1541 }
1542
1543 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1544                                       struct buffer_head *new_bh)
1545 {
1546         BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1547
1548         list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1549         /* The caller must release old_bh */
1550 }
1551
1552 static int
1553 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1554                                      struct nilfs_segment_buffer *segbuf,
1555                                      int mode)
1556 {
1557         struct inode *inode = NULL;
1558         sector_t blocknr;
1559         unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1560         unsigned long nblocks = 0, ndatablk = 0;
1561         const struct nilfs_sc_operations *sc_op = NULL;
1562         struct nilfs_segsum_pointer ssp;
1563         struct nilfs_finfo *finfo = NULL;
1564         union nilfs_binfo binfo;
1565         struct buffer_head *bh, *bh_org;
1566         ino_t ino = 0;
1567         int err = 0;
1568
1569         if (!nfinfo)
1570                 goto out;
1571
1572         blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1573         ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1574         ssp.offset = sizeof(struct nilfs_segment_summary);
1575
1576         list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1577                 if (bh == segbuf->sb_super_root)
1578                         break;
1579                 if (!finfo) {
1580                         finfo = nilfs_segctor_map_segsum_entry(
1581                                 sci, &ssp, sizeof(*finfo));
1582                         ino = le64_to_cpu(finfo->fi_ino);
1583                         nblocks = le32_to_cpu(finfo->fi_nblocks);
1584                         ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1585
1586                         inode = bh->b_page->mapping->host;
1587
1588                         if (mode == SC_LSEG_DSYNC)
1589                                 sc_op = &nilfs_sc_dsync_ops;
1590                         else if (ino == NILFS_DAT_INO)
1591                                 sc_op = &nilfs_sc_dat_ops;
1592                         else /* file blocks */
1593                                 sc_op = &nilfs_sc_file_ops;
1594                 }
1595                 bh_org = bh;
1596                 get_bh(bh_org);
1597                 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1598                                         &binfo);
1599                 if (bh != bh_org)
1600                         nilfs_list_replace_buffer(bh_org, bh);
1601                 brelse(bh_org);
1602                 if (unlikely(err))
1603                         goto failed_bmap;
1604
1605                 if (ndatablk > 0)
1606                         sc_op->write_data_binfo(sci, &ssp, &binfo);
1607                 else
1608                         sc_op->write_node_binfo(sci, &ssp, &binfo);
1609
1610                 blocknr++;
1611                 if (--nblocks == 0) {
1612                         finfo = NULL;
1613                         if (--nfinfo == 0)
1614                                 break;
1615                 } else if (ndatablk > 0)
1616                         ndatablk--;
1617         }
1618  out:
1619         return 0;
1620
1621  failed_bmap:
1622         return err;
1623 }
1624
1625 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1626 {
1627         struct nilfs_segment_buffer *segbuf;
1628         int err;
1629
1630         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1631                 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1632                 if (unlikely(err))
1633                         return err;
1634                 nilfs_segbuf_fill_in_segsum(segbuf);
1635         }
1636         return 0;
1637 }
1638
1639 static void nilfs_begin_page_io(struct page *page)
1640 {
1641         if (!page || PageWriteback(page))
1642                 /*
1643                  * For split b-tree node pages, this function may be called
1644                  * twice.  We ignore the 2nd or later calls by this check.
1645                  */
1646                 return;
1647
1648         lock_page(page);
1649         clear_page_dirty_for_io(page);
1650         set_page_writeback(page);
1651         unlock_page(page);
1652 }
1653
1654 static void nilfs_segctor_prepare_write(struct nilfs_sc_info *sci)
1655 {
1656         struct nilfs_segment_buffer *segbuf;
1657         struct page *bd_page = NULL, *fs_page = NULL;
1658
1659         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1660                 struct buffer_head *bh;
1661
1662                 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1663                                     b_assoc_buffers) {
1664                         if (bh->b_page != bd_page) {
1665                                 if (bd_page) {
1666                                         lock_page(bd_page);
1667                                         clear_page_dirty_for_io(bd_page);
1668                                         set_page_writeback(bd_page);
1669                                         unlock_page(bd_page);
1670                                 }
1671                                 bd_page = bh->b_page;
1672                         }
1673                 }
1674
1675                 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1676                                     b_assoc_buffers) {
1677                         set_buffer_async_write(bh);
1678                         if (bh == segbuf->sb_super_root) {
1679                                 if (bh->b_page != bd_page) {
1680                                         lock_page(bd_page);
1681                                         clear_page_dirty_for_io(bd_page);
1682                                         set_page_writeback(bd_page);
1683                                         unlock_page(bd_page);
1684                                         bd_page = bh->b_page;
1685                                 }
1686                                 break;
1687                         }
1688                         if (bh->b_page != fs_page) {
1689                                 nilfs_begin_page_io(fs_page);
1690                                 fs_page = bh->b_page;
1691                         }
1692                 }
1693         }
1694         if (bd_page) {
1695                 lock_page(bd_page);
1696                 clear_page_dirty_for_io(bd_page);
1697                 set_page_writeback(bd_page);
1698                 unlock_page(bd_page);
1699         }
1700         nilfs_begin_page_io(fs_page);
1701 }
1702
1703 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1704                                struct the_nilfs *nilfs)
1705 {
1706         int ret;
1707
1708         ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1709         list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1710         return ret;
1711 }
1712
1713 static void nilfs_end_page_io(struct page *page, int err)
1714 {
1715         if (!page)
1716                 return;
1717
1718         if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1719                 /*
1720                  * For b-tree node pages, this function may be called twice
1721                  * or more because they might be split in a segment.
1722                  */
1723                 if (PageDirty(page)) {
1724                         /*
1725                          * For pages holding split b-tree node buffers, dirty
1726                          * flag on the buffers may be cleared discretely.
1727                          * In that case, the page is once redirtied for
1728                          * remaining buffers, and it must be cancelled if
1729                          * all the buffers get cleaned later.
1730                          */
1731                         lock_page(page);
1732                         if (nilfs_page_buffers_clean(page))
1733                                 __nilfs_clear_page_dirty(page);
1734                         unlock_page(page);
1735                 }
1736                 return;
1737         }
1738
1739         if (!err) {
1740                 if (!nilfs_page_buffers_clean(page))
1741                         __set_page_dirty_nobuffers(page);
1742                 ClearPageError(page);
1743         } else {
1744                 __set_page_dirty_nobuffers(page);
1745                 SetPageError(page);
1746         }
1747
1748         end_page_writeback(page);
1749 }
1750
1751 static void nilfs_abort_logs(struct list_head *logs, int err)
1752 {
1753         struct nilfs_segment_buffer *segbuf;
1754         struct page *bd_page = NULL, *fs_page = NULL;
1755         struct buffer_head *bh;
1756
1757         if (list_empty(logs))
1758                 return;
1759
1760         list_for_each_entry(segbuf, logs, sb_list) {
1761                 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1762                                     b_assoc_buffers) {
1763                         if (bh->b_page != bd_page) {
1764                                 if (bd_page)
1765                                         end_page_writeback(bd_page);
1766                                 bd_page = bh->b_page;
1767                         }
1768                 }
1769
1770                 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1771                                     b_assoc_buffers) {
1772                         clear_buffer_async_write(bh);
1773                         if (bh == segbuf->sb_super_root) {
1774                                 if (bh->b_page != bd_page) {
1775                                         end_page_writeback(bd_page);
1776                                         bd_page = bh->b_page;
1777                                 }
1778                                 break;
1779                         }
1780                         if (bh->b_page != fs_page) {
1781                                 nilfs_end_page_io(fs_page, err);
1782                                 fs_page = bh->b_page;
1783                         }
1784                 }
1785         }
1786         if (bd_page)
1787                 end_page_writeback(bd_page);
1788
1789         nilfs_end_page_io(fs_page, err);
1790 }
1791
1792 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1793                                              struct the_nilfs *nilfs, int err)
1794 {
1795         LIST_HEAD(logs);
1796         int ret;
1797
1798         list_splice_tail_init(&sci->sc_write_logs, &logs);
1799         ret = nilfs_wait_on_logs(&logs);
1800         nilfs_abort_logs(&logs, ret ? : err);
1801
1802         list_splice_tail_init(&sci->sc_segbufs, &logs);
1803         nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1804         nilfs_free_incomplete_logs(&logs, nilfs);
1805
1806         if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1807                 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1808                                                 sci->sc_freesegs,
1809                                                 sci->sc_nfreesegs,
1810                                                 NULL);
1811                 WARN_ON(ret); /* do not happen */
1812         }
1813
1814         nilfs_destroy_logs(&logs);
1815 }
1816
1817 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1818                                    struct nilfs_segment_buffer *segbuf)
1819 {
1820         nilfs->ns_segnum = segbuf->sb_segnum;
1821         nilfs->ns_nextnum = segbuf->sb_nextnum;
1822         nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1823                 + segbuf->sb_sum.nblocks;
1824         nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1825         nilfs->ns_ctime = segbuf->sb_sum.ctime;
1826 }
1827
1828 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1829 {
1830         struct nilfs_segment_buffer *segbuf;
1831         struct page *bd_page = NULL, *fs_page = NULL;
1832         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1833         int update_sr = false;
1834
1835         list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1836                 struct buffer_head *bh;
1837
1838                 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1839                                     b_assoc_buffers) {
1840                         set_buffer_uptodate(bh);
1841                         clear_buffer_dirty(bh);
1842                         if (bh->b_page != bd_page) {
1843                                 if (bd_page)
1844                                         end_page_writeback(bd_page);
1845                                 bd_page = bh->b_page;
1846                         }
1847                 }
1848                 /*
1849                  * We assume that the buffers which belong to the same page
1850                  * continue over the buffer list.
1851                  * Under this assumption, the last BHs of pages is
1852                  * identifiable by the discontinuity of bh->b_page
1853                  * (page != fs_page).
1854                  *
1855                  * For B-tree node blocks, however, this assumption is not
1856                  * guaranteed.  The cleanup code of B-tree node pages needs
1857                  * special care.
1858                  */
1859                 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1860                                     b_assoc_buffers) {
1861                         const unsigned long set_bits = BIT(BH_Uptodate);
1862                         const unsigned long clear_bits =
1863                                 (BIT(BH_Dirty) | BIT(BH_Async_Write) |
1864                                  BIT(BH_Delay) | BIT(BH_NILFS_Volatile) |
1865                                  BIT(BH_NILFS_Redirected));
1866
1867                         set_mask_bits(&bh->b_state, clear_bits, set_bits);
1868                         if (bh == segbuf->sb_super_root) {
1869                                 if (bh->b_page != bd_page) {
1870                                         end_page_writeback(bd_page);
1871                                         bd_page = bh->b_page;
1872                                 }
1873                                 update_sr = true;
1874                                 break;
1875                         }
1876                         if (bh->b_page != fs_page) {
1877                                 nilfs_end_page_io(fs_page, 0);
1878                                 fs_page = bh->b_page;
1879                         }
1880                 }
1881
1882                 if (!nilfs_segbuf_simplex(segbuf)) {
1883                         if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
1884                                 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1885                                 sci->sc_lseg_stime = jiffies;
1886                         }
1887                         if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
1888                                 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1889                 }
1890         }
1891         /*
1892          * Since pages may continue over multiple segment buffers,
1893          * end of the last page must be checked outside of the loop.
1894          */
1895         if (bd_page)
1896                 end_page_writeback(bd_page);
1897
1898         nilfs_end_page_io(fs_page, 0);
1899
1900         nilfs_drop_collected_inodes(&sci->sc_dirty_files);
1901
1902         if (nilfs_doing_gc())
1903                 nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
1904         else
1905                 nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
1906
1907         sci->sc_nblk_inc += sci->sc_nblk_this_inc;
1908
1909         segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1910         nilfs_set_next_segment(nilfs, segbuf);
1911
1912         if (update_sr) {
1913                 nilfs->ns_flushed_device = 0;
1914                 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
1915                                        segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
1916
1917                 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
1918                 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1919                 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1920                 nilfs_segctor_clear_metadata_dirty(sci);
1921         } else
1922                 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1923 }
1924
1925 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
1926 {
1927         int ret;
1928
1929         ret = nilfs_wait_on_logs(&sci->sc_write_logs);
1930         if (!ret) {
1931                 nilfs_segctor_complete_write(sci);
1932                 nilfs_destroy_logs(&sci->sc_write_logs);
1933         }
1934         return ret;
1935 }
1936
1937 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
1938                                              struct the_nilfs *nilfs)
1939 {
1940         struct nilfs_inode_info *ii, *n;
1941         struct inode *ifile = sci->sc_root->ifile;
1942
1943         spin_lock(&nilfs->ns_inode_lock);
1944  retry:
1945         list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
1946                 if (!ii->i_bh) {
1947                         struct buffer_head *ibh;
1948                         int err;
1949
1950                         spin_unlock(&nilfs->ns_inode_lock);
1951                         err = nilfs_ifile_get_inode_block(
1952                                 ifile, ii->vfs_inode.i_ino, &ibh);
1953                         if (unlikely(err)) {
1954                                 nilfs_msg(sci->sc_super, KERN_WARNING,
1955                                           "log writer: error %d getting inode block (ino=%lu)",
1956                                           err, ii->vfs_inode.i_ino);
1957                                 return err;
1958                         }
1959                         spin_lock(&nilfs->ns_inode_lock);
1960                         if (likely(!ii->i_bh))
1961                                 ii->i_bh = ibh;
1962                         else
1963                                 brelse(ibh);
1964                         goto retry;
1965                 }
1966
1967                 // Always redirty the buffer to avoid race condition
1968                 mark_buffer_dirty(ii->i_bh);
1969                 nilfs_mdt_mark_dirty(ifile);
1970
1971                 clear_bit(NILFS_I_QUEUED, &ii->i_state);
1972                 set_bit(NILFS_I_BUSY, &ii->i_state);
1973                 list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
1974         }
1975         spin_unlock(&nilfs->ns_inode_lock);
1976
1977         return 0;
1978 }
1979
1980 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
1981                                              struct the_nilfs *nilfs)
1982 {
1983         struct nilfs_inode_info *ii, *n;
1984         int during_mount = !(sci->sc_super->s_flags & MS_ACTIVE);
1985         int defer_iput = false;
1986
1987         spin_lock(&nilfs->ns_inode_lock);
1988         list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
1989                 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
1990                     test_bit(NILFS_I_DIRTY, &ii->i_state))
1991                         continue;
1992
1993                 clear_bit(NILFS_I_BUSY, &ii->i_state);
1994                 brelse(ii->i_bh);
1995                 ii->i_bh = NULL;
1996                 list_del_init(&ii->i_dirty);
1997                 if (!ii->vfs_inode.i_nlink || during_mount) {
1998                         /*
1999                          * Defer calling iput() to avoid deadlocks if
2000                          * i_nlink == 0 or mount is not yet finished.
2001                          */
2002                         list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
2003                         defer_iput = true;
2004                 } else {
2005                         spin_unlock(&nilfs->ns_inode_lock);
2006                         iput(&ii->vfs_inode);
2007                         spin_lock(&nilfs->ns_inode_lock);
2008                 }
2009         }
2010         spin_unlock(&nilfs->ns_inode_lock);
2011
2012         if (defer_iput)
2013                 schedule_work(&sci->sc_iput_work);
2014 }
2015
2016 /*
2017  * Main procedure of segment constructor
2018  */
2019 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2020 {
2021         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2022         int err;
2023
2024         nilfs_sc_cstage_set(sci, NILFS_ST_INIT);
2025         sci->sc_cno = nilfs->ns_cno;
2026
2027         err = nilfs_segctor_collect_dirty_files(sci, nilfs);
2028         if (unlikely(err))
2029                 goto out;
2030
2031         if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
2032                 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2033
2034         if (nilfs_segctor_clean(sci))
2035                 goto out;
2036
2037         do {
2038                 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2039
2040                 err = nilfs_segctor_begin_construction(sci, nilfs);
2041                 if (unlikely(err))
2042                         goto out;
2043
2044                 /* Update time stamp */
2045                 sci->sc_seg_ctime = get_seconds();
2046
2047                 err = nilfs_segctor_collect(sci, nilfs, mode);
2048                 if (unlikely(err))
2049                         goto failed;
2050
2051                 /* Avoid empty segment */
2052                 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE &&
2053                     nilfs_segbuf_empty(sci->sc_curseg)) {
2054                         nilfs_segctor_abort_construction(sci, nilfs, 1);
2055                         goto out;
2056                 }
2057
2058                 err = nilfs_segctor_assign(sci, mode);
2059                 if (unlikely(err))
2060                         goto failed;
2061
2062                 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2063                         nilfs_segctor_fill_in_file_bmap(sci);
2064
2065                 if (mode == SC_LSEG_SR &&
2066                     nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) {
2067                         err = nilfs_segctor_fill_in_checkpoint(sci);
2068                         if (unlikely(err))
2069                                 goto failed_to_write;
2070
2071                         nilfs_segctor_fill_in_super_root(sci, nilfs);
2072                 }
2073                 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2074
2075                 /* Write partial segments */
2076                 nilfs_segctor_prepare_write(sci);
2077
2078                 nilfs_add_checksums_on_logs(&sci->sc_segbufs,
2079                                             nilfs->ns_crc_seed);
2080
2081                 err = nilfs_segctor_write(sci, nilfs);
2082                 if (unlikely(err))
2083                         goto failed_to_write;
2084
2085                 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE ||
2086                     nilfs->ns_blocksize_bits != PAGE_SHIFT) {
2087                         /*
2088                          * At this point, we avoid double buffering
2089                          * for blocksize < pagesize because page dirty
2090                          * flag is turned off during write and dirty
2091                          * buffers are not properly collected for
2092                          * pages crossing over segments.
2093                          */
2094                         err = nilfs_segctor_wait(sci);
2095                         if (err)
2096                                 goto failed_to_write;
2097                 }
2098         } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE);
2099
2100  out:
2101         nilfs_segctor_drop_written_files(sci, nilfs);
2102         return err;
2103
2104  failed_to_write:
2105         if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2106                 nilfs_redirty_inodes(&sci->sc_dirty_files);
2107
2108  failed:
2109         if (nilfs_doing_gc())
2110                 nilfs_redirty_inodes(&sci->sc_gc_inodes);
2111         nilfs_segctor_abort_construction(sci, nilfs, err);
2112         goto out;
2113 }
2114
2115 /**
2116  * nilfs_segctor_start_timer - set timer of background write
2117  * @sci: nilfs_sc_info
2118  *
2119  * If the timer has already been set, it ignores the new request.
2120  * This function MUST be called within a section locking the segment
2121  * semaphore.
2122  */
2123 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2124 {
2125         spin_lock(&sci->sc_state_lock);
2126         if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2127                 sci->sc_timer.expires = jiffies + sci->sc_interval;
2128                 add_timer(&sci->sc_timer);
2129                 sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2130         }
2131         spin_unlock(&sci->sc_state_lock);
2132 }
2133
2134 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2135 {
2136         spin_lock(&sci->sc_state_lock);
2137         if (!(sci->sc_flush_request & BIT(bn))) {
2138                 unsigned long prev_req = sci->sc_flush_request;
2139
2140                 sci->sc_flush_request |= BIT(bn);
2141                 if (!prev_req)
2142                         wake_up(&sci->sc_wait_daemon);
2143         }
2144         spin_unlock(&sci->sc_state_lock);
2145 }
2146
2147 /**
2148  * nilfs_flush_segment - trigger a segment construction for resource control
2149  * @sb: super block
2150  * @ino: inode number of the file to be flushed out.
2151  */
2152 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2153 {
2154         struct the_nilfs *nilfs = sb->s_fs_info;
2155         struct nilfs_sc_info *sci = nilfs->ns_writer;
2156
2157         if (!sci || nilfs_doing_construction())
2158                 return;
2159         nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2160                                         /* assign bit 0 to data files */
2161 }
2162
2163 struct nilfs_segctor_wait_request {
2164         wait_queue_t    wq;
2165         __u32           seq;
2166         int             err;
2167         atomic_t        done;
2168 };
2169
2170 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2171 {
2172         struct nilfs_segctor_wait_request wait_req;
2173         int err = 0;
2174
2175         spin_lock(&sci->sc_state_lock);
2176         init_wait(&wait_req.wq);
2177         wait_req.err = 0;
2178         atomic_set(&wait_req.done, 0);
2179         wait_req.seq = ++sci->sc_seq_request;
2180         spin_unlock(&sci->sc_state_lock);
2181
2182         init_waitqueue_entry(&wait_req.wq, current);
2183         add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2184         set_current_state(TASK_INTERRUPTIBLE);
2185         wake_up(&sci->sc_wait_daemon);
2186
2187         for (;;) {
2188                 if (atomic_read(&wait_req.done)) {
2189                         err = wait_req.err;
2190                         break;
2191                 }
2192                 if (!signal_pending(current)) {
2193                         schedule();
2194                         continue;
2195                 }
2196                 err = -ERESTARTSYS;
2197                 break;
2198         }
2199         finish_wait(&sci->sc_wait_request, &wait_req.wq);
2200         return err;
2201 }
2202
2203 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
2204 {
2205         struct nilfs_segctor_wait_request *wrq, *n;
2206         unsigned long flags;
2207
2208         spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2209         list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
2210                                  wq.task_list) {
2211                 if (!atomic_read(&wrq->done) &&
2212                     nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
2213                         wrq->err = err;
2214                         atomic_set(&wrq->done, 1);
2215                 }
2216                 if (atomic_read(&wrq->done)) {
2217                         wrq->wq.func(&wrq->wq,
2218                                      TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2219                                      0, NULL);
2220                 }
2221         }
2222         spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2223 }
2224
2225 /**
2226  * nilfs_construct_segment - construct a logical segment
2227  * @sb: super block
2228  *
2229  * Return Value: On success, 0 is retured. On errors, one of the following
2230  * negative error code is returned.
2231  *
2232  * %-EROFS - Read only filesystem.
2233  *
2234  * %-EIO - I/O error
2235  *
2236  * %-ENOSPC - No space left on device (only in a panic state).
2237  *
2238  * %-ERESTARTSYS - Interrupted.
2239  *
2240  * %-ENOMEM - Insufficient memory available.
2241  */
2242 int nilfs_construct_segment(struct super_block *sb)
2243 {
2244         struct the_nilfs *nilfs = sb->s_fs_info;
2245         struct nilfs_sc_info *sci = nilfs->ns_writer;
2246         struct nilfs_transaction_info *ti;
2247         int err;
2248
2249         if (!sci)
2250                 return -EROFS;
2251
2252         /* A call inside transactions causes a deadlock. */
2253         BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2254
2255         err = nilfs_segctor_sync(sci);
2256         return err;
2257 }
2258
2259 /**
2260  * nilfs_construct_dsync_segment - construct a data-only logical segment
2261  * @sb: super block
2262  * @inode: inode whose data blocks should be written out
2263  * @start: start byte offset
2264  * @end: end byte offset (inclusive)
2265  *
2266  * Return Value: On success, 0 is retured. On errors, one of the following
2267  * negative error code is returned.
2268  *
2269  * %-EROFS - Read only filesystem.
2270  *
2271  * %-EIO - I/O error
2272  *
2273  * %-ENOSPC - No space left on device (only in a panic state).
2274  *
2275  * %-ERESTARTSYS - Interrupted.
2276  *
2277  * %-ENOMEM - Insufficient memory available.
2278  */
2279 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2280                                   loff_t start, loff_t end)
2281 {
2282         struct the_nilfs *nilfs = sb->s_fs_info;
2283         struct nilfs_sc_info *sci = nilfs->ns_writer;
2284         struct nilfs_inode_info *ii;
2285         struct nilfs_transaction_info ti;
2286         int err = 0;
2287
2288         if (!sci)
2289                 return -EROFS;
2290
2291         nilfs_transaction_lock(sb, &ti, 0);
2292
2293         ii = NILFS_I(inode);
2294         if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
2295             nilfs_test_opt(nilfs, STRICT_ORDER) ||
2296             test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2297             nilfs_discontinued(nilfs)) {
2298                 nilfs_transaction_unlock(sb);
2299                 err = nilfs_segctor_sync(sci);
2300                 return err;
2301         }
2302
2303         spin_lock(&nilfs->ns_inode_lock);
2304         if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2305             !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2306                 spin_unlock(&nilfs->ns_inode_lock);
2307                 nilfs_transaction_unlock(sb);
2308                 return 0;
2309         }
2310         spin_unlock(&nilfs->ns_inode_lock);
2311         sci->sc_dsync_inode = ii;
2312         sci->sc_dsync_start = start;
2313         sci->sc_dsync_end = end;
2314
2315         err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2316         if (!err)
2317                 nilfs->ns_flushed_device = 0;
2318
2319         nilfs_transaction_unlock(sb);
2320         return err;
2321 }
2322
2323 #define FLUSH_FILE_BIT  (0x1) /* data file only */
2324 #define FLUSH_DAT_BIT   BIT(NILFS_DAT_INO) /* DAT only */
2325
2326 /**
2327  * nilfs_segctor_accept - record accepted sequence count of log-write requests
2328  * @sci: segment constructor object
2329  */
2330 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2331 {
2332         spin_lock(&sci->sc_state_lock);
2333         sci->sc_seq_accepted = sci->sc_seq_request;
2334         spin_unlock(&sci->sc_state_lock);
2335         del_timer_sync(&sci->sc_timer);
2336 }
2337
2338 /**
2339  * nilfs_segctor_notify - notify the result of request to caller threads
2340  * @sci: segment constructor object
2341  * @mode: mode of log forming
2342  * @err: error code to be notified
2343  */
2344 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2345 {
2346         /* Clear requests (even when the construction failed) */
2347         spin_lock(&sci->sc_state_lock);
2348
2349         if (mode == SC_LSEG_SR) {
2350                 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2351                 sci->sc_seq_done = sci->sc_seq_accepted;
2352                 nilfs_segctor_wakeup(sci, err);
2353                 sci->sc_flush_request = 0;
2354         } else {
2355                 if (mode == SC_FLUSH_FILE)
2356                         sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2357                 else if (mode == SC_FLUSH_DAT)
2358                         sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2359
2360                 /* re-enable timer if checkpoint creation was not done */
2361                 if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2362                     time_before(jiffies, sci->sc_timer.expires))
2363                         add_timer(&sci->sc_timer);
2364         }
2365         spin_unlock(&sci->sc_state_lock);
2366 }
2367
2368 /**
2369  * nilfs_segctor_construct - form logs and write them to disk
2370  * @sci: segment constructor object
2371  * @mode: mode of log forming
2372  */
2373 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2374 {
2375         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2376         struct nilfs_super_block **sbp;
2377         int err = 0;
2378
2379         nilfs_segctor_accept(sci);
2380
2381         if (nilfs_discontinued(nilfs))
2382                 mode = SC_LSEG_SR;
2383         if (!nilfs_segctor_confirm(sci))
2384                 err = nilfs_segctor_do_construct(sci, mode);
2385
2386         if (likely(!err)) {
2387                 if (mode != SC_FLUSH_DAT)
2388                         atomic_set(&nilfs->ns_ndirtyblks, 0);
2389                 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2390                     nilfs_discontinued(nilfs)) {
2391                         down_write(&nilfs->ns_sem);
2392                         err = -EIO;
2393                         sbp = nilfs_prepare_super(sci->sc_super,
2394                                                   nilfs_sb_will_flip(nilfs));
2395                         if (likely(sbp)) {
2396                                 nilfs_set_log_cursor(sbp[0], nilfs);
2397                                 err = nilfs_commit_super(sci->sc_super,
2398                                                          NILFS_SB_COMMIT);
2399                         }
2400                         up_write(&nilfs->ns_sem);
2401                 }
2402         }
2403
2404         nilfs_segctor_notify(sci, mode, err);
2405         return err;
2406 }
2407
2408 static void nilfs_construction_timeout(unsigned long data)
2409 {
2410         struct task_struct *p = (struct task_struct *)data;
2411
2412         wake_up_process(p);
2413 }
2414
2415 static void
2416 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2417 {
2418         struct nilfs_inode_info *ii, *n;
2419
2420         list_for_each_entry_safe(ii, n, head, i_dirty) {
2421                 if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2422                         continue;
2423                 list_del_init(&ii->i_dirty);
2424                 truncate_inode_pages(&ii->vfs_inode.i_data, 0);
2425                 nilfs_btnode_cache_clear(&ii->i_btnode_cache);
2426                 iput(&ii->vfs_inode);
2427         }
2428 }
2429
2430 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2431                          void **kbufs)
2432 {
2433         struct the_nilfs *nilfs = sb->s_fs_info;
2434         struct nilfs_sc_info *sci = nilfs->ns_writer;
2435         struct nilfs_transaction_info ti;
2436         int err;
2437
2438         if (unlikely(!sci))
2439                 return -EROFS;
2440
2441         nilfs_transaction_lock(sb, &ti, 1);
2442
2443         err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
2444         if (unlikely(err))
2445                 goto out_unlock;
2446
2447         err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2448         if (unlikely(err)) {
2449                 nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
2450                 goto out_unlock;
2451         }
2452
2453         sci->sc_freesegs = kbufs[4];
2454         sci->sc_nfreesegs = argv[4].v_nmembs;
2455         list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2456
2457         for (;;) {
2458                 err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2459                 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2460
2461                 if (likely(!err))
2462                         break;
2463
2464                 nilfs_msg(sb, KERN_WARNING, "error %d cleaning segments", err);
2465                 set_current_state(TASK_INTERRUPTIBLE);
2466                 schedule_timeout(sci->sc_interval);
2467         }
2468         if (nilfs_test_opt(nilfs, DISCARD)) {
2469                 int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2470                                                  sci->sc_nfreesegs);
2471                 if (ret) {
2472                         nilfs_msg(sb, KERN_WARNING,
2473                                   "error %d on discard request, turning discards off for the device",
2474                                   ret);
2475                         nilfs_clear_opt(nilfs, DISCARD);
2476                 }
2477         }
2478
2479  out_unlock:
2480         sci->sc_freesegs = NULL;
2481         sci->sc_nfreesegs = 0;
2482         nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
2483         nilfs_transaction_unlock(sb);
2484         return err;
2485 }
2486
2487 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2488 {
2489         struct nilfs_transaction_info ti;
2490
2491         nilfs_transaction_lock(sci->sc_super, &ti, 0);
2492         nilfs_segctor_construct(sci, mode);
2493
2494         /*
2495          * Unclosed segment should be retried.  We do this using sc_timer.
2496          * Timeout of sc_timer will invoke complete construction which leads
2497          * to close the current logical segment.
2498          */
2499         if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2500                 nilfs_segctor_start_timer(sci);
2501
2502         nilfs_transaction_unlock(sci->sc_super);
2503 }
2504
2505 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2506 {
2507         int mode = 0;
2508
2509         spin_lock(&sci->sc_state_lock);
2510         mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2511                 SC_FLUSH_DAT : SC_FLUSH_FILE;
2512         spin_unlock(&sci->sc_state_lock);
2513
2514         if (mode) {
2515                 nilfs_segctor_do_construct(sci, mode);
2516
2517                 spin_lock(&sci->sc_state_lock);
2518                 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2519                         ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2520                 spin_unlock(&sci->sc_state_lock);
2521         }
2522         clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2523 }
2524
2525 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2526 {
2527         if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2528             time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2529                 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2530                         return SC_FLUSH_FILE;
2531                 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2532                         return SC_FLUSH_DAT;
2533         }
2534         return SC_LSEG_SR;
2535 }
2536
2537 /**
2538  * nilfs_segctor_thread - main loop of the segment constructor thread.
2539  * @arg: pointer to a struct nilfs_sc_info.
2540  *
2541  * nilfs_segctor_thread() initializes a timer and serves as a daemon
2542  * to execute segment constructions.
2543  */
2544 static int nilfs_segctor_thread(void *arg)
2545 {
2546         struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2547         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2548         int timeout = 0;
2549
2550         sci->sc_timer.data = (unsigned long)current;
2551         sci->sc_timer.function = nilfs_construction_timeout;
2552
2553         /* start sync. */
2554         sci->sc_task = current;
2555         wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2556         nilfs_msg(sci->sc_super, KERN_INFO,
2557                   "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds",
2558                   sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2559
2560         spin_lock(&sci->sc_state_lock);
2561  loop:
2562         for (;;) {
2563                 int mode;
2564
2565                 if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2566                         goto end_thread;
2567
2568                 if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2569                         mode = SC_LSEG_SR;
2570                 else if (sci->sc_flush_request)
2571                         mode = nilfs_segctor_flush_mode(sci);
2572                 else
2573                         break;
2574
2575                 spin_unlock(&sci->sc_state_lock);
2576                 nilfs_segctor_thread_construct(sci, mode);
2577                 spin_lock(&sci->sc_state_lock);
2578                 timeout = 0;
2579         }
2580
2581
2582         if (freezing(current)) {
2583                 spin_unlock(&sci->sc_state_lock);
2584                 try_to_freeze();
2585                 spin_lock(&sci->sc_state_lock);
2586         } else {
2587                 DEFINE_WAIT(wait);
2588                 int should_sleep = 1;
2589
2590                 prepare_to_wait(&sci->sc_wait_daemon, &wait,
2591                                 TASK_INTERRUPTIBLE);
2592
2593                 if (sci->sc_seq_request != sci->sc_seq_done)
2594                         should_sleep = 0;
2595                 else if (sci->sc_flush_request)
2596                         should_sleep = 0;
2597                 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2598                         should_sleep = time_before(jiffies,
2599                                         sci->sc_timer.expires);
2600
2601                 if (should_sleep) {
2602                         spin_unlock(&sci->sc_state_lock);
2603                         schedule();
2604                         spin_lock(&sci->sc_state_lock);
2605                 }
2606                 finish_wait(&sci->sc_wait_daemon, &wait);
2607                 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2608                            time_after_eq(jiffies, sci->sc_timer.expires));
2609
2610                 if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2611                         set_nilfs_discontinued(nilfs);
2612         }
2613         goto loop;
2614
2615  end_thread:
2616         spin_unlock(&sci->sc_state_lock);
2617
2618         /* end sync. */
2619         sci->sc_task = NULL;
2620         wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2621         return 0;
2622 }
2623
2624 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2625 {
2626         struct task_struct *t;
2627
2628         t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2629         if (IS_ERR(t)) {
2630                 int err = PTR_ERR(t);
2631
2632                 nilfs_msg(sci->sc_super, KERN_ERR,
2633                           "error %d creating segctord thread", err);
2634                 return err;
2635         }
2636         wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2637         return 0;
2638 }
2639
2640 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2641         __acquires(&sci->sc_state_lock)
2642         __releases(&sci->sc_state_lock)
2643 {
2644         sci->sc_state |= NILFS_SEGCTOR_QUIT;
2645
2646         while (sci->sc_task) {
2647                 wake_up(&sci->sc_wait_daemon);
2648                 spin_unlock(&sci->sc_state_lock);
2649                 wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2650                 spin_lock(&sci->sc_state_lock);
2651         }
2652 }
2653
2654 /*
2655  * Setup & clean-up functions
2656  */
2657 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
2658                                                struct nilfs_root *root)
2659 {
2660         struct the_nilfs *nilfs = sb->s_fs_info;
2661         struct nilfs_sc_info *sci;
2662
2663         sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2664         if (!sci)
2665                 return NULL;
2666
2667         sci->sc_super = sb;
2668
2669         nilfs_get_root(root);
2670         sci->sc_root = root;
2671
2672         init_waitqueue_head(&sci->sc_wait_request);
2673         init_waitqueue_head(&sci->sc_wait_daemon);
2674         init_waitqueue_head(&sci->sc_wait_task);
2675         spin_lock_init(&sci->sc_state_lock);
2676         INIT_LIST_HEAD(&sci->sc_dirty_files);
2677         INIT_LIST_HEAD(&sci->sc_segbufs);
2678         INIT_LIST_HEAD(&sci->sc_write_logs);
2679         INIT_LIST_HEAD(&sci->sc_gc_inodes);
2680         INIT_LIST_HEAD(&sci->sc_iput_queue);
2681         INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
2682         init_timer(&sci->sc_timer);
2683
2684         sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2685         sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2686         sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2687
2688         if (nilfs->ns_interval)
2689                 sci->sc_interval = HZ * nilfs->ns_interval;
2690         if (nilfs->ns_watermark)
2691                 sci->sc_watermark = nilfs->ns_watermark;
2692         return sci;
2693 }
2694
2695 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2696 {
2697         int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2698
2699         /*
2700          * The segctord thread was stopped and its timer was removed.
2701          * But some tasks remain.
2702          */
2703         do {
2704                 struct nilfs_transaction_info ti;
2705
2706                 nilfs_transaction_lock(sci->sc_super, &ti, 0);
2707                 ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2708                 nilfs_transaction_unlock(sci->sc_super);
2709
2710                 flush_work(&sci->sc_iput_work);
2711
2712         } while (ret && retrycount-- > 0);
2713 }
2714
2715 /**
2716  * nilfs_segctor_destroy - destroy the segment constructor.
2717  * @sci: nilfs_sc_info
2718  *
2719  * nilfs_segctor_destroy() kills the segctord thread and frees
2720  * the nilfs_sc_info struct.
2721  * Caller must hold the segment semaphore.
2722  */
2723 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2724 {
2725         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2726         int flag;
2727
2728         up_write(&nilfs->ns_segctor_sem);
2729
2730         spin_lock(&sci->sc_state_lock);
2731         nilfs_segctor_kill_thread(sci);
2732         flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2733                 || sci->sc_seq_request != sci->sc_seq_done);
2734         spin_unlock(&sci->sc_state_lock);
2735
2736         if (flush_work(&sci->sc_iput_work))
2737                 flag = true;
2738
2739         if (flag || !nilfs_segctor_confirm(sci))
2740                 nilfs_segctor_write_out(sci);
2741
2742         if (!list_empty(&sci->sc_dirty_files)) {
2743                 nilfs_msg(sci->sc_super, KERN_WARNING,
2744                           "disposed unprocessed dirty file(s) when stopping log writer");
2745                 nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
2746         }
2747
2748         if (!list_empty(&sci->sc_iput_queue)) {
2749                 nilfs_msg(sci->sc_super, KERN_WARNING,
2750                           "disposed unprocessed inode(s) in iput queue when stopping log writer");
2751                 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
2752         }
2753
2754         WARN_ON(!list_empty(&sci->sc_segbufs));
2755         WARN_ON(!list_empty(&sci->sc_write_logs));
2756
2757         nilfs_put_root(sci->sc_root);
2758
2759         down_write(&nilfs->ns_segctor_sem);
2760
2761         del_timer_sync(&sci->sc_timer);
2762         kfree(sci);
2763 }
2764
2765 /**
2766  * nilfs_attach_log_writer - attach log writer
2767  * @sb: super block instance
2768  * @root: root object of the current filesystem tree
2769  *
2770  * This allocates a log writer object, initializes it, and starts the
2771  * log writer.
2772  *
2773  * Return Value: On success, 0 is returned. On error, one of the following
2774  * negative error code is returned.
2775  *
2776  * %-ENOMEM - Insufficient memory available.
2777  */
2778 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
2779 {
2780         struct the_nilfs *nilfs = sb->s_fs_info;
2781         int err;
2782
2783         if (nilfs->ns_writer) {
2784                 /*
2785                  * This happens if the filesystem was remounted
2786                  * read/write after nilfs_error degenerated it into a
2787                  * read-only mount.
2788                  */
2789                 nilfs_detach_log_writer(sb);
2790         }
2791
2792         nilfs->ns_writer = nilfs_segctor_new(sb, root);
2793         if (!nilfs->ns_writer)
2794                 return -ENOMEM;
2795
2796         inode_attach_wb(nilfs->ns_bdev->bd_inode, NULL);
2797
2798         err = nilfs_segctor_start_thread(nilfs->ns_writer);
2799         if (err) {
2800                 kfree(nilfs->ns_writer);
2801                 nilfs->ns_writer = NULL;
2802         }
2803         return err;
2804 }
2805
2806 /**
2807  * nilfs_detach_log_writer - destroy log writer
2808  * @sb: super block instance
2809  *
2810  * This kills log writer daemon, frees the log writer object, and
2811  * destroys list of dirty files.
2812  */
2813 void nilfs_detach_log_writer(struct super_block *sb)
2814 {
2815         struct the_nilfs *nilfs = sb->s_fs_info;
2816         LIST_HEAD(garbage_list);
2817
2818         down_write(&nilfs->ns_segctor_sem);
2819         if (nilfs->ns_writer) {
2820                 nilfs_segctor_destroy(nilfs->ns_writer);
2821                 nilfs->ns_writer = NULL;
2822         }
2823
2824         /* Force to free the list of dirty files */
2825         spin_lock(&nilfs->ns_inode_lock);
2826         if (!list_empty(&nilfs->ns_dirty_files)) {
2827                 list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
2828                 nilfs_msg(sb, KERN_WARNING,
2829                           "disposed unprocessed dirty file(s) when detaching log writer");
2830         }
2831         spin_unlock(&nilfs->ns_inode_lock);
2832         up_write(&nilfs->ns_segctor_sem);
2833
2834         nilfs_dispose_list(nilfs, &garbage_list, 1);
2835 }